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The relativistic transformation of measurements from one observer S to another observer S is
valid, of course, only when both observers are measuring the same physical quantity. What is
the same quantity is, however, not a trivial problem in relativity. As a matter of fact, two
different definitions have already been used in the literature, without realizing that they were
not equivalent. Some of the pitfalls of such a confusion are discussed.

INTRODUCTION: AN APOLOGUE

FEW days ago 1 called my friend, observer

S’: “Hello, this is observer S speaking. I
heard that you have been working on relativity
recently. I just wondered whether you could
help me in an experiment. Since you are moving
away from me at constant velocity, wouldn’t it
be nice to check Einstein's theory once again?
I know that you have very fine instruments
aboard your spaceship, so why don’t you check
the formula M =X (146)/(1—8)]*? I have just
measured the color of my tie, a brilliant laser-
green at exactly A=5198.2 A, Why don’t you
measure A'? . . . sure you can finish your other
experiment first; I can certainly wait a couple
of days ... vyes ... vyes. ... That is pre-
cisely the same equipment I used . . . O.K,,
you'll call me back as soon as you get results?
Fine . . . Good bye . . . bye. . ..

It was 3.15 a.m. on Monday when my phone
rang. The voice from the other end was excited :
“Sorry to wake you up so early, but .. .1
just can’t believe it . . . oh, by the way, this
is S’ speaking . . . Einstein is wrong . . . is it
you, S? Do you hear me? Einstein is wrong! No
doubt about it. No, no, I am not kidding. I have
never been so serious, S. Now, listen : you must be
careful in giving the announcement. A letter to
the Phys. Rev. Letters will do, but try to be
somewhat vague, so that we can still change
some details later on . . . ves, yes, let me tell
you . . . 1 know it sounds incredible, but . . .
I do find a redshift as expected, but the amount,
gosh, . . . to make it short [(1+48)/(1—p) 1t is
one hundred times greater than given by rela-
tivity! Just to give you an idea of how much
above experimental errors we are, let me tell
vou that I see a beautiful vellow tie. . . . Sure
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it will have great implication for the whole field
of cosmology! How could one seriously believe
in the Hubble redshift after our experiment?
. .. Well, thank you ... see you in Stock-
holm, then . . . bye-bye . . .

I called S’ after the press conference: “Just
a pity—or good luck—you weren’t here. Never
seen such enthusiasm before! I was almost
choked to death by fans trying to get a piece
of my tie . . . well, anyhow, I was lucky enough
to save a piece of my tie for the museum. . . .
You never liked green ties? You prefer yellow

ties? . . . Oh, come on, what do you mean we
still have the yellow tie? . . . Oh, no! . . . oh,
no! . . . Sure we are equivalent observers! . . .

But this doesn’t mean that, when I ask you to
measure ', you should look at your own tiel

WHAT IS THE SAME PHYSICAL QUANTITY
FOR DIFFERENT OBSERVERS?

Special relativity gives us rules to compare
results of an experiment performed by an ob-
server S with results obtained by another ob-
server S, moving with constant velocity with
respect to S. It is, of course, implied that both
observers are experimenting upon the seme physi-
cal system and that they are not being trapped
into the trivial pitfall referred to in the apologue
above.

Yet, the concept of sameness of a physical
system for different observers is far from obvious.
As a matter of fact, we can see that at least two
different and contradictory definitions of same-
ness have already been used in the relativistic
literature, with the more or less implicit assump-
tion that they were one and the same definition.
This caused many misunderstandings, which we
discuss in this paper.
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Relativity begins with the setting up of a
one-to-one correspondence between points of the
four-dimensional continuum of S and of S’. A
point x\= (x,y,2,t) is said to be identical with
the point x,"= (x",5",2’,i’) of the second observer
when the four coordinates are connected by a
Lorentz transformation. The next step is then to
define a tensor quantity at the point (x,,2,%)
and take as same quantity for S’ the transformed
tensor—transformed according to the rules of
tensor calculus—at the point (x',y',2',t"). For
example, a vector v, at the point x, (23,2,
will be the same event as the vector v,/ at the
point x\" («',3,2',¢') when

7
v, =a,v, x,/=0au%,

¢y

where ¢, is the matrix of the Lorentz trans-
formation between S and S’. We do not need to
discuss here the rather subtle epistemological
problem of whether one first defines equal quan-
tities for S and S’ and then finds that they are
connected by Lorentz transformation, or whether
one first defines Lorentz transformation and then
through it one arrives at tensor quantities that
are the same for the two observers. The question
is irrelevant for the present discussion, since
‘there seem to be no disagreement among physi-
cists on the following statement: if observer S
measures a certain tensor quantity, say T, at
the point x,, the same quantity for S’ is the
tensor T',,’ at the point x,’, where the primed
quantities are the quantities transformed ac-
cording to the rules of tensor calculus. In other
words, there is no difficulty in defining the con-
cept of sameness on a local basis, ie., at a
certain point in space-time. We know what is
the same point for different observers and what
are same events at the same point.

The difficulty arises when S wants to define a
nonlocal quantity.

To be specific, imagine that S wants to define
the vector A,=B,+C,, where B, is defined at
the point x) and C, at the point Xy with X,#x,.
Such a quantity occurs, for example, in the
definition of the center of mass of a system of
two particles. The quantity 4, is now a function
of two points x, and X, i.e.,

A0 X0) =B, (0) + Cu(Xn). (2)
What is the same A quantity for the observer S'?

We could define it as follows:

(a) The quantity A4,(x,,X») for S is the same
as the quantity 4, (x\, X)) for S’ when
all the primed quantities are obtained from the
corresponding unprimed quantities through
Lorentz transformation (tensor calculus).

It is easily seen that all the paraphernalia of
tensor calculus in special relativity can be used
for nonlocal as well as for local tensor quantities.
Through definition (a) we know what it means
to say that two observers are looking at the
same physical object. It is the obvious, logical
definition. It is nothing but the prescription
given by all textbooks on relativity: always use
covariant quantities! What is, then, the difficulty
of defining the concept of sameness that we men-
tioned at the beginning of this paper? The fact
is that the books do not always apply the rule
(a) they have so clearly stated.

Let us go back to the quantity 4 ,(x),X5) and
write it in the form A4,x,X,T). In general,
x#X, t#T; but it is up to observer S to define
whatever quantity he likes at whatever points
he likes. For example, he is certainly free to
define B, and C, at points

x=X, =T 3)

or at points

x#X, (=T. 4)

In classical physics observer S very often uses
definition (4) at a specific time in different space
locations (for example, in the definition of total
momentum, total angular momentum, etc.). On
the contrary he is less interested in definition
(3): who cares to measure, say, the average of
the momentum of two different particles passing
at the same point in space, one at four o’clock
and the other at five o’clock?

We do not want to blame S for his preference
for definition (4). We just want to remind him
that he should then write

A, (xtLX,T)=B,(x,H)+C.X,T)
with the supplementary condition: t=7T7]"

(5)

If he writes, for short,

A,,(X,X,t) ZB“(X,t)‘}—C# (X,If), (6)
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he can mislead observer S’ into the following
definition of same quantity:

(b) Observer S has defined a quantity 4, by
taking the sum of two vectors B, and C, at
different spatial points at equal time. There-
fore, I must define as same quantity for me,
observer &/, the sum of the same two vectors
at equal time ¢ for me. Since he looks at his
own tie (time), I must look at my own tie
(time)!

Observer S forgets that #=7", if t=T—as
he would have easily found out, had he used the
correct (covariant) definition (5)—and tries in-
stead, by analogy with definition (6), to define
a quantity

A ¥ 1) =8/ 1) +C/ (1),  (7T)

where we have used German letters for various
quantities to indicate that they have absolutely
nothing to do with the quantities (like 4,/, B,/,
etc.) obtained as transformed quantities accord-
ing to definition (a).

As a matter of fact, definition (b) is so am-
biguous that observer S’ is in trouble if we ask
him to be more specific. What are the quantities
¢’ and ¥’? In most practical cases S has defined
B, and C, at the points, x and X, respectively,
where two particles are present at time t. Ob-
server S’ is often lucky to be able to avoid our
question by simply saying: I'll take ¢’ and ¥’
as the points in space where I find the same two
particles. At what time t'? Again observer S is
often lucky, since in most cases S has defined a
conserved quantity 4,, so that any time will do.
In general, S’ would not be able to define t’
unambiguously, since in the original quantity
there were two different time variables (¢ and T,
and one cannot reduce a function of two variables
into a function of one variable without introduc-
ing some arbitrary procedure.

We have shown so far that definition (a) and
definition (b) of same physical quantity are not
equivalent. We have also clearly indicated our
preference for definition (a). However, we do
not want to quarrel with physicists that prefer
definition (b) or to be drawn into a philosophical
discussion on the meaning of sameness. The only
relevant question for physics is this: relativity
gives rules to relate measurements made by S
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with measurements made by S only if definition
(a) is adopted. Relativity then provides all the
necessary tools (Lorentz transformation, tensor
calculus) to establish the connection between
the two sets of measurements.

As far as relativity is concerned, quantities
like 4, and ¥’ are different quantities, not
necessarily related to one another. To ask the
relation between U,” and 4,, from the point of
view of relativity, is lke asking what is the
relation between the measurement of the radius
of the Earth made by an observer S and the
measurement of the radius of Venus made by
an observer S'. We can certainly take the ratio
of the two measures; what is wrong is the tacit
assumption that relativity has something to do
with the problem just because the measurements
were made by fwe observers. If there is any
relation between the two measurements, it is
certainly not a relativistic relation. To go back
to the apologue in the Introduction, one should
not try to explain a color difference on the basis
of a relativistic redshift when a simpler explana-
tion is available: one observer has bought a
green tie and the other observer a yellow tie!
Trivial? Not quite, if one considers how often
physicists have made the same mistake. The
examples are so numerous that to review them
all one should have to write a book, not an
article. We therefore discuss only few typical
examples in the next section.

EXAMPLES

(1) The definition of length is always given
according to definition (b). Only rarely is it
pointed out clearly that the measurements of
the two observers S and S’ do not refer fo the
same set of events.! The “‘ends”” of the rod, being
taken as contemporary for both observer at rest
and moving observer, are in fact different points
in the four-dimensional (absolute) space—time.
Once this is clearly indicated, the accepted defi-
nition is not particularly harmful. Although it
is a completely useless concept in physics,? it

1 See the particularly clear discussion of this point in D.
Bohm, The Special Theory of Relativity (W. A. Benjamin,
Inc., New York, 1965), pp. 58-59 and pp. 64-65.

% Nobody will ever see the Lorentz contraction. To define
it oerationally, one has to assume an infinite velocity of
light, contrary to relativity, i.e., in contradiction with the
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will probably continue to remain in the books
as an historical relic for the fascination of the
layman.

(2) The same remarks as for the length apply
to the definition of volume [V'=V{1—-a%)%].
Here, however, the definition is to be held re-
sponsible for many errors in the literature. Many
authors, after writing

dv'=dv(1—g)} (8)

have considered expression (8) as the Jacobian
in a volume integration,® without realizing that
here again the two quantities 4V’ and dV do not
refer to the same set of evenis. Example (3) below
is a classical case of such a misunderstanding.*

(3) Electromagnetic mass of the classical elec-
tron. Here one computes the energy of the elec-
trostatic field by a volume integration with the
electron at rest. Thus one gets the energy & for
observer S. A similar integration is then per-
formed with the electron in motion, using formula
(8), thus forgetting that it refers to a different
set of events. The quantity obtained in this
way—i.e., using definition (b) of same quantity
—must be written &' in our notations and has
no relation whatsoever with §. However, at this
point one thinks to have instead computed &’ for
which relativity predicts &= §(1—p8%% One
finds instead € = (%)8/(1—p4??%, and then one
wonders where the extra % factor comes from.
Surely this must be due to some other mass of
nonelectromagnetic origin, to some Poincaré’s
stresses, etc.

Details of the computation for this example,
although elementary, are given in the Appendix
for the reader’s convenience.

It is a pity that the wrong point of view has
found its way into most textbooks, from the old

theory that supposedly introduces that definition. See J.
Terrell, Phys. Rev. 116, 1041 (1959); V. F. Weisskopf,
Phys. Today 13, 24 (September 1960).

3See A. Gamba, Nuovo Cimento 37, 1742 (1965) and
the subsequent controversy [Nuovo Cimento 41B, 72,
79, 81, 83, 84 (1966)].

<Of course, in the special case when the integrand
(a vector) has vanishing divergence, the integral is inde-
pendent of the integration volume. Thus in this particular
case, definition (a) and definition (b) are equivalent.
Obviously, one cannot conclude from this that a theory
has always to be independent of the volume integration!
This, however, is the point taken by F. R. Tangherlini
[Am. J. Phys. 31, 285 (1963)] in criticizing the work of
Rohrlicf}fl (see Sec. 3). For details on this point, see Ref. 12,
p. 130 fi.

works of Laue and Pauli® to the recent, and
otherwise excellent, books of Feynman.® The
fact is even more surprising when one considers
that the correct explanation has been given re-
peatedly over the past forty years. We give
only two references, one old” and one recent,® in
order to be able to add a few comments of
historical interest, which we think appropriate
for a paper in this JOURNAL.

Fermi, as far as we know, was the first to
give the correct explanation. He did not state
explicitly that the whole problem originated
from a case of mistaken identity, as we have
put it here. He used instead an equivalent, but
more sophisticated, approach, discussing the con-
cept of rigid body in connection with a varia-
tional principle. According to the reviewer of
this work of Fermi [collected papers, Ref. 7]:
“. .. This result, of which Fermi was particu-
larly proud, was published by him, with minor
alterations, in three different journals. . . .” No
niatter how many times Fermi published his
result, he certainly did not succeed in eliminating
Poincaré’s stresses from physics. Even the same
reviewer feels obliged to apologize for Fermi by
stating that he “. . . evidently overlooked the
explanation contained in M. v. Laue, Die Rela-
tivitatstheorie,5 p. 218 and so he found for it an
explanation of his own, essentially equivalent to
the former. . . .” Needless to say, the explana-
tion of Fermi is not essentially equivalent to the
explanation of Laue, since Fermi is correct and
Laue is wrong.

Nor does Rohrlich® state too explicitly that
the case is one of mistaken identity, although
he insists on covariance—and therefore on defini-
tion (a) of the same quantity. Rohrlich computa-

‘tions—essentially those reported in the Appendix

—are so straightforward that they should have
convinced everybody of the correctness of his
conclusions. It is unfortunate that the same
author had previously attempted another, ob-

5 M. v. Laue, Die Relativititstheorie (Frederick Vieweg
und Sohn, Braunschweig, Germany, 1919), 3rd. ed.; W.
Pauli, Theory of Relativity {Pergamon Press, Inc., New
York, 1958).

¢R. P. Feynman, R. B. Leighton, and M. Sands, The
Feynman Lectures on Physics (Addison-Wesley Publ. Co.,
Reading, Mass., 1964).

7E. Fermi, Nuovo Cimento 25, 159 (1923), reprinted
in E. Fermi, Note e Memorie (collected papers) (University
of Chicago Press, Chicago, 1ll., 1962), Vol. 1.

8 I, Rohrlich, Am. J. Phys. 28, 639 (1960).
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scure, explanation of the same problem.’ This
has probably led some to the mistaken conclusion
that they were one and the same explanation,
somewhat detracting from the merit of Rohrlich’s
clear presentation.

Taking into account the fact that on this very
popular question a great number of papers are
continuously published, with suggested explana-
tions that range from general relativity to self-
induction effects of the charged electron,!! one
can probably understand why the correct ex-
planation has not yet found its way into most
textbooks.'?

(4) In a recent paper Van Dam and Wigner®
discuss, among other things, the following prob-
lem. Consider two charged particles of equal
mass, moving along the x axis, separating from
each other, In the reference system in which
the center of mass of the two particles is at
rest, the total angular momentum M,, is obvi-
ously zero. Then they compute the total angular
momentum for a moving observer S'—using
definition (b), i.e., they compute I ,,'—and they
find to their, but not to our, surprise, that it
does not vanish, even asymptotically. Therefore
they ask the question: where is the extra term
coming from? They do not attribute the effect
to Poincaré’s stresses (1), but to an equivalent
interaction angular momentum of the field.

The solution should, by now, be obvious to our
readers. To ask where is the missing term is
but an implicit admission that N, and M,
refer to the same physical quantity, whereas
this is not true.

Finally, we would like to point out that the
problem of the interaction angular momentum
is but a different aspect of the old problem of
the right-angle lever, which was given a wrong
interpretation [definition (b)] by Laue, and has
been recently solved [ definition (a) ] by Arzeliés.4

9 J. M. Jauch and F. Robhrlich, Theory of Photons and
Elzc%ms (Addison-Wesley Publ. Co., Reading, Mass., 1955),
PR, Penney, Phys. Rev. 137, B1385 (1965).

U] W. Zink, Am. J. Phys. 34, 211 (1966).

2 A notable exception being F. Rohrlich’s Classical
Charged Particles (Addison-Wesley Publ. Co., Reading,
Mass., 1965).

1 H. Van Dam and E. P, Wigner, Phys. Rev. 142, 838

(1966).
4 H. Arzelidés, Nuovo Cimento 35, 783 (1965).
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APPENDIX: ELECTROMAGNETIC MASS
OF THE CLASSICAL ELECTRON

Imagine the (classical) electron as a sphere of
radius R with a uniform surface-charge density.
In the rest system, assume that the whole mass
m of the electron is due to the electrostatic
energy of the field. Then
E2
—dV

over the whole volume 87
at time ¢ =constant

met= =

© 62 62
= | ——dmrtdr=—= (Al)
r 8mrt 2R
Similarly for the momentum p
ExH
P= dV=0, (A2)

over the whole volume

at time ¢ =constant 4mc

where E and H are the electric and magnetic
fields, respectively.

An observer S’ is in motion with respect to the
electron with constant velocity 8=[(%/¢),0,0];
then for &

E/)=E, E/=E,/(1-8)}
E/=E./(1—8)

Hy’: _.BEz/ (1_62)%
H,/=BE,/ (1—§)"

Assume that S’ is now measuring the energy
and the momentum of the electron according to
the two definition (a) and (b) of sameness given
in the text. Let us begin with the usual (wrong)
definition (b). Then

(1) with definition (b), observer S’ replaces
dV with dV’ in the integrals, according to
formula (8), and integrates at constant #. He
finds

(A3)
H/=0

(E'xH').
T av

4 ==
ng i Jover the whole volume 47
at time ¢’ =constant
Ey/Hz/ _Ez/Hy/
5/—A~—-——dV
47c
B El+LE2 4 mu
= /‘ AV =- —, (A4)
c(1—p2) 47 3(1—-8%t

since for symmetry

1
/E;,de=/Ey2dV=/E22dV=—/EZdV. (AS5)
3
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Similarly, he finds

%y’:%m/":o
E2+H" 82
@'-—:/————dV’:(l-J-—) . (A6)
8w 3/(1—p%)%

The reader may note that one gets an extra
factor 4 in (A4), but an extra factor [14 (82/3)]
in (A6). Most authors stop at formula (A4)
and then, applying relativity, imply that the

same factor also appears in the calculation of &'.
The reduction of the latter factor to % requires
a more elaborate analysis (using Poincaré’s
stresses, of course). We do not enter into these
irrelevant details in view of the fact that this
approach, after all, is incorrect.

The correct solution is obtained

(2) with definition (¢). In this case observer
S’ writes (A1) and (A2) in a covariant form

p,.z/T,‘,dS,, (A7)
with
Em2+H12—‘W E:vEy"[_H:&Hy EzEz+HmHz i(Esz_EzHy)
. E.E,+H,H, E+H2—W  EE,+HH, i(EH,—E.H,) s
" 4n E.E.+H,H, E,E,+H,H, E4+H2—W {(E.H,—E,H.)
«(E,H,—E.H,) i(EH,—EH, 1(EH,—E,H,) w
and
W=3(E+H’). (A9)
Observer S’ realizes that observer S made the particular choice
dS,=(0,0,04V) (A10)
with
E2—W E.E, E.E, 0
V| E.E, E~W EE, 0
Typ=— (A11)
Aw| E,E, E,E. E2~W 0
0 0 0 w

and an integration at constant ¢ This does not mean that he (observer S’) should then integrate at
constant #. Instead, observer S’ writes, according to relativity

pﬂl=/T#P,dS”/’

where
) 184V
1= ’

(1-p7*

dSQ’ =d53, =0, dS4' =

(A12)

av
(1—p7)?

(A13)

and 7, is obtained from formula (A8) by substituting primed quantities as given by (A3). Ac-

cordingly he gets
B

P1’=/T11'd51’+/T14'd54'=m

/(Eﬁ_%(Eﬁ_{_ {Ey2+Ez2}
|

1-1—62)
18

Ey2+Ez2
fov
1—52
=——————1,’3 /EZd = ,Lﬁp4
8w (1—g%)* (1-p2}

(A14)
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and similarly

89

P =ps'=0, (A15)
and
1 (ES+ENS 1 148
pd = / Tu'dSd+ / T44’dS4’=—————-—«l— / ——dV+ / ~{E,2—I—(Ey2—l—E22) }dv}
dr(1—p2)F 1—-p2 2 1-g2) )

in perfect agreement with relativity.

1 Py
=~———~——/E2dV=ﬁh (A16)
87 (1—p%)* (1—p%)¢
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There is an increasing current interest in the philosophy and history of physics. This paper
discusses an interesting and important (but relatively little known among physicists) con-
troversy in the history of theories of space and time, the Leibniz—Clarke correspondence.
Leibniz represents the relativist view of space and time. Clarke, a disciple of Newton, upholds
the absolute space and time of Newtonian mechanics.

INTRODUCTION

HE position of modern physics is that ab-
solute space and time are meaningless con-
cepts. This is based on the wholehearted accep-
tance by the physics community of an empirical,
operationalist approach. However, the philo-
sophy community is not as absolutely certain
as are the physicists, and they feel that there
is still ample room for speculative thought on
the ultimate nature of space and time. This dif-
ference in viewpoint reflects a general intellectual
situation in which each discipline largely goes its
own way independently of other disciplines.
Awareness of this problem has resulted in at-
tempts at interdisciplinary approaches and, in
particular, in physics has led to heightened in-
terest in the philosophy and history of physics.
In the much less specialized and compart-
mentalized Newtonian age, physicists were philo-
sophers and philosophers were physicists. It was
in this age that there occurred a physical-
philosophical correspondence of great importance
to the history of speculative thought on theories
of space and time. This was the correspondence
between Leibniz and Clarke on absolute versus
relative space and time.

Clarke! was a disciple of Newton and engaged
in a famous interchange of philosophical letters
with Leibniz? at the beginning of the 18th cen-
tury. Alexander describes the correspondence as
follows: “The exchange of papers between Leib-
niz and Clarke is the most frequently cited of

! Dr. Samuel Clarke (1675-1729) was a theologian, philo-
sopher, and scientist. He was the foremost disciple of New-
ton. His translation into Latin of Rohault’s Physics (1697)
was very popular and in it he added extensive footnotes
relating to Newton's physics. He also translated Newton's
Opticks into Latin (1706). In 1704 and 1705 he delivered
two sets of Boyle lectures. In the first he attempted to
prove the existence of God by mathematical methods and
in the second he tried to show that moral laws are on as
firra a footing as mathematical propositions. In 1717 he
published A Collection of Papers which passed between the
late Learned Mr. Leibniz, and Dr. Clarke, in the Years 1715
and 1716. Relating to the Principles of Natural Philosophy
and Religion. This latter work is the subject of this paper.

2 Gottfried Wilhelm Leibniz, Freiherr von (1646-1716)
is one of the major philosophers who have influenced
Western thought. He shares with Newton the honor of
being the discoverer of the calculus. Leibniz’s philosophical
system is based on a set of ultimate entities called monads.
The grouping of the monads to form a universe is governed
by the principle of contradiction and the principle of suffi-
cient reason. The unfolding of events in the universe of
monads follows a pre-established harmony whose author
is God. Some of Leibniz’s important works are as follows:
The Monadology (1714), Principles of Nature and of
Grace (1714), On the Ultimaie Origination of Things (1697),
The Theodicy (1710), Correspondence With Clarke (1715~
1716), New Essays on the Human Understanding (1702-
1703), and the Correspondence with Arnauld (1686-1687).



