
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Maxwell’s equations from spacetime geometry and the role of Weyl
curvature
To cite this article: J Lindgren and J Liukkonen 2021 J. Phys.: Conf. Ser. 1956 012017

 

View the article online for updates and enhancements.

This content was downloaded from IP address 68.15.90.254 on 28/07/2021 at 01:02

https://doi.org/10.1088/1742-6596/1956/1/012017
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv-3XCegZoqDLy_RPhOlelxXxuAPRYhcHL4UTO-cuEE8Bng0k704k6cWPZQdSqob5Hs0DVnrsX2JIPc60r-cFMbODHUsgpoTfTl0_8bcRxWk53vSzTG-Yw6JcUvpWw0awmRM2GB43b14JULtj3KJMAZFV-YeVTBLs4r94ICQoz_MdOypG7K1Hdr4zONkEQJvvQQBcR2qv8gFoNUfuJ5tUDwjTVkrj3Nens69KHjpv4f7iLBmtSMKmZNWL335bzy-r6F1Y-QeLGuN_Hql9JzXzjFpGSlyPJ5My8&sig=Cg0ArKJSzDdLC8s36NjZ&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/short-courses


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IARD 2020
Journal of Physics: Conference Series 1956 (2021) 012017

IOP Publishing
doi:10.1088/1742-6596/1956/1/012017

1

Maxwell’s equations from spacetime geometry and

the role of Weyl curvature

J Lindgren1 and J Liukkonen2

1Aalto University, Department of Mathematics and Systems Analysis, 02150 Espoo, Finland
2STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland

E-mail: jussi.lindgren@aalto.fi

Abstract.
This research article demonstrates how the field equations of electrodynamics can be shown

to be a special case of Einstein field equations of General Relativity. By establishing a special
conjecture between the electromagnetic four-potential and the metric of the spacetime, it is first
shown how the relativistic wave equation of electrodynamics is a condition for the metric to be
Ricci-flat. Moreover, the four-current is identified with a certain four-gradient, which allows one
to conjecture that electric charge is related to the covariant divergence of the electromagnetic
four-potential. These considerations allow one to understand the Einstein field equations as
a nonlinear generalization of Maxwell’s equations. Finally, it is argued that the four-current
induces Weyl curvature on the spacetime.

1. Introduction
Before the advent of Quantum Mechanics, and well in the 1950’s, there was an eager strand of
research in mathematical physics which tried to derive electromagnetism from purely geomet-
ric considerations. Probably one inspiration for such aspirations was the fact that Newtonian
gravity and electrostatics share some key mathematical features in the sense that they are
both described by Poisson’s equation. The earliest attempts can be reasonably traced back to
the German physicist Gustav Mie (1868-1957) and the Finnish physicist Gunnar Nordström
(1881-1923). Fruitful efforts came, for example, from David Hilbert (1862-1943), Hermann Weyl
(1885-1955), Theodor Kaluza (1885-1954), Arthur Eddington (1882-1944) and of course also
from Albert Einstein (1879-1955). It is less well-known that, for example, Erwin Schrödinger
(1887-1961) had such inclinations as well, see [1]. For a thorough historical review, see [2].

Theories by Rainich [3], Misner and Wheeler [4] are of course important in this respect. Indeed,
John Wheeler and others continued such efforts within the research tradition of geometrody-
namics. The inspirations for such research programmes came from the idea that perhaps the
material world can be seen solely through the structure of the spacetime itself.

One approach to classical electrodynamics is through the Lagrangian approach, where it can be
shown that a critical point for the action functional is achieved, if two of Maxwell’s equations
hold. The Lagrangian approach is the motivation in the present study as well. The present
approach asks the question: under which conditions we can understand the classical electro-
magnetic Lagrangian through the curvature of spacetime? This article provides one possible
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path for such understanding, whilst at the same time we establish a conjecture linking the very
ontology of charge to some properties of the spacetime metric. The approach therefore resem-
bles John Wheeler’s ”charge without charge”. Einstein himself was of the view that ”A theory
in which the gravitational field and the electromagnetic field do not enter as logically different
structures would be much preferable.”, see [5]. The present study aims to do just that and also
to endogenize the source currents by linking them to Weyl curvature.

2. Electromagnetic Lagrangian and the Einstein-Hilbert Action
The mathematical framework in the present study is that of pseudo-Riemannian geometry.
Unlike in many approaches, where electromagnetism and spacetime geometry are considered
together, we assume that only the canonical Levi-Civita connection is needed. Moreover, unlike
in some other approches, we assume the spacetime manifold to be four-dimensional, like in
General Relativity. This guarantees us that the framework in General Relativity is preserved;
the metric defines the curvature and the optimal metric defines the geodesics. In General
Relativity the stress-energy tensor is the source of curvature in the spacetime. However, it is
important to recall that to link the stress-energy content of the spacetime merely to the Einstein
tensor Gµν = Rµν − 1

2Rgµν means that one only considers essentially the trace of the Riemann
curvature tensor and thus Weyl curvature is ignored as such. In the present consideration Weyl
curvature is essential to include, for in the final analysis it is needed to make the theory consistent
with canonical electromagnetic theory.

2.1. Metric volume form and the Einstein-Hilbert functional
Suppose we consider a pseudo-Riemannian manifold (the 4-dimensional spacetime) (M, g) with
a torsionless and metrical connection ∇.

First, we show that the vacuum Einstein equation is the optimality equation for the Einstein-
Hilbert functional, irrespective of the sign of the metric determinant1. The object we are inter-
ested in is the total scalar curvature of the Lorentzian manifold. This can be defined through the
Riemann-Christoffel curvature tensor Rλνσµ. This tensor can be contracted, Rλνλµ and the result
is the Ricci curvature tensor Rµν . According to Einstein, Ricci curvature is essentially describing
the local (mean-) curvature of spacetime, and the source of essentially this curvature is the mass
and energy distribution (the symmetric stress-energy tensor). There is a natural invariant, called
the scalar curvature R, which is the trace of the Ricci tensor. Minimizing this scalar curvature
over invariant volume forms leads to the famous Einstein field equations of General Relativity.
David Hilbert apparently discovered this already in 1915. The key point we want to demon-
strate here is that the criticality condition is independent of the sign of the metric determinant g.

We want to make the following functional stationary with respect to the metric (without any
source terms related to external stress-energy) :

S =

∫
R
√
gd4x. (1)

This functional is one of the simplest nontrivial curvature functionals. The inclusion of the
metric determinant g is due to the requirement of coordinate-invariance, as the metric tensor
is formally the square of the Jacobian. Therefore, the determinant of the metric tensor is
the determinant of the Jacobian determinant squared: g = (detJ)2. Taking the square root

gives:
√
g =

√
(detJ)2 giving |detJ | =

√
g, so that the invariant volume form is dV =

√
gdx4.

1 This idea was utilized partly when considering coordinate-invariance in Quantum Mechanics in [6]
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Functional variation (vary with respect to the contravariant metric tensor gµν) gives:

δS =

∫
(δR
√
g +Rδ

√
g) dx4 = 0. (2)

In the following we utilize Jacobi’s formula: δg = ggµνδgµν . The second term under the

integral is interesting so let us focus on it:
∫ (

δR
√
g + 1

2R
δg√
g

)
dx4 = 0. Substituting then the

variation δg we have:
∫ (
δR
√
g + 1

2R
√
ggµνδgµν

)
dx4 =

∫ (
δR+ 1

2Rg
µνδgµν

)√
gdx4 = 0. Using

the well-known rules for manipulating metric tensors we have:
∫ (
δR− 1

2Rgµνδg
µν
)√

gdx4 = 0.
Remembering that R = Rµνg

µν , from which we can conclude that we have the Einstein equation
in vacuum:

Rµν −
1

2
Rgµν = 0. (3)

The stationarity condition is the vacuum Einstein field equation, irrespective of the sign of
the metric determinant. Therefore, whenever we optimize the scalar curvature over invariant
volumes, the metric obeys the nonlinear Einstein field equation above. The complete technical
arguments for the variation of the metric determinant and the Ricci scalar can be found in any
good textbook on General Relativity, such as the classic [7].

2.2. The Lagrangian of electrodynamics and the Einstein-Hilbert Action
The key idea from which we can proceed to derive electromagnetism from the properties of the
spacetime is the following: consider the electromagnetic four-potential Aµ and the metric tensor
of the spacetime gµν . We make the following key conjecture: the symmetric metric is given by
the representation:

gµν = AµAν (4)

(tensor product), where Aµ is a general covector (the electromagnetic four-potential). We can
then start to impose some desirable features for the tensor Aµ in order to impose some desirable
features for the metric itself. For didactical reasons, it could be useful to think of the tensor Aµ
as a ”vector field” as in, say, continuum mechanics.

If one thinks of the tensor Aµ as a ”vector field”, we could look for a vector field, which would
be optimal in some sense. We proceed in this way, and we want to minimize the ”rotation”
Fµν = ∇µAν −∇νAµ of the vector field over the spacetime, whilst also we want the vector field
to ”travel along the level-sets of divergence”, see Fig. 1. This latter requirement is inspired by
the concept that the gradient of the divergence of Aν in continuum mechanics would be related
to variations in (mass) density. Therefore, the requirement thus intuitively warrants that the
”vector field” should flow through volume elements with minimal variations in density.

Therefore, we look for a critical point for the following functional:∫
M

(
1

4
FµνFµν +Aµ∇µ(∇νAν)

)
√
gd4x. (5)

The invariant volume form
√
gd4x ensures coordinate invariance, when integrating over

the manifold. The rotating part of the above-defined cost functional is due to the tensor
Fµν = ∇µAν − ∇νAµ. The physical intuition for the latter integrand is the idea that the
vector field should be orthogonal to the gradient of the divergence, i.e. parallel to the level-sets
of divergence. Note that the above functional is exactly the negative of the classical Lagrangian
of electrodynamics, if we identify the four-current with Jµ = ∇µ∇νAν .



IARD 2020
Journal of Physics: Conference Series 1956 (2021) 012017

IOP Publishing
doi:10.1088/1742-6596/1956/1/012017

4

Level-sets of 

Figure 1. The four-potential Aµ should be orthogonal to the gradient of the divergence.

We now show how the above functional is actually equivalent with mild assumptions to the
Einstein-Hilbert action. The first integrand is only the gradient energy of Aµ if the gradient
tensor ∇νAµ is antisymmetric:

FµνFµν = 4∇µAν∇µAν . (6)

Consider now the covariant derivative of the tensor Fµν :

∇σFµν = ∇σ∇µAν −∇σ∇νAµ. (7)

Use the Ricci identity, which is essentially the definition for the Riemann-Christoffel curvature
tensor:

∇σ∇µAν = ∇µ∇σAν +RλνσµAλ. (8)

Substitute into the covariant derivative of the tensor Fµν :

∇σFµν = ∇µ∇σAν +RλνσµAλ −∇σ∇νAµ. (9)

Next, we raise an index with the contravariant metric tensor gµν :

∇σgµνFµν = ∇ν∇σAν +RλσAλ −∇σ∇µAµ = 0. (10)

The equation must be equal to zero, as the metric tensor is symmetric and the tensor Fµν is
antisymmetric. We also have made use of the metric compatibility of the Levi-Civita connection.
Contract with ν = σ and we have:

∇2Aσ +RλσAλ −∇σ∇µAµ = 0. (11)

For convenience, raise an index by multiplying with gσν :

∇2Aν +RνλAλ −∇ν∇µAµ = 0. (12)



IARD 2020
Journal of Physics: Conference Series 1956 (2021) 012017

IOP Publishing
doi:10.1088/1742-6596/1956/1/012017

5

Finally, multiply with Aν (remember that gµν = AµAν):

R = Aν∇ν∇µAµ −Aν∇2Aν . (13)

The above equation defines the scalar curvature in terms of the Aν and its covariant derivatives.
Using Green’s First Identity (with vanishing boundary terms), we have

∫
M

1
4F

µνFµν
√
gd4x =∫

M −Aµ∇
2Aµ
√
gd4x. The covariant d’Alembertian is defined as ∇2 = ∇µ∇µ.

Comparing equation 5 we see that∫
M

(
1

4
FµνFµν +Aµ∇µ(∇νAν)

)
√
gd4x =

∫
M
R
√
gd4x, (14)

which is just the Einstein-Hilbert Action.

This equivalence provides us already a hint that the Einstein field equations and Maxwell’s
equations must be connected with this choice of metric identification.

3. Ricci-flat solutions and identification of the four-current with Weyl curvature
As we have shown now constructively that the classical electromagnetic field theory can be seen
through finding a critical point for the Einstein-Hilbert action, it is clear that the electromagnetic
field equation for this coupling of the metric with the four-potential is the Einstein field equation:

Rµν −
1

2
Rgµν = 0. (15)

Consider now a simple candidate solution for the metric: Ricci-flatness. Ricci-flatness is
important, as Ricci-flat solutions for the metric are indeed special solutions of the vacuum
Einstein field equations. Ricci-flatness can be defined through the Christoffel symbols as follows:

Rαµαν = Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓβµν − ΓαβνΓβµα = 0. (16)

Examine what follows when Rµν = 0 and thus R = 0:

R = Aν∇ν∇µAµ −Aν∇2Aν = 0 (17)

and thus
∇ν∇µAµ −∇2Aν = 0. (18)

If we now make the identification Jν = ∇ν∇µAµ, we have:

∇2Aν = Jν , (19)

which comprises two of Maxwell’s equations.

Consider the covariant divergence of the Faraday tensor Fµν . Consider again equation 9:

∇σFµν = ∇µ∇σAν +RλνσµAλ −∇σ∇νAµ. (20)

Raise an index by multiplying with the contravariant metric tensor gσν :

∇νFµν = ∇µ∇νAν +RλµAλ −∇ν∇νAµ. (21)
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With the metric being Ricci-flat, the covariant divergence of the Faraday tensor vanishes. If
we want to require conformity with canonical electrodynamics, where the ordinary divergence
of the Faraday tensor equals the four-current, we need to couple the four-current to the Weyl
curvature of spacetime. Remember that the Weyl tensor is the traceless part of the Riemann
curvature tensor. In other words, the four-current must induce Weyl curvature on the spacetime.

In terms operationalizing the coupling of the four-current to the Weyl curvature, consider the
definition of the covariant derivative of the Faraday tensor:

∇σFµν = ∂σFµν − ΓλσµFλν − ΓλσνFµλ. (22)

Raise an index by multiplying with the contravariant metric tensor gσν :

∇νFµν = ∂νFµν − gσνΓλσµFλν − gσνΓλσνFµλ. (23)

As the covariant divergence of the Faraday tensor on a Ricci-flat spacetime vanishes, the
requirement that the field equation conforms to classical electrodynamics, it is required to
identify the four-current with the following:

Jµ = gσνΓλσµFλν + gσνΓλσνFµλ, (24)

where the Christoffels symbols are not zero, in spite of the vanishing Ricci curvature, but they
reflect the Weyl curvature of the spacetime.

The rest of the four Maxwell’s equations are given by the algebraic Bianchi identity:

F[λµ;ν] = 0, (25)

This cyclic permutation can be seen easily from the algebraic Bianchi identity which says that

Rλσµν +Rλµνσ +Rλνσµ = 0 (26)

where the semicolon refers to covariant differentiation. Substituting the definition of the Faraday
tensor in the above and using the Ricci identity we end up with the algebraic Bianchi identity,
which guarantees us Faraday’s Law and the absence of magnetic monopoles. This is just due to
the symmetry properties of the curvature tensor as we do not have torsion, ie. the Christoffel
connections enjoy symmetry.

We also require that ∇µJµ = 0, which is the familiar conservation of charge statement. For
us it means that the divergence of electromagnetic four-potential must obey the covariant wave
equation

∇2φ = 0, (27)

where φ = ∇µAµ is the covariant divergence.

4. Discussion and conclusions
Electromagnetism is induced by the twisting geometry of the spacetime. As the metric tensor
gµν = AµAν depends solely on the electromagnetic four-potential, Ricci-flatness requires that
Maxwell’s equations are satisfied. The classical electromagnetic action for electrodynamics is
understood through minimizing rotation and preferring the level sets of divergence and thus
through minimizing the total scalar curvature of the manifold. The classical action of electro-
magnetism is the Einstein-Hilbert Action and electromagnetism can be understood therefore
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from the frameworks of General Relativity. For a concise set of conceptual analogies between
geometry and electromagnetism, see Table. 1.

As the identification presented makes the hypothesis that the four-current is the four-gradient
of the four-divergence of the electromagnetic potential, and as current is transport of charge,
we make the claim that charge is directly related to the divergence of the electromagnetic four-
potential. The four-current then is a re-balancing mechanism, which transports charge to make
the scalar curvature to vanish. It is also concluded that the four-current is coupled to the Weyl
curvature of spacetime, so that the vanishing of covariant divergence of the Faraday tensor con-
forms with the canonical formulation of electrodynamics. This could be in principle interesting
also from an engineering point of view, as the traceless part of the Riemannian curvature tensor
is not directly considered in classical Einstein field equations. Finally, as Maxwell’s equations
are the requirement that the spacetime manifold is Ricci-flat, we can understand the vacuum
Einstein field equation as a nonlinear generalization of Maxwell’s equations. In a way, Einstein’s
objective to unify the classical fields seems to be the correct approach, but the complete picture
was missing the role of Weyl curvature. The strength of the present approach is simplicity, there
is no need for higher dimensions, torsion tensors, asymmetric metrics or the like.

Table 1. The bridge between geometry and electromagnetism

Geometry Electromagnetism

metric tensor electromagnetic four-potential
Ricci scalar classical Lagrangian in electrodynamics
Einstein field equation generalized electrodynamic wave equation
Ricci-flatness Maxwell’s equations
Bianchi identity Maxwell’s equations
divergence charge
Weyl curvature four-current
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