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The idea of discrete spacetime originates from the fundamental length of Heisenberg and the
elementary domain of Yukawa. The concept of discrete spacetime is explained in brief. To
transfer from continuous spacetime to discrete spacetime the differentials appearing in a theory
should be replaced by finite differences. The quantum field theory on discrete spacetime is
briefly reviewed. Finally it becomes clear how to conform the discrete spacetime to the special

theory of relativity.

1. INTRODUCTION

It is widely recognized that if we assume the
continuous spacetime and the microcausality we
necessarily come up against the divergence
difficulty in the quantum field theory. To
eliminate this divergence many prescriptions are
proposed, for example, renormalization,
regularization, cutoff and so on. Of course
they succeeded in some respects, but still
contain unsatisfactory points. A few physicists
then began to consider in a different manner.
Heisenberg introduced a fundamental constant '£'
besides f and ¢, which has dimension of Tength
and is about 10"'3cm. Then all physical
quantities are written in dimensionless form.
He said in his lecture at the Cavendish
Laboratory in 19491.

"1§ the future theory contains such a constant
in whatevern form, Lt L8 naturnal fo assume that
the wsual cornespondence between the classical
wave description and its quantum-thecnetical
analogue only holds fon distances very much
gheaten than £, but fails in the negion of
smallen distances.”

Later on he formulated his famous non-linear
spinor theory of elementary particles, where £
appears as a coupling constantz. Yukawa
considered that the spacetime cannot be divided
infinitely but consists of finite domains, which
he called elementary domains3. He did not
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mention about the size of the elementary domain
clearly, but he considered it probably about a
size of an elementary particle.

As we easily understand, the spacetime is
defined and recognized by the distribution of
matter or physical objects. Therefore, if there
exists a smallest object in nature, it has no
meaning to consider a distance much smaller
than this size of the object, because we have no
means to measure the distance. Thus, the
existence of fundamental Tength may be naturally
accepted. Of course, when we consider a very
large object compared to this size, we may
assume that the spacetime is continuous.

If we accept the fundamental length X, all
derivatives with respect to spacetime are
replaced by finite differences:

3,00x) > 8,600) = Hoxn)-0(x)1,

where {i dentes the unit vector of u-direction
and p=0,1,2,3. Hereafter we assume A=1. This
replacement should be applied to all physical
theories. However, the theories (including the
classical theories) that are already established
should not be changed. The fundamental length
is assumed to be invariant under Lorentz
transformation, that is, it has the same value
in any Lorentz frame. The introduction of such
a length seems at once to contradict the special
theory of relativity. This is in fact our main
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theme of this report.

2. REVIEW OF QFT ON DISCRETE SPACETIME

Before we discuss it, we briefly review the
quantum field theory on the discrete spacetime
by using a very simple model. We begin with a
Lagrangian density of massless scalar field
¢(t,x) in two-dimensional spacetime:

L= A (a0/at)2- (30/2x)71.
This density is clearly invariant under Lorentz

transformation. We replace the derivatives by
finite differences and get

Trrs 22 (0012
L= 5L(8¢)"-(a'9)"],
d 2
where A and A' are difference operators with
respect to t and x respectively. We call this
replacement "quantization of spacetime”.
The action sum is now
s=7 L, .
t,x d
By the principle of least action we have the
field equation:

A2 (t-1,x) - A'%9(t,x-1) = 0

or explicitly

¢(t+] ’X)+¢(t'1 9X)'¢(tsX+1 )-¢(t,X‘]) = 0-

The equation is easily solved to give

i(]6]t-6x)

¢(t,x)=[“ do[A(8)e" A*(0)e

-
We define the canonical momentum conjugate to
¢(t,x) by

m{t,x) 2

ke (t,x) g
Ho(t+1,x)-6(t-1,x)1,

[

Ly

where we used the field equation. To quantize
the field ¢(t,x) we assume the equal time
commutation relations:

[o(t,x),m(t,x")] = i8,

X

i(le]t-ex)]'

[o(t,x),0(t,x")] = [m(t,x),m(t,x")] = 0.

Substituting the expression for w(t,x), we have
the commutation relations:

[¢(t,X),¢(t+] ,XI)] = 16)(

[¢(tax) :¢(taxl)] = 0.
It must be noticed that these ¢'s are at
nearest neighboring times.

We write ¢(t,x) in a normalized form:

1 J“ d6
(2m)V/2 )¢ (2sin]e]) /2

-[a(e)e'i(Ie't-ex)+a*(e)ei(lelt"ex)].

1

X

o(t,x) =

The commutation relations are
fa(e),a*(68')] = &(e-06'),
[a(e),a(6')] = [a*(6),a*(8')] = 0.

Then we have the commutation relation of
¢(t,x)'s at arbitrarily separated spacetime
points:

[o(t,x),¢(t',x")] = iD(t-t',x-x"),

i . <
D(t,x) ?%?{_W s?g - [e-1(|e|t-ex)_e1(|e|t-ex)]

{ -1 for t+x=odd, timelike and t>0,

+1 for t+x=odd, timelike and t<0,
0 for otherwise.
We notice that there exist many points inside
the Tlight cone (t+x=even), where D is equal to
zero. It means, ¢(t,x) at these points commute
with 4(0,0) at the origin.
If we define the vacuum |0> by a{6)|0>=0, the
propagator defined by

Dp(t-t',x-x") = <0|To(t,x)o(t',x')|0>

is calculated to give

(t.5) i (T T e-i (ot-6x)
D (t,x) = J do J do
F Vontln Jor o sin? § -sin? 5 e

1 (" _d Cele
) z}i_n§7ﬁ$6T{9(t)e i(]e|t-6x)

vo(-t)el (101t-0x)q
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To see the convergence of the theory this
DF(t,x) in 1+1 dimensional spacetime is not
suitable, because it contains a divergent
integral at 6=0. By simple extension we see
that, while the corresponding quantity in 1+2
dimensional spacetime is still divergent, the
propagator of 1+3 dimension is completely
convergent4. From this fact we might understand
that the space in which we live is three
dimensional.

The direct results of discrete spacetime are:
1. The field theory includes no divergence.
Any physical quantity is calculated to give a
finite value without recourse to the
renormalization.
2. One elementary particle cannot carry
arbitrarily high energy-momentum. There exists
an upper limit.

3. LORENTZ INVARIANCE

Now we return to the problem of Lorentz
invariance. The above quantization procedure is
summarized as follows:

1) Assume a Lorentz invariant Lagrangian.

2) Fix a frame of coordinates in spacetime.

3) Quantize the spacetime referring to the
coordinates.

4) Quantize the fields included in the

Lagrangian.

Of course, if we have two quantized
spacetimes referring to different frames of
coordinates, they can never be made to coincide
by Lorentz transformation. However, since the
original Lagrangian in continuous spacetime is
Lorentz invariant, every frame of coordinates is
equivalent and thus every quantized spacetime
should be equivalent. This means that we should
have the same consequences from the theory
independently of the frame of quantization. We
may call this "Lorentz equivalence'.

The situation is very similar to the case of

quantization of angular momentum. The original
Lagrangian is invariant under space-rotation.

We first fix the frame of coordinates in space
and quantize the angular momentum. Especially
the quantization of z-component means that the
wave functions are eigenstates of the z-
component, that is, the z-component is diagonal.
Therefore, if we rotate the z-axis in a
different direction, this z-component of angular
momentum is no longer diagonal. In other words,
two kinds of angular momentum which are
quantized referring to different z-directions
cannot be transformed to each other by space
rotation. Notwithstanding, we may choose the z-
axis arbitrarily but obtain the same results
from the theory independently of the choice. In
practice we know the most suitable direction of
z-axis, for example, we choose it in the
direction of a magnetic field.

In our case of discrete spacetime it is of
course arbitrary which frame of coordinates we
choose, but there may exist a suitable frame of
coordinates. The frame of coordinates we
consider may probably be the rest frame of the
observer.
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