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Why is the integrated difference of the kinetic and potential energies the quantity to be minimized
in Hamilton’s principle? I use simple arguments to convert the problem of finding the path of a
particle connecting two points to that of finding the minimum potential energy of a string. The
mapping implies that the configuration of a nonstretchable string of variable tension corresponds to
the spatial path dictated by the principle of least action; that of a stretchable string in space–time is
the one dictated by Hamilton’s principle. This correspondence provides the answer to the
question. © 2005 American Association of Physics Teachers.
�DOI: 10.1119/1.1930887�
I. INTRODUCTION

Soap films minimize their surface area and adopt a spheri-
cal shape; a large piece of matter maximizes the gravitational
attraction between its parts, and hence planets also are
spherical. Light rays refracting on a magnifying glass bend
and follow the path of least time, and a relativistic particle
follows the path between two events in space–time that
maximizes the time measured by a clock on the particle.1,2

In 1744, Maupertuis proposed that “Nature, in the produc-
tion of its effects, does so always by the simplest means,”3

and in 1746, wrote “in Nature, the action �la quantité
d’action� necessary for change is the smallest possible. Ac-
tion is the product of the mass of a body times its velocity
times the distance it moves.”4 For a light ray or a particle
passing from one medium into another, both the minimiza-
tion of time and minimization of action gives rise to angles
of incidence and refraction in a fixed proportion to each
other: the analog of Snel’s law5 for a light ray, n1 sin �1
=n2 sin �2, corresponds to the conservation of particle mo-
mentum along the interface, mv1 sin �1=mv2 sin �2. Al-
though Maupertuis’ formulation was vague, and there was
controversy over the priority over the idea,6 his name re-
mains attached to the principle arguably for two reasons: his
metaphysical view that minimum action expresses God’s
wisdom in the form of an economy principle,8 and Euler’s
role in settling the controversy in his favor.7

Hamilton’s principle, formulated almost a century later, is
similar to the principle of least action and is based on the
optical-mechanical analogy as well.9 Although the trajectory
followed by a particle of fixed energy E connecting two
points in space is given by the principle of least action,
Hamilton’s principle determines the trajectory for which the
particle will spend a given time t traveling between the same
points. The optimal path is the one for which the sum of the
products �K−U��t along the path is a minimum �K and U
are the kinetic and potential energies and �t is the time in-
terval�. Hamilton’s method was mentioned throughout the
nineteenth century, but was rarely used because simpler
methods were as effective in most cases.10

The situation changed in 1926 when Schrödinger used
Hamilton’s analogy between mechanics and geometrical op-
tics, and arrived at his famous equation for the dynamics of a
quantum mechanical particle.11 In 1948 Feynman12 offered a
new perspective on Hamilton’s principle: a quantum particle

“explores” all paths between two points. This “democracy of
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histories”13 becomes the principle of least action for a clas-
sical particle, which due to destructive interference elimi-
nates those paths that differ significantly from the classical
�or extremal� path.

A lesser known approach to the principle of least action
was taken by John Bernoulli,14 who showed that Snel’s law
can be obtained from the condition of mechanical equilib-
rium of a tense, nonstretchable string �see Fig. 1�. This anal-
ogy also was noted by Möbius15,16 and discussed by Ernst
Mach.17 Reference 18 considers an inextensible string and is
the only article I found on this analogy.

In this paper I show that a simple extension of this analogy
to paths that are covered in fixed time can be used to prove
the equivalence of Hamilton’s principle to the static equilib-
rium of a stretchable string. My goal is to provide insight, in
the spirit of Refs. 19–23, into why it is the difference be-
tween the kinetic and potential energy that appears in Hamil-
ton’s principle. I review Bernoulli’s approach in Sec. II, and
present a simplified derivation of Hamilton’s principle in
Sec. III. In Sec. IV, I present a somewhat more elaborate
derivation using elementary calculus. Given the importance
of the principle of least action in many areas of physics, I
hope that this paper will contribute to its presentation in
introductory courses, rather than it being postponed to ad-
vanced mechanics courses.

II. THE LEAST ACTION PRINCIPLE AND
NONSTRETCHABLE STRINGS

Figure 1 shows the diagram used by Bernoulli to derive
Snel’s law for a light ray traveling from point A to point B
using the analogy with the static equilibrium of a string un-
der tension. The following is a rephrasing of Bernoulli’s ar-
gument, which is based on the assumption that, for any sys-
tem in mechanical equilibrium, it is equivalent to say that the
net force on each point of the system is zero, and the system
is in the state of minimum potential energy. I will assume
knowledge of Newton’s law F=�p /�t relating the force on
a particle with the rate of change of its momentum.

Call T1 and T2 the weights hanging from points A and B in
Fig. 1. The point of contact between the upper and lower
portions of the string slides horizontally without friction
along the line CD. The pulleys at A and B are frictionless and
have zero inertia; therefore the tensions of the different por-
tions of the string will be T1 and T2. Compare the potential

energy of the configurations for which the point of contact is

831© 2005 American Association of Physics Teachers



P1 and P2. There is a potential energy change between the
two configurations because in going from P1 to P2, mass 1
will rise from X to x and mass 2 will decrease its height from
Y to y. The tensions are determined by the weights and are
equal to T1 and T2, respectively. We let �1=AP1 and �2
= P1B, and write the change in the potential energy �U of the
system as

�U = T1��1 + T2��2, �1�

where ��1=Xx=qP2 and ��2=−Yy= P2p. Because T1 and
T2 are constant, Eq. �1� implies that, up to an additive con-
stant, the potential energy of the system can be expressed as

U = T1�1 + T2�2. �2�

Another way of visualizing Eq. �2� is offered in Fig. 2.
Because the configuration of mechanical equilibrium corre-
sponds to the minimum of potential energy, the minimum U
is attained when the components of the forces from the dif-
ferent portions of the string along CD cancel. In terms of the
angles �1=�AP1R and �2=�SP1B, the minimum potential
energy is attained when

Fig. 1. �John Bernoulli’s proof of Snel’s law using the mechanical equilib-
rium of a string under tension.� Two weights T1 and T2 hang from friction-
less pulleys at A and B, meaning that the tension on the portions AP1 and
P1B is T1 and T2. The point of contact, P1, slides without friction along CD.
The potential energy of the system, U=T1AP1+T2P1B, is minimized at equi-
librium, where the horizontal components of the tensions T1 and T2 cancel,
giving Snel’s law: T1 sin �AP1R=T2 sin �SP1B. �Figure reproduced from
Ref. 14.�
T1 sin �1 = T2 sin �2. �3�
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Equation �3� is equivalent to Snel’s law if the indices of
refraction n1 and n2 in the different regions are identified
with the tension of the strings. If the time t or, equivalently,
the optical length ct given by

ct = n1�1 + n2�2, �4�

is minimized, then n1 sin �1=n2 sin �2.
To make the analogy between the configuration of the

strings and the trajectory of a particle with energy E between
points A and B in Fig. 2, I reason in reverse. Conservation of
momentum at the interface requires that

mv1 sin �1 = mv2 sin �2. �5�

What is the magnitude that should be minimized to obtain
Eq. �5�? Because Snel’s law results from minimization of Eq.
�4�, the string version of Snel’s law �Eq. �5�� will result by
minimizing the quantity A given by

A = mv1�1 + mv2�2, �6�

which is Maupertuis’ action. The correspondence between
Eqs. �4� and �6� expresses the analogy between mechanics
and geometric optics, which has been the subject of many
recent expositions.24,25

The tension Ti of the string is identified with the velocity
vi in each region, which is given by vi=�2m�E−Ui�, where
E is the total energy and Ui is the corresponding potential
energy. For paths that traverse many regions where the par-
ticle velocities are different, the trajectory has to be divided
into many straight segments. The principle of least action
states that for a given total energy, the trajectory of the par-
ticle between two fixed points is the one that minimizes the
sum of the products mvi�i in each segment. To use the anal-

Fig. 2. An alternative version of Bernoulli’s setup: �a� Two weights hanging
from frictionless points A and B are assigned zero potential energy. �b� The
two weights are then lifted, and the ends of the strings are joined at point P1

along the line CD. The work done is equal to the increase in the potential
energy: U=T1�1+T2�2.
ogy with the string, the corresponding arrangement for a
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string of N segments consists of frictionless pulleys that can
slide on rods, with the string passing through them a suffi-
cient number of times17 �see Fig. 3�. Table I summarizes the
analogies between the quantities discussed in this section.

III. HAMILTON’S PRINCIPLE AND STRETCHABLE
STRINGS

The principle of least action as stated in Sec. II gives the
trajectory for a particle of a given energy between two fixed
points. It does not say anything about the time it takes to
travel from one point to the other. Now consider the problem
of finding a path that will connect point P= �xP ,0� to point
Q= �xQ , t� in a fixed time t. To extend the treatment to paths
that go between two fixed space–time points, it is useful to
treat t as a new dimension. To simplify the analysis, and to
retain the two-dimensional picture of Sec. II, I will consider
motion in one spatial dimension.

Consider the continuous path x�t�, which is broken into
small straight segments connecting points separated by a
fixed time interval �t. The fact that the segments are straight
means that the velocity is constant during each interval, and
changes due to an impulsive force. This force will be non-
zero if the potential changes as a function of x at the particle
position.

Fig. 3. Frictionless pulleys that can slide in horizontal lines with a string
passing through them a sufficient number of times gives the trajectory of the
particle if Ti is identified with mvi at each segment. Because the string can
only pass through each pulley an integer number of times, the ratios of the
velocities are approximated by the ratio of the times the rope passes through
each segment.

Table I. Analogies used in the principle of least acti
rium of a nonstretchable string.

Particle L

mv �momentum� n
mv1 sin �1=mv2 sin �2 �momentum conservation� n

�A=mv�� �action� c
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Consider two segments as in Fig. 4�a�. Before the force F
acts on the particle, the velocity is given by the slope of x�t�:

vP =
xi − xP

�t
. �7�

The effect of the force is to change the velocity. Therefore, in
the �x , t� plot �the world line�, the slope of the line changes at
the intermediate time. The velocity after the force has acted
on the particle is

vQ =
xQ − xi

�t
. �8�

Because the force is down, the slope decreases: a downward
force means that at xi, the potential is increasing as a func-
tion of x.

The path in space–time �x , t� is a solution of Newton’s
second law such that the rate of change of the velocity times
the particle mass is the force acting on it:

tween mechanics, geometric optics, and the equilib-

ray Nonstretchable string

ractive index� T �tension�
�1=n2 sin �2 �Snel’s law� T1 sin �1=T2 sin �2

�static energy�
n�� �optical length� �U=T��

�potential energy�

Fig. 4. �a� Space–time trajectory of an otherwise free one-dimensional par-
ticle acted on by an impulsive force F at ti=�t. �b� Equivalent equilibrium
configuration of two segments of a stretchable string with spring constant
k=m / ��t�2 and an external force −F.
on be

ight

�ref

1 sin

�t=
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F = m
vQ − vP

�t
. �9�

We replace vQ and vP in Eq. �9� by the velocities from Equa-
tions �7� and �8�:

F =
m

��t�2 �xQ − xi� −
m

��t�2 �xi − xP� . �10�

At this point we become more abstract and forget the
space–time picture for a moment. Equation �10� gives the
force of a system of two springs with identical spring con-
stants, the first spring connects point �xi ,�t� with �xP ,0�, the
second connects �xQ ,2�t� with �xi ,�t�. For the system to be
in equilibrium, that is, for the intermediate coordinate to
have the value xi �the other two are fixed�, there has to be a
force of magnitude F but of opposite sign.

The path given by Newton’s law is given by the equilib-
rium condition for a mechanical model of two springs in the
presence of a potential of opposite sign to U�x�. The equilib-
rium condition is the one that minimizes the potential energy
of the entire system, springs plus “external” potential U�x�.
Because the potential energy for a spring of spring constant k
connecting two points separated by a distance � is k�2 /2, the

total potential energy of the system �S̃� is given by

S̃ =
m

2
� xi − xP

�t
�2

+
m

2
� xQ − xi

�t
�2

− U�xi� . �11�

We return to the original world line picture in which the
variable t in Eq. �11� is time and we see that the optimum
path in space–time is the one that minimizes the difference
between the kinetic and potential energy. The fact that the

quantity to be minimized is S̃ is Hamilton’s principle. In this
section I obtained this result using a mechanical analogy
similar to the principle of least action in the sense that there
is a correspondence between the kinetic energy and the po-
tential energy of fictitious springs of spring constant k
=m / ��t�2. In other words, the stretchable string is in equi-
librium due to two types of forces in space–time: the external
force due to �minus� the real external potential, and the elas-
tic force of the fictitious springs, which plays the role of the
kinetic energy.

For a longer path with N straight segments each of them
traversed by the particle in a time �t, the velocity at the ith
segment will be vi= �xi+1−xi� /�t, and the equivalent poten-
tial energy will be given by

S̃ = �mv1
2

2
− U�x1�	 + �mv2

2

2
− U�x2�	 + ¯ +

mvN
2

2
.

�12�

For a large number of segments, corresponding to a continu-
ously varying path, the last term in Eq. �12� can be ignored;
the total “potential” energy �of the fictitious springs plus the
real external potential� to be minimized corresponds to the
sum of the differences between the �real� kinetic and �real�
potential energies.

Notice that the potential energy for the fictitious springs
corresponds to springs of zero length. Also, Eqs. �11� and
�12� omit the potential energy associated with the “horizontal
displacement” �t of each spring. I ignore this contribution

because the horizontal forces due to the springs cancel, and
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therefore, the potential energy associated with this displace-
ment is the same for all configurations of the string.

IV. HAMILTON’S PRINCIPLE USING ELEMENTARY
CALCULUS

I now derive Hamilton’s principle using a slightly more
sophisticated but still elementary approach. The principle of
least action gives the path of a particle of fixed energy E in
going from A to B �see Fig. 1�a��. Call U1 and U2 the poten-
tial energies in the upper and lower parts of the line CD, and
v1=�2m�E−U1� and v2=�2m�E−U2� the corresponding ve-
locities. Now consider paths with different energies and ask
for which of these paths will the particle satisfy Newton’s
laws and spend a fixed time t going from A to B. Following
the principle of least action, we want to find a function that
will give the desired path upon minimization. For the case
under consideration, the path consists of two straight seg-
ments and the function has to be such that, of all paths that
take a time t in going from A to B, it chooses the one that
satisfies Eq. �5�.

Call a and b the perpendicular distances of A and B to the
interface CD , L the horizontal distance between A and B,
and x the distance CP1. The Maupertius action of Eq. �6� can
be thought of as a function of x and the energy E:

A�x,E� = mv1�E��x2 + a2 + mv2�E���L − x�2 + a2. �13�

To explore whether A�x ,E� is the desired function, we
calculate the variations of A with respect to x and E, assum-
ing knowledge of the ratios of dE and dx that will keep the
time t constant:

dA = �mv1 sin �1 − mv2 sin �2�dx +
�A

�E
dE . �14�

It is clear that minimizing A �or equivalently setting dA
=0� does not give us the desired Eq. �5� because of the sec-
ond term in Eq. �14�. However, notice that dvi /dE=1/mvi,
and

�A

�E
=

�x2 + a2

v1
+

��L − x�2 + a2

v2
= t1 + t2 = t , �15�

where t1=�1 /v1 and t2=�2 /v2 are the times it takes the par-
ticle to go from A to P1 and from P1 to B, respectively.

Thus, if Et is subtracted from A, the desired quantity is
obtained: S=A−Et. �Note that d�Et�= tdE because the paths
take a constant time.� Therefore,

S = �mv1�1 − Et1� + �mv2�1 − Et2�

= �mv1
2 − E�t1 + �mv2

2 − E�t2

= �K1 − U1�t1 + �K2 − U2�t2, �16�

which is the quantity to be minimized according to Hamil-
ton’s principle.

V. COULD HAMILTON HAVE DISCOVERED
QUANTUM MECHANICS?

If we write p=mv and �=x, the action S in Eq. �16� has

the same form as the phase change of a wave
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� 
 px − Et , �17�

�up to a multiplicative constant that renders � dimensionless�
with momentum and energy playing the role of wave number
k and frequency �. The path of least action could hence be
regarded as the stationary phase limit of a wave. Could
Hamilton have discovered quantum mechanics in 1834? The
answer is probably no, because Hamilton did not have any
experimental motivation to think of particles as waves.26

However, the close analogy between geometric optics and
mechanics could have motivated him to ask the following:
what would be the structure of a wave equation for particles
that, in the limit of small wavelength, gives the trajectories
of particles just as the wave equation for light in the same
limit gives the trajectories of light rays?

Let us follow the analogy provided by the principle of
least action and consider trajectories of constant energy, cor-
responding to light rays of constant frequency. Because the
principle of least action establishes an equivalence between
the geometry of these trajectories, I seek an equivalence be-
tween stationary states of the corresponding wave equations.
The wavelength of a monochromatic light wave in a region
in which the index of refraction n�x� is varying slowly is
given by

��x� =
�0

n�x�
. �18�

Because Eqs. �4� and �6� imply that the trajectories of par-
ticles and light rays are equivalent if n�x� is identified with
mv�x�, a natural choice for the spatial dependence of the
particle wavelength �P is

�P�x� =
K

mv�x�
=

K
�2m�E − U�x��

, �19�

with K a constant with units of angular momentum; K is the
constant needed to make � in Eq. �17� dimensionless.

Now consider the wave equation for the amplitude ��x , t�
describing a light wave in one dimension �we ignore the
polarization�:27

�2�

�x2 =
n2�x�

c2

�2�

�t2 . �20�

To compare Eq. �20� with the stationary wave equation for
particles, I substitute ��x , t�=��x�ei�t so that Eq. �20� be-
comes

− � �0

2�
�2�2�

�x2 = n2�x�� . �21�

From the equivalence of Eqs. �18� and �19�, the structure of
the wave equation for the stationary states � for particles is

−
�K/2��2

2m

�2�

�x2 = �E − U�x��� . �22�

If we compare Eq. �22� with Eq. �21� and treat K as a free
parameter, the limit K→0 �which corresponds to the limit
�0→0� gives the trajectories for particles of energy E, and

Eq. �22� could be used as a wave equation for particles. Of
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course, now we can identify K with h, Planck’s constant.
Given the identification of the energy with the frequency, the
time dependence of the stationary states is ��x�e−iEt/	 and
the implied time dependence for Eq. �22� is Schrödinger’s
equation:

�−
	2

2m

�2

�x2 + U�x�	� = i	
�

�t
� . �23�
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