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I investigate whether there are general relativistic spacetimes that  al- 
low an observer g to collect in a finite time all the data from the 
worldline of another observer ~, where the proper length of ~'s world- 
line is infinite. The existence of these spacetimes has a bearing on 
certain problems in computation theory. A theorem shows that most 
standard spacetimes cannot accommodate this scenario. There are 
however spacetimes which can: anti-de Sitter spacetime is one exam- 
ple. 

Key words: general relativity, eternity, anti-de Sitter, Pitowsky. 

1. I N T R O D U C T I O N  

Any computer primed to perform an infinite number of compu- 
tational steps must take an eternity to complete the task, because 
completion in a finite time would imply an unbounded signal veloc- 
ity - -  conflicting with relativity theory. 1 This would seem to suggest 
that  the full potential of these computers is available only to immor- 
tal computer users. But, as Itamar Pitowsky has pointed out (private 
communication), there is no reason why the computer user must re- 
main beside the computer. If he follows a different worldline his clock 
will tick at a rate different to that of the computer's clock, and per- 
haps an extreme case could be organized in which the rates are such 
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that the finite proper time as measured by the computer user %orre- 
sponds" to an infinite proper time as measured by the computer. In 
this case, and granting also that the computer can always signal to 
the computer user, the computer user will take only a finite time to 
view the eternity of the computer's life and with it the results of its 
computations. 

Are there relativistic spacetimes in which this is allowed to oc- 
cur? This is Pitowsky's question, which I will now attempt to answer. 

2. T H E  S T O R Y  OF  DAVE,  H A L ,  A N D  G O L D B A C H  

Let us spell out the details of the problem with the help of a lit- 
tle story, in order to darify what is required of those spacetimes that  
permit the scenario described above. To begin with, there lives an 
immortal computer 2, called HAL, and a mortal computer user, called 
Dave. Suppose that Dave is itching to know whether the Goldbach 
conjecture is true or false. He turns to HAL for help. HAL is happy 
to sacrifice her eternal life to this great question and begins to test 
systematically all the even numbers to see if there exists one which is 
not the sum of two primes. Meanwhile Dave has done some calcula- 
tions of his own and has discovered that  there exists in the universe 
a special worldline of length a one hour, which contains a point to the 
future of HAL's worldline. It so happens that this worldline is close 
by, and Dave decides to follow it. "Do keep in touch," he calls to 
HAL as he leaves. Throughout his journey Dave receives a stream 
of messages from HAL telling him which even numbers have been 
tested and whether or not a counter-example to the conjecture has 
been found. As the hour draws on, the messages are received at an 
ever increasing rate until finally, in the hour's closing moments, the 
rate blows up forcing the messages to compact together. A moment 
later and the messages cease. Then, suddenly, Dave knows the t ruth 
of the Goldbach conjecture. 

Let us call the above scenario with HAL and Dave, (S), and 
a spacetime which permits (S) to occur, Pitowsky. Before giving a 
precise definition of a Pitowsky spacetilT, e, we need to gain a little 
more insight into these spacetimes by attempting to accommodate 
(S) in the simplest of relativistic arenas: Minkowski spacetime. 



General Relativity and Finite Time 175 

q 

Dave ldline 

space 

Fig. 1. Conformal diagram of Minkowski spacetime. 

3. IS M I N K O W S K I  S P A C E T I M E  P I T O W S K Y ?  

Without any loss of generality, let us work in HAL's rest frame. 
We need to construct a worldline for Dave such that,  after one hour 
of his proper time, he is to the future of the whole of HAL's worldline. 
However it is immediately clear that no such point exists, except per- 
haps the "point" at which HAL ceases to exist, i.e., at x = 0,t = co. 
I write "point" because it is added to the usual representation of 
Minkowski spacetime and consequently cannot be regarded as a being 
a member of it. This point at infinity is labelled q in the conformal 
diagram depicted in Fig. 1. If Dave oscillates to-and-fro about the 
line x = 0, along a worldline which approaches a null zig-zag line 
exponentially quickly, then it is easy to show that  his total proper 
distance from p(x = 0, t = 0) to q(x = 0, t -- ee) is finite. 

But even granting that Dave can reach q in finite time is not 
enough to capture the spirit of (S). For supposing Goldbach's conjec- 
ture to be true de facto, Dave will never come to know the t ruth within 
Minkowski spacetime (as against the point q). To guard against this 
possibility, I will demand of a Pitowsky spacetime that  the point q is 
not a point at infinity but a normal spacetime point. Imposing this 



176 Hogarth 

condition means Dave will live through the event q, thus allowing him 
to reflect upon all the data he received from HAL prior to then. 

This proviso is implicit in the following definition of a Pitowsky 
spacetime and, as one might expect, Minkowski spacetime fails to 
satisfy its conditions. 

4. T H E  D E F I N I T I O N  OF A P I T O W S K Y  S P A C E T I M E  

The discussion above suggests the following preliminary defini- 
tion. 

(Prelim). Let (-/1/I,g=b) be a spacetime. Then (M,g=b) is 
Pitowsky if there exists two future-directed timelike curves 
A, # c M  which share the same past endpoint, and a point 
qC# such that: 

(1) = (2 ) f .  dr < oo (a) A c : - (q ) .  

The curves A and # represent, respectively, the worldlines of HAL 
and Dave; q represents the point at which Dave has finally gathered 
all the data from HAL's worldline. That  A and # share the same past 
endpoint reflects that HAL and Dave are initially together. Condi- 
tions (1) and (2) reflect the longevity of the two observers: HAL lives 
forever, while Dave lives for only a finite time. 4 Condition (3) ensures 
that HAL can always signal to Dave and, moreover, that all these 
signals reach Dave before Dave passes through q. 

In fact, the definition of a Pitowsky spacetime has an equivalent 
but simpler formulation; call it (Definition). 

(Definition). Let (M,g~b) be a spacetime. Then (M,g~b) 
is Pitowsky if there exists a future-directed timelike curve 
A c M  with past endpoint, and a point qCM such that: 

(i) J~ dr = ec (ii) A c J-(q). 

This follows because all those spacetimes which satisfy the con- 
ditions of (Definition) admit a curve with the properties of the curve # 
in (Prelim); i.e., a future-directed timelike curve of finite length which 
has the same past endpoint, p, say, as A, and which passes through q. 
To see this, first notice that since A is timelike (ii) implies that  p can 
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Fig. 2. A causally vicious Pitowsky spacetime. 

be joined to q by a future-directed timelike curve, u, say. If the length 
of u is finite, then ~ is the required curve. If the length is infinite; 
then one can construct the required curve by using the well-known 
result that  any timelike curve with fixed endpoints can be deformed 
into a timelike curve of arbitrarily small length (by being deformed 
into a "zig-zag-stay-close-to-the-light-cone" curve; cf. Fig. 1). 

(Definition) tells us that ,  roughly speaking, a spacetime is Pitow- 
sky if it admits  a point to the future of a curve of infinite length. 

5. T H R E E  E X A M P L E S  A N D  A T H E O R E M  

A simple example of a Pitowsky spacetime is afforded by the 
cylindrical spacetime formed by rolling up a temporal  segment of two 
dimensional Minkowski spacetime. It is easy to see from Fig. 2 tha t  
the conditions of (Definition) are satisfied. 

This is perhaps not a very exciting example though,  since the 
spacetime's closed timelike curves make it rather unphysical. We will 
shortly see an example of a causally well-behaved Pitowsky space- 
time. However a great many causally well-behaved spacetimes are 
not Pitowsky, as shown by the following 

Theorem. No globally hyperbolic spacetime is Pitowsky. 

(Remark. A spacetime (M, g~b) is strongly causal if about  each 
point p C M every neighbourhood of p contains a neighbourhood 
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of p which no causal curve intersects more than once (Hawking and 
Ellis, p.192). A spacetime (M,g~b) is globally hyperbolic if (M,g~b) is 
strongly causal and, for any two points x ,y  E M,  J - ( x )  I-1J+(y) is 
compact or empty  (ibid., p.206).) 

Proof. Let (M, gab) be a globally hyperbolic spacetime. Suppose 
there exists a future-directed timelike curve A and a point q such that  
A C J-(q) .  (It will be shown that  the length of A must be finite - -  
thus preventing (M, g~b) being Pitowsky.) Since strong causality holds 
on M,  the set J-(q)  A J+(p) has an open cover {U~}, where each U~ 
is a convex normal neighbourhood with compact closure such that  A 
enters each U~ at most once. From this cover construct another cover 
{V~} of J-(q)  n J+(p), where each V~ C U~ for some a and such 
that ,  for each V z with V~ N A ~ 0, the length of A in V~ does not 
exceed e. Now, since (M, g~) is globally hyperbolic, J - ( q ) N  J+(p) is 
compact,  which implies that  {V~} has a finite subcover. This finite 
cover contains A since ), C J-(q)  N J+(p). Therefore A can be covered 
with a finite number  of V~s, each of which contains a segment of A of 
finite length. Thus A has finite length and so (M,g~b) is not Pitowsky. 
[] 

Most of the standard spacetimes - -  Minkowski spacetime, Fried- 
mann models, Schwarzschild solution - -  are globally hyperbolic and 
so, by the result above, are non-Pitowsky. 

Looking at solutions farther afield, however, I claim: anti-de 
Sitter spacetime is Pitowsky. ~ This spacetime - -  which is, inciden- 
tally, stably causal and ipso facto causally well-behaved - -  can be 
covered (ibid., p.131) by a single "spherical polar" coordinate system 
(t, r, 0, ¢), in which case the line element assumes the form 

ds 2 = cosh2r dt 2 _ dr 2 _ sinh2r(d92 + sin29 d¢2). 

As will now be shown, we may restrict at tention to the plane 
0 -- ¢ = 0. In this case the line element simplifies to 

d s 2 = c o s h 2 r  d t ~ - d r  2. 

In keeping with the notat ion of (Definition), let p and q be the 
points (0, 0), (0, 3~r ), respectively, and let A be the future-inextendible 
timelike curve with past endpoint p whose tangent vector satisfies 

dt 2½ 
dr cosh r" 
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Fig. 3. Anti-de Sitter spacetime. 
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Claim: p, q, A satisfy the conditions of (Definition). To satisfy 
(i) we must  show that  the length, L(A), of A is infinite. We have 

// # ~ d r =  (cosh2r( d t~ ) -  1)½dr = d~ = oo. 

Next, to satisfy (ii), we need to show that  A C J-(q). Setting 
ds = 0, we find that  the light cone at q is given by dr~dr = + l / c o s h r  
(see Fig. 3). The  total  decrease in t along q's past light cone is 

fo~°dt fo °° 1 dr:[2arctan(e~)lr=~r At1 = ~r dr = cosh r 2" 

Thus every null geodesic with future endpoint  q is contained in 
3 oo}. For any point p = p(t, r) with the set {(t , r)br  < t _< 7 r , 0  < r < 

t < ~-, the timelike curve through p given by r = constant intersects 
the past light cone of q. Hence p E J - (q) .  But  this applies to every 
point p E A since the t coordinate along A never exceeds 

At2 = fo°° dt dr = fo ~ 2½ 2½ 
dr cosh-----r - 2 ~r (< ~'). 

(ii) is therefore also satisfied and so anti-de Sitter spacetime is 
Pitowsky. 

The maximally extended Reissner-Nordstrhm solution is also 
Pitowsky. This can be seen by examining Fig. 4, which shows part  of 
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Fig. 4. Part  of the conformal diagram of the maximally extended 
Reissner-NordstrSm solution. 

the spacetime's conformal diagram. The future-inextendib!e timelike 
curve t is contained in an asymptotically flat region and is of infinite 
length. The spacetime is Pitowsky because A lies to the past of q, a 
point on the Cauchy horizon. 6 

6. T W O  C O N C L U D I N G  R E M A R K S  

It is curious to note that although HAL solves the immortal 
question, she never actually possesses the answer; that is left for Dave, 
the mortal bystander. Of course this is because HAL can only ever 
see part of her life (her past), while Dave can see the whole of it. 

It would be interesting to add to our list of three Pitowsky space- 
times some spacetimes with distinctly physical features. However, I 
take it as agreed that the enactment of (S) would be hopelessly imprac- 
tical in our universe even if the spacetime structure were sympathetic 
to it. It is therefore difficult to see how extending this list would add 
much, if anything at all, to the discussion. No matter:  This nega- 
tive point is eclipsed by the positive demonstration that the curious 
events of (S) can find a home in a causally well-behaved general rela- 
tivistic model. This kind of demonstration - -  like GSdel's refutation 
of the necessity of absolute time - -  serves to show us that  t ime has 
possibilities far beyond those imagined by common sense. 
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N O T E S  

1. It is conceivable that a computer whose dimensions shrunk suffi- 
ciently rapidly to zero could perform an infinite number of compu- 
tations in a finite time - -  although presumably the ensuing singu- 
larity would prevent any data being transmitted beyond the event 
horizon. I will ignore this possibility. 

2. If the concept of "an immortal computer" is thought too fantas- 
tic, replace it with "an infinite number of mortal computers lying 
temporally end-to-end." 

3. Here and hereafter "length" means "proper length." 

4. The exact length here is unimportant to the subsequent investiga- 
tion; all that matters is that it is finite. 

5. I am treating anti-de Sitter spacetime in its universal covering form. 

6. This observation is actually nothing new. See ibid., p.161. 


