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The first part of this paper contains new mathematical techniques for describing a spacetime anisotropy as
suggested by the violation of parity conservation. Geometric measures of spacetime involve both the
laboratory doing them and the events upon which these measures are done. The time form ¢ and the
spacelike length 7y are the basic issues of those measures. Both depend on events and also on the timelike
direction of the laboratory. Relativity tells that the field vy — ¢ X)c depends, on the contrary, on events
only; in this sense, relativistic spacetime is isotropic. 1f v and ¢ do not have that property, the manifold
where the observable geometry takes place must be the set of timelike directions. The geometric structure
of this manifold given by ¢ and ¥ is studied in detail. The second part of the paper contains the study of a
line of thought opposite to chronogeometry: Building the geometry from lengths instead of times. The
datum is ¥; through the conditions of stationary spacelike volume and of stationary proper time, a class
of time forms and a gauge are obtained under some weak restrictions. Newtonian and relativistic spacelike
metrics fulfill these restrictions. Standard connections are induced; they define the absolute derivative of
physical fields and the geometric structure of the manifold of timelike directions. The paper ends with

some comments about the remaining problem: to suggest and justify field equations.

. MATHEMATICAL TECHNIQUES FOR
SPACETIME PHYSICS
1. INTRODUCTION

We will consider spacetime as an n-dimensional differ-
entiable manifold M, whose underlying set is the set of
events. We call timelike the nonvanishing vectors tangent to
the possible world line of particles. Let % M be the set of
timelike vectors. Then, if x.Z M and a > 0, we have
axeZ M. Also we admit that % M is an open subset of
T M, 75:T \M—M being the tangent bundle over M. In
ordinary language, this assumption corresponds to the fol-
lowing experimental fact: Given a particle, it is possible to
have particles whose relative movement (with respect to the:
former) has arbitrary direction. We put 7 M—M, where

F =1 Z M, and suppose 2 . = 7 '(m)to be nonempty for
each meM.

We emphasize that % M is not related here to a Lorentz
metric, because we are looking for a wider mathematical
ground than the relativistic one.

Any physical quantity must be measured from some
laboratory, and every physical experiment must be devised
referring it to several instruments. These instruments consti-
tute the laboratory, and they are built by particles following
their respective world lines. Let U be the spacetime neigh-
borhood where the experiment takes place. Then, we can
provide a rough description of the laboratory as a cross sec-
tion 7 of 7 on U, where 7, stands for the tangent to the world
line of the particle (belonging to the involved instruments) at
meU. Thus, one could expect the result to be a function of 7
and other parameters. Obviously, this happens in practice:
for example, the Doppler effect of a signal received in earth
from a satellite.

However, this experiment and others like it are too far
from our geometric goal. So, we shall fix our attention upon
the measurement of geometric features of spacetime: (a) time
elapsed between two events, as measured by clocks (labora-
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tories) following different world lines connecting both
events; (b) spacelike distance between two events as mea-
sured by different meter sticks (laboratories), such that both
events occur on each meter stick. In both cases, the resulting
quantity depends on the laboratory, i.e., on the local cross
section of 7 attached to each clock or meter stick.

The wondrous thing would be that one could find, from
that type of measures, a magnitude depending on events of
spacetime only, and not also or 7. If this did occur, we could
say that spacetime geometry was isotropic, since it did not
depend on the timelike directions of the laboratories measur-
ing it. Einstein’s standard relativity is, of course, the best
example.

But spacetime is not isotropic in its mass or charge dis-
tribution, at least on local scale. Moreover, the violation of
parity conservation suggests an anisotropic spacetime at the
microscopic level, as it has been explained by Horvath.! So,
one could regard general relativity as a first approximation
that neglects anisotropy, and consider the manifold of time-
like directions as the proper ground for the measurable space-
time geometry. We say directions instead of vectors because
and a7 do represent the same laboratory if a:M—R is a posi-
tive function. Thus, the true manifold must be % M, the quo-
tient of £ M under the equivalence relation given by
homotheties.

Now, what could one expect to find out as measurable
quantities? Of course, the same we are obtaining until now,
that is, ordinary numbers, vectors, or tensors. Thus, our
physical fields will be maps from . M to R (scalar fields), or
to T/M (tensor fields).

The goal of Part I is to develop a suitable mathematical
formalism for the treatment of these *‘mixed” fields also de-
pending on directions. It provides a common geometric
framework for the study and comparison of different space-
time theories (Newtonian and relativistic for instance). As
far as I am aware, it constitutes a new mathematical tech-
nique; however, for the sake of brevity, we shall restrict our-
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selves to the concepts we will directly use in spacetime the-
ory; the risk of such restriction is to conceal somewhat the
mathematical reasons for giving certain definitions. Any-
way, our paper (Montesinos?) could serve as an introduction
to those techniques.

Through Part II, my own physical theory is developed
under the formalism of Part I. The fundamental field will be
the spacelike metric. From it, we build simultaneity and,
partially, time length; in this sense, my theory is somewhat
new, since it no longer takes time or light signals as funda-
mental. It could be looked at as the opposite veiwpoint of
chronogeometry.

Besides this Introduction, Part I has nine sections. In
Sec. 2. we briefly describe the notation and some mathemat-
ical notations which we will use.

As for Sec. 3, let £ M be the quotient manifold of FM
under the equivalence relation given by positive homothe-
ties. If m:. % M—M is the induced projection, then the mani-
fold of timelike directions, ¥ M, becomes an open submani-
fold of the sphere bundle over M. Physical fields are maps as
h:E M—T ™M, satisfying w7oh = 7, where 7:T M—M is
the tangent tensor bundle of type (#,5). This condition tells us
that a physical field assigns to each timelike direction 7,, a
tensor lying in the tensor space tangent to M at m, the event
where that timelike direction lies. We can consider physical
fields as included in the algebra of Finsler tensor fields over
Z M because there is a one-to-one correspondence with ho-
mogeneous degree zero Finsler fields.

This material serves for describing the basic geometric
features of spacetime, namely the time function £, the time
form c, and the spacelike metric ¥ (Sec. 4). We discuss the
physical meaning of these fields and give two examples,
Newtonian and relativistic spacetimes, clearing up the wide
range of spacetime models where this scheme applies.

The mixed nature of physical fields makes a direct treat-
ment difficult. So, we shall submit it to the techniques for
usual fields over & M. Besides the physical motivations for my
viewpoints, that is the main objective of this part. Thus, in Sec.
5 we define horizontal and vertical homomorphisms from
the module of physical vector fields to that of ordinary vec-
tor fields over ¥ M.

In Sec. 6, these homomorphisms are extended to be
graded tensor algebra homomorphisms (lifts) from /7M, the
algebra of physical fields, to V. M, the algebra of ordinary
tensor fields over £ M. Each lift has a unique lowering that
is its transpose map. We define crossed pairs of lift lowerings.
They induce the horizontal and vertical projectors. The
main result of this section tells that a pair of horizontal and
vertical homomorphisms, in the sense of Sec. 5, do define a
unique pair of crossed lifts.

In Sec. 7 we define and interpret several types of con-
nections we will use later, namely horizontal and vertical
connections on /7TM, physical connections, and the j-connec-
tion D, an important mathematical tool. We interpret
7 = Dc as the rate of time retardation when the relative
speed increases. This field plays an important role in the
existence problem for connections.
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Section 8 is devoted to the definition, explanation, exis-
tence, and uniqueness of horizontal and vertical torsionless
metric connections. They have a suggestive meaning: The
vertical connection measures the absolute directional depen-
dence of physical fields; the horizontal one, the absolute
along spacetime dependence.

In Sec. 9, we lift the pair of these horizontal and vertical
connections for having a unique physical connection. It de-
fines the absolute dependence of physical fields along the
time manifold. This connection is also lifted for having the
linear connection D, that yields the final geometric structure
of the time manifold itself. These results are briefly resumed
in the conclusion (Sec. 10).

2. NOTATION

M, n-dimensional Hausdorff second countable real C =
manifold, briefly manifold. It stands for spacetime.

7. T"M— M, tangent tensor bundle over M of type (r,5);
M, _, tangent space at meM.

¥ M, the ring of C ~ real functions on M; V' M, the
V' 3M -module of C * cross sections of 75; VM = & VM,
tensor R algebra, graded by the indexes (7.5).

Z M, the set of timelike vectors, is an open submanifold
of T oM, 7: Z M—M is defined by 7 = 7}| Z M . We suppose
that 0¢.% ,, = 7 '(m)=0 for every meM. In addition, we re-
quire that 1f xeff M, then axe.Z M for every 0 <a€R.

Since .Z M is itself a manifold, we use V2% M and
V% M to denote the module of ordinary tensor fields of type
(r.5) over £ M, and the respective graded tensor R algebra.

[T3M = V3% M, thering of real C * functions on M,
IT'M is the IT3M module of Finsler tensor fields of type
(r,5), that is C* maps / hFM—T'M satisfying
woh = 7; M= oll "M, graded tensor R algebra of
Finsler fields. We say that a Finsler tensor field # is homo-
geneous of degree acRif h o = = ¢°h, for every 0 < geR and
X% M. That property will be denoted 4 (@).

#.Z M—T \M, the canonic Finsler vector field, is de-
fined as the inclusion. Hence, #@ is 4 (1).

idT },M—»K(‘,ﬁ— M, the vertical injection. That is, if
peM,, and Xe¥ ,,, then i(D) is the tangent at 7 = 0 to the
curve o:t—x + bt. Since & M is open in T (M, then ¥ &z, is
open in M, therefore, for some € > 0 that curve lies i m
4%, CFM if —e<t<e Thus,o(t)isacurveon IM,
whence its tangent /¢ () at r = 0 is a vector belonging to
(ZM); . Hence, if 5:% M—T )M isa Finsler vector field, we
define iveV L% M by means of (it); = i{(U3).

{s,v>, the contraction of the !-form s (belonging to
VoM, VO.Z M, ITSM, eic.) with the vector field v (belong-
ing to VM, VIZM, ITiM, etc., respectively).

3. THE TIME MANIFOLD. PHYSICAL FIELDS

On .Z M we define an equivalence relation ~by means
of ¥ ~ yif #(X) = #(¥) and X = ey for some a > 0. Let ¥ M be
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the set of equivalence classes, and p:.* ?“M——> % M the natural
projection, which applies an element xe. Z Mintoits class px.
Then, % M can be given a unique differentiable manifold
structure making p a submersion. We will call # M, with
that structure, the time manifold. It represents the manifold
of timelike directions. The map m:. % M—M, where mop = 7,
defines the time bundle. Note that a cross section r of 7 on
UC M can be looked at as a laboratory whose instruments
have at meU a particle with speed 7,,

Let /7 M be the ring of C = real functlons on ¥ M. We
use /7'M to denote the set of physical fields of type (7,5), i.e.,
C* maps - s M—>T'M satisfying 1r’0h = 7. Then, if for
example vell (M, its valuev, atr, €. = 7"'(m) is a vector
of M, the tangent space to M at m. Thus, IT’M becomes a

11 9M-module, and we can build the graded tensor algebra
ITM of physical fields.

If hell 'M, we put e h = hop.Z M—T'M. Then

moe = mohop = wop = 7, therefore, e, 4 is a Finsler ten-
sor field of type (#,5). Since p(ax) = px for every a >0 and
xeS M, we conclude that e, his 7 (0). Hence, e, JIM->ITM
is a graded R algebra homomorphlsm mapping /7M onto the
graded subalgebra of / (0) Finsler tensor fields. Conversely,
if helTM is h (0), it defines e, hcIIM by means of eiop = h.
Thus, e,ce, = id on IIM, and e e, = id on the subalgebra of
h (0) Finsler tensor fields. So we have bridge between Finsler
techniques and those we present here.

4. SPACE AND TIME FORMS

Spacetime geometry involves two main concepts, spa-
celike and timelike length, and a link between them: syn-
chronization. This last is the troubling point because since
Einstein’s relativity, light signals came in. The trouble is:
timelike length defines by itself a synchronization, as we
shall see at once; spacelike length also does that (see Part I1).
So, what do light signals do in all this matter? This question
is purposely bold, but I think it is not merely rhetorical. It
aims to raise doubts about the role light signals must play on
spacetime geometry, and to make more plausible the view-
point of this paper. In fact, my methodological way is the
following: to look at space and timelike length as the basic
(related between them or not) geometric data of spacetime,
and to consider gravitational or electromagnetic phenomena
(light signals among them) as desirable dynamical issues
from the szatic (geometric) description. So, in this paper light
signals do not play any direct role among the basic geometric
JSeatures of spacetime. Of course, electromagnetic signals are
the best practical tool for the study of spacetime in several
areas. I simply say they are unnecessary for our theoretical
purposes.

Let us consider time length first. As it has been pointed
out by chronogeometry, time length must be defined by a
# (1) function felT M, such that if o:{a,b ]—>M is the world
line of an atomic clock, then f2f,dt is the time measured by
that clock between o(a) and o(b ). The function /must be A €3]
for time elapsed could be invariant under parametrization
changes of 0. We will call £ the time function.

A synchronization is given by a time form, that is a field
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cell {M such that (i) is everywhere nonzero (we always
will put é = e, c). Briefly, if x> M, then the hyperplane of
M, spanned by the vectors ieM,, satisfying {¢;,0> = 0 de-
fines the simultaneity relative to the timelike direction pXx.
Note that <¢,#>; = {c,z%>70because X stands for a tangent
to the world line of the particle defining the simultaneity ¢, ;
since that line is timelike, different events on it cannot be
simultaneous. Note also that if ¢ is multiplied by any non-
vanishing function gelT {M , then gc defines the same simul-
taneity than c.

Let us relate fand c. If fand ¢ are given, then ¢ can be
multiplied by some function ge/I $M such that :

e, (gc),i> = f, since it is enough to take g = e, (f /<¢,0>).
Thus, an arbitrary given time function can be defined on this
way from an arbitrary simultaneity. The choice of a “length”
for a simultaneity ¢ (the multiplication by g) fixes a time
scale on each synchronized laboratory. That is, if 7,,, is a
timelike direction at m, then ¢, stratifies on equitime hyper-
planes the affine tangent space M,, . Thus, if veM,, , then
{c, ,uy stands for the time shift between the tail and the head
events determining . This time shift depends on the inclina-
tion (synchronization) of ¢, , and also depends on the sepa-
ration of equitime hyperplanes (the lenght of ¢, ). Now, if
o:[a,b]->M is a world line and »M— 5 M is a laboratory,
then §%¢c,...0>dt is the time inverted by the particle o from
o(a) to a(b ), as measured by the laboratory r. If r is the
particle itself, that is roo = pg, and <é,#> = f, then
$5C 0,0t = [2(E, 0> dt = [f,dt. In other words, the con-
dition {¢,#> = f means that we have picked for the synchro-
nized laboratories the same time scale which measures proper
times by means of f.

Let us consider the inverse problem: Given f, find out a
time form c such that {¢,i> = f. A solution is the element of
ITM defined through<{c,i> = io(f) forevery vell ) oM. Infact
we have <&,d) = ii(f) = fbecause fis A (1); also ¢ is & 0)
because # is /2 (1). Therefore, e, ¢ = ¢ is a solution. Now, if
bell \M satisfies (e, b,ii> = 0, then ¢ + b is another solu-
tion. But only the first one has a decisive property: The si-
multaneity if furnishes corresponds to that of infinitely slow
clock transport. In fact, we will see in Part II Sec. 4 that this
correspondence is characterized by the property ii({¢-

i) = <é,0) for every 5ell \M . So, we can say that a time
function f gives raise to a unique compatible time form c, the
one satisfying (¢,i) = f, ii({¢,i>) = <{¢,5>. Due to this, in
the following we will use time forms instead of time
functions.

As for spacelike length, it is given by a field vell; M,
symmetric, of signature (0, + ,..., + ), and such that y(u )
=0, wherey = e . v Along Part II we will justify this asser-
tion and see in what manner y defines a time form. So, we
shall then reach another puzzling point: the compatibility of
the time forms obtained from time functions or from space-
like metrics (II.1). Until then, we will leave this question and
goon to describe two typical examples under this formalism.

Let ge¥IM be a Lorentz metric. Then it defines the
time form € = — g(&#, )/( — §(i,u))"? where g = gos#, and
the spacelike metric ¥ == gom + ¢ ® ¢. This is the relativistic
model.
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As for a generalized Newtonian spacetime (locally abso-
lute time and length), let M admit a symmetric field geV SM
of signature (0, + ,..., + ), and a field be V%M, everywhere
nonzero, such that if 045eM,, and (b,,0> = 0, then
7., (5,0)>0. Thus, b defines the local absolute time and § the
local absolute length. We put
IM = |%,eTMb,,%,>70}. Then, the time form is giv-
en by ¢ = bor and the spacelike metric by

L aGd).. d@)eé  ieq()
T e T Ty @

where § = go7.
See also Ref. 3.

5. VERTICAL AND HORIZONTAL
HOMOMORPHISMS

A vector field veV (% M is said to be vertical if
v(@or) = 0O for every @aeV 9M . That is, vertical vector fields
are tangent to the fibres 7 '(/m). The set of vertical vector
fields is a ¥ 3% M -module, locally (n — 1)-dimensional, for
it is the annihilator of the ¥ 3. M -module spanned by the
elements d (@em)eV (% M, and this last module is clearly n-
dimensional [take for example @ = X', where { X'} is a coordi-
nate system on UC M, and note that ¥ M is (2n — 1)-
dimensional}.

Suppose that a time form ¢ is given. Then, it defines in a
natural way a homomorphism j:/1 \M—V % M such that
its image, j(/T }M ), equals the module of vertical vector
fields (in this sense we say thatj is a vertical homomorphism).
In face, let velT M; then § = e vell \M, and (¢,i)it is a ver-
tical field of ¥ . % M. By its own definition, ((¢,i)i%), is the
tangent, at ¢ = 0, to the curve r—ax + {¢,gax >tV ;. Now,
because the factor (¢, z,ax) = a{éX>,p projects all these
curves (varying the number «) upon the same curve
P(X + {c Xt ,5), whose tangent at 1 = O defines j,(v,5).
Thus, we put (jv),z = j,{(v,:). Hence we have
(jvyop = p.o(Ké, i ie v), where p. stands for the derived map
of p. If aell M = V 5% M, then ju(a) defines a derivation
along the fibres; that is, ju measures the dependence of func-
tions on directions, not on events of spacetime. We have that
ker j is spanned by k = e,(i/{¢,i>), because p.oiu = 0.

Now, let A:J1 )M—V )% M be a homomorphism. Then
we say it is horizontal if (Av) (@om) = v,(@) for every re¥ M
and ae¥ M. The definition tells that A is injective. Note that
our condition is equivalent to {d (@om),Av) = {(da)omv).
Let us give an interpretation of A. We have that the elements
vell \M can be locally written as v'(d /dx'or), where
v'ell SM and {x'} is a coordinate system on UC M. Since A
is 11 5M -linear, we shall only give the interpretation of A
upon associated fields, that is such as 7o, with eV M. A
horizontal homomorphism A is an assignment of a field
AveV L% M tothe field v = Do such that Av projects uponv
under the map 7. . In other words, integral curves of Av are
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projectecd by 7 on integral curves of v. Or roughly speaking,
a horizontal homomorphism is an interpretation of derivatives
along M as derivatives along S M.

6. LIFTS AND LOWERINGS
Our purpose is now to extend a pair of vertical and

horizontal homomorphisms to vertical and horizontal lifts
for arbitrary fields of /IM.

The map A:lIM—V.% M is called a horizontal (vertical )
lift if: (a) A |11 )M is horizontal (vertical) homomorphism;
(b) A is a type preserving graded R algebra homomorphism;
(c) if v is in annihilator of ker 4 /1M and sell M, then
{As,Avy = {s,v); and if s is in annihilator of ker 4 [/ M and
vell (M, then {As,Avy = {s,0).

Note that if 4 is horizontal, then 4 |{/ W is injective;
thus every sef7 {M belongs to the annihilator ofker 4 |17 (M
; hence, if 4 is horizontal, condition (c) tells us that
{As,Av) = {s,v) for every s,v. Note also that for every lift we
have that Aa = a if aclT M.

The lowering B of a lift A4 is its transpose map
BV M—IIM. In other words, B is the graded R algebra
homomorphism such that Ba = a, {Bs,v) = {s, Av),
{5,Bv) = (As,v>.

If 4 is horizontal, then {s,BAv> = {As,Av)>-
= {s5,0> = {BAs,v», whence BA = id. If 4 is vertical we have
BAB = B,ABA = A. Infact, ifvell \M andseV % M , then
(s,ABAvY» = (Bs,BAv). But if zekerd |11 )M, then
{Bs,z> = {s,Az> = 0. Hence Bs belongs to the annihilator of
ker A |IT M. Therefore, {Bs,BAv> = {ABs,Av)-
= (Bs,v)> = {5,4Av). Since s is arbitrary we have 4B4 = A on
I1M; in the same way ABA = A4 on I1 {M; therefore, this
relation holds on the whole /IM. The proof for BAB = B is
similar.

The maps 4,8 have a local character, as is easily proved
as customary. This means that if v, = w,, then (4v), = (4w),
and so on.

The following definition will be useful for our purposes.
Let A, be horizontal, 4, vertical, and B,, B, their respective
lowerings. Then we say they form a crossed lift pair if
BA,=B,A, = 0on II'M for (7,5)(0,0) (on IT )M, these
homomorphisms are always the identity), and 4,B, + 4,8,-
=idon V ¥ M andon V{¥ M.

Then we shall put H = 4,B,, V = 4,B,. Thus we have
H =H, V=V, HV=VH =0o0n V.¥ M with
(r,5)%(0,0). Thus, H and V project fields of V. M into their
horizontal and vertical components. These components sum
the given field if it is a vector field or a 1-form because then
H+V=id

Now we reach the fundamental result of this section:

Theorem: Given the vertical and horizontal homomor-
phisms j and A, they define a unique crossed lift pair 4,, B,
A,, B, satisfying 4, |[TT\M = A, 4,|I1 (M =j, {c,B,v> =0
for every veV . M. Moreover, then B,|V (¥ M = 7.
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Proof: First we prove j(II \MYe A (II}M) =V %M.
In fact, if v = jv = Aw, then for every aeV JM we have
v (@om) = (jv) (@°om) = 0 = (Aw) (@°m) = w(a). Hence
w, = 0 and v, = 0. Thus, the intersection of those submo-
dulesis zero. Now, A is injective and the image of j equals the
submodule of vertical vector fields. Therefore, the maps
A,, j, defined at each re M by A v, = (Av),, ju, = (jv),
have rank » and #n — 1, respectively. Hence
J M Y)eAM_)=(FM), because (¥ M),is 2n — 1)-di-
mensional. Now, it is a simple matter to extend this direct
sum globally for having our first claim. As a consequence, if
veV \% M, it can be written in a unique manner as
v = Av, + jv,, where v,,0,€lT ;M and {c,v;> = 0 (note that
ker j is spanned by k, and {c,k > = 1). We put
(A 5,V = (5,00, <A:5,v> = {8,0,>. These maps, together
with A andj, in fact define the whole lifts 4,4, satisfying our
requirements. The proof is rather mechanical and is left to
the reader. As for the assertion B, |V £ M = 7., we have
8,8y = (A15,v> = s, if v = Av, + ju,. Then
TV = T.OAV, + 7.9V, = m.OAv, = v, as we have seen in our
interpretation of horizontal homomorphisms. Therefore,
B,v = m.ov,

Note that if ve/I}M, it can be written as
v=(v— {e,vDk) + <c,wdk. Thus, 4,0 = j(v — {c,v>k) and
(5,8,4,0> = (A4,5,4,0> = <A.5/(v — Le,vDk )
= (5,0 — {¢,vpk > because {c,v — {c,v>k > = 0. Hence, B,A4,
is the identity on annihilator of ¢. On a similar way, B,A, is
the identity on the annihilator of k.

7. CONNECTIONS

The map 7:(v,h )ell M X [IM—~7, helIM is called a
horizontal (vertical ) connection on IIM if: (a) <7, JIM—IIM
is a derivation of degree zero on the graded R algebra /IM;
(b)), a = Av(a), A:11 M—V | F M being a horizontal (ver-
tical) homomorphism and aefT $M; (c) it is /T 9M -linear in v,
that is /4, , po = @V, + b V,; (d) if selT M and well M,
then Vsw) = <Vl5,w> + <S,va>-

The map 4: (w,h eV % M X IM—A hellM is called
a physical connection if: (a) 4., is a derivation of degree zero
on ITM; (b) A ,a = w(a) for aell JM; (c) it is V' 5.% M -linear
inw; (d) 4, <{s,0> =<4 ,5,0> + (5,4 0D

From a geometric and physical viewpoint, physical
connections are more natural than connections on f7M, but
these are easier to handle. We will use them as a tool for
finding physical metric connections. However, both types
have a physical significance. The meaning of physical con-
nections is that they give the covariant derivatives of phys-
ical fields along the directions w, that is, along curves on
# M, in other words, when we move from a point 7 at which
the laboratory has direction 7, to a point m’ where the labo-
ratory has direction 7., in such a manner than the points 7,
and 7, of £ M are detached between them by the vector w
(roughly speaking).

Now, as another useful tool, we build the j connection
D, which is a vertical connection on fTM. It is defined by
Da = ju(a) if aell M, and D (hom) = 0 if heVM. It is not
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difficult to prove the consistency of this definition. We have:

Theorem: If c is a time form such that i6({¢,5p) = <é,6>
(see Sec. 4), then (D, c,w) = <D, c,k> =0, and
{Dcw) =D cvy for vwell M.

Proof: Since these expressions are /T JM -linear in v,w,
we can suppose that they are associated fields, that is
Dv = Dw = 0. Thus, (D,c,w) = D, {c,w) — {c,Dw)

= D, {c,w)> = jk ({c,wD) = 0 because jk = 0. Now

(D, {c,v>)op = <&adiw(it((,a>)) = <&a>iv(ib(<é,i>)) be-
cause v, w are associated fields and iv, iw are ordinary deriva-
tives (in the same sense used in R ") on the fibres of 7. Hence
0= D ey — DLew) =D e,v> — {Dc,w). Therefore,
D, c.k>=Dcwy=0.

This theorem tells us that 7 = Dc defines a symmetric
element of 17 9M such that n(k, ) = 0. This field gives the
rate of time retardation when the relative speed increases. In
fact, let o(¢ ) be the world line of a particle, and 7 a cross
section of 7, that is a laboratory. If 6(z ) is the tangent to o, we
can roughly think of (¢ ) as a vector joining two events in the
world line, namely o(¢ ) and o(¢ ) + d(¢). Then
T, = {Cpoqq; p0(t ) is the time interval, measured by the syn-
chronized laboratory r, for the track of that particle between
o(t)and o(t ) + o(¢). Thus, if o remains fixed, this time inter-
val depends on r only. Thus, D, 7, is the rate of variation of 7,
with respect to s, at s = 0, when we take laboratories
P(F + {Crop 7 )SU) measuring it (see Sec. 5), where we sup-
pose pF = roo(t) and 0 = v,., . That is, D7, is the rate of
variation of 7, when the speed of the laboratory changes
towards the b direction. But D,7, = {(D,£),c0(, 0 (¢ )}

= ooy (T,0(2 ). If U is a positive multiple of o(¢ ), this
means we are approaching the laboratory speed to that of the
particle because {c,.., 7> (proper time) is supposed to be
positive. Then, if ., ,(d(2),6(t)) <O, we have that clocks
relatively retard with respect to each other when their rela-
tive speed increases (as a thinking guide, bear in mind special
relativity).

In relativity we have ¥ + 57 = 0. In Newtonian space-
time 7 = 0.

8. METRIC CONNECTIONS

If '/, are horizontal and vertical connections on
ITM, respectively, then we have that
Tow)="Jw—"v,pr— B [4wv4w] and
T (v,w) = Bod,( W — V0 — B,[A4:0,4,w]) are ITOM -
bilinear operators, where 4,,B,,4,,B, is the crossed lift pair
defined through the Theorem in Sec. 6 from the homomor-
phisms associated to these connections. These operators de-
fine elements 'T,, :TelT QM , called the horizontal and verticail
torsion, respectively.

Thus, we say that 'S7 (*<) is a horizontal (vertical ) met-
ric connection if '\7c =0, 'y =0,'T=0(v, =0,
gy =02T=0).

Then, since y(k, ) = 0, we have that 's7, v(k ,)
=(V.NK,) + Y('Vk ) = r('V.k ) = 0. Hence, '\ k
must be a multiple of k; but {c,k > = 1 and 's\yc = 0. There-
fore, '\7k = 0, and in the same way we can prove 7k =0.
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The problem of existence for horizontal metric connec-
tions is rather difficult; in Appendix A is proved that if the
signature of v is (0, 4 ,..., + ), the signature of 1 is
O, —,..., — ) and c satisfies iD({E,0>) = {¢,0), then there is a
unique horizontal metric connection on IIM. The root of the
difficulty is that we do not know a priori the horizontal ho-
momorphism associated with that connection. It must be
determined from our requirements together with the action
of 's7 upon vector fields.

Now, the increasing half-lifes of particles has been veri-
fied for many speeds and directions. Thus, we have an ex-
perimental reason for taking (0, — ,..., — ) as the signature of
7. Assuming this for granted, there is a unique horizontal
metric connection. In Newtonian spacetime, 7 = 0 and that
connection, if it exists, is not unique; the existence condition
is that b be an exact 1-form. This means a universal absolute
time. The proof of that assertion is too long for bringing it
here.

The physical meaning of 's/ is the following:  defines
the absolute derivative of physical fields along spacetime (cf.
the interpretation of homomorphisms given in Sec. 5) from a
laboratory whose particles are each other at relative rest (at
the limit when these particles are close to the event where the
derivative is taken). The reason for this last remark is that
57k = 0, and k could be looked at, in some respects, as the
laboratory field. An account for this interpretation is given
in Ref. 4.

As for the vertical metric connection, it defines the ab-
solute derivative of fields along the fibres of 7, having 7 and ¢
as an absolute measure for the directional dependence of
fields. That vertical metric connection also is uniquely deter-
mined, and given by

*Vw=Duw+ g (DYHw,) + (DLW, ) — (Dg)(v,w),)
— glv,w)k — Lewdv,
where we have put g = ¥ — ¢ ® ¢ (see Appendix B).

9. LIFTING CONNECTIONS

If 4 is a physical connection and 4,B is a lift lowering,
then 57w = A ,,w defines a connection on /IM. The follow-
ing assertion justifies our use of connections on /7M:

Given the horizontal and vertical metric connections '\/,
7 there is a unique physical connection A giving '\7 and *\7
through the above process. It is metric in the sense that Ac = 0
and Ay = 0.

For if A satisfies that condition, then
A=Ay h + Ayh =" Jpoh + /0 forevery hellM,
welV % M. Now it is a trivial matter to prove this formula
effectively gets a physical connection. Moreover 4y = 0 and
Ac = 0 because ’y7, = '/, = 0 and 'vc = *7c = 0. Also
we have 4k =0.

The formula giving A is rather striking: It manifests
itself our way to get it. It splits in two terms, corresponding
to the horizontal and vertical components of w, that is, of the
tangent to the curve on % M along which we compute the
derivative. Thus, it does not require a more detailed
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explanation.

Unfortunately, physical connections are awkward to
handle because of their mixed nature. Due to this, we shall
lift A for having an ordinary linear connection on V.4 M.
The process is the following.

Let 4,, B, be the horizontal lift lowering given by the
metric connections 'Y/, *3/. Then, if D is a linear connection
on V.% M, we have that A 4 = B, D A4,k defines a physical
connection. We shall demand that 4 should be the physical
metric connection we have just defined.

As for 4,, B,, the formula B,D A4,k does not define a
physical connection because B,A4, is not the identity. But
B,A4,B, = B,, whence the preceding formula defines a phys-
ical connection on B,(V.¥ M) that is a subalgebra of /7M.
But our physical metric connection also is a connection on
this subalgebra, because B,(V 5% M) is the annihilator of c,
and B,(V % M) is the annihilator of &. For if (s,k > = 0,
then <4 5.k > = — {5,4,k > =0; also, if {c,v> = 0, then
{c,4,v> = 0. So we shall demand that 4 _B;h = B,D 4,B;h
for every he V.% M. In addition, we demand that the parallel
displacement given by D should apply horizontal vectors
into horizontal vectors; in other words, that DH = 0.

Theorem: There is a unique linear connection D on
V.% M such that
A =BD_Ah A _Bh=BDA,BhDH =0.

Proof: Note first that H linearly applies ¥ .¥ M into
V5% M; hence, each restriction H| V' . M can be looked at
as a tensor field of type (r + 5,7 + 5); in this sense, DH has a
definite meaning. If D is the required connection, then
Dv= +DHv+ D, Vv=DyH? + D,V
=HD _ Hv + VD _Vvbecause H+ V =id on V¥ M and
as a consequence DV = 0. Thus D,v
=A,BD A4 Byv+ A,B,D A,Bv =AA4,Byv+ A4,4,8yv.
Hence, if such a linear connection exists, it is unique and
given by the above formula (valid for elements of ¥ L% M
and V.4 M; for other tensor types, the expression is more
complicated). Now it is a trivial exercise to prove that formu-
la fulfill our demands.

10. GEOMETRY ON THE TIME BUNDLE

We look at y and c as the primordial geometric features
of spacetime. From them, we build unique vertical and hori-
zontal metric connections, and they define the physical met-
ric connection, which describes the absolute derivative of
physical fields along the time manifold. Also we have the
linear connection D that could be regarded as getting the
geometry of the time bundle itself; in fact, the torsion of D, its
curvature and Ricci fields, Bianchi identities, etc., can now
be computed as customary. Thus, our goal has been reached:
we have translated the problem of spacetime geometry to the
geometry of the time manifold, the manifold where the ob-
servable physics takes place. This lifting process has the ad-
vantage of recovering the usual techniques of differential
geometry.

However, to tell the truth, I have some doubts about
this process, in the following sense. One could also say that 7
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measures the increasing relative energy when the relative
speed increases, because time retardation and relative energy
are directly related in relativity and quantum mechanics.
Therefore, 7 would stand for the vertical potential in the
manner as in relativity g stands for the gravitational (hori-
zontal) potential. Then, this symmetry lends some strength
to the definition of vertical metric connections through
7c =0, %7y = 0, 2T = 0. On this assumption the lifting
process for connections becomes the same because we also
have that 7(k, ) = 0; but then Ay and A7 are in general
different from zero. Thus, what is the appropriate field, ¥ or
7, to be used for defining a metric on the fibres of 7? Relativ-
ity is not an aid because then ¥ + 7 = 0, whence the choice
does not matter. But in Newtonian spacetime, 77 = O; thus,
no vertical distance among velocities?, no relative energy?,
no inertia? These strange outcomes and the nonmetric char-
acter of 4 compel me to prefer ¥ instead 7.

Disregarding these doubts, I believe this process is not
merely a desperate issue from an unnecessarily puzzled star-
point; on the contrary, it seems to me more natural than the
relativistic one, because it allows a step by step construction
of different models of spacetime, clearing up the different
options one must take for having different theories.

Il. SPACELIKE LENGTH AND SPACETIME
1. INTRODUCTION

Until now, we have considered as independent data the
time form and the spacelike metric. But are they indepen-
dent magnitudes? In relativity the answer is no, because then
¥ + Dc = ¥ + 57 = 0, and there is experimental evidence fa-
voring some link between ¥ and n—the Michelson—Morley
experiment for instance.

Let us accept that link, but suppose that fis a general
time function, perhaps not a relativistic one. From fwe build
¢ and Dc = 7. Suppose the signature of 77 is everywhere
(0, — ,..., — ). Increasing half-lifes is the experimental sup-
port for this assumption. Then, it seems a suggestive attitude
to postulate that the relation between y and 7 is the same as
the relativistic one, i.e., ¥ + 7 = 0. In other words, we are
defining the spacelike metric as ¥ = — Dc. From this point,
we could apply the techniques of Part I for reaching a geome-
try of the time manifold. That would be the track of a pure
chronogeometry: to reject meters, adopt clocks and build
lengths from times. Classical chronogeometry in additon
postulates that 7 + ¢ ® ¢ = gom, with geV'IM , that is we can
mix these magnitudes for having a Lorentz metric.

So far I do not know examples of the opposite view-
point: /o reject clocks, adopt meters, and build times from
lengths. My own position is the construction of a very gener-
al spacetime geometry from the datum of a spacelike metric.
Atleast I judge this task convenient, as complementary with
respect to chronogeometry. Moreover, I find some physical
arguments favoring my position. First, 77 and ¥ have very
different physical meanings: 7 stands for the rate of time
retardation, and y for spacelike length as measured by me-
tersticks; thus, the relation ¥ + % = 0 seems rather acciden-
tal. Second, I think of time as a more dynamic feature than
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spacelike length, whence also a more secondary datum from
our methodological viewpoint (see Part I, Sec. 4); I believe
that is in the same line of thought as the way in which super-
space theories are going; that is, spacelike length carries in-
formation about time, but can we say that time carries infor-
mation about space? Third, Pythagoras’ theorem, on which
our theory leans, has always been verified at the macroscopic
level, and always supposed at the microscopic one.

Thus, our departure point is a spacelike metric, thatisa
field yelI9M , symmetric, of signature (0, + ,..., + ), and
such that (i, ) = 0. This field describes Pythagoras’ theo-
rem at each laboratory (Sec. 2).

The key point of the paper is Sec. 3. On it, we define a
simultaneity from y through the criterion of stationary spa-
celike volume. It is a generalization of the oldest definition of
simultaneity, that given by a person saying: “I cannot be in
two places at the same time!” He signifies that he cannot
reduce the distance (relative to him) between two events
happening at different places if they are simultaneous. We
will take volume instead of distance, but the basic point is the
same: to take spacelike measures instead of interchanging
signals for defining the simultaneity. The criterion of space-
like volume gives a time form ¢ under a multiplicative
function.

Each choice of that function defines a time function; we
demand that time function to be consistent with the time
form by means of infinitely slow clock transport (Sec. 4).
However, this requirement does not entirely determine the
time form; the equivalence among these consistent time
forms gives raise to a gauge (Sec. 5).

In Sec. 6 we characterize our geometric model of space
time in terms of a nonsingular symmetric field ge/7 M.
Some examples are shown.

Gauge invariance makes the definitions of metric con-
nections on /ZM more difficult. Along the study of this prob-
lem, a field ¢elISM arises (Sec. 7). It determines the hori-
zontal metric connection, and perhaps could be interpreted
as the electromagnetic potential.

In Sec. 8 we apply the techniques of Part I for lifting
connections, and so reach a physical metric connection
which is gauge invariant, and a linear connection on ¥ M
giving the geometry of the time bundle.

Section 9 contains some comments about our results.

2. PYTHAGOREAN SPACELIKE METRIC

For a better understanding, we will translate back and
forth our constructive process from the special to the general
case, in a similar manner to that of special and general
relativity.

In the special case, spacetime is considered as the four-
dimensional affine space. Geometric features of spacetime,
that is y or ¢, are supposed to be independent of events; they
could perhaps depend on laboratory directions. As in special
relativity or classical mechanics, if no forces act upon a parti-
cle, its world line is straight. An inertial laboratory is now a
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set of solidary particles, i.e., whose world lines are parallel
straight lines. Any nonzero vector tangent to them must be
timelike by definition. So, each laboratory is characterized
by a timelike vector X or by any nonvanishing multiple of it.
Let us consider ourselves traveling with the laboratory Xx.
Given an arbitrary event, it appears located at a well defined
point of our laboratory. In spacetime language, location is
the world line of the particle of our laboratory whose history
contains the given event. Events which happened at the same
point of our laboratory must have the same location, no mat-
ter the time elapsed among them. If two events are given, we
can measure the distance between their locations by means
of a meter stick at rest in our laboratory. Obviously, this is the
ordinary method of spacelike length measurements among
events: The bottle carrying the help message was found four
thousand miles away from the wreckage:---.

The resulting quantity depends on the vector y joining
both events (4-vector of spacetime). But it is clear that it also
depends on the selected laboratory, that is on X. Now, we
assume that Pythagoras’ theorem holds at each laboratory.
In other words, the spacelike length of y at X is given by
v{7,p), where 77; is a quadratic form that depends on X, but
not (in the special case) on the events of spacetime. Obvious
properties of this field i )?—>7~/j are: (a) 7{ax, ) = Ofor every
acR, because aX stands for the vector joining two events
having the same location at the laboratory x; (b) 7 = 77(1; for
a > 0since X and ax stand for the same laboratory (hence we
say that 7 is homogeneous of degree zero); (c) ve@.9) > 0if y
is not a multiple of x.

By a standard generalization, in the general case a labo-
ratory will be a local cross section of 7.4 M—M, the time
bundle, and y will become a symmetric element of /7 M, of
signature (0, + ,..., + ), and satisfying y(&, ) = O, that is
7(i,)s: = 5 (X, ) = 0 (see Part I, Sec. 4).

3. SIMULTANEITY FROM SPACELIKE METRIC

Our problem is now the discovery of a simultaneity
linked to the spacelike metric y. The process is performed in
two steps: imposing both the condition of stationary space-
like volume and that of infinitely slow clock transport syn-
chronization. In terms of Part I, we look for time forms
privileged with respect to y; let us discuss what kind of privi-
lege it is.

At this point it is interesting to remark that the preced-
ing description of ¥ is by no means restricted to a particular
class; thus, since we are looking for a generalization, it would
be desirable that our definition of privileged time forms
could be consistently applicable to Newtonian or relativistic
spacelike metrics, considered as simple and extreme
examples.

In classical Newtonian spacetime or in special relativity
we can verify without difficulty the following argument (we
are in the special case), whose rigorous proof is the theorem
in Sec. 6. Let 4, B, C, D be four events determining a hyper-
plane. If X is a laboratory, we can measure by means of yx
the volume of the tetrahedron determined by the locations of
these events in the laboratory X (or ¥ locations). Let V' (X) be
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that volume. We call V (x) the spacelike volume of the
(4,B,C,D )-x locations. If the field Xy is smooth and
A,B,C,D remain fixed, then V:x—V (%) is a differentiable
function; let d ¥V be its differential. Suppose that dV vanishes
at some laboratory X, i.e., (dV);, = 0. This means that the
spacelike volume of the (4,8,C,D )-x locations is stationary
at X,. If this occurs, then in Newtonian mechanics the four
events are pairwise absolutely simultaneous. In special rela-
tivity, we conclude that the hyperplane A,B,C,D is spacelike
and that %, is orthogonal to that hyperplane; or, equivalently,
the four events are pairwise simultaneous as viewed from the
laboratory x,. Moreover, in both spacetime theories, given
the timelike vector Xx,, there is a unique hyperplane whose
spacelike volume is stationary at x,,in the above sense (strict-
ly speaking, a distribution of parallel hyperplanes). Thus we
can say that such a hyperplane is privileged at X, with respect
to ¥, since the laboratory and its corresponding stationary
spacelike volume hyperplane are related by simultaneity.

The same idea serves us for defining priviledged time
forms from the spacekike metric, though it should not be
Newtonian or relativistic. Suppose that ¢ is a 1-form deter-
mining a distribution of parallel hyperplanes (we keep in the
special case). Choose one of them, say, H. As before, let
A,B,C,D be four fixed events determining H. Let V' (X) be the
spacelike volume of the (4,B8,C,D )-x locations, as measured
by means of y. Suppose (dV); = 0; obviously this condi-
tion does not depend on the chosen four events belonging to
the fixed H. Thus, we say the spacelike volume of H is sta-
tionary at X,, and that the events belonging to H are by defini-
tion pairwise simultaneous with respect to the laboratory X,.

Our basic requirement upon y is: Consider the subset of
timelike vectors for each of them, X, there is one unique (up
to a multiplicative nonzero constant) 1-form b, whose asso-
ciated hyperplanes are of stationary spacelike volume at X,
and such that <b.,X>+0. Then, this subset is supposed to be
nonempty and open, and it constitutes our final set of timelike
vectors. Our additional demand is: there is a representant ¢
of each {ab.] 0 such that the field ¢:¥—¢5 is smooth and
homogeneous of degree zero. This last field is called privi-
leged time form, and it defines the synchronization associat-
ed to 7.

In the general case this question becomes rather techni-
cal; a detailed account is given in Ref. 4. A brief sketch is the
following. Let ¥ C M be a hypersurface of M, and B a com-
pact regular domain of %, contained in the domain of some
chart of 3. Let {£, ] be the coordinate vector fields of this
chart, and {§*} the dual base. Let 7 be a cross section of 7
such that 7,, is not tangent to & for meZ. Then, y = yopoFis
a positive definite quadratic form when it acts upon T\,
Thus, fdeﬁnes a volume form on 3. Hence, the volume of B
given by that volume form can be interpreted as the spacelike
volume of B, as measured from the laboratory 7. Itis given by

V(P = SplvFufs)| V5 A A5" 7, where | | stands for de-
terminant. If B remains fixed, this integral defines a func-
tional on the field 7. Let us put ¥ = y°p and £ =f.07 By
applying usual variational techniques, we find that V' (7) is
stationary at 7 if we have (i5); (| y(fafﬁ)|) = Ofor every meB
and dell M.
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This is a point-by-point condition, and it does not de-
pend on the choice of {£, }. In other terms, it only depends
on the inclination of 2 at each point. Thus, we can build, at
each meM the set T,,C.7 , of vectors as X, , for each of
them there is unique n-1-dimensional subspace {f, } of M,,,,
not containing X,,, such that (iﬁ);m(lf(f;f,,)l) = 0O for every
oelT \M (note that i5 is a derivation along the fibres of 7).
Our abstract model of spacetime, the time-elements space
(TES), consists of a manifold M, a time bundle 7.4 MM, a
spacelike metric field ¥ such that p(T’,)) = 7'(m) for every
meM, and an element ce/T YM such that ¢, determines the
unique subspace of M, of stationary spacelike volume at
ru€m(m). We call ¢ a privileged time form, and ¢, the si-

multaneity associated to r,,,.
4. CLOCK TRANSPORT SYNCHRONIZATION

If ¢ is a privileged time form, then gc also is a privileged
time form, whenever ge/T YM is everywhere nonvanishing.
Thus, the choice of ¢ defines the time function {e (gc),u>,
that is the time length scale at each laboratory. Now, can this
function ¢ be arbitrarily picked without contradiction?

Let us return to the special case. If x is a laboratory, we
will call the X clock an apparatus, at rest in X, which com-
putes time intervals among events of its history by means of
¢ Equivalently, (¢, X is the time interval measured by the x
clock between two events of its history, detached each other
by the vector x.

Consider two laboratories, X and x'. Suppose the X'
clock lying at the spacelike origin of X', passes, at some event,
next to the X-clock of the origin of X. At that event, both
clocks are set to zero. Suppose that all x clocks are synchro-
nized among them by the condition of stationary spacelike
volume, that is, through é;. Now, does that X’ clock point to
the same hour as the X clocks it is passing by? There are few
chances for getting this agreement by a suitable choice of g.
With a Newtonian spacelike metric, the agreement is possi-
ble; thus, absolute universal time is, from our viewpoint, a
consequence of Newtonian spacelike metric! In special rela-
tivity, the answer is no.

However, in relativity an intermediate thing can be
achieved, the agreement when the clock transport is “infi-
nitely slow,” the limit case when relative speed approaches
zero (I believe this is Eddington’s idea). So, could we require
this weaker agreement with all generality? The answer is
affirmative. In fact, suppose that the X’ clock starts from the
event 4. Both this clock and the x clock at 4, point to zero at
A. After a while, the X’ clock reaches another ¥ clock at the
event B. Let Z be the vector joining 4 with B. Then z can be
decomposed as Z = y + ax where (¢.,j> = 0 and acR. If all
X clocks are synchronized, at B the X clock points to {¢,a%>,
and the X' clock, to {¢; , .y + aX). Then, we demand that
lim, . (&, ,F + aX) — (Cgzaxy) = 0. Now, é is A (0);
thus that expression becomes
lim, ., ¢z p—Cey+aXy= limy o (Cx 1 g5 — E2)/B,%,
where we have put 8 = 1/a. Then, since
limg o(C5 | gy — E/B = {CxX> (D)), we conclude that
infinitely slow clock transport agrees with stationary volume
synchronization iff (D ¢,k > = 0. Now, it is not difficult to
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see that this condition is equivalent to that of

In the general case, infinitely slow clock transport is
nonsense. The best we could do is the following (this new
process is equivalent to infinitely slow clock transport in the
special case). Let o:[a,b ] =M be a world line, i.e., (¢ ) be-
longs to % M. Let Fbe a cross section of 7, and c a privileged
time form. Then, the time elapsed from o(a) to o(b ), as mea-
sured by the synchronized laboratory 7 is §%(¢x,,0>dt
= 7(F). If o remains fixed, this integral is a functional on .
Infinitely slow clock transport here means that 7 approaches
¢ on o; the forementioned agreement translates into the con-
dition that 7 would be stationary when Foo = J. By requiring
this for every world lines we easily find that (D, ¢,k > =01is
the necessary and sufficient condition. If it is fulfilled, we can
say that the “proper time” is an extremum for every world
lines (in comparison with the time lapse measures performed
from other laboratories); or, in the special case, that ¢ gives
the same synchronization as infinitely slow clock transport.
In both cases, we say that ¢ is a fundamental time form.

5. THE GAUGE
As for existence of fundamental time forms, see Sec. 6.

Suppose that ¢ is fundamental. Then, if ZeV' §M is ev-
erywhere nonzero and we put a = @°7, then we have
{D (ac),k > = 0 because D (aom) = 0. Therefore, ac also is
fundamental. All these fundamental time forms will be re-
garded as equaly valid for describing geometric features of
spacetime. Then, the gauge for deciding if a geometric object
is physically consistent must be its invariance under the
transformation c—ac, where @ = @o is everywhere
nonvanishing.

Since @ does not depend on directions, that transforma-
tion simply means certain change of time unities on each
event. But 4 could depend on events of spacetime. Therefore,
we cannot get an absolute comparison among time scales at
different events of spacetime; however, at the same event, time
scales for clocks with different speed can be absolutely com-
pared with respect to each other. Now assume that two rea/
clocks depart from an event 4 and travel along different
paths, so that they meet at B. Someone might ask if the rela-
tive tick rythm of both clocks in B is different from that on 4.
Whereas this question makes sense in itself, it is not relevant
here, because my time is a spacewise time, and I do not know
whether the time of the real clocks agree with it. As it has
been suggested to me, perhaps this means that this theory
embodies in some nonquantic manner the following quantic
assertion: The uncertainty principle prevents one from
knowing both the metric of a spacelike slice and its respec-
tive extrinsic curvature.

6. THE TIME ELEMENTS SPACE

Now, suppose the y defines a TES and ¢ is a fundamen-
tal time form. Then, g = y — ¢ ® ¢ defines a symmetric ele-
ment of /[3M of signature ( —, + ,..., + ). After rather long
computations‘ we can characterize TES’s through the
following:

Theorem: Consider a given time manifold .Z . M, and let
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gell $M be symmetric, of signature ( —, + ,..., + ), and
such that g(i1,i7) < 0. Define k = e, (i1/[ — g(&,i)]"?),

c= —gk, ),y =g +ceoc Thus, if D,k >=0and
D,|g(f,f)| = O for every vell \M and f, = fom with feV (M
(i:0,1,...,n — 1), then y definesa TESon.¥ M, and cis a
fundamental time form. Conversely, if ¥ defines a TES on
% M and ¢ is a fundamental time form, the field

g = v — c ®c satisfies the above requirements.

The theorem enables us to build fundamental time
forms. If ¢ is a privileged time form, it is enough to multiply ¢
by a function ge/l )M in order to make |g| constant along
each fibre. Also, it facilitates the construction of TES mod-
els. Besides the relativistic one, which trivially satisfies the
theorem, the generalized Newtonian spacetime (see Part I,
Sec. 4) defines another TES.

We also can alloy relativistic and Newtonian theories in
the following way. Suppose M admits a Lorentz metric
ge VgM , whence also a timelike one-dimensional distribu-
tion. We put b = (%, )/( — g(x, %)) andg =g + b b,
where X lies in that distribution. Let N,ReV' M be scalar
fields such that N + R = 1 (the alloy ratios). By means of g
we build the relativistic spacelike metric ¥ , and by means of
g and b the Newtonian one, ¥ (see Part 1, Sec. 4). Define the
time bundle by p(Ne %, if yeM,,, <b,.7>+#0,
g—m(}_)’}j)(N)ng‘m(ﬁ’j)) - Rm<bm!y__>2) > 0. Then .
¥ = Ny, + Ryg, where N = Nor and R = Rowr, defines the
mixed Newtonian relativistic TES on . M. The proof of this
assertion is rather long, and for the sake of brevity I prefer to
not write it down. This TES has some bizarre properties: For
example, its time bundle admits speeds greater than light.

The preceding theorem excludes from our scheme the
old theories with an interval given by ds
= (— g Ax'dx)"* + (e/m)Adx', and a metric field defined
through the Cartan technique. In fact, that metric field
would have its determinant constant along each fibre iff
A4,=0.

7. GAUGE INVARIANCE AND CONNECTIONS

We are interested on connections that should be com-
patible with the geometric structure given by ¥ and funda-
mental time forms. The gauge invariant properties of this
structure are: spacelike metric, simultaneity that is the con-
dition (c,v> = 0, and fibre constancy of |y — c®c|.

Suppose that is the vertical homomorphism associated
to ¢ and that 3/ is a vertical connection such that *7y = 0,
x7c=0,T=0,77,b=jub)if bell M. If c~c’ =acisa
gauge transformation, we have *J¢’ = *\Jac = a ’\Jc =0
because a = @orr. Thus, our definition of vertical metric con-
nections goes without changes. That is, to each fundamental
time form ¢ we attach a vertical metric connection *37 on
IIM, the one satisfying *\7¢ = 0, ’yy =0, T =0,
7,b =jv(b). This connection is unique and defined by the
formula which appears in Part I, Sec. 8; but it is not gauge
invariant because the connection attached to ¢’ is
%7’ = a *yy. This is not a bad feature, as we shall see in the
following section.

The definition of horizontal metric connections re-

962 J. Math. Phys., Vol. 20, No. 5, May 1979

quires more care. We will say that 'y is a horizontal metric
connection if it is torsionless and:
(a) '\Vy = 0, that is, 'sy preserves spacelike length;

(b) {'v.c,wy = 0if {c,w)> = 0; hence, N/ preserves
simultaneity;

(¢) D (g1 '\7,2) = 0 whenever vell }M and z = Zorr
(J stands for double contraction). Equivalently, 'S/ pre-
serves the fibre constancy of |g|.

Condition (a) tells that 57,k must be a multiple of X
because y(k, ) = 0 and 's7y = 0. Thus, there must be some
#ell M such that 's7 k = — {$,vDk. Condition (b) implies
that '/, ¢ must be a multiple of ¢; but {c,k > = 1. Therefore,
'V.c=<dvyc. Then'\7 g ="V, (y —c®c)
= — K¢z2>cec. Sincegl(c, ) = —k, then
g'1'\7,8=2%¢,z>and D,(g" 1 '/ 8) = 2D ¢,z) =0, be-
cause z = zor. Therefore, ¢ must be associated to some ele-
ment ¢e¥ M, that is, ¢ = gorr.

In Appendix A we prove that such a connection exists
and is unique.

Now, let c—c¢’ = ac be a gauge transformation. Then, if
. = <{w>c, wehave'7 ¢ = (& + d In@)om,v)c’ because
'y/ is horizontal. Thus, if we require that 'y be gauge invar-
iant, then ¢ must change into ¢ + (d Ina)or under a gauge
transformation. Therefore, if & is associated to ¢ in such a
manner that & + d 1na is associated to (@om)c, then there is a
unique gauge invariant horizontal metric connection.

We will think of ¢, thogther with , as the fundamental
data of spacetime geometry. We tentatively call ¢ the elec-
tromagnetic potential, though its true meaning must be dis-
closed only after disclosing field equations. Its operational
definition is the following. Let meM be fixed. Take 7€ .,
and extend r,, toa cross section r of 77 in a neighborhood U of
m in such a manner that » be experimentally stationary at m1;
in other words, we suppose there is an operational definition
for the relative rest of close particles with respect to a given
one. Now, restrict ¥ and ac to 7, that is, take the values of
these fields at the laboratory r for having the ordinary fields
yor, (ac)or; build the Lorentz metric g = (y — @’c ® ¢)°r,
where a = o7 is to be determined. Compute the Riemann
standard connection of g. Check if the normalized laborato-
ry field kor is stationary at m, i.e., if the covariant derivative
of koris zero at m. If this is not so, pick @ in a suitable manner
in order to have an affirmative answer. Then
#, = — (dna),, is the value at m of the electromagnetic
potential associated to ¢. Therefore, the electromagnetic po-
tential associated to ac is zero. In other words, the value at m
of the electromagnetic potential associated with c is minus the
differential at m of the deviation of ¢ from the time form,
which correctly gives the observable stationary (at m) charac-
ter of a laboratory with normalized speed.

If 4 is the differential of a function, it can be globally
removed by a suitable election of . That is, in such a case we
would have an absolute comparison among time unities at
different places of spacetime. If 4 is not so, that comparison
does not globally exist; we only can compare clocks at the
limit when they join together. The proof of this interpreta-
tion requires additional techniques; it can be found in Ref. 4.
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8. THE PHYSICAL METRIC CONNECTION AND
THE CONNECTION ON V.M

Asin Part I, we now lift the pair '57,’5/. So, we obtain a
gauge invariant physical metric connection
A h ="'+ g Since '\7 is gauge invariant and
B,w = 7. ow, then the first term is gauge invariant. As for
the last term, we have seen that in a gauge transformation,
the relation *y/’ = a >3/ holds. But j changes into ' = gj.
Hence B,|V % M changes into B,/a. Therefore, the last
term and, as a consequence, 4 are gauge invariant.

Now, we can lift 4 as in Part I, Sec. 9, getting the linear
connection D on V.5 M, which is defined by
D,v=4.4 B v+ 4,4 B,v. Note that D is not gauge invar-
iant. In fact we have

D,v=A4,4,Bv+A4,A,B,v=D,v— w(lna)Vv.

Nevertheless, the curvature field of D, and therefore its
Ricci field, are gauge invariant, as it is easily proved.

9. CONCLUSION

The departure point of this paper is the Pythagorean
spacelike metric, a principle which permeates every signifi-
cant theory, experiment, and technology. The electromag-
netic potential appears later, in the study of connections. I
believe this point is very coherent in a tentative unified the-
ory. In others, the electromagnetic field appears in the con-
struction of the static geometric description—the metric—
under the form of light signals; but it also appears, as a geo-
metric object, in the dynamic description—connections or
field equations. Thus, field equations must imply that the
electromagnetic field propagates along null directions; oth-
erwise, the theory would be meaningless. In our theory, this
objection does not go.

We have reached a number of geometric objects en-
abling one to study the time manifold geometry. The main
remaining problem is to suggest and justify field equations.
In my opinion, it is a very difficult one:

(a) because of the horrific computations, even in simple
models that perhaps could serve as a guideline for general-
ization;

(b) because the energy—momentum field depends on the

geometry; thus, it must be reinterpreted under our basic
assumptions;

(c) our manifold is now .% M; hence, usual patterns of
field equation techniques cannot directly be translated here.

A naive field equation would be § ,|K|"2d7 = 0, where
£21s a domain of ¥ M, dr is the coordinate standard volume
form on %" M, and (K] is the Ricci field determinant of D. I
have computed this integral for the relativistic model and my
results are:

(a) if ¢ =0, then |[K| = 0, and this field equation is
meaningless;

(b) if ¢ = 0 but the Lorentz metric is constant (special
relativity), then |K| also vanishes;

(¢) I have studied a static spherical model (one-charged
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body problem), and there is no solution for the field equa-
tion. I believe this result is general for a relativistic model,
but I do not have a proof.

I find three answers to these troubles. First, we must
add to the integrand a term (or factor), depending on direc-
tions, standing for a mass-energy density. Second, the depen-
dence of fields on directions is an essential property of space-
time, whence it precludes the assumption of a Lorentz
metric; or, equivalently, that relativity is not compatible
with local mass or charge anisotropy. Third, that the field
equation is not appropriate.

I feel this last is the correct answer. So, it seems that this
way will be around for a while.

APPENDIX A: EXISTENCE AND UNIQUENESS
OF HORIZONTAL METRIC CONNECTIONS

We look for horizontal metric connections, in the sense
that \7 is horizontal, Ve = ¢ ®c, Vk = —dok, Yy =0,
T =0, where ¢ = ¢or. In Part I, ¢ is supposed to be zero.

It seems to me that this problem must be treated
through local expressions, at least in a first attempt. But this
way gives raise to another difficuity: The charts of the mani-
fold % M are awkward to handle. So, we shall develop a
technique enabling us to translate the problem to ordinary
Finsler fields and Laugwitz connection (cf. Ref. 2), whose
local expressions are simpler. Analogous techniques can be
applied in other computations, for example the curvature or
Ricci fields of D.

_ If v isasolution, and i, w are 4 (0), we can put

Vil = e,¥/.,€:0 for defining a Laugwitz connection; we
also need to know the action of 6 upon fields of i 8M, that
is, the associated homomorphism A:17 \M—V M. If i is

h (0) and §eV 9.4 M, we define 4w through

G,AWY = (5 — (B,iiidd In(G,ii>,p.~ 'Ae,iby, where A is the
homomorphism associated with <7 and p.~ 'de b is any ele-
ment of 5% M such that p,o(p.” 'Ae,v) = (de,i)op. This
definition is consistent because § — (§,if>d In{é,u),ii> =0
and i spans ker p. .

Proposition: With the above notation, i is a torsionless
horizontal Langwitz connection such that 7y = 0,
Vu = —dei, VC—¢®C, where we have put
y=eyy, C=eL, ¢=eg.

Proof: that 37 is a Laugwitz connection is a trivial mat-
ter. It is horizontal because if § is / (0), then (45), (Fo7)
= (d:@°7), po~ 'Ae,i; = (p*d @),
< ey 0y = (d(@om), Ae,by,: = (e,0),4a@) = i(@). Now,
the torsion of 7 is given 1 by T (v w)
= VU — /b — 7.0 [AD,4w). Then, if i are A (0), we
have T (3,i0) = 7.0 [Ae,b,de,ib]op — 7.0{40,41}, because
T = 0. Taking account of the definition of 4, it is not difficult
to prove that PoAD = (Ae,w)op. Thus
p.O[Av,Aw] [Ae,0.4e,w]op. Hence T = 0 because
= mop. Now, /4l = V(G ek = Aw((c uyle k
+ Ciiye 7o uk = — by Guyek = —(Bbpi. The
proof of 7y = 0 and V¢ = § ® ¢ is trivial.
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Proposition: Let f]_be a torsionless horizontal Laugwitz
connection such that ¢ = ¢ ®c¢, Vi = —¢ou, Yy =0.
Then 4 w = ¢,/, .e,w defines a horizontal metric connec-
tion on /IM.

Proof: The formula defining 37 makes sense if 7,10 is

# (0) whenever 5,10 are, and this is supposed to be true in our
case, as we can verify by means of the formula (1) below. The
proofthat Vk = —d®k, etc, is straightforward. Now,
Told = €,8,/ . o, €l = €.\, :€,0; therefore, vandvdo
induce each other in the sense of our previous proposition if
A and A4 are related as before. We have §_7<c~ #> =0, hence
AT = (5 — (8, 1u>d In{c, #5,A0>. But (§ — §,iii>d In{¢,i»
belongs to the ¥ % M -module > spanned by p*(V" EM),
thus, if aell oM, then <d (aop), Aty = <p*da,AJ> {(da)op,
. oADY; but if 5 is A (0), then {d (a°p),Ab> = V/;(a°p)

= e/, a = {(da)op,(Ae0)°p>,whence p.OA~ 0= (A4 ep)op.
Then, as before, we can prove the torsion of ¥/ is zero.

Thus, our problem of existence and uniqueness can be
equivalently stated on 17M Let {x '} be a coordinate system
on UCM. We take for .% U the coordinate functions {q/, P
defined by ¢'(x,,,) = f’(m),p (x,) = {(dX"),,,X,,>. Since Ais
horizontal, we can write 4 Ae = a/ﬁq + Af(a/ap’) where
e, = (d/ax’ Yorr. We put V( eA I/;é, Then v(’
=, (u'e,) = Iute, + Aé(uw)é, = — $é Therefore,
Al= — [t —¢ud Ifweput g = y—E®¢ —gu(deﬁ)
® (d¥/°7), then the matrix (g;) is everywhere regular. Thus,
after some standard computation, we find there is a solution
on .% U if the following linear system has it:
ag,jrim - agjl\ ,

p" p"
= fy_gﬁ Egi — 8ng — 200, + 2000, + 2¢icc),
d¢" o  oq M

where ¢ = ¢ (d%'o7). If we contract (1) with u ¥, it becomes

lm

r (9 'A r m
Zgirr_g'k r/m +
ap’

08
‘-’grB +CrBj ij ~chBz"' /1ku’ (2)

where we have put B/ = I'J,u", ¢, = (98 /dput, and
M, isthe right-hand snde of (1). Since (g ;) is regular, there is
a solution for (1)if it occurs for (2). We can verify without
dlﬁiculty thaty, + 7, = —c, Hencec, =c, and

¢, u" = 0. Suppose we write (2) takmg atx,, €% U the values
of the different quantities. Then, since y has signature

(0, + ,..., + ), we can choose the coordinates in such a maner
that, at X,,, we would have

Vap = OapCap = SalapVko = Cko = 0(Greek indexes from 1
to n — 1). Now (2) has a unique solution at X, if

2 +s, 4+ sz7#0for every aBefl,...,n — 1}. Thus taking into
account that ¥, + 17, = — ¢;,, We have after some obvious
steps:

Theorem: Let reZ M, and suppose that (0,1,...,1) and
(0,7,,...,7, _ ;) are the diagonal elements of y, and 7, when
they are simultaneously diagonalized. Then, if 7, + 17570
for every a,B€{ 1,...,n — 1}, re# M, there is one unique hori-
zontal metric connection on /IM.
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Corollary: If 7 is supposed to have signature
(0, — ..., — ) everywhere, there is one unique horizontal
metric connection on /IM.

APPENDIX B: Existence and uniqueness of vertical
metric connections

Our conditions are: /@ = ju(a), Ve =0, Yy =0,
T=0.

We put 7,0 — D, v = G (ww); since 7, a
= D, a = ju(a), G is a bilinear operator and it defines an
element of /1 }M. If \y¢ = 0, then 0 = {(7,,c,v>

= Vzt‘<c’u> - <C,V“,U>

= D1H<C!U> - <C,D“,U> - <C’G (w,U)> = ﬂ(w’v) -

Thus, <c,G (w,v)> = P(w,v) for every v,well \M.
Now, if {c,v> = {c,w) = 0, then B,[4.w,4,v]

= D v — D,w, asitiseasily proved. Then, we have in gener-

al that B,|4w,A,v] = D,p — Dw — {c,opw + {c,wHv

—<e,D, vk + L, D uHk.

If 7(ww) = B (Y 0 — VW — B[4w,40])) =0,
then B,4,(G (w,v) — G (v,w) + {e,vpw — {c,wHr

G (w,v).

+ <e,D v k — {c.DwHk)
= B,A(G (w,) — G (v,w) + {c;vdw — {c,wHv). But if
{¢,G (w,v)> = n(w,v), then
{e,G (wp) — G (v,w) + {c,vdpw — {c,wHv) = 0. Thus, our
second condition upon G is
G (w,v) — G (vw) = {e,wHv — {c,vpw.

If 577 = 0, by a standard computation we have:

29(G (0,w),2) = (D,YW.2) + (D,¥)zv) — (D,y)v,w)

+ (v, w)e,z> — 2y(v,z){c,w).
But
28(G (v,w),2) = 27(G (,w),2) — 2{¢,G (V,w)X<e,zy
= 2¢(G (v,w),z) — 2n(v,w)c,2).

Hence
28(G (v,w),2) = (D )w,2) + (D, y)z.0) — (D.y),w)
+ 2(7/(U’w) - 77(U,lU))<C,Z>
— 29(,2Xc,w).

This formula tells us that if the vertical metric connec-
tion exists, it is unique. It can be equivalently written

22(G (v,w),2) = (D &) w,2) + (D,8)z:v) — (DLHW)

+ 2g(ww)e,z> — 28(v,2)c,w>.
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Hence ‘J.1. Horvath, Suppl. Nuovo Cimento 9, 444-96 (1958), see the Appendix.
*A. Montesinos, *‘On Finsler connections,” to be published in Rev. Mat.

VW Hisp. Amer.

=Dw+ g (Dgw, )+ (D&, ) — (D(vw), ) ‘R. Grassini, Boll. U.M.I. 11, 507-17 (1975).
‘A. Montesinos, “Geometria del espacio-tiempo a partir de la métrica espa-
— glv,w)k — {c,wdv.

cial,” thesis, Universidad Complutense, Madrid, 1976.
This formula gives the vertical metric connection, as it

is easily proved.
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