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1. Introduction

General relativity { Einstein's theory of relativistic gravitation { is the

cornerstone of modern cosmology, the physics of neutron stars and black

holes, the generation of gravitational radiation, and countless other cosmic

phenomena in which strong-�eld gravitation is believed to play a dominant

role. Yet the theory remains largely untested, except in the weak-�eld, slow-

velocity regime. Moreover, solutions to Einstein's equations, except for a few

idealized cases characterized by high degrees of symmetry, have not been

obtained as yet for many of the important dynamical scenarios thought to

occur in nature. Only now, with the advent of supercomputers, is it possi-

ble to tackle these highly nonlinear equations numerically and explore these

scenarios in detail. That is the main goal of numerical relativity, the art

and science of developing computer algorithms to solve Einstein's equations

for physically realistic, high-velocity, strong-�eld systems. Numerical rela-

tivity also has a pressing goal { to calculate gravitational waveforms from

promising astrophysical sources, in order to provide theoretical templates

for the gravitational wave laser interferometers now under construction in

the US, Europe and Japan.

The current focus of numerical relativity is handling two and three di-

mensional systems with strong dynamical �elds. The underlying equations

are multidimensional, highly nonlinear, coupled partial di�erential equa-

tions in space and time. They have in common with other areas of com-

putational physics, like uid dynamics and MHD, all of the usual prob-

lems associated with solving such nontrivial equations. However, solving

Einstein's equations poses some additional complications that are unique

to general relativity. The �rst complication concerns the choice of coordi-

nates. In general relativity, coordinates are merely labels that distinguish
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points in spacetime; by themselves coordinate intervals have no physical sig-

ni�cance. To use coordinate intervals to determine physically measureable

(proper) distances and times requires the spacetime metric, but the metric

is determined only after Einstein's equations have been solved. Moreover,

as the integrations proceed, it often turns out that the original (arbitrary)

choice of coordinates turns out to be bad, because, for example, singularities

eventually are encountered in the equations. The gauge freedom inherent

in general relativity { the ability to choose coordinates in an arbitrary way

{ is not always easy to exploit successfully in a numerical routine.

Another complication arising in numerical relativity involves the ap-

pearance of black holes. Black holes inevitably contain spacetime singular-

ities { regions where the gravitational tidal �eld, the matter density and

the spacetime curvature all become in�nite. Encountering such singulari-

ties results in some of the terms in Einstein's equations becoming in�nite,

causing overows in the computer output and premature termination of the

numerical integration. Thus, when dealing with black holes, it is crucial to

choose a technique which avoids the spacetime singularities inside.

Finally, one of the main goals of a numerical relativity simulation is to

determine the gravitational radiation generated from a dynamical scenario.

However, the gravitational wave components usually constitute small frac-

tions of the background spacetime metric. Moreover, to extract the waves

from the background requires that one probe the spacetime in the far-�eld

or radiation zone, which is typically at large distance from the strong-�eld

central source. Yet it is the strong-�eld region which usually consumes most

the computational resources (e.g spatial grid) to guarantee accuracy. Fur-

thermore, waiting for the wave to propagate to the far-�eld region usually

takes nonnegligible integration time. Overcoming these di�culties to reli-

ably measure the wave content thus requires that a code successfully cope

with the problem of dynamic range inherent in such a simulation.

2. The Grand Challenge E�orts

The most outstanding unsolved problem in classical general relativity is the

two-body problem. Consequently, signi�cant computational e�ort is going

into solving the coalescence of binary black holes and binary neutron stars.

Obtaining the fully dynamical solutions to these scenarios is not only of

theoretical interest, but it is also crucial to gravitational wave astronomy,

since coalescing binaries are the most promising sources of gravitational

waves detectable by the laser interferometers now being built. So important

is this e�ort that in the US, both the NSF and NASA have funded Grand

Challenge teams of computational physicists and computer scientists to

work on these binary coalescence problems.
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The `holy grail' of these Grand Challenge e�orts is the calculation of

the complete gravitational waveform in each of the two polarization states,

h+ and h�, from binary inspiral and coalescence. Having the theoretical

waveform as a template is crucial to the `matched �lter' technique of grav-

ity wave detection by the laser interferometers under construction. It is

also important for using the observed waveforms to probe the strong-�eld

geometry around coalescing neutron stars and black holes.

Despite the importance of solving the coalescence problem and the in-

tensive e�ort to date that has gone into obtaining the answer, no computer

code currently exists that can integrate two black holes or two neutron stars

in binary orbit long enough to get a waveform out to an accuracy anywhere

near 10%. Nevertheless, considerable progress has been achieved. A number

of computer modules crucial to solving the problem on parallel machines

have been assembled and tested. Some new physical insights have emerged

from simulations performed to date (see Section 3). Additionally, new for-

mulations of Einstein's equations have emerged which recast them into

a ux-conservative, �rst order, hyperbolic form where the only nonzero

characteristic speed in that of light; (Choquet-Bruhat and York, 1995;

Abrahams et. al., 1995). As a consequence, these equations may permit

a more reliable \excision" of black holes and their nasty interior singular-

ities from the numerical grid and the replacement of these regions by a

well-behaved boundary condition (\horizon boundary conditions").

3. Applications: Topology of a Black Hole Event Horizon

Two de�nitive results that emerged from the early phase of the Binary Black

Hole Grand Challenge work have to do with the topology of the black hole

event horizon. The event horizon is the surface of a black hole; events which

occur inside cannot be seen from the outside because nothing can escape

the interior, including light signals. The �rst result of the simulations dealt

with the event horizon formed from the merger of two identical, nonspinning

black holes which collide head-on. The second dealt with the formation of

the event horizon from the collapse of a rotating toroid. Both results were

obtained by performing simulations with a mean-�eld, particle simulation

code in axisymmetry (Shapiro and Teukolsky, 1992; Abrahams et. al., 1994).

The code solved the collisionless Boltzmann equation for the matter by

integrating particle geodesic equations in the mean gravitational �eld of

the distribution. The matter provided the source terms for the gravitational

�eld (ADM) equations, which were solved by �nite di�erencing.
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3.1. HEAD-ON COLLISION AND COALESCENCE OF TWO BLACK HOLES

Consider the the head-on collision of two identical clusters of collisionless

particles (Shapiro and Teukolsky, 1992). These particles may represent stars

in a cluster, or any other form of collisionless matter which interacts exclu-

sively by gravity. At t = 0 the velocity dispersion in each cluster is zero, so

that each cluster collapses on itself to form a black hole prior to merger. In

this way we set up a simulation of a head-on collision of black holes.

In Figure 1 we show spatial snapshots of the collision at three di�erent

instants of time. The upper �gure shows the initial con�gurations, which

are hurling towards each other at velocity v = 0:15c. The middle frame

shows the formation of two black holes from the collapse of each of the

clusters. Note how the tidal �eld of the companion causes a distortion in

the shape of the black hole, giving rise to the \hour glass" appearance of the

merging holes when they �rst come into contact. The bottom frame shows

the con�guration at late times, when the two black holes have coalesced into

a single, spherical Schwarzschild hole which encompasses all of the matter.

Figure 2 is a spacetime diagram of the collision and merger. The time

axis is along the vertical direction, while spacelike hypersurfaces (with one

of the spatial directions suppressed) are horizontal planes at any instant of

time. The collision axis goes from left to right and the black hole horizon

is shown as the dark shaded surface. Some of the light rays which generate

the horizon (\null generators of the horizon") are shown. Their trajectories

were traced by numerically propagating light rays in the background curved

spacetime. The inset shows a closeup view of the formation and merger of

the two horizons and how the rays enter the horizons at those early events.

Figure 2 is the famous \pair of pants" picture of the event horizon for

coalescing black holes that was sketched in general relativity textbooks

more than 25 years ago (Hawking and Ellis, 1973; Misner et. al., 1973).

The �gure shown here is the �rst real calculation of such a diagram. Many

things were known about the the topology of the merging horizons and the

null generators prior to these numerical simulations, but a few important

details were not. It was well known that the black hole is spanned by null

generators, which can intersect or cross each other only at those points at

which they enter the horizon. Once on the horizon, a null generator can

never propagate o�, nor can it ever cross another null generator. These

properties were all understood and nicely corroborated by the simulation.

But in addition, the simulation revealed for the �rst time a line of crossover

points for the null generators extending from the \crotch" on the \pair of

pants" down along each inside trouser seam, around each bottom, and con-

tinuing a small distance up each outside \seam" (see Figure 2). The points

on the outside seam at which the line of crossover terminates are caustics,
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Figure 1. The collision and coalescence of two black holes formed by the collapse of two
spheres of particles. The black hole event horizon is shown by the dark shaded surface.
The clock in each snapshot indicates the fraction of time elapsed during the simulation.

where the intensity of the intersecting light rays becomes in�nite. For a

single, isolated cluster undergoing spherical collapse to a black hole, the

caustic would arise at the base of the spacetime diagram at the point at

which the horizon �rst forms, and there would be no crossovers. Here, the

gravitational tidal �eld of the colliding black holes shifts the location of

the caustic and produces the line of crossovers. An analysis of the simula-

tion (Matzner et. al., 1995) shows that the line of crossovers is spacelike,

which means that they cannot be traced by light rays or particles moving

slower than c. As this line approaches the caustics on the sides, it becomes

asymptotically light-like.
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Figure 2. Spacetime diagram for the collision shown in Figure 1. Some of the light rays
generating the horizon are drawn. The collision axis goes from left to right and the time
axis is vertical. The inset is a blow up of the caustic and crossover structure at the birth
of the horizon.

3.2. TOROIDAL BLACK HOLES AND TOPOLOGICAL CENSORSHIP

Consider the collapse of rotating toroidal clusters of collisionless particles

to Kerr black holes. One of the interesting �ndings of our numerical simu-

lations was a case in which the black hole event horizon emerges as a toroid

(Abrahams et. al., 1994; Hughes et. al., 1994). The initial matter distribu-

tion is based on a solution for a relativistic toroidal cluster in dynamical

equilibrium. Collapse was induced by reducing the angular velocity of each

particle by a factor of two, resulting in a nonequilibrium cluster with a total

angular momentum of J=M2 = 0:7.

The spactime diagram for the collapse looks quite similar to the diagram

plotted in Figure 2. The line of crossover points at which light rays enter

the horizon, and the cusp formed by rays at the point at which the line of

crossovers terminates, are all present as in Figure 2. The toroidal horizon

�rst forms entirely within the vacuum, between the origin and the inner

edge of the collapsing, toroidal cluster. The horizon then expands to �ll up

the \doughnut hole," becoming topologically spherical at about the instant

when the outer edge of the horizon reaches the inner edge of the matter

toroid.

When the results of the numerical simulation were �rst reported, it

appeared that they might be in conict with recent theorems regarding

\topological censorship." These theorems permit a nonstationary black hole

to have the topology of a two-sphere or a torus (Gannon, 1976), but a

torus can persist only for a short time. According to topological censorship

(Friedmann et. al., 1993; Jacobson and Venkataramani, 1995) the hole in a
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toroidal horizon must close up quickly, before a light ray can pass through.

Moreover, the black hole must be two-sphere if no null generators enter the

horizon at later times (Browdy and Galloway, 1995).

Once the numerical simulations were studied in detail and the geom-

etry of the transient toroidal event horizon was analyzed by means of a

spacetime diagram like Figure 2, the results were shown to be completely

consistent with the theorems concerning the topology of black hole horizons

(Shapiro et. al., 1995). At late times, when equilibrium has been reached,

the topology is spherical, in agreement with the theorem of Hawking (1972).

At early times, the topology is temporarily toroidal. However, the line of

crossovers traced out by a point on the inner rim of the torus is spacelike.

That implies that the \hole" in the torus indeed closes up faster than the

speed of light, in compliance with topological censorship. Finally, at inter-

medidate times, when the horizon is spanned by its full complement of null

generators, the rotating black hole has a spherical topology, in accord with

the theorems of Browdy and Galloway (1995).

4. Conclusions

Numerical relativity is only in its infancy, or at most very early adolescence.

It is still under development as a valuable scienti�c tool to solve Einstein's

equations of general relativity for realistic, dynamical spacetimes involving

strong-�eld sources like black holes. Already it has been used successfully

to determine gravitational waveforms for simple cases characterized by high

degrees of spatial symmetry, like head-on collisions and axisymmetric col-

lapse. Its re�nement is absolutely crucial for interpretating the waveforms

likely to be observed by the new gravitational wave laser interferometers

now under construction, like LIGO, VIRGO, GEO and TAMA. These wave-

forms will arise from the inspiral and coalescence of binary black holes and

neutron stars.

Numerical relativity has also demonstrated that beyond the calculation

of accurate numerical solutions, it can provide qualitative insight into Ein-

stein's equations in those cases where uncertainty still prevails. It can even

be helpful as a guide to proving (or disproving) theorems about strong-�eld

spacetimes in those instances where analytic means alone have not proven

adequate. Numerical relativity is an important component of modern com-

putational astrophysics whose role is likely to mushroom in the not too

distant future.
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