ORBITAL ANGULAR MOMENTUM

still another argument that the basic formalism
of quantum mechanics is all that is required to
establish that orbital angular momentum com-
ponents can have only integral eigenvalues. How-
ever, the formal solution (2) is based entirely on
this formalism, and the restriction to integral
quantum numbers for the eigenvalues of the
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orbital angular momentum operators (4) must
be a consequence of the formal theory (2) as
proved here. Buchdahl avoids altogether any use
of the standard basis (2), and his arguments,
therefore, do not reveal the manner in which
orbital angular momentum fits into the standard
formal theory.
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Relativistic stress effects caused by the Lorentz contraction described in a previous publica-
tion are related to implications of relativistic simultaneity. This relationship is discussed here,
in some detail, in order to clarify certain pedagogically difficult aspects of the problem. Ob-
jections raised in a recent Note are also answered.

N a recent letter,! Nawrocki raised what he
considered to be valid arguments against the
conclusions of a paper? by Beran and myself
concerning relativistic stress effects. In the pres-
ent article it is shown that all of his arguments
are based on a single misconception concerning
simultaneity. The concept of simultaneity, it
will be recalled, is a crucial one and it was pre-
cisely this subtle concept that was involved in
perhaps one of the most difficult steps in Ein-
stein’s discovery that time and space are related.
It is, therefore, not surprising that Nawrocki and
other students of relativity might find difficulty
in understanding the problem under discussion.
Perhaps one could say that the pedagogical value
of this problem lies primarily in the fact that it
illustrates in a somewhat dramatic way the
physical relation between length contraction and
simultaneity.

In order to clarify the thought experiment in
question, let us consider it from the viewpoints
of observers not only in the initial rest frame but
also in other moving frames.

1. Observer in Initial Rest Frame

Two identical rockets, R-1 and R-2, are posi-
tioned along the x axis and aimed in the positive
x direction with R-1 a distance dq in front of R-2.

1P, J. Nawrocki, Am. J. Phys. 30, 771 (1962).
*E. Dewan and M. Beran, Am. J. Phys. 27, 517 (1959).

A thread or weak string is attached to their
respective centers, and at a time {=0 they are
fired simultaneously. The distance between the
rockets, as measured in the initial frame, remains
constant for all time because both rockets, by
assumption, are identical and therefore have
identical velocities at each instant of time due to
the fact that they are fired simultaneously. On
the other hand, the string tends to contract be-
cause of the Lorentz contraction and therefore it
eventually breaks because of its finite strength.
Further details of this thought experiment are
found in reference 2.

2. Observer in Final Rest Frame

We next consider the viewpoint of an ‘‘ob-
server''in the Lorentz frame, in which the rockets
are at rest at the end of the experiment when they
“run out of gas.” In other words, let us consider
the results of measurements made with clocks and
rods at rest with respect to an inertial frame moving
with velocity v, the final rocket velocity with
respect to the initial frame. (Notice that in
actuality the observer can be in any frame; it is
the rest frame of the measuring insiruments that
is relevant. We nevertheless shall continue to use
the word ‘“observer” as a sort of shorthand
notation.) As usual, the clocks are assumed to be
synchronized by the Einstein convention using
light signals so that x and ¢ in the S or initial rest
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frame will be related to ' and ¢ in the .S’ or final
rest frame by the Lorentz transformation:

x'=(x—ov)/(1—=p, ¥'=[1—(wx/)]/(1-£),

where §=1v/c.

The most important thing to notice here is the
(—vx/c%)/ (1 —B)?% term in the time transforma-
tion. Its physical significance is that, although
all the clocks in S’ run at equal rafes when meas-
ured in .S, they are out of ‘“phase” with one
another. That is, from the point of view of S,
they are synchronized with respect to rate but
not with respect to dial reading. Griinbaum’s
article® clearly shows the relationship between
this term and Einstein's synchronization con-
vention. With reference to our thought experi-
ment it implies that the S’ observer measures
time in a way that the two rockets will appear to
him as starting off at different times. The assump-
tion that the two rockets are identical implies
that their trajectories can differ only by a spatial
and temporal displacement. The final separation
between the rockets when they come to rest in
S’ is therefore equal to their initial separation as
measured in that frame plus the separation
caused by the difference in starting times, Af;
where At = (vdo/c?)/(1—p%)% Thus the final
separation, d,’, in S’ is given by:

4, =do(1— ) oAt
=do(1 -84+ @2/ [do/ (1 —891]
=do/(1—p6%)%

Hence .S seest the string break, not because of a
Lorentz contraction, but because of a physical
separation of the rockets! Notice that this argu-
ment is quite independent of the amount of
acceleration, or its functional dependence on
time. In our previous paper, we made the as-
sumption that the acceleration was not ‘‘too
large”” simply to avoid the complication due to
finite propagation times. There is no other re-
striction on the acceleration. One should also
notice that the ratio of rocket length to separa-
tion distance is the same for both .S and S’ at the
end of the experiment but that during the experi-
ment it is not constant in fime.

3 A, Griinbaum, Am. J. Phys. 23, 450 (1955).

4In this paper, the word ‘“see,” when referring to a
particular observer, is used in the sense of physical meas-
urement rather than in Terrell’s sense.
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3. Observer in Frame Instantaneously at Rest
with Respect to R-2 during Acceleration

An observer riding R-2 during the acceleration
would bave to switch frames at each instant.
Each of these changes would necessitate a re-
synchronization of the phases of all his clocks.
This re-synchronization does not ‘‘automati-
cally”’ come about by the effect of the change of
rates. In other words, the (vx)/c?(1 —82)% term in
the time transformation implies that each change
of instantaneous Lorentz frame involves an
entire re-synchronization of clocks in a manner
which depends on clock position. That is, as
increases, the rate of change of clock phase with
respect to distance (or the ‘“‘gradient” of the
phase in the x direction) also increases. This
implies, as one can easily show, that the R-2
observer would regard the rate of R-1's fuel con-
sumption as being faster than that of R-2 and
that R-1's acceleration is greater than that of
R-2.° In other words, the fuel pumps of the
rockets which meter the fuel at a “constant rate”
can be regarded as clocks in some sense. If we
take into account the effects of the observer’s
clock synchronization, then it can be shown that
the rate of fuel consumption in R-1 as measured
by R-2 would seem larger than that of R-2. The
measured acceleration would also appear larger
in a way consistent with the difference of fuel
consumption ; hence, there would be an increase
in the spatial separation which would break
the string when the latter reached its elastic
limit.

This experiment can also be regarded from the
point of view of the principle of equivalence. A
uniform gravitational field in the direction oppo-
site to the acceleration would allow one to con-
sider R-2 as stationary. The increase of fuel
consumption in R-1 would now be considered as
being due to the gravitational “violet shift”
because R-1 would be at a higher gravitational
potential than R-2. It is interesting to notice
that a gravitational field which could transform
away the acceleration of an extended body (such
as an elevator) cannot be uniform in the above
sense because, as we have seen, such a field would

5 The “rocket clock” is a standard clock, and the con-
stantly readjusted clocks are coordinate clocks [see C.
Mgller, The Theory of Relativity (Clarendon Press, Oxford,
1955), pp. 33, 226].
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tend to set up stresses similar to those in the
rocket experiment.

4. Remarks on Nawrocki’s Arguments

We have seen that one consistently reaches the
same conclusions from the point of view of all
observers, provided one takes into account time
synchronization effects. With this in mind, we
now turn our attention to statements made in
Nawrocki's letter.

(a) At the start of his discussion, Nawrocki
claims that our conclusions imply that two
fundamental methods of measuring length (i.e.,
by measuring rods or by light signals and clocks)
give contradictory results. However, we have
just seen that the distance between the rockets
cannot be considered to be a ‘“‘proper length”
since it is time-dependent in all frames with the
exception of .§ with respect to which it is moving.
The measurement of this distance by rods and
by light signals will be consistent in any given
frame, but in no frame will it be a “rest length.”

(b) Next, he misquotes Evett and Wangsness
as follows: *. . . the distance between corre-
sponding points of the two rockets remains con-
stant [for all Galilean observers].’” The addi-
tional words in the square brackets are due only
to Nawrocki’s confusion and have no connection
with the intentions of those authors. This re-
solves the mystery of why they “inexplicably”
agree with our conclusion.

(c) Finally, he concludes his note with three
arguments attempting to show that the ratio of
the distance between the rockets to the length of
one rocket must remain constant in time in any
instantaneous rest frame of the midpoint be-
tween the rockets. These three arguments are
now considered in chronological order.

(1) The first argument is based on the state-
ment, “‘all measured distances in the rest frame
are obviously unaffected by the Lorentz—Fitz-
gerald contraction.” As we have just seen, how-
ever, the distance between the rockets s affected
by the acceleration when measured in any in-
stantaneous frame moving, in some sense, with
the rockets. Although .S blames the breaking of
the string on the Lorentz contraction, .S’ blames
it on a relative velocity between the rockets.
Thus we see that Nawrocki’s error is due to his
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neglect of the (zx)/c*(1—3%)% term in the Lorentz
transformation.

(2) In his second argument, Nawrocki states
that acceleration, although important in the
twin paradox, plays no decisive role in the rocket
problem. The reason he gives is that we are con-
cerned only with a length “dx’ and not with
“3~1 space time quantities.” It has been shown
above, however, that one of the main points of
the problem is to demonstrate the connection
between time synchronization and length con-
traction and that a spatial property, as seen by
one observer, can involve temporal properties as
seen by another observer. Hence, his statement
is false and we see that the acceleration does
indeed play an important role just as in the twin
paradox.

(3) In his last argument, which is a slight
modification of the preceeding one, Nawrocki
attempts to consider the problem from the point
of view of several Lorentz observers. Again he
neglects synchronization effects and arrives at a
contradiction. As usual, the answer to his argu-
ment is that he forgot about relativistic simul-
taneity. The breaking of the string is due to the
Lorentz contraction in the initial frame, to the
relative velocity (caused by lack of simultaneity)
in the final frame, and to a mixture of both effects
in other frames.

Thus we conclude, as we stated in the begin-
ning, that Nawrocki's arguments are based on a
single misunderstanding about the role of simul-
taneity in relativity.

As an exercise, the reader may test his grasp of
the above concepts by means of the following
problem. (See Figs. 1 and 2.) Consider a pole
vaulter who lives in “Tompkin’s Wonderland''¢
where the velocity of light is so small that if he
points the pole in the direction of his movement
it contracts by a large amount. Now, suppose
that one day he runs with his contracted pole
through the front door of a barn which is so small
that, were it not for the contraction, the pole

$In Myr. Tompkins in Wonderland, one ignores the im-
pertant fact that the Lorentz contraction is invisible [as
was shown by Terrell, Phys. Rev. 116, 1041 (1959)7. When
Gamow wrote this famous book, physicists were not aware
of this invisibility ; hence, for the sake of convenience, we
define “Tompkins’ Wonderland’ as a place where one sees
what is physically measurable, as opposed to what is seen
by means of the usual optical equipment such as eyes and
cameras.
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FI1G. 2. Pole vaulter seen smashing backwards out of the barn after the door has been closed behind him. The pole being
stopped by the rear wall regains its rest length and pushes back on the pole vaulter. The impulse reaches him after the
door is closed because of the finite propagation time of the impulse shock wave in the pole. A large part of the front of the
barn is knocked out because the door was closed and because both the rear wall and front door are assumed to be stronger
than the front wall. Perhaps, this last illustration can be considered as emphasizing that the relativistic contraction effects
are not to be considered as ‘“‘mathematical fictions.”

would be twice as long as any dimension of the
barn. We also assume that a person at rest in the
barn would see (i.e., measure) the pole as being
very short and that after the pole vaulter enters
the barn, the rest observer closes the door behind

the pole vaulter! The pole vaulter, on the other
hand, would see the barn as contracted and much
smaller than the pole. The question is, how can
the pole vaulter “‘explain’ the fact that the door
can be closed behind him?



