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1. Introduction.  Building on an idea by Pitowsky (1990), David Malament (private

communications), Hogarth (1992) and Earman and Norton (1993) have shown how it is

possible to perform computational supertasks — that is, an infinite number of computational

steps in a finite span of time — in a kind of relativistic spacetime that Earman and Norton

(1993) have dubbed a Malament-Hogarth spacetime1.

Definition 1  A spacetime (M,g) is Malament-Hogarth just when there is a future endless curve

λ⊂M with past endpoint and a point q∈M such that ⌡⌠
λ

ds 2 = ∞ and  λ⊂J-(q).

(Hereafter, the symbols “q”  and “ λ”  are assumed to have the properties they have in

Definition 1. I shall also speak of a “λ-curve”.)

Various examples of Malament-Hogarth (hereafter, M-H) spacetimes are given in Hogarth

(1992), but the following artificial example from Earman and Norton (1993) is perhaps the

simplest. Start with Minkowski spacetime (R4, η) and choose a scalar field Ω on M such that

Ω=1 outside a compact set C⊂M and Ω tends rapidly to infinity as a point r∈C is approached.

The spacetime  (R4-r, Ω2η), depicted in Figure 1, is then M-H. (Although the region inside C

appears quite small, it is in fact as large as the complement of C.)

                                                
* To appear in PSA 1994, Volume 1.
†   Fax: (0223) 334554. E-mail address: MLH12@UK.AC.CAM.PHX
1 I shall follow the standard notational conventions of Hawking and Ellis (1973).  All

spacetimes are assumed to be causally well-behaved in the sense that they satisfy strong
causality.
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Figure 1.  A toy Malament-Hogarth spacetime.

Hogarth (1992) and Earman and Norton (1993) show how in a M-H spacetime, e.g.,         (R4-

r, Ω2η), one might solve, e.g., the Goldbach conjecture.  From a point p∈λ launch a Turing

machine along λ that is primed first to check if 2 is the sum of two primes, then likewise to

check 4, then 6, and so on, ad infinitum. The Turing machine is also primed to signal to q if and

only if it finds a counter-example to the conjecture, and then to halt operations.  Since an

observer, e.g. O in Figure 1, can travel from p to q in a finite span of proper time, she can

discover the truth of the conjecture before her day’s out.  Fermat’s last theorem is cracked in a

similar fashion.

2. Solving the Turing Unsolvable.  I move now to the objectives stated in the abstract. To

simplify matters in this section, no account will be taken of the physical plausibility of the

spacetimes under consideration or of the behaviour of the matter fields they support.  Moreover,

it will be assumed that every spacetime permits Turing machines of any size to operate

unproblematically and that communication to future events is always possible. Note, however,

that Hogarth (1992) has shown that M-H spacetimes cannot be globally hyperbolic (so they

violate strong cosmic censorship), and that Earman and Norton (1993) have shown that in many

M-H spacetimes photons travelling between some events suffer infinite blue shifts (which may

indicate horizon instability).  

A problem is said to be Turing solvable if there is a Turing machine (operating according to a

finite instruction set, but having access to an infinite memory store) that can solve the problem

after a finite number of steps.  In this paper I shall say, somewhat informally, that a problem is

solvable in a spacetime (M,g) if there is an observer O⊂M who can initiate a procedure which
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is comprised of only Turing machines and ordinary communication devices and which will

deliver the problem’s solution to O after a finite span of O’s proper time.   

Thus the Goldbach conjecture and Fermat’s last theorem are both solvable in the M-H

spacetime in Figure 1, and indeed in any M-H spacetime.  These two problems may also be

Turing solvable, so they do not by themselves prove a difference between this more general

solvability and Turing solvability.  I will now give a proof, by showing how a problem that is

known to be Turing unsolvable is demonstrably solvable in any M-H spacetime.  In fact I will

give two examples: (see Boolos and Jeffery 1989.)

(1) The halting problem.  This is the problem of deciding if an arbitrarily given Turing machine,

TM, will or will not eventually halt.  Working in a M-H spacetime (M,g), adopt the following

procedure.  Launch TM along λ⊂M, having first primed TM to signal to q∈M if and only if

TM halts.  The question will then be settled at q.

(2) The decision problem for first-order logic.  This is the problem of deciding the validity or

invalidity of an arbitrary sentence of first-order logic.  First recall that there is Turing machine,

TM, that will halt after a finite number of steps if and only if a given sentence S of first-order

logic is valid (ibid., p. 142). So, working in a M-H spacetime (M,g), launch TM along λ⊂M,

having first primed TM to signal to q∈M if and only if TM halts.  Upshot: a signal at q means

the sentence is valid, no signal at q means the sentence is invalid.

In general, the decision problem for a property P is Turing deciable if there is both a Turing

machine TM that will halt after a finite number of steps if and only P holds and a Turing

machine TM´ that will halt after a finite number of steps if and only if P does not hold.  If only

one (or both) of the pair TM, TM´ exists, then the decision problem for P is said to partially

Turing solvable.  Problems (1) and (2) above are clearly of this kind.  It is now evident that:

Result 1. Any decision problem that is partially Turing solvable is solvable in a M-H spacetime.

Attention is now turned to the decision problem for arithmetic in the standard model.  In what

follows, the word “sentence” is used as shorthand for “sentence in the language of

arithmetic”.  The results below are standard (ibid.).

(i)  Deciding (i.e. establishing whether true or false) arbitrary sentences in arithmetic is

not partially Turing solvable.  (This is a version of Gödel’s first incompleteness

theorem.)

(ii)  Deciding arbitrary quantifier-free sentences is Turing solvable.
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(iii) There is a Turing machine that will, in a finite number of steps, translate an arbitrary

sentence S into a coextensive (i.e. a sentence with the same truth-value) sentence, S´,

in prenex form (all quantifiers occurring at the extreme left).  

(iv) There is a Turing machine that will, in a finite number of steps, translate an arbitrary

sentence S (written in prenex form) containing two juxtaposed quantifiers of the

same type into a coextensive sentence, S´, with one quantifier of that type in place of

the previous two.

(v)  If ∀nS(n) is a sentence or ∃nS(n) is a sentence, then the set of sentences {S(1), S(2),

S(3),…} is recursively enumerable (that is, there is a Turing machine that will

generate S(n) for any given n).

Because of (iii), it may be assumed that all sentences are in prenex form.  

Because of (ii) and (v), it is clear that deciding arbitrary sentences of either the form ∃nS(n) or

∀nS(n), where S is quantifier-free, is partially Turing solvable.  So by Result 1, they are both

decidable in any M-H spacetime.  This fact, together with (iv) above, implies that arbitrary

purely existential or purely universal sentences in arithmetic are decidable in any M-H

spacetime.  (Incidentally, the Goldbach conjecture and Fermat’s last theorem can both be stated

as purely universal sentences.)

But because of (i), Result 1 cannot be used to show that arithmetic is decidable in any M-H

spacetime.  Indeed, although it cannot be “proved” that arithmetic is undecidable in, e.g., the

M-H spacetime in Figure 1, there is no obvious way to construct a procedure in this particular

spacetime that will decide even an arbitrary ∀∃ type sentence.  A more subtle kind of M-H

spacetime is required, as I will now show.  The following analysis contains a new piece of

terminology.  If a spacetime (M,g) contains non-intersecting open regions Oi, i=1,2,… such that

(1) for all i Oi⊂I-(Oi+1) and (2) there is point q∈M such that for all i Oi⊂I-(q), then the Ois

are said to form a past temporal string, or just string for short. See Figure 2 (i).  

Definition 2.  A spacetime (M,g) is an nth-order arithmetical sentence deciding (denoted

SADn) spacetime if the n conditions contained in the following scheme are

satisfied.

If n=1, (M,g) is a M-H spacetime.

If n>1, (M,g) admits a string of  SADn-1 spacetimes.

According to Definition 2, a SAD1 spacetime is a M-H spacetime, a SAD2 spacetime is a

spacetime that contains a string of SAD1 spacetimes (Figure 2 (ii)), a SAD3 spacetime is a

spacetime that contains a string of SAD2 spacetimes (Figure 2 (iii)), and so on.



5

The efficacy of SAD spacetimes to decide sentences in arithmetic derives from the following

result.  

Result 2.  Let (M,g) be a SADm+1 spacetime and let ∃nS(n) and ∀nS(n) be two sentences in

arithmetic.  Suppose that for each n≥1, S(n) is decidable in any SADm spacetime.

Then ∃nS(n) and ∀nS(n) are both decidable in (M,g).

Proof.  This consists of showing how appropriately chosen and appropriately located hardware

can be used to decide ∃nS(n) and ∀nS(n).  Part of this involves the Turing machine, TM, of (v)

above travelling along a λ-curve that picks up one hour of proper time in each SADm

component (this is possible because every such component admits a λ-curve), as depicted in

Figure 2 (iv).  TM is primed to generate S(1) in the lead up to the first component and to signal

that sentence to the first component.  TM is also primed to generate, for n>1, S(n) in the       (n-

1)th component and to signal that sentence to the nth component.   

Now let P(n) denote the procedure that decides S(n).   The procedure for deciding ∃nS(n)

consists of adding to each P(n) transmitting devices and receivers which operate as follows.
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P(1) signals to q and P(2) if and only if S(1) is true.

For n>1, P(n) signals to P(n+1) if and only if P(n-1) signals to P(n).

For n>1, P(n) signals to q and P(n+1) if and only if S(n) is true and P(n) has not received

a signal from P(n-1).

This procedure ensures that a single signal is sent to q if and only if there is an n such that S(n)

is true.  (The signal is actually sent by P(m), where m is the smallest integer for which S(m) is

true.)  Upshot: a signal at q means ∃nS(n) is true, no signal at q means ∃nS(n) is false.

The procedure for deciding ∀nS(n), given below, is similar except this time a single signal at q

means ∀nS(n) is false, no signal at q means ∀nS(n) is true.

P(1) signals to q and P(2) if and only if ¬S(1) holds.

For n>1, P(n) signals to P(n+1) if and only if P(n-1) signals to P(n).

For n>1, P(n) signals to q and P(n+1) if and only if ¬S(n) holds and P(n) has not

received a signal from P(n-1).

Thus ∃nS(n) and ∀nS(n) are seen to be decidable in (M,g). QED

We have seen already how single quantifier sentences can be decided in SAD1 (=M-H)

spacetimes.  By Result 2, double quantifier sentences can be decided in SAD2 spacetimes.

Applying Result 2 again shows that triple quantifier sentences can be decided in SAD3

spacetimes.  And continuing in this way we see that n-tuple quantifier sentences can be decided

in SADn spacetimes.

In fact, these different order SAD spacetimes can be fitted into a single spacetime.

Definition 3. A spacetime (M,g) is an arithmetic deciding (AD) spacetime just when (M,g)

admits a string of open regions O1, O2, O3,.. such that for each n≥1, (On,g)  is a

SADn spacetime.

In Figure 2(v), an observer at p can decide an arbitrary sentence S by communicating it to the

SADn region that decides sentences of that order.  Arithmetic is therefore decidable in an AD

spacetime.    

It is natural to wonder how the computing hardware necessary to decide all of arithmetic gets

installed in the AD spacetime. What follows is a prima facie reasonable method of performing

that task.  
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The various paths of the hardware through spacetime are represented by worldlines, and the idea

of the method is to begin with one worldline at the initial event p in Figure 3 and to have a

process of worldline branching that results in each SAD1 component being populated by a λ-

curve and every other component of every string being populated by at least one worldline.

(Recall that the SAD1 spacetimes accommodate Turing machines travelling on λ−curves, while

all the other components accommodate communicating devices à la Result 2.)

(1) A worldline that meets a SADn component, n>1, must bifurcate, with one worldline

branch extending to the next component of that string and the other branch entering the

component and extending to the first component of the string on the “next level down”.  

(2) Two kinds of worldline must follow the first available λ-curve: the one that enters the

first SAD1 component and any one that is constrained by (1) to enter a SAD1 component.  

Figure 3 illustrates the process at work on the SAD1 and SAD2 stages of the AD spacetime.

The tree-like property is an obvious attraction, but this system also guards against one potential

disaster, namely, that an infinite amount of hardware mass might be forced to reside in a

compact set.  I omit the formal proof of why this cannot happen. It relies on the fact that if a

region R contains worldlines whose lengths sum to infinity, then it must contain at least one

future endless curve.  But according to Proposition 6.4.7 in Hawking and Ellis (1973), this can

only occur if R is non-compact or violates strong causality.  Part of the reason why I chose

from the outset to consider only strongly causal spacetimes was to ensure that in this case R

must be non-compact.

Admittedly, there remains the worry that an unbounded mass might reside in a region which is

non-compact but of finite volume.  I am not sure whether or not this can happen. (Are there any

SAD1 spacetimes with finite volume?)  In any case, the example in the next section suffers no

such pathology.

We have also shown that the hardware for the AD spacetime can be built up using a finite set of

instructions.  Roughly: start at an event p, then manoeuvre and bifurcate according to (1) & (2),

while creating communication devices and the Turing machines of (iv), and having them operate

according to Result 2.  One other instruction states that the instructions of the previous sentence

must be issued to each new piece of hardware.  
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Figure 3.  The “hardware tree” grows up into the AD spacetime.

 A word about terminology.  In what follows, a SAD spacetime will be used as a generic term to

cover SADn spacetimes of all orders and AD spacetimes. (Of course in this case SAD=SAD1,

but the term “SAD1”  sounds rather specific.) Also, a simple SADn spacetime is a SADn

spacetime that is not SADn+1.  Finally, a SADn (respectively, SAD, AD, etc.) computer will

refer to a computing device whose underlying spacetime is SADn (respectively, SAD, AD, etc.).   
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3.  An Example of an AD Spacetime.2  Start with Minkowski spacetime (R4, η) and choose

a compact set C⊂R4.  Now draw a closed inertial line segment ν⊂C.  About this ν, define

regions O1, O2, O3,… with inclusion relations appropriate for all the strings of an AD

spacetime, in such a way that ν intersects every component, as depicted in Figure 4.  Then

choose a scalar field Ω on M such that Ω=1 outside C and Ω tends rapidly to infinity as the line

ν is approached. Remove ν.  Then (R4-ν, Ω2η) is an AD spacetime because O1 is a SAD1

spacetime, O2 is a SAD2 spacetime, and so on.  Moreover, it not difficult to show that (despite

appearances!) every component of every string has infinite volume, thus giving the Turing

machines the space they need.

ν removed

O1

O2

O3

30cm

1 
ho

ur

Figure 4.  An AD spacetime.

Although the corresponding AD computer consists of an infinite number of infinitely large

regions, each with its own communication devices and Turing machines, it can still be contained

                                                
2 There are other known AD spacetimes, but this beautifully simple example is due to John

Norton.
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in a box, e.g. the one depicted in Figure 4, with finite spatio-temporal surface area.  So in this

regard this AD computer is no different to an ordinary desktop computer.

I do not yet have a proof, but I think that anti-de Sitter spacetime (see Hawking and Ellis 1973,

p.132) is probably an AD spacetime.  This spacetime is usually not viewed as a reasonable

solution of the Einstein equations, but the fact that its structure is so simple hints, perhaps, that

reasonable AD solutions may indeed exist.

4.  The Impact on Church’s Thesis.  A typical way of stating Church’s thesis (CT) is the

following: In an ideal world the limit of computation is exactly captured by Turing

computability.  As it stands, this statement of CT is vague: it has no truth-value since we are not

told which set of worlds, W, the “ideal” worlds are chosen from.   Different choices of W give

different truth-values, but I want to choose a W which gives CT a real fighting chance of

success.  (In that way, the doubt I manage to cast on CT will not be seen as a hollow victory.)

This means W should not be the set of logically possible worlds; for the “Zeus machine” in

Boolos and Jeffery (1989, p. 14) is perfectly consistent and is able to perform Turing

unsolvable tasks. Nor, on the other hand, should W be a set of worlds all of which are very

similar to our universe in such matters as possessing only a finite amount of material (as our

universe might) or being temporally finite (as our universe might be). For that would again

make CT fail — this time because the arbitrarily massive Turing machines entailed by Turing

computability would be impossible, leaving the ideal computing limit somewhere short of

Turing computability.

Thus the set W should be neither very large (all logically possible worlds) nor very small

(worlds very similar to our own). A middle way is needed.  One’s initial reaction might be to

take W as the set of worlds that are “beefed up” versions of our world, i.e. worlds based on

our world but with enough added space, time and material to allow the realisation of a Turing

machine.  But of course this is naive, for spacetimes like the Robertson-Walker k=+1 (big

bang, big crunch) model, which is a good candidate for the cosmological structure of our

universe, cannot be spatio-temporally extended in any natural way, and cannot be plied with an

unbounded amount of material.  Another and more promising proposal is that W should be the

set of physically possible worlds, i.e. worlds that share our universe’s fundamental laws of

physics, but not necessarily our universe’s boundary conditions.  Of course given our

ignorance of what these laws are, this proposal provides at best a working characterisation of

W.  Nevertheless, this somewhat ill-defined W results in a version of CT that is physically

relevant, is not refuted by the hypothetical Zeus machine, and does not fail on account of

material limitation — assuming of course that material limitation is not a requirement of

physical law.
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Moreover, this CT stands firm against two putative counter-examples that have appeared in the

literature (Grünbaum 1967, Earman and Norton 1993). Both are machines that can perform an

infinite number of computations in a finite time.  In one version the machine’s components are

accelerated to infinite speed in a finite time; in the other, the components shrink continuously to

nothing in a finite time.  But neither machine seems to cut any ice with CT, for whatever the

laws of physics in fact are, the requirements of speed and shrinkage presumably violate them.

But is this CT true? Well, it will be if there is at least one physically possible Turing machine

and if there are no physically possible non-Turing computers (=SAD computers in this

context).  The first part of the condition is almost certainly true because there are some

thoroughly reasonable solutions of the Einstein equations (e.g. the Robertson-Walker k=0 big

bang model) which have both spacetime enough and matter enough to realise a Turing machine.

What about the second part of the condition, that all SAD computers are physically impossible?

This seems prima facie false because there are known simple SAD1 solutions of the Einstein

equations with spacetime enough for the SAD1 hardware.  The Reissner-Nordström black hole

solution (see Hogarth 1992) is a case in point.  Admittedly this is a vacuum solution, but its

existence suggests that simple SAD1 is a not uncommon property among reasonable models,

including ones with infinite material.  Against this however is the fact that all SAD spacetimes

violate various versions of cosmic censorship.  That is to say, physicists have conceived of laws

that would effectively outlaw SAD spacetimes and a fortiori SAD computers. But of course it is

not yet known whether any kind of censorship laws really exist, still less whether one exists that

will outlaw SAD computers and save CT.  Far be it from me to predict the outcome of the

debate on the cosmic censorship hypothesis, but I will note that, in concluding his survey of the

subject, Earman (1994) remarks that “it is much too soon to pronounce the cosmic censorship

hypothesis dead, but the prognosis is not particularly cheerful”.  Perhaps then the same could

be said of CT.

At this juncture, advocates of CT might try to advance their case from a quite different angle, by

appealing to the fact that several apparently independent explications of the concept of

computability — by Markov, Church, Post, Kleene etc. — have all been found to be exactly

equivalent to Turing computability.  Of course, I concede this equivalence.  But as Horowitz

(1992) has rightly stressed, all these explications rest on a shared assumption: that it is

impossible to perform a computational super-task.  Thus the very assumption that threatens

Turing computability, also threatens these other explications.  Any attempt, therefore, to base a

case for CT on this equivalence is futile: if one explication falls, they all fall.

To summarise, the physically possible computing limit does not “hold sway above the flux”,

like the concepts of pure mathematics, but is firmly tied to some contingent and as yet unknown

facts about the world.  I have suggested that this elusive limit will extend at least as far as the
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Turing machine, but that it may extend yet further, to the simple SAD1 computer and perhaps

even to the AD computer.  Indeed the limit point could even lie somewhere between these last

two computers, e.g. at some simple SADn computer, where n>1.  In any case, this particular

issue can only be settled with a deeper understanding of singularities and the status of the

cosmic censorship hypothesis.

 

5.  Towards a Theory of Non-Turing Computability.  In his famous paper of 1937, Alan

Turing set out the details of what he believed to be the most general computer.  The result was

surprisingly simple.  Just a machine comprised of an ordinary mechanical device3 and a infinite

supply of paper tape for memory storage.  This Turing machine is intuitive, for sure, but it is

also fantastic: it possesses an unbounded quantity of material and is capable of operating for all

eternity.  This might lead us to worry that such a machine is physically impossible (how,

otherwise, could it be set apart from the incredible shrinking computer of the previous section?),

but for Turing and most of his followers there was no such concern.  They simply grasped the

idea of a finite computing device, closed their eyes, and extrapolated like mad.

Now Turing’s intuition was, I presume, based on Newtonian spacetime.  Had his intuition been

deepened by exposure to SAD1 spacetimes then he might have arrived at the SAD1 computer in

Figure 1.  Of course that is only a guess.  But it does show that if the intuitive approach of

Turing and his followers—roughly, the global mechanics of the machine are unproblematic—is

applied not to (the now defunct) Newtonian spacetime but to a spectrum of relativistic

spacetimes, the result is not only Turing machines but also various kinds of non-Turing

computers. This provides the initial impetus for elaborating a theory of non-Turing

computability.  The theory’s raison d’être is further discussed in the final section.  But now I

turn to some results and conjectures of the theory itself.     

We first recall that Turing computability theory ordinarily begins with an argument aimed at

showing that any number of Turing machines in any configuration can always be mimicked by

a single appropriately programmed Turing machine.  The theory then proceeds in terms of this

one abstract and easily characterised machine, and thereby manages to transcend irrelevant

hardware details.  I now use this approach with the simple SAD1 computer and the AD

computer (i.e., roughly speaking, the least and the most powerful of the SAD computers).

Thus, an ideal simple SAD1 computer is a simple SAD1 computer that can mimic any other

simple SAD1 computer; and an ideal AD computer is defined analogously.  Now consider the

following five claims.    

                                                
3 In Turing (1937), the “mechanical device” is actually a man faithfully executing a finite set of

instructions.
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(a)  The SAD1 computer underpinned by the spacetime in Figure 1 and fitted with a single

Turing machine that follows the λ-curve is an ideal simple SAD1 computer.  I shall refer

to this particular computer as the naked Turing machine.  

 (b)  All partially Turing solvable problems are solvable by the naked Turing machine.

They included: all Turing solvable problems, the Halting problem, first-order predicate

logic (i.e. Hilbert’s Entscheidungsproblem), Diophantine problem (i.e. Hilbert’s tenth

problem) and the word problem for semi-groups.  

(c)  Arithmetic is not decidable by the naked Turing machine.

(d)  A decision problem that is not partially Turing solvable is not solvable by the naked

Turing machine.

Statements (b), (c) and (d) are true ((b) is Result 1, (c) and (d) are easily proved), but statement

(a) is a conjecture.  My evidence for (a) derives only from the fact that all my attempts to

construct a simple SAD1 computer that cannot be mimicked by this putative ideal computer

have failed.  

Now to AD computers.

(e)  The AD computer underpinned by the spacetime in Figure 4 and fitted with the AD

solving hardware described in Section 2 is an ideal AD computer.  I shall refer to this

particular computer as the multi-string computer.

(f)  Arithmetic is decidable by the multi-string computer.

(g) The multi-string computer can mimic any computer underwritten by a relativistic

spacetime and containing only Turing machines and simple communications devices.  In

other words, the multi-string computer is the “ideal relativistic computer”.

Statement (f) is true, but statements (e) and (g) are conjectures.  Because (g) is stronger than (e),

I will only try to justify the former.  Two arguments support its case.  The first is that if SAD1

computers are the basic building blocks of relativistic computers (as they seem to be), and if

forming strings is the best method of connecting computers together (as it seems to be), then

the multi-string computer is king because it possesses strings of every order.  The other reason

is that all my various attempts to construct a machine that cannot obviously be mimicked by this

computer have failed. For example, one can show that a single multi-string computer can mimic

a string of multi-string computers; it can also mimic a countably infinite number of multi-string

computers working “in parallel”.  

I know of no problems that are not solvable by the multi-string computer.  But some are sure to

exist.
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6.  Concluding Dialogue.  Frank, who works on the theory of computability by means of

Turing machines, reckons these new computers are not worth the candle.  Isabel disagrees.

Frank   I like the idea of these non-Turing computers, but frankly I can’t see them catching on.

They’re just too, well, fantastic.

Isabel  Surely a Turing machine is fantastic.  At least, an infinitely massive device capable of

computing to eternity sounds pretty fantastic to me.

  

Frank  Well that’s one way of putting it.  I prefer to think of a Turing machine as just the

natural extension of an everyday computer.

 

Isabel   In a way it is.  And that’s why the hardware of these new computers is chosen to be

essentially nothing but Turing machines.  A simple SAD1 computer, for example, is just

a Turing machine to the past of a point.  Or in more picturesque terms, it’s a naked

Turing machine.  

Frank  Yes, O.K., when I said the non-Turing computers are fantastic I didn’t mean the

hardware so much as the spacetime supporting the hardware. Of course I believe in

Turing machines; that’s my job! No, my unease stems from the wild spacetimes you

employ.

Isabel   They are not all wild.  For example, there is a spacetime that represents a charged black

hole which is SAD1.  

Frank   Yes, but  surely the spacetime underlying our universe is not like that.  These solutions

are just idealisations.   

Isabel  That’s beside the point. You don’t want to rubbish a hypothetical computer — Turing

or non-Turing — simply because it can’t fit into our universe.  If you do, you’ll leave

your precious Turing machine to the mercy of the cosmologists, because according to

one of their theories, the universe and all it contains, will crunch to nothing in a few

billion years.  Your Turing machine would be cut-off in mid-calculation!   

Frank   O.K. I grant you that the particular spacetime structure of our universe has little bearing

here. But isn’t it true that while lots of really nice spacetimes can house Turing

machines, all the spacetimes that might house non-Turing computers, including that

black hole spacetime you just mentioned, are in some way grossly unphysical?  I’ve
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heard you say yourself that these spacetimes are prone to infinite photon blue shifts,

horizon instabilities, and  the red pencil of the cosmic censor.  They don’t seem to have

a hope.

Isabel  On the contrary, they have lots of hope.  For one thing, the problems you mention are

probably just aspects of the putative cosmic censor; they’re not additional problems.

And the verdict on whether there is a cosmic censor could go either way: the jury is still

out.  I take it that you’re prepared to accept that.  In that case, am I to understand that

you want to argue against non-Turing machines solely because the spacetimes that

underwrite them may fall prey to a censor?

Frank  Pretty much, yes.  

Isabel  Then let me put this to you.  Just suppose that tomorrow we read in Nature that a new

law of physics has been discovered that forbids spacetime to extend to temporal infinity.

It would be a kind of “temporal infinity censor”, if you like.  Now that would censor

your Turing machines, and so my question is: would the fact of this censor destroy the

Turing machine’s raison d’être?  I mean: be honest, would you quit your line of

research?

 

Frank   Well probably not.

Isabel   And I say “fair enough”.  But just as the prospect of temporal censorship need not

affect your attitude towards Turing computers, so also the prospect of cosmic

censorship need not put us off non-Turing computers.
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