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DISCRETE SPACETIME AND LORENTZ INVARIANCE 

Hiroshi YAMAMOTO 

Department of Applied Physics, Fukui University, 910 Fukui, Japan 

The idea of discrete spacetime originates from the fundamental length of Heisenberg and the 
elementary domain of Yukawa. The concept of discrete spacetime is explained in brief. To 
transfer from continuous spacetime to discrete spacetime the di f ferent ials appearing in a theory 
should be replaced by f i n i te  differences. The quantum f ie ld  theory on discrete spacetime is 
br ie f ly  reviewed. Finally i t  becomes clear how to conform the discrete spacetime to the special 
theory of re la t i v i t y .  

I .  INTRODUCTION 

I t  is widely recognized that i f  we assume the 

continuous spacetime and the microcausality we 

necessarily come up against the divergence 

d i f f i cu l t y  in the quantum f ie ld  theory. To 

eliminate this divergence many prescriptions are 

proposed, for example, renormalization, 

regularization, cutoff and so on. Of course 

they succeeded in some respects, but s t i l l  

contain unsatisfactory points. A few physicists 

then began to consider in a dif ferent manner. 

Heisenberg introduced a fundamental constant ' l '  

besides h and c, which has dimension of length 

and is about IO-13cm. Then al l  physical 

quantities are written in dimensionless form. 

He said in his lecture at the Cavendish 

Laboratory in 1949 I.  

"If  the f~t~re theory c o n t ~  such a c o n s t a ~  

in  whatever form, i t  i s  n a t ~ t o  assume tha t  

the usuaZ correspondence between the c~o~sical 

wave descript ion and i t s  quantum-theoretical 

analogue only holds for d~tances  very much 

g r e ~ e r  than l ,  but fa i l s  in  the region of 

smaller d~stances . " 

Later on he formulated his famous non-linear 

spinor theory of elementary particles, where l 

appears as a coupling constant 2. Yukawa 

considered that the spacetime cannot be divided 

i n f i n i t e l y  but consists of f i n i te  domains, which 

he called elementary domains 3. He did not 

mention about the size of the elementary domain 

clearly, but he considered i t  probably about a 

size of an elementary particle. 

As we easily understand, the spacetime is 

defined and recognized by the distr ibution of 

matter or physical objects. Therefore, i f  there 

exists a smallest object in nature, i t  has no 

meaning to consider a distance much smaller 

than this size of the object, because we have no 

means to measure the distance. Thus, the 

existence of fundamental length may be naturally 

accepted. Of course, when we consider a very 

large object compared to this size, we may 

assume that the spacetime is continuous. 

I f  we accept the fundamental length ~, al l  

derivatives with respect to spacetime are 

replaced by f i n i te  differences: 

~,(x) + A,(x) = ~(x+X~)-~(x)], 

where fi dentes the un i t  vector of  p -d i r ec t i on  

and p=0,1,2,3. Hereafter we assume ~=l.  This 

replacement should be appl ied to a l l  physical 

theor ies .  However, the theor ies ( inc lud ing the 

c lass ica l  theor ies)  that  are a l ready establ ished 

should not be changed. The fundamental length 

is assumed to be i nva r i an t  under Lorentz 

t ransformat ion,  that  i s ,  i t  has the same value 

in any Lorentz frame. The in t roduc t ion  of such 

a length seems at once to con t rad ic t  the special 

theory of re la t i v i t y .  This is in fact our main 
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theme of this report. 

2. REVIEW OF QFT ON DISCRETE SPACETIME 
Before we discuss i t ,  we briefly review the 

quantum field theory on the discrete spacetime 
by using a very simple model. We begin with a 

Lagrangian density of massless scalar field 

~(t,x) in two-dimensional spacetime: 

Lc=~(~l~t)2-(~@/~x)2]. 

This density is clearly invariant under Lorentz 

transformation. We replace the derivatives by 

finite differences and get 

Ld= ~{(A@)2-(A'@)2], 

where A and A' are difference operators with 

respect to t and x respectively. We call this 

replacement " q ~ z a t i o n  of spaceJcime". 

The action sum is now 

S = Z L d • 
t,x 

By the principle of least action we have the 

field equation: 

~2~(t-l,x) - A'2¢(t,x-l) : 0 

or explicitly 

@(t+l,x)+¢(t-l,x)-@(t,x+l)-@(t,x-l) : O. 

The equation is easily solved to give 

¢(t,x)= I [A(B)e -i(18 lelt-ex)]. ~ de It-sx)+A*(e)e i( 

We define the canonical momentum conjugate to 

@(t,x) by 

~(t,x) z 
@~@(t,x) ! Ld 

= ~[~(t+l,x)-~(t- l ,x)],  

where we used the field equation. To quantize 
the field @(t,x) we assume the equal time 
commutation relations: 

[@(t,x),~(t,x')] = i6x, x, , 

[¢( t ,x) ,¢(t ,x ' ) ]  : [~(t ,x),~(t ,x ' ) ]  : O. 

Substituting the expression for ~(t,x), we have 

the commutation relations: 

[@(t,x),~(t+l,x')] = i6x, x, , 

[@(t,x),¢(t,x')] = O. 

I t  must be noticed that these @'s are at 

nearest neighboring times. 
We write ¢(t,x) in a normalized form: 

_ l [~ d8 ¢(t,x) 
(2~)/17 ~- J_~ (2sinlel) I/2" 

.[a(e)e-i(lelt-eX)+a,(e)ei(IBlt-ex)]. 

The commutation relations are 

[a(8),a*(e')] = 6(8-8'), 

[a(8),a(e')] = [a*(e),a*(e')] = O. 

Then we have the commutation relation of 

¢(t,x)'s at arbitrarily separated spacetime 

points: 

[@(t,x),@(t',x')] ~ iD( t - t ' ,x -x ' ) ,  

D(t,x) = l--]--[~ dSre- i ( IBl t -eX)-e i ( le l t -ex) ]  
2~iJ_x2sinlel L 

= [ -l for t+x=odd, timelike and t>O, 

[ +l for t+x=odd, timelike and t<O, 
0 for otherwise. 

We notice that there exist many points inside 
the light cone (t+x=even), where D is equal to 
zero. I t  means, ¢(t,x) at these points commute 

with ¢(0,0) at the origin. 
I f  we define the vacuum I0> by a(e)IO>=O, the 

propagator defined by 

DF(t-t',x-x' ) ~ <OIT~(t,x)¢(t',x')lO> 

is calculated to give 

i ~ " (¢t-Sx) 
= - -  de DF(t'x) 16 21_~ I ~  d@ e-i 

s in2~-sin 2 ~+i~ 

e-i(lelt-°Xl 

+e(_t)ei(181t-Sx)]. 
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To see the convergence of the theory th is  

DF(t,x) in I+I dimensional spacetime is not 

su i tab le,  because i t  contains a divergent 

integral  at @=0. By simple extension we see 

that ,  whi le the corresponding quant i ty  in I+2 

dimensional spacetime is s t i l l  divergent,  the 

propagator of I+3 dimension is completely 

convergent 4. From th is  fact  we might understand 

that the space in which we l i ve  is three 

dimensional. 

The d i rec t  resul ts of discrete spacetime are: 

I .  The f i e l d  theory includes no divergence. 

Any physical quant i ty  is calculated to give a 

f i n i t e  value wi thout recourse to the 

renormalization. 

2. One elementary par t i c le  cannot carry 

a r b i t r a r i l y  high energy-momentum. There ex is ts  

an upper l i m i t .  

3. LORENTZ INVARIANCE 

Now we return to the problem of Lorentz 

invariance. The above quant izat ion procedure is 

summarized as fo l lows:  

I )  Assume a Lorentz invar ian t  Lagrangian. 

2) Fix a frame of coordinates in spacetime. 

3) Quantize the spacetime re fer r ing to the 

coordinates. 

4) Quantize the f ie lds  included in the 

Lagrangian. 

Of course, i f  we have two quantized 

spacetimes re fer r ing to d i f f e ren t  frames of 

coordinates, they can never be made to coincide 

by Lorentz transformation. However, since the 

or ig ina l  Lagrangian in continuous spacetime is 

Lorentz invar ian t ,  every frame of coordinates is 

equivalent and thus every quantized spacetime 

should be equivalent.  This means that we should 

have the same consequences from the theory 

independently of the frame of quant izat ion.  We 

may ca l l  th is  "Loren t z  e q u i v a l e n c e " .  

The s i tua t ion  is very s imi la r  to the case of 

quant izat ion of angular momentum. The or ig ina l  

Lagrangian is invar ian t  under space-rotat ion. 

We f i r s t  f i x  the frame of coordinates in space 

and quantize the angular momentum. Especial ly 

the quant izat ion of z-component means that the 

wave functions are eigenstates of the z- 

component, that  i s ,  the z-component is diagonal. 

Therefore, i f  we rotate the z-axis in a 

d i f fe ren t  d i rec t ion ,  th is  z-component of angular 

momentum is no longer diagonal. In other words, 

two kinds of angular momentum which are 

quantized re fer r ing to d i f fe ren t  z-d i rect ions 

cannot be transformed to each other by space 

ro ta t ion.  Notwithstanding, we may choose the z- 

axis a r b i t r a r i l y  but obtain the same resul ts 

from the theory independently of the choice. In 

pract ice we know the most sui table d i rec t ion of 

z-ax is ,  for  example, we choose i t  in the 

d i rec t ion of a magnetic f i e l d .  

In our case of discrete spacetime i t  is of 

course a rb i t ra ry  which frame of coordinates we 

choose, but there may ex is t  a sui table frame of 

coordinates. The frame of coordinates we 

consider may probably be the rest frame of the 

observer. 
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