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Abstract:

Twistor theory offers a new approach, starting with conformally-invariant concepts, to the synthesis of quantum theor
relativity. Twistors for flat space-time are the SU(2,2) spinors of the twofold covering group 0(2,4) of the conformal grovi
describe the momentum and angular momentom structure of zero-rest-mass particles. Space-time points arise as secondary:
corresponding to Jinear sets in twistor space, They, rather than the null cones, should become “smeared oul” on passage to
tised gravitational theory. Twistors are represented here in iwo-compenent spinor terms. Zero-resi-mass fields are descrlbe_,_
holomorphic functions on twistor space, on which there is a natural canonical structure leading fo a natural choice of cano
quantum operators. The generalisation to curved space can be accomplished in three ways; i) local twistozs, a conformally:
calculus, i) global twistors, and iii) asymptotic twistors which provide the framework for an S-matrix approach in asymipto
flat space-times. A Hamiltonian scattering theory of globat twistors is used to calculate scattering cross-sections. This lea
twistor analogues of Feynman graphs for the treatment of massless quantum electrodynamics. The recent development of
for dealing with massive (conformal syminetry breaking) sources and fields is briefly reviewed.
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hese notes are an extended, revised and edited version of M. MacCallum’s notes of a course

by R. Penrose at the Institute of Theoretical Astronomy, Cambridge, during the spring and
amer of 1970. Additional material by R. Penrose on subsequent developments appears as a con-
ng section. Financial support for the lectures was provided by the Institute of Theoretical
ononty.

Introduction

is well known that there are a number of unsatistactory features of our present ideas about
ics. Among these are the infinite divergences of quantum field theory, the lack of a really con-
ing synthesis of quantum theory and general relativity, and perhaps also our dependence upon
otion of a continuum without any real physical evidence. Twistor theory is an attempt at a

t is hoped that when the theory becomes more complete a new outlook on them will be pro-
.If the attempt is successful, it would of course have very wide implications for all of physics.

veryday purposes our present theories would naturally suffice but our viewpoint would be

ged just as the development of relativity modified our view of Newtonian mechanics. Although
al assessment of twistor theory’s success can yet be made the results have been sufficiently

uraging for us to feel it worthwhile preparing a reasonably up to date and unified account for

' se of colleagues in different branches of physics.

o e last two of the difficulties mentioned above are clearly related. If space-time is no longer
ded as a continuum, it will no longer be valid to think of either the quantum fields or the
ational fields in the usual way. One can in fact argue [38] that to accept that there are as
points in 107"° cm or even 1071°%° cm as there are in the entire universe is physically un-
tic and that our use of the continuum arises solely from its mathematical utility. We take the
hat to encompass quantum theory and general relativity satisfactorily one needs to do more
imply apply some suitable quantisation technique fo solutions of Einstein’s equations. One
d rather be thinking of quantising space-time itself. This should not be conceived as simply
itum thed ing the continuum by a discrete set of points (though this has been attempted) but rather
king a way of treating points as “smeared out” just as quantum theory smears out particles.
earlier work 133, 37] it was shown that one could build up the notion of the Euclidean space
the limit of the interaction probabilities of a large network of particles quasi-statically ex-
ing spin. The Euclidean structure in this development arises from the combinatorial rules

| passage:!
te deserib

'?ff’fs‘;";i ed by total angular momentum in non-relativistic quantum mechanics. In the same way that
gk A . - . . - = e .

.lThis lead Spinors provide a basis for the description of non-relativistic angular momentum, twistor
oprent’d

can be used to describe relativistic angular momentum in a unified way, the concepts of

nd orbital angular momentum uniting together appropriately. The hope is that developments
e twistor picture will eventually enable us to construct Lorentzian manifolds to serve as

s of space-time. Certainly points of space-time are dependent quantities in the twistor

lism, the twistors themselves playing the basic role. However the complex continuum still

oid a large part. Indeed the complex numbers and holomorphic functions which are already
sher. On
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basic to modern particle physics now appear mixed up with the structure of space-time itself y isomorphic
Nevertheless, holomorphic functions have a certain “rigidity” suggestive of a possible underi ts with four .
combinatorial structure, of flat spact
The twistor theory is in fact largely based on ideas of conformal invariance, zero rest mass this theory
ticles and conformally invariant fields being taken as a fundamental aspect of important part ¢ of the mos
physics. In this respect twistor theory has a connection with current work by particle physic orphic (i.e.
who have been exploring the implications of conformal invariance with considerable vigour | - of space-tin
39]. ' olomorphic .
A twistor {of the simplest type) can be pictured “classically” as effectively a zero rest-mas ; therefore, 1
ticle in free motion, where the particle may possess an intrinsic spin, and also a “phase” whi tant constih
be realized as a kind of polarization plane. Such twistors form an eight-real-dimensional man sesting that co:
which can be described in a natural way as a vector space of four complex dimensions. This time itself. I
space (twistor space) in effect replaces the space-time as the background in terms of which p] ‘equation, W
cal phenomena are to be described. Space-time points can then be reconstructed from the t ‘all emerge i
space (being represented as certain linear subspaces), but they become secondary to the twis tour integra
themselves. Furthermore, when general relativity and guantum theory both become involved splitting of f
to be expected that the concept of a space-time point should cease to have precise meaning of the posit:
the theory. In effect, the space-time points become “smeared” by the uncertainty principle ( of uniting v

than the light cones becoming ““smeared” and the points not — which has been a more usual to play in ph
point). e present not

As the theory stands it does not provide a formulation of a quantised general relativity; g ved in the th
tized gravitational interactions have not yet been successfully incorporated into the theory.: lism and the

has a full treatment of particles with non-vanishing rest-mass emerged. On the other hand, th diagrams de
theory appears to give correct answers for scattering processes involving massless charged par nal (Feynmu
and photons (i.e. high energy limit of quantum electrodynamics) and it may even yield some extent by gu
insights into the nature of the electromagnetic interaction. The theory so far appears to be tute another
ful in avoiding divergences, i.¢. the calculations that have been carried out do not lead to infl is into the n
in the same way as does the conventional formalism and it seems that such infinities should: ds. For examp
sent altogether. [t is hoped that when the theory becomes more complete, this feature will:h int of view -
tained. in the twist

The difficulties confronting the theory in respect of gravitational interactions and rest-ma sses. This we
pear to be related to the fact that these are things which break conformal invariance. Massles ‘of the struc:
ticles and electromagnetic interactions, on the other hand, are conformally invariant conce i
basic formalism exhibits manifest conformal invariance, so if conformal invariance is to be b
this must apparently be done explicitly, with the aid of auxiliary elements which do not s
the invariance. One possible method of incorporating such elements is suggested by the wol?
scribed in section 5.3. The essential act of faith on which the utility of the twistor formay
pends, is that it should be useful to isolate the conformally non-invariant aspects of physics, ete is a certai
the conformally invariant ones, and that having done this, a large and important body of p th given the
processes will be seen as possessing conformal invariance. k.

Twistors (that is to say, the original flat-space twistors about which these notes are mainl
cerned) are actually the reduced spinors for the proper pseudo-orthogonal group SO(2,4) wh
locally isomorphic with, and 2-1 homomorphic with, the restricted conformal group of fla
time. They form a representation space for the pseudo-unitary group SU(2,2), thisin tum.
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ime it y isomorphic and 2-1 homomorphic with SO(2,4). Thus, the simplest twistors are four-valued
le und'e" s with four complex components, which are acted upon by the 15 parameter conformal

: of flat space-time. The four-valuedness of twistors has not yet played any very important
this theory, however.

“tant p ne of the most striking features of twistor theory is the way in which complex numbers and

orphic (i.e. complex analytic) structure emerge as concepts intimately involved in the geo-
e vigo of space-time. We have become accustomed to the very basic role which complex numbers
) olomorphic functions play in quantum theory, particularly that of clementary particles. It
y rest-m , therefore, that complex numbers are (at least at our present level of understanding) a very
1ase’, ortant constituent of the structure of physical laws. The twistor theory carries this further in
. esting that complex numbers may also be very basically involved in defining the nature of
ms, T time itself. In addition, we shall see that the zero rest-mass field equations for each spin
hi equation, Weyl neutrino equation, Maxwell free-field equations, linearized Einstein equa-
am-tﬁ all emerge in a very simple way from the complex structure of twistor space, being obtained

) thes tour integrals of holomorphic functions of twistors. The twistor picture “geometrises’” the

i splitting of field amplitudes into positive and negative frequency parts by describing this in

_ of the position of singularities of holomorphic functions. Thus the twistor formalism has the
princt of uniting various aspects of the role, both quantum and classical, that compliex numbers
1ore 1 o play in physics.

he present notes should be regarded as to some extent provisional. Many problems remain to
lved in the theory. Even the difficulties involved in merely translating between the twistor
lism and the conventional formalism constitute a serious stumbling block. The twistor scat-
) g diagrams described in section 4 do not always appear to be directly translatable into con-
harge nal (Feynman) terms and this leads to difficulties in interpretation. One must proceed to
yield s xtent by guesswork, but here severe problems of actually computing the twistor diagrams
ars to; ute another stumbling block. Nevertheless, despite these difficulties, we feel that some new
lead i s into the nature of physical processes may possibly be discernable even in the theory as it

' For example, if the twistor diagrams of section 4 are to be taken seriously from the physi-
iture. nt of view — and it is tempting to think that they can be — then there may be some signif-
in the twistor lines representing a kind of “half particle” which can be exchanged in virtual
esses. This would appear to be related to the fact that a twistor is really a kind of “square

of the structure of a zero rest-mass particle.

1)
=

-
=,
L

rformal transformations

re is a certain confusion in the literature owing to the fact that two quite distinct concepts
h given the name “conformal transformation™,

: first of these, which we shall refer to (cf. [34]) as a conformal rescaling, consists solely of
g are Nl 'iacementl
sup of 8ap ™ Eap = 28y (1.1)

%0inote on the next page.
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of the space-time metric g,, by a conformally-related one g,,,, £ being a smooth positive scalar
field on the underlying manifold. Thus the interval ds is transformed to ds = Qds. If g, is aflat -
metric, then g}ab will in general not be flat, though it will of course be conformally flat. The con-
formal rescalings of a given space-time form an infinite-parameter Abelian group. The poinis of
space-time are unaffected by a conformal rescaling. The null cones, and, therefore, the causal stri
ture of the space-time, are also unchanged. :

The other type of conformal transformation is what we shall call a conformal mapping. This is:
a smooth mapping g which carries each point of a space-time N to a point of some space-time N
in such a way that the metric on N induced by p from that of N is a conformal rescaling of the
original metric on N. In other words the map p preserves null cone structure.

Conformal mappings of Minkowski space®> M’ to itself have a particular interest. These includ
the Poincaré transformations, which are metric-preserving, and the simple overall dilations, whose
corresponding rescaling multiplies the metric at each point by a constant factor. The remainder ar

generated by the (iavolutary) inversions : Compactified 1

while 7*, T @

-1 fied along oppos

$ =—xa(xbxb)'1, W rfﬁa(ib%b)_l
t'ity map>. T
space reflec
do-orthogon
do-unitary n

which are a 4-parameter set since the choice of origin is arbitrary. These {ransformations preser_if
the time sense but involve spatial reflection. They are conformal mappings since the induced a
original metrics are related by

ds? = dxdx, = dxdx, /(xVxy)? = Qs (1:3)

However, these transformations do not involve only the points of M', because the null cone of the , for infinite
origin is sent to infinity. We therefore introduce compactified Minkowski space M, which consis
of M’ together with a closed null cone at infinity. We may picture the structure in terms of two. _
cones joined base to base, the interior being M’ and the two bounding cones being identified along ectors £, m
opposite generators with future sense preserved (see fig. 1). (Thus the “equator” [, must be con
sidered as a single point.) For fuller discussion of the structure of M, see [2—4]. Note that one
consider the equations (1.2) as expressing a coordinate change, rather than a point transforma seneral solut
on M; and that the null cone at infinity is on the same footing as any other null cone in M as £ :
conformal mapping symmetry is concerned (see [3]). In consequence of the latter, the conce )
radiation is not conformally invariant, since it depends on knowing where infinity is.

The conformal mapping group of M is of 15 parameters (and non-abelian). We shall here cor
ourselves with the restricted conformal group, i.e. the subgroup of mappings connected with £

!Footnote from preceding page. We adopt throughout these notes the “absiract index” convention {1, 2]. Absiract indices &
numerical and serve only as organisational markers enabling the basically coordinate-free operations of contraction, index]
tation, outer multiplication, addition and complex conjugation to be expressed in a transparent, yet frame-independent, WéY
Latin and Greek indices will be used in this abstract way, while Gothic and Hebrew indices will be used for the correSP‘m‘h;l
“normal” indices (i.e. to represent the components in some particular frame). Latin lower case letters will be abstract te
ces, upper case Latin letters abstract spinor indices and Greek letters abstract twister indices. Thus Gothic lower case (tensot
Hebrew {twistor) letters will range from 0 to 3, while Gothic upper case (spinor) letters range from 0 to 1. In all cases Toufl
brackets surrounding indices denote symmetrisation, sguare brackets skew-symmetrisation.

*Minkowski space is simply flat space-time (“space-time” meaning a pseudo-Riemannian Hausdorff manifold of signaturé =
dimension 4). Coordinates x ¢ used without definition are the natural pseudo-Cartesian (“flat’) ones. We can also use X v
abstract index to denote the position vector with respect to some origin. Also ¥, denotes the covariant derivative {or grad
Vaxb = 6ab. Thus in flat coordinates v, = afaxd.

estions of cc
Ings rather t
if it is pos:
will not be co

Introduction to
ysicists accus
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-
Compactified Minkowski space M. /°, J*, I~ are points at spatial infinity, future time infinity and past time infinity respec-
while I*, T~ are future and past null infinity cones (¢f. [3]). The compactified space has %, I*, I” identified and -, ]+
ied along opposite generators. For typographical reasons, *“ ™ replaces the more usual script I depicted in figs. 1 and 40,

ity map®. This does not include the actual mappings (1.2) but does include their products
space reflections. It is 2-1 covered by (and so locally isomorphic with) the six-dimensional
udo-orthogonal group SO(2,4) which in turn is 2-1 covered by SU(2,2), a group of unimodular
o-unitary matrices [6].

he infinitesimal conformal motions® are described by the conformal Killing vectors £ and are
, for infinitesimal €, by

=9

X% > x@ + gk,
ectors £, must satisfy

v(agb)= %gab(vcéc)' (14)

eneral solution of this is
§, =S + T, +Q(xx,) — 2x,(x¢Q,) + Rx, {1.5)

eS8, =S lap] Senerate the Lorentz rotations (6 parameters), 7" . the translations (4 parameters),
dilations (1 parameter) and Q, the so-called *“‘uniform acceleration”™ transformations [8] (4
eters). (This terminology is rather misleading, however, and will be avoided here. A more

ct use of the terminology “uniform acceleration” is for a coordinate transformation which

s the Minkowski metric take the form '

ds? = z2dr* — dx? — dy? — dz? cf. [2].)

Questions of conformal invariance are handled most easily within the framework of conformal
ings rather than conformal mappings. A physical theory will be said to be conformally in-
fif it is possible to attach conformal weights to all the quantities appearing in the theory in

¥e will not be concerned with reflections. For some discussion of reflections in twistor theory see [5].
il introduction to the description of Lie groups of transformations of a manifold in terms of the generating vectors (with
physicists accustomed to considering Lie groups only in terms of their representations may be urfamiliar) see e.g. [71.
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such a way that all field equations are preserved under conformal rescalings. (A tensor or sping
A-.. is said to have conformal weight r if we are to make the replacement A=... > A ... = Qr
under the conformal rescaling g, ~ g, = §2°g,,-) A flat space theory which is Poincaré invari
and also conformally invariant in this sense, will then be invariant under the 15-parameter co
formal group. This is because the Poincaré motions of Minkowski space become conformal mo
according to any other conformally rescaled flat metric. Conformal motions obtainable in th
are sufficient to generate the full conformal group. But the type of conformal invariance describeg
above is really more general than this since the conformal rescalings need not apply to flat sp'a”
time at all or even to conformally flat space-times. '

1n order to establish conformal invariance of a theory, one needs to know how to transform
(covariant) derivative operator under conformal rescaling. Remarkably enough, this is rather si
within the two-component spinor formalism than within the tensor formalism. Since two-comp
nent spinors will also play an essential role in other aspects of twistor theory, we will next briefl
summarise the relevant notation and methods.

1.2. Spinors
The essential fact on which the 2-component spinor calculus is based is the local isomorphism
between the Lorentz group and the group SL(2, €) of complex unimodular 2 X 2 matrices (W
is the covering group of the identity-connected component of the Lorentz group). It should:
noted that this does not mean that spinors can only be used in flat space, since it is possibl
this isomorphism locally is curved space-time {9, 40]. .
Representing the Minkowksi components 1% of a world vector u# according to the matrix sc

T u‘”’)_ i (u°+ 14! uz+iu3)
V2

we find that when the components u® undergo a restricted Lorentz transformation L the ul

undergo
oo [ = A7
)
v s\ wr N\ B
where «, £, v, 8 are complex and their matrix has unit determinant, i.e. wd — By=1.The he

citv of %% i.e. reality of %, is preserved and so is
s v 18D

[ — (') — (u2)? — (1)) =2 det (u¥¥).

AN =
0

wt =l ul, ) e u

210 ull'

wt — i u® —ut

We can express (1.7) as

, s == W
w0 S utY S(L) ¥

where S(L) € SL(2, C). Primed and unprimed indices must be treated as essentially differen
regards contractions and permutations, but they are related to each other by complex C(_mﬁ.’
which converts a primed index into an unprimed one and vice versa.

fLe. unprimed capital Gothic superfixes represent components transforming undet the representation § (L); primed s¥ f?g
under the complex conjugate representation S{L}; and primed and unprimed suffixes under the transposed inverses-Ok:

respectively.
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Jr or spi The correspondence (1.6) shows how one may relate tensor and spinor components according
4 e =

standard scheme, but there is nothing special about this particular correspondence. From the
aré invar nt of view of the abstract index notation', the essential feature is that each abstract tensor in-

' ex (four-dimensional) is to be equated with a pair of (two-dimensional) spinor indices, one primed
ad one unprimed. Thus the abstract tensor indices a, b, ¢..., da, by..., a,..., may be expressed as
AA B =BB', .. ay =A4A, ... and we can write

¢ reader who prefers to refain a component description such as that of (1.6) can re-express our

)
1 next by Bab = €45€ 15, geh = gABAB' (1.10)

iere the €’s are skew-symmetrical with e 5 = €45 €48 = e4B (ie. their coordinate representations
5 0 1 . . .
der (1.6} are (C; ,}). We use €’s to raise and lower indices, thus

isomorpt Ep =e, £4 = e1BE,; N = N4 € g nd'=edBy,. (1.11)
t shoul ¢ fensor and spinor “Kronecker deltas” will be written g,2 and €5, ¢ ,F, respectively. Thus

g =¢€,% B

T s b = AL e B =g .B.
X ﬂ..gab_x b.. w...A...EBA L 07 € 8.. L2
A complex null vector uu,u® = 0) has a spinor form

A4 = gAnA'

the matrix of components %% hasrank < 1, cf. (1.8)%). If € is real, then”

MAA': + EAEA'.

I theu

(1.12)

. The hermif lus sign occurs if 4@ is future-pointing and the minus if u¢ is past-pointing. Note that ;4§ =0
: g 18 skew) so that uu, = 0 follows directly from (1.12). Conversely if §4¢ 4 =0then{ isa

multiple of {4 (or £,=0).

inor £, contains more information than the corresponding null vector given by (1.12). A

1o spinor has a geometrical interpretation, up to an essential sign ambiguity, as a null flug

I. This consists of the corresponding null vector u? (“flagpole”) and a nuil 2-plane (“flag

_ d other simplifying features, arise from the two-dimensionality of the vector space of spinors. As another example, any

Pinor o AR can be expressed as a sum of a symmetrised outer-product of one-index spinors and a skewed outer-product.

will write conjugate of a quantity as
T I~
x* BCT T XAB'C

b bt in the case of €4'g’ etc. and basis spinors o, B where the bar will be cmitted). Many authors omit the bar on the right-
rerses 0 bol but we retain it for the sake of clarity and notational consistency and in addition because of the flexibility it allows
Bcing of indices, i.e. we can write ®44'BE ~ YARA'R = $4'p4p Without confusion while 64 4y =345 45= 4545

ations in these terms by use of the Infeld-van der Waerden symbols ¢% .., ¢2% ' [40].) Also (cf.
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One spatial dimension suppressed. Time dimension suppressed.

Fig. 2, (2) The spinor k 4 defines a “null flag”. This may be pictured as a polarisation vector tangent to the “‘celestial sphere™§
(b) shows how p? is rotated when the phase of £, is altered. :

plane”) element which contains and.is orthogonal to the flagpole. This latter is defined by the
vector

Fop = ilp = €1kt T eantatp

wherep, = 2(¢, A, T A E,) for some A, with ;24 = 1. When the phase of £, is altered (i.e..
£, - eif £, ) the vector u, is unaltered, while p,, turns through an angle 26. We may consider a
spacelike hyper-plane Z intersecting the null cone V, of a point 0, in S (a 2-sphere). £, then de
scribes a point on S, and a vector tangent to S which defines a polarisation direction. As § varié
this polarisation vector sweeps out the 2-plane tangent to S, and performs one revolution thro
27 as 6 changes by 7 (see fig. 2).

Our (covariant) derivative operator V, = V. satisfies

V,€gc= 0, V,€pe=0
(whence Vg, = 0), and

V,V,0=V, V0.
In curved space-time, we have the relation

(VaaVor — Vo Vaa e = Yapcot® caw — 2hEuEpyclan T Pepanéeas
where the curvature spinors W, gon, @ 4 pop» A have the symmetries

¥ pen = ¥ iancn)» Py pep = Pascn = Punycpy A=A

and are related to the curvature tensor R ;.5 (with sign convention (V,V, — ¥, V) V4= Raved
by |

— T i€
Ropead™Y ancp€am €cpteas€op¥ wen T2 € ceppEap o T€ancnCap € o) T€an P 4pcp'
+€,5Pcpaa€on :

We thus have
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~ 1 1 -
Dypam= 3R T3 RE A=R/24
mere Ry = Ry, R = R?,)and
V¥ sep€ameon T €45€co¥ amen = Cavea

r¢ Cypeq 18 Weyl's conformal curvature tensor, whose vanishing is a necessary and sufficient con-
on for the space-time to be conformally flat.
¢ also introduce, for future use, the completely skew tensor

nabcd = n[abcd]

d.
stiad ook ined by n°'%* = (/—g)™', so that 19123 = —/—g, in a right-handed coordinate system. Its spinor
e wvalent is given by
1ed by Navea = 1 €4p€pc€ac €pp — 1 €40€ppE s Epe - (1.17)
: ow we can discuss how conformal rescalings affect spinors. Under the rescaling g, = £,, = $2%¢,,
fake
- €a5=8€ 5 Egg =€, p . EAB= Q1 eAB, €48 = Q1 4B, (1.18)
ltered ) AB AB AB AB ‘
consid ave V¢ = V ¢ when V, acts on a scalar. When V, acis on spinors we have
£, th - .
n‘f&s-f} Vaa€s= Vyaks — Tpyky, Vaa e = Vaatig — Typly
1Uti(.};n vA'AA’EB = VBBt e, B0, EC, vAA'nB' = VP +oe, BT, eme (1.19a)
T, ="V, {(1.19b)
n V, acts on spinors of higher valence we simply treat each index in turn according to the
ve scheme (so there is one term involving T, for each index). For example,
Ve €an= ch'(QeAB)
. = (Veesd)e g5 T SUVepr€15) + (Vo ey + {(Vpele
£€y
: =3 €4V 1c2=0
¢ 2-dimensionality of spinor space). The covariant derivative of a vector transforms as
)V'. VoV = Vya Vg = Vaa Vo — TpaVap — TagVas
JVa
o =V =TV = TVt (T Ve + Tpp Vo — Tpa Vg — Tup Vi)
vz Panc =V Vy = T V= TVt €,pe,5 T VEC
” =V, V=T,V — TV, + g, (T, V) (1.20)
X..4B... — X Ba.. = €45€PX _cp.. ). Note that this generates the transform under conformal

ormations of V, applied to tensor indices, as (1.19) does for spinors.
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Using this information we find the following transformation laws for the curvature

Y ,5cp = Yascp

Pysen =Piser — Vac Lo + TapTac

Pagin =P — N gp€ap = 13 Reup — 1 Rup.
The Bianchi identities VR .4, = 0, which are equivalent to
VeCopea =2 ViLars
become
VA apep = _V‘(Bc" P ypas
which in empty space-time (P,, =R, = 0) simplifies to
VAP 0 = 0. (1
Finally let us consider some conformally-invariant theories. For example, Maxwell’s equati
V Fbe =dg Jo and V F,. =0

are conformally invariant if we set £, = F,, and J, =2, (s0 F0 = Q-4 v, je = §rrege). Th
is to say we get '

Vv = dx Jo and ‘E?lal}bc} = 0.

This may be verified in various ways, ¢.g. by using the tensor formula for @a above, or by U
the spinor formulae applied to the spinor version

A _—
Vi®.s= 2nJ g

of Maxwell’s equations, where
Fop=0up€am T €4pbam

With ¢ 45 = G4 QBAB =1, WhenJ, = 0, (1.24) becomes a particular case of the zero-1€s
mass free-field equations for spin 3 #

VAP";{)AB...L =0

where ¢, , is symmetric with # indices (see [12]). If n = 0 we adopt the second-order eqH

(V,Ve+1iR)p=0.

For each n, these equations are conformally invariant if ® gy =S ¢,p g asis readily verd
using (1.19) etc. [131. The case n = 4 has particular interest since the tensor
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Kipea = Pupcp€ap€op T €48€cnPamcop

ined from a solution of (1.25) in Minkowski space, satisfies

Kipea = K tea] = Kegans -Ka[bch =0,

{(1.27)
K% ea=0, VK pea = 0 {whence V[aKbcwg =0)

epresents a source-free gravitational field in the linearised theory. In this it is assumed that
gab = nab + ehab

e N,y 1S the Minkowski metric, € is infinitesimal and /_, is some symmetric tensor. K .18
8 the Weyl (or in empty space, Riemann) tensor for some metric of this form, provided it
jes (1.27). It should be noted that conformal rescaling of the metric gives éabcd =07C,, .4
Kipea = SV K q- For further details of spinor calculus see [2, 9, 15, Pirani in 357.

ally we note that to describe states in quantum mechanical systems, complex vectors and
rs are used. If the operator i 8/at has positive eigenvalue, the quantum state has positive

y. We will describe these and the corresponding classical states as having positive frequency.
ns out the solutions of (1.25) with positive energy represent negative helicity particles and
ositive energy solutions of the conjugate equation

e

Iseq V4T, . =0 (1.28)

the other helicity. This essential difference reappears in section 2.3. Raising and lowering

4y ices only alters the conformal weight, but complex conjugation of the spinor reverses the
i ty.

rexample a free photon wave function is described by a complex F,. When translated into

r form this gives rise to independent spinors ¢ age 0 4gs DY

Fop=€apbapt€spl 4

, 8 4 g satisfy respectively (1.25) and (1.28). Considering a plane wave, we find
G5 = 0 05 eXp {—i(apdp xPP)}
0 4= & 0 exXp {—Hapip xFP)} .

i thus derived corresponds to the ¢, for a real circularly-polarised wave, which is in fact
e e anded. Thus the spinor representation of complex states splits the states so that the positive
v part of the spinor with unprimed indices has negative helicity, while the positive energy

f the spinor with primed indices has positive helicity.

lomentum and angular momenitum

Special relativistic dynamics any finite system possesses a total momentum p? (a 4-vector)
:total angular momentum Mab (skew tensor) dependent on the origin O.‘II;O - O, then
Pa= pa and e > §190 = Meb — 2X1apb 1 where X* is the displacement OO.

orde

xadil

empty region surrounding a source, this alse holds globally if and only if a certain ten integrals vanish [14].




254 R. Penvose and M.AH. MacCallum, Twistor theory. an approach to the quantisation of fields and space-time

We may define the spin vector

Sy = —%nabcd‘PbMCd'

S, =5,

i) Assume P_P° > 0. Then the relativig;tic centre of mass of the system is defined to move on th
worldline which is the locus of origins O such that

Es;ﬂ’ab =0

Then, as regards its total momentum and angular momentum the system behaves as a single par-
ticle moving along this worldline with momentum P, and intrinsic spin M?? _ Bquation (1.30) may
be solved for X” as

X° = MO, PPI(P L) + AP
and this gives a unique timelike worldline. The intrinsic spin is
-Mab = T?adeS,:P;g/(PePe)-

ii) However we wish to consider zero rest mass (i.e. PP, = 0} to be the more fundamental cas
Then (1.30) has no solution unless

Mabe = —Pa(PbX )
Thus there is no solution unless
MbP, o pa & Plapplep = 0« Playbelp =0
< P[CSd] = O
= S, =sP;

for some constant s, the helicity, whose modulus Isi is the spin®. (This equation may also be
duced from other points of view about particles.) X°P, = k, k being a constant, ig a null hyp
K, so it appear: that the “centre of mass tine” has become a 3-dimensional region. We can sa
little more by considering two cases separately:

a) Spin Is| = 0. Then M = 2419P?] where A% is some vector, and the centre of mass lin
defined as

X =A% + AP,
the angular momentum about a point on this line being
M =0.

Thus we may pick a specific generator of the hypersurface as the centre of mass liné, and
the case where P,P? > 0 and Isi= 0, the system is completely characterised by this line. _

?We shall choose units such that % = 1. Then for quantum systems Is| takes half integer values.
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) Spin isi # 0. In this case all points on the null hyperplane P°X_ = k turn out to be on an
ual footing. That is, one can find Poincard transforma
. dynamically equivalent. In this sense the particie is not localised. However, if we take two

tsa, b € K, the necessary Poincaré transformation demonstrating the equivalence of  and &

t simply a translation, but a translation plus a specific null rotation (Trautman in [35]).
he null vector P* corresponds to a spinor 7 .

tions under which any two given points

to move P=m,m, (1.32)
uely up to phase; 7, » eif g 4 preserves P MA(= plaly is represented by a symmetric spinor,
“(AB)’
3 a single MEP = yABeA'B 4 ¢ABGAB
ion (1.30) 1 ]
equation 5% = sP? takes the form
Sppe = —iTp 4 H ., + (74 MapTp =STpm,.. (1.33)

transvect this with 77 we find u, #47% = 0 which implies that
Hap= iw(A Tp)

«dament ome w? . Since any symmetric 2-index spinor is the symmetrised outer product of two spinors®,

nly new information concerning M4 18 that one of the factors is 7 ,. Thus
MAABE = 7 (BIAB _ {455 AR (1.34)
¢ can now characterise the pair (P, M°®) by the two spinors (w?, T4.) {but not uniquely, for
me pair is represented by (ei0 ¢34 | gi6 T 4.)). This pair is a (representation of a) twistor'® 72,
0 not choose to define the twistor Z* as the pair of spinors (w4, T4} since under change of
mein (and under conformal rescaling) the w4 and 7 4+ become transformed, whereas the twistor

Ssupposed to remain unaffected. Thus we must think of (co?, 7 a) Simply as a representation
¢ twistor Z%, In fact twistors have two stages of representation. The first, in terms of the

pair of spinors, is specified by a given origin and choice of conformal scale, i.e. of one of -
1 hy nformally related flat metrics. (The spinor indices are here just abstract labels’.) The second
anu

7 erms of the coordinates of these spinors with respect to some spinor frame. Such coordinates
We canis ¢ indicated by the presence of Hebrew indices.

“is represented by (w4, 7 47} then we can take twistor components

Z8 = (00, ', 7y, 7., (1.35)

efine a conjugate twistor Z_Q to have components

EN = (T, 1, &, G, (1.36)
ping the spinor frame, we have the representations Z¢ « (w*, 7,0, Za < (7,, &%) and so
ine, and,

YAVARS wAT, + 7,04 =25
s line.

(1.37)

%_ﬂlat as twistors will have well-defined translational transformations, they differ from Dirac spinoss, see [5]. Quantities that

Ssentially twistors have been described by other authors [to].
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using ( 1.33). Note that the Hermitian form used on the twistor Z% in (1.37) has signature {(++—
and that positive (s > 0) and negative (s < 0) helicities are thus both possible.

When s = 0 the twistor is said to be null and represents a null worldline. When s # 0, the twistc
represents a particle with intrinsic spin and there is a sense in which this means that the worldlin
is displaced into the complex. The particle ceases to be localised in M. The remaining sections wi
develop the twistior concept. -

2. Twistors in flat space

2.1. Basic ideas; conformal invariance

Tn section 1.3 the concept of a twistor Z* and its complex conjugate Za were introduced, 2%
being represented by a pair of spinors (w4, 7,.) which define the momentum and anguiar mome
tum of a massless particle by (1.32) and (1.34), Z,, being correspondingly represented by (7, @
The helicity of the particle is one-half the Hermitian norm Z%Z,, of the twistor. Twistors also ha
a linear structure (i.e. AZ% & (Aw?, A ), 2% + 2% « (o + w?, w .+ m,)) so we may expect the
group of transformations which preserves these structures to have some significance. Since the:
signature of the form Z“Za is (++-—), this group is U(2,2). But if we wish to retain the geomet"r_i_
significance of the phase of a twistor in terms of a polarisation plane (i.e. the flag plane direction
of w ;) then we are led to consider the group SU(2,2) this being actually 4-1 homomorphic wit
the restricted conformal group. It turns out that twistors form a 4-1 representation space forthe
identity-connected component of the conformal group. The algebra of twistors is discussed in-
detail in [5]. Twistor space is 8-real-dimensional (4 complex dimensions). We may regard thes
dimensions as arising as follows; there is a five-dimensional set of null geodesics in M (consider
generators of the light cones with vertices at the points of any fixed spacelike surface) and on £4¢
geodesic one may give the momentum scaling (one parameter); the seventh dimension is the pol
sation (phase of 7,.) and the eighth the intrinsic spin. The non-vanishing of intrinsic spin (5 #
implies we do not have a uniquely-defined null geodesic, nor can we easily extend our interpre
tion to curved space-times (see section 3). Twistors are a sort of “square root” of the momen
and angular momentum in the same sense in which spinors are a “square root” of vectors. -

In section 1.3 we said that a twistor was represented by a pair of spinors in a way depende
choice of origin and conformal scale. We now need to know how the representation alters on
change of origin and/or scale. Let us first consider the effect of a change of origin on the spine
which represent the twistor. When O~ 0, we have P, > 13; =P M~ Meb = pMet — ZX[GPD'{
we further insist that the phase of 7 ,, be unaltered on translation owing to its interpretation
polarisation plane (flag plane) we find

~ —~

Tp=m,; 0t =w? —1 X4,

ie. giveng,,, w4 is a function of position (O) and may be regarded as a spinor field. (Actually
corresponds, in the case of null twistors, to a field of null directions of straight lines interc t
the worldline, see [5].) By (2.1)

v =0,
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act the form (2.1) follows from (2.2). For (2.2) implies V4,65 is skew in AB: so also is
C,Vj,ﬁB and hence (since in flat space we

may commute the derivative operators) this latter is
0, the twj ew in €5 and therefore in CAB. Thus it is zero, so V4-@" is constant. If this constant is written

e, (being skew in AB), the general solution of (2.2} is seen to be (2.1).
ince

(2.3)

by (1.19) etc., we see that (2.2) is invariant
or field ¢ satisfying (2.2) can be used as a
wistor, which therefore tells us how a spinor representation
origin or scale. 1t should be noted that change of origin pre-
ves T4 but alters w*, while conformal rescaling preserves e but alters 7 1+ the point being that

» conformal rescalings make infinity appear to be in a different place; the

¢ field & completely defines the twistor, Moreover,
der a conformal rescaling with &2 = &35, Thus a spin

3

space

(2.4)
iscussed.

Mab = V[awb]

conformally invariant. Thus the angular momentum is not a confo

rmal invariant, although
rw?) is. In fact, from (1 .20)

Mab =02 (Mab + 2T[awb]).

w? = w1, Mg =g T, 0 (2.5)
.34) which further implies that
5=5(wT, + 7,04 (2.6)

nformally invariant. It is the conformal invariance of
shows that twistors form a re
W let us consider the equation

(2.2) and (2.6), together with lincarity,
presentation space (locally) for the conformal group.

VM aAB-L) < (2.7)

May be regarded as the many-index spinor equation generalising v w*) = 0. The equation
Otmally invariant if its solution obeys

aAB.l = (AB..L
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if we now form

@

_ E.L
Vip.p=¢ $ap..DE..L

where ¢ is a solution to (1.25) we find that ¥ __satisfies (1 25) for a lower spin. In fact (2.7) ha;

(35") linearly independent solutions if o has n indices, as shown explicitly in [5], p. 362. Eac ;

solution in turn, for a given #, may be substituted in (2.8). '
For example, in the case of linearised gravitation ¢ __ we can form

_.CD
Y p=a Dapcp

which is a Maxwell field. We may ask what charge integrals this gives. There are 10 independent
solutions for &2, so we will obtain 10 conserved {complex) quantities. These are in fact the en
momentum and angular momentum [14]. (These quantities would be complex for a general 5o
tion of (1.25) but we get only 10 real quantities for a ¢, zcp derivable from a potential.) If the
tegrations are performed at infinity, these quantities give the Bondi-Sachs definition of mass [17}
as applied to a general (shearing) retarded null hypersurface in Minkowski space, for linearised:
theory, so that it becomes clear that the “correction terms” which distinguish this mass measur ification of
from the Newman-Unti mass [ 18] are really necessary — even in linearised theory.

The equation

VE =0 2

which defines a twistor has 4 linearly independent solutions in M'. There is a difficulty at infinity
because to form M we stick the past and future light cones together and the (one-superfix) twi
differ at those points by a factor i, essentially because the representation of the conformal gro
in twistor space is via a four-fold covering (cf. [19]). (For a many-index twistor, one must allo
a factor i for each superfix and one factor —i for each suffix.) We could remove this difficulty:

taking a fourfold covering of M but instead we simply adopt the rule of multiplying by ievery e
time we complete a circuit passing through infinity. The problem is an illustration of the factt p
twistors are like spinors in not being local geometric objects (for odd-indexed spinors are mult
plied by —1 when they are rotated through 2m). of course t}
o meet (i
2.2. Twistor space and Minkowski geomelry : B
A twistor with 25 = Z%Z o = O represents a null real straight line (i.e. the worldline of some p Naw
ticle of zero spin). If s + 0 there is no such real line, but there is in a certain sense a ‘‘complex. e 7
Clearly when 5 = 0, Z* and AZ% (A # 0} represent the same line so that the most directly geo-: )
metrically interpretable twistor space is the space N of equivalence classes {AZ%} whens= 0, he necess
Z% £ 0, ie. —
_ Yer,
N= {rZ¢: A+ 0,0 C}: Z°Z, =0, Z%+ 0},
e are also s

which represents the set of null lines in M. We shall therefore consider the space C of equivalel hich case tt

classes of twistors, defined like N but without the requirement s = 0 (fig. 3). This is complex ;
jective three-space!! €P(3) which has three complex or six real dimensions. it is not just the ¢

that the spini

hall use boldf:
both € anc

YFor matters pertaining to projective geometxj«' see [20}.
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/

Fig. 3. Projection of twistor space into C.

nass meg exification of N, which would have ten real dimensions. In fact even the complex points of C

' ay be represented as real structures!? (Robinson congruences) in M [5, 21, 22]. The conformal
mnsformations of M correspond to projective point transformations' of C preserving N.
et us now consider what a point in M corresponds to in C. We may define a point in M by the
section of null lines. Suppose two lines are described by twistors Z% « (w4, 7 b

ity at.in (£', m,). Then the lines meet if there is a common solution to

1P3ffi?i)';j A—oAd A = 5 ,AA

1formal._ “ o : o

1¢ must : mally this is

3 difficu .

3 by iey L . S ORV- IV L A’y (2.1
of the factih 7 T (what -t

f course the corresponding point need not be real, i.e. p4" need not be “Hermitian”, If the
es do meet (i.e. p® real) then

e of sor Tawt =in,p* ', =i, p i o, = —&'r
t . ie.Z*Y, = 0.
rectly g _
vhen s = us the necessary conditions for the two twistors to represent real intersecting lines are
| Y*Y, = 0; 7°Z, =0, Z°7, =0. (2.12)

- ¢ are also sufficient [5] if we interpret the condition appropriately when Y and Z are parallel’3,
of equiv ich case they meet at infinity, i.e. lie in a null hyperplane [5]. This can be shown, assuming

¥ justi th 0F ote that the spinor field representation (section 2.1) repzesents twistars up to afactor +ior z 1, ie. it includes proportionality

hall use boldface kernel letters, e.g. Z, to represent the twistor up to proportionality, and the corresponding geometric struc-
in both C and M pictures, reserving indexed letters, e.g. Z%, for the actual twistors, ete..
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Y and Z to be non-parallel so that #4 and n4 are not proportional (and then taking a limit for ¢ P af =

parallel case), by testing the Hermiticity of (2.11) by taking components with respect to o4 ang
74. The three conditions thus derived for Hermiticity are simply (2.12).
If (2.12) holds, then it is also satisfied if ¥ (or Z%)} is replaced by

X = pZ% + e

for any complex numbers g, \. Thus the line X meets each of Y and Z and so belongs to the nu
cone through the point P with position vector p®. This null cone can be used to represent P. T.
P is represented in N by the linear set uX® + AY®, i.e. by the {complex) line P joining points Z
Y (which has 2 real dimensions and topology S2}. s clearly a Poi

We may therefore represent this point P by the 2-index twistor 510 i‘nvariant

(_dA EB o EA (.OB COA??Bv . EA"TB’ )

O = (P
74085 — ny0® Taflpg — MaTp (e

pep=70YF - Y*ZP o (

h defines a sor
sum up, a gen
oint in CM, tk
corresponds to
‘representation
ric fourfold in

B b (_% EABPCCJPCCI iPABa)
=TT 5
1Py €4p'
where p¥ = pA4' is the position vector of the point P. Thus the points of M cotrespond (up to
portionality) to simple skew 2-index twistors, i.e. twistors obeying

pad = plasl . plespy1s = g (j.e. Plefprél = (), as eight real di
We may define the dual twistor P, (which gives the geometrically dual description of the sam olutions of th
line) by ¢ question we
he general zer
=1ppo %
Pag= 2P €appqr plex analytic)

ke the corresp
of f will be pt
ur integration
olutions of
r=01,.n0o

One may verify that p® is real © P, = P,z where Pg is the twistor complex conjugate of P
generally, if p* is complex, then its complex conjugate p® corresponds to P28 in the same way
p° corresponds to P*P, In fact the imaginary part of p? is spacelike, timelike or null respective
cording as P intersects N in a one real-dimensional set (a curve: topology S1), in a point, O
all. If null or timelike, the imaginary part of p# is future pointing or past-peinting according
liesin C" U N or C* U N. :

Now we recall that we are working in compactified Minkowski space (fig. 1). Suppose
fact I, the vertex of the null cone at infinity. Null ines at infinity have 7, = 0 =7, and 50
i corresponds to the twistor .

Do)

b, = 045

0, and ¢y defis
(g, —1pE'ip).

P o (
o (U, 7,

This we shall call the ‘infinity twistor’. Its dual is

(0 0 )
log @ 0 4B/

We can normalise skew twistors by

© 18 no essential rea:
face of twistors; th
f _s' out that spinor f
fted by functions
d-particles (see sec
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mit for PRI, =2 (ie. 7, m* =1). (2.16)

tom4 g iis fails only if 7, and ., are proportional, i.e. only if P is at infinity.

Suppose now that Paﬁfag = Q“‘f”l'al8 = 2. Then by direct calculation we obtain

P ="~ ¢, - g = ~(PO) (2.17)
f for non-normalised twistors

AP, NGO, ) = (e - g, ).

is is clearly a Poincaré invariant quantity. In fact the sub

ves [,p invariant is just the Poincaré group. We can form
four points, namely

group of the conformal group which
a conformal invariant from the twistors

@ = (PQ (RPS, M PMS, JR™Q,) = (POI(RSY/(PSY(RQ)

snich defines a sort of “cross-ratio” for any four points in M.

To sum up, a general (complex projective) line in the (projective) twistor space C corresponds
apoint in CM, the complexification of M: a line in N corresponds to a real point in M; a point
N corresponds to a null line in M. Starting from the space C we can reconstruct €M as the

in representation'! of lines in the complex three-dimensional projective space C, giving CM as a

dric fourfold in five-dimensional projective space. (In this case all dimensions are complex, so
M has eight real dimensions, cf. [231)

“the sar Solutions of the zero-rest-mass field equations

he question we now discuss is how fields in M are represented in twistor space. We shall find
the general zero-rest-mass free fields can be remarkably concisely represented by holomorphic

mplex analytic) functions g(Z*) and f{( W,) on the twistor space and its dual’, C*, But in order

of P ake the correspondence we must take suitable contour integrals. Thus only the residues at the

' s of f will be physically meaningful: consequently the subsequent formalism will be based on

tour integration in C.

The solutions of the equations (1.25) can be represented by a set of quantities ¢, (P; 0# | &)
rer=0,1,..n; 0" & are a pair of basis spinors at the point P, and )

- A D L
. =g, "2 oF 0

T
0, and tp define null twistors through P, namely'* U,.
{tg, —ipB8'y,). Thus we have the quantities

PAU,, Vo) =6,P; 04, B, =0, n,

Vgsay,ie U, < (o,, ~ip?*0,),

ere is no essentizl reason why we should not represent our geometric objects using the space of dual twistors,

rather than
Space of twistors; there is a quite free choice between these spaces. However, with the choices of convention we have made.
1% out that spinor fields with un;

printed indices, whose positive cnergy parts represent left-handed particles, must be re-
Sented by functions on the dual twistor space, while spinors with primed indices, whose positive energy parts represent right-
ded particles (see section 1.2) will be represented by functions on the twistor space.
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IfU, and Vﬁ are restricted to be null twistors with real intersection, ®, represent a zero-rest-mass.
field in M. Such a field may be regarded as defined on some three-parameter initial set (Cauchy:
hypersurface) and thence extended over the rest of space by the field equations. In twistor terms
it would be economical if we could describe the field on M by some field on the (complex) 3_31')5
C, or C*. So far it appears that we must define the ficld on pairs of points U, Vin C*.

Let us take the point P and define a standard tensor and spinor reference frame (cf. (1.6)) suc
that

u=p00r2p0'+p1; _prtip?
V72 72
p10'=?2__i£i p,ufzpofp1
V2 V2
v = if and only if p? is real. The field equations (1.25) become
3¢,/88 =00, /3u; ¢, /o = 3¢, ,,/3¢; r=0,..n-1.

These equations are automatically satisfied if
1 ~
5, = —mgﬁK NEQ, u+2\E, £+ Wwydh

where F is a holomorphic (i.e. analytic or regular in the complex sense) function of three comple

variables, the contour K being taken to surround the poles of /' in a suitable way. The resulting

fields will always be analytic in the real sense with respect to u, v, §, E’J but we may represent n

analytic fields as limits of analytic ones. '
A real null vector at p® = (x, v, {, §) has direction given by du:dv: d¢:d¢ where

du + Ad¢ =0 =d¢ + Adv

for some complex A (possibly infinite). For the Minkowski metric is 2(dudv — d¢df) so that
dudv = d¢dF for a null direction. Thus du:dv:df:df = XX: 1: —A:—X. The corresponding (null
twistor is U, + AV, = W, = (7,, ") where

dv ”dij)

Wmf"'m*‘x(_dg du

and A = 7,/Fo = Wi/W,. Thence, as & = —ip?4'm .,

Wy, Wa) = (@, @) = —i(fo, 1) (;_‘ i ) = i Wo(u + NE, £+ A0,

Thus (Wo, Wy, Wy, Wa) = Wo(l, A, =it + A), —i(§ + Ww)). If we therefore set
W)= (Wo) ™ 2 F(W, /Wy, iWaf/ Wo, I3/ Wo)

then f(W,) is homogeneous of degree —n—2 in W,. (We can now check that this has the corT
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Fig. 4. The Kerr theorem.
nsformation properties under rotation'* for spin %n.) The final formula is
1
® Uy, V) = & NAU, + AV, DdN. (2.20)
K

We may now generalise by taking an ¥ Uy, V (no longer necessarily null) thus defining complex

ields on complex points U ja V) - It seems (although there is as yetno completely satisfactory
orem} that the set of such fields is extremely general. For a particular field it is clear that fis
nique since all the contour integrals remain the same under I~ f+h where £ is regular inside

contour. We may regard this as a sort of gauge invariance. This non-uniqueness of f would

tly lead to difficulties for any proposed explicit formula giving f in terms of Pa p-

Lis however easy to construct special types of solution for f. For example ¢, , is called null

such a field arises when the contour surrou
ral symmetric spinor may be written asa s
rally, the algebraically special fields

nds only a single simple pole [24] . {Note that a
ymmetrised product of one-spinors® [2,9]1.) More

bap.p = Gy 051543(:---7\1,)

ar as integrals round contours surrounding a pole of order < (1 - 1). E.g. to obtain type
! (ie. Petrov type D) linearized Weyl tensor fields we may requi

that the contour separates one of them from the other. (Sinc ¢
t follows that such an fis in fact the inverse cube of a quadrati

¢ is algebraically special (e.g. null) there is associated with it a shearfree null congruence [22].

W) =p(W)lq(W,)
9(W,) = 0 is a four (real) dimensional surface in a six dimensional space (C), and intersects

217 for more details.
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the 5-dimensional surface N in 2 3-dimensional set of points (fig. 4). This represents a 3-paramet
null congruence in M. By a theorem of R.P. Kerr (unpublished, see [21]), this congruence must:
be shearfree. The theorem is that a congruence of null lines is shearfree if and only if it is repr
sentable in C as the intersection of N with a complex analytic surface S in C (or as a limiting cag;
of such an intersection). It was partly this theorem that motivated the study of holomorphic fu
tions in twistor space.

If we suppose ¢ = U is a plane (i.e. g(W,) = A*W,) then we obtain by the above method a “linear
system of null lines in M (a Robinson congruence [5]), which we may consider'to be a geometri
picture of the (complex) twistor A% (which previously had no intuitively obvious picture associa
with it). These “Robinson” congruences are largely what led to the name twistor, for they are
shearfree, and twist with a handedness dependent on the sign of A%A o :

If we consider a sourcefree spin 3 n massless field in M (compactified Minkowski space), whick
has the correct peeling-off behaviour towards infinity [4], then the field will not match at infini
[19] unless we take a fourfold covering for odd # (twofold for = 0 mod 4), (This is reflected s
behaviour of the integrals introduced above since the homogeneity degree of f(Z) is —n—2 and’:
twistors are 4-valued, see section 2.1.) Rather than work with awkward covering spaces, howeve
we shall make the convention that a source-free field with the correct peeling-off properties is
be regarded as continuous across infinity if it has the right “Grgin discontinuity™ at infinity (i
general free wave of spin } 7 should jump by a factor of 2 119, 211).

Consider then fields with the correct peeling-off and Grgin behaviour (which momentum eige
states, for example, do not have). These may be (uniquely) split into positive and negative ener
fields (cf. [25]). A process equivalent to Grgin’s harmonic analysis technigque [19] applied to:
positive energy fields is the following. Instead of Z, =Z? etc., let us take twistor coordinates s0
that we get the more hatural-looking Zy=(Z°, Z', —Z?, —Z*), the Hermitian form 7°Z,, of s
ture (++——), being now diagonalised. The erthonormal basis {E,} then has two vectors of posi:
and two of negative length. These points give us four planes (fié. 5} and the simplest possible fu
tion of positive frequency has as its singular region just the planes shaded in fig. 5 (cf. [211). A
general function for spin 3 » fields of positive frequency is

f(Z )= E (Zo)a" (21)31

e
ERLFTERE (Zz)a2+l(z3)a3+1 Foh 2y

4" isreal. T

idZz® ,
he right-ha

where f, . isa constant and o, @,, 4, G, are non negative integers satisfying ao + a1 + n= a P, =i
If S is the set of singularities of this runction then assuming suitable convergence SnC*isd .
. connected in two pieces, and so will yield a positive frequency field [21]. The individual term P, X" -
(2.21) will in fact form an orthogonal basis according to the scalar product of section 3.3. being chos
For a further discussion of the material of this section see [21, 24]. .
*=2a
2.4, Quantisation
We start out by considering how to connect the spin s of relativistic dynamics, which appe¢
in the classical twistor picture of angular momentum discussed above {section 1.3) with the s 7% fﬁ B}
of the zero-rest-mass fields just considered.
The momentum of a particle with zero-spin was described by (T =p,) while the i these oper
lally given

of the centre of mass is then determined by «* =iX4'7w,.. As
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- 3-paramigte

AR (T )

we find that

12247, iwtdT, +in , det

=X .47, + 7 d(XA4T )

\entum eis = X7, d7, + 1, (dXAA Ty +m XA ar,

gati_ve enet =77, dx44’ =P dx= (2.22)
rdinates 44" is real. Thus, taking the exterior derivative,

iii“;?io'- 42% 1 4Z, =P, A dX° (2.23)
possible f d the right-hand side is just the two-form

preserved under canonical transformations, ie. by
amiltonian equations. (For a fuller accoun

(1 t of this correspondence see [26].) This suggests that

¢ should regard —iZ®, Z,, as canonically conjugate variables. Thus in the passage to a quantum

ory we would expect —iZ°, Z, to become canonically conjugate operators (with Z& o 39 2%,
.

1 the operator form

P, =iafox’ (and X7 = —i 3/aP, )

NCTES b _ Wop —: b 2
ictual term X" - X0P, =182, (2.24)
m 3.3. ts being chosen so that % = 1. Thus we shall want

% =3/0Z, (2, = —8/3Z%)
aich appe - _
with the st %75 — I51% = 6%, (2.25)

Nere these operators are taken to act on fun

ile the pos :

: a ctions f(Z,). Now in the method of section 2.3,9is
tntially given by AZ,), and it is clear from taking complex conjugates that solutions of (1.28)

imilarly described by a function g(Z%). Now
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_ 9 o - - -
I*Z) = 7 RZ); 1,12) = 2, Z)

= Gl
1%g(Z) = Z%g(Z), 2,8(£) = — 73 g(Z).
Previously we had Z"‘Zﬂ = 25, where §¢ = sP?, 5 being the spin parallel to the direction of motion,:
So consider the operator § defined by '

48 :=7%7,+ 1,7% = A7, 7%+ )= A7"Z, - 2).

Sg(Z*) =5 ((n+2) — 2)g(Z™) = 5g(Z*)

for g is homogeneous of degree (—n--2) and 25 = n whereas Z%3g(Z)/0Z% gives kg(Z%) where k is

the homogeneity degree. (One may, incidentally, say that the fact that &7 = 4 in twistor space, i

its 4-<dimensionality, is related to the need for the degree (—n—2) in the definition of /\) We also.:

find SAZ,) =sf(Z,) if n = —2s, so that the twistor fields corresponding to spinors with primed

indices are of opposite helicity, as we expect. The fact that the spin is half-integral is a consequen

of the one-valuedness of f. :
We may inquire what is the effect of 7%, 7, when acting on the fields ¢ . Consider

AW ) = (QWIAW,),
which is the result of Q%Z,,. If 0% « (04, 0, ), eq. (2.28) corresponds to

~, B
bup.r ™ @ by =Va. 1>

where 04 = Q4 — iX24'Q ., and ¥ , satisfies the zero-rest-mass field equations for spin (n —
Simitarly, if R, < (R 4, R"), the operator R, 7% acts so that ;

0

fW) > Ry =
&)

W),

$ap, 1 ~ 3int 1) Oab..L VM)M’ﬁM' +iRM Varm San. 1 = Xap.ar» WHeTe X p 4 is a solution of th
zero rest mass field equations for spin (n + 1). Thus 7, raises, and Z% lowers, the helicity by oné
hali.

3. Twistors in curved space

There are three approaches to the problem of generalising the twistor formalism to curved Sp:
time. These lead to three somewhat different twistor concepts, which will be referred to as gin
twistors, local twistors and asymptotic twistors.

Global twistors are the most logical generalisation of ordinary flat-space twistors to a curve
space-time. However, they suffer from two serious shortcomings, namely that they have only::
rather weak structure (merely symplectic, rather than linear and/or complex analytic) and fha
only the null twistors can be precisely defined in geometrical terms, the existence of the non
twistors being simply postulated. :




time
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Local twistors, on the other hand, have a well-defined existence (whether null or non-null) and
a linear and complex analytic structure. But they are necessarily defined relative to points in the
space-time so they cannot in themselves be regarded as a satisfactory generalisation of the flat-space
twistors, adequate to form a basis for a formalism in which space-time points are to be regarded as

The asymptotic twistor concept is one which applies only to a space-time which is asymptotically
flat. However this is the situation appropriate to an S-matrix theory of gravitation and consequently
as great relevance for the twistor quantisation programme. The space of asymptotic twistors has a
omplex analytic structure with a (non-linear) Hermitian scalar product defined — giving rise to a
pseudo-) Kadhlerian (and hence also a symplectic) structure. Asymptotic twistors, which were de-
eloped after the lectures on which these notes are based were given, are discussed in section 5. A

rief discription of local twistor theory will be given here and global twistor theory and its relation
o gravitational scattering will be discussed.

A Local twistors

In this approach we define a twistor space at each point of space-time®. This twistor space may
e thought of as the direct sum of a spin-space and a conjugate spin space. However the exact way
which the twistor space splits up as a direct sum depends on the choice of conformal scaling.
ore explicitly, a local twistor Z% 4t a point p can be represented, with tespect to the metric g, B

y a pair of spinors (w”, 7,.) at p. Under a conformal rescaling (cf. section 2.1) we will have (cf.
53, (1.19an

8up =%, wt =wt; T =T+ 0T, A, (3.1
is is consistent with the behaviour already encountered in flat space-time since in that case we
o

- "B . o B — B B C

Vaat? =V, w SVt e, T w (3.2)
hence

i, %%, =ie,®n, — Ty e B (3.3)
liows from

Viaw? = —je By (3.4)

A4 ATy .

o Lad’
eg’eozA”eA=e

€. for one-superfix twistors we form a fibre bundle over space-time with fibre the (8-dimensional) twistor space.

tre we follow unpublished work of K. Dighton, which is partially based on a suggestion of A. Qadir.
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sucn that Z%4 = w*, Z%, 4. = 7, etc. and

@ —. A ad' — aB .~ . B & —
eled =eh, ege 0, eoa€ 6 €ua€y =0,

A LB gA" — 88 A — ad’
epeite, e L, e, =e

> e_i T Char
Under conformal rescaling we will have Z% —» 7% = 7% while w R 4" transform by (3.1). Thus
we see that

oy S N o = H A
8‘:: T €y €ya’ ~ Ean’ + 1TAA’€C¢ d

pRAT = pA’ - o0 = o ] ad'
e god'; g% =ef — 1T, e,

We now have to decide how the projection operators vary as we pass from one point to another
We find we require (cf. (1.21))
Vs =ieg™eg, Vesea = —ieg? ey, 3
Vs = i Pragae™, Vpglon = —1Pryga€l - .
We have w =e22% n,. =e¢,,. 7% so that

T 70w 08 R o, A aAd’
VoZt=e" e, Veg(eGw® te*m,)

R &% (e4(V g 0 +iegmg) + e (Vg Ty t 1Prps 4 @)} 3

These forms (3.7), (3.8) are required in order to give a conformally invariant twistor derivative as
can be checked using (3.1) and (3.6), and because in flat space, constant local twistors (i.e. tho:
annihilated by Vpg) will now correspond to our former global flat-space twistors'®. When referre
to a hasis (3.8) has, in all, 64 components, 48 of them being zero. v satisfies the usual require-
ments of a derivative (lingarity and the Leibniz rule) and it commutes with complex conjugatio
and contraction.

We may now consider

VovE - VeV, = vy, Vil
Acting on a scalar function ¢, this gives us
[V4, V516 = (8] - 857500 = T35VEe

TEO% = i(57 5% 84 — 64 575%).

ApB

Kioszé = (V4. V] — T Vi) 2°

18Eq. {3.8) shows that a constant local twistor in flat space has constant 7 5, and w? satisfying (3.4), i.e. we retrieve the Sslim
field representation of a twistor, and so the correspondence just referred {o is that the local twistor at a point F has the
presentation as the giobal twistor has when referred to P as origin.
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where

& = 2L uM LR o8 1 B r.a- A ad’ T A
K§oh = exe €, e [eg {edie oW BLr— € (65, VE \I!B,M,S.A,ﬁeM,S,VA,\IIARLB)} +
A B
(3.5 +egpe i€g, ¥ anrs ] (3.1

These define a torsion twistor 780 K305 The spinor components of Kiod

apg 20d a curvature twistor
given by (3.11) involve ¥ rep and Ve, non

Note that, by the conformal fransformation rules for twistors (section 2.1), any local twistor
Q&ﬁ"f fc?r example, dt?f}'nes a conformally invariant spinor' Q{i BGqf th’is spinor vanishes, then each
f0,7¢ 04,6, Q4 # & is conformally invariant. If 0,%%=0and 04,6 =0 then @
ormally invariant, etc. etc.. Thus any n

Q5" is con-
on-vanishing local twistor defines at feast one non-vanishing
onformally invariant spinor. In particular
erivatives VIKS0Y Ive K307 etc., or to s

we can apply this to K57 (to obtain e, L4 L) OF to
uch derivatives to which symmetry operations have been
tain the Bach tensor and other conformally invariant
ensors in this way.)

(3.1). Thus

(36

“to anothér_.

onal manifold N (5 dimensions for the set of null
nsider N to be embedded in an abstract 8-dimens
g, formally, the non-null twistors. This is done be

geodesics, 2 for the set of spinors 7 ,.). We shall
ional manifold C, the points of C—N represent-
cause the structure of N is most easily de-

geometrical connections must refer to properties of null geodesics. For example,
¢ fact that a congruence of null geodesics has vanishing Fotation, i

.. is {(null) hypersurface form-
g, is such a property and it turns out that this property is simply describable in terms of the sym-
lectic structure of C. The shear of a null con

i

Wngruence which is shear-free at one point will, in the presence of conformal curvature, generally
¢ shearing at other points. Recall that the Kerr theorem established a close connection between

shear-free condition for null congruences in flat space-time and the complex analytic structure
he C-picture. The fact that the concept “shear-free” cannot, in general curved space-times, be

e might, for example, try to define (wA, 7 4) ata point O by taking the intersection P of the null cone at O with the nuil
:t P has the sam

%eﬁdesic (twistor) and parallelly propagating the w-spinor along the null geodesic PO or else usin

g local twistor transport along
- This does not appear to agree with the type of structure we shali require the twistor space t

0 have.
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applied to null geodesics in their entirety., strongly indicates that C cannot generally be given a ge
metrically meaningful complex analytic structure.
Let us investigate the structure of C for a particular type of curved space-time M, namely one

which possesses two regions M, and M, of flat space-time separated by a curved region of M, througy

which null geodesics can pass from M, to M,. This will enable us to examine the structure of Cin
relation to the structure we have previously obtained for flat space-time. By involving two flat
metrics we shall be able to isolate the structure of C as that which is common to the structures in
duced by each of My and M,. Now in each of M; and M, we can represent twistors in terms of
pairs of spinors and hence in terms of four complex components Z0 7', 7Z*, Z° (subject to 287
The expressions Z t‘%ZN and dZ % A dZ wdefine forms?® on N which as we shall show are the same
whether the coordinates Z™ are defined in M, or in M,. Fach of the forms ¢=iZ& dZy and _
o =dd= idZN A dZN defines structure of geometrical significance in M. It turns out, in fact, that -
$ measures time separation between neighbouring geodesics, while @ measures rotation, see also,
[26].

Let us consider two examples, both of flat spaces M;, M, joined across a null hypersurface K,
the (degenerate) metric of K being the same whether induced by M; or M. The curvature resides:
entirely within K, having the form of a §-function on K.

A, Take two flat spaces

M,: ds?=2(du dv— df dP), v< 0
M,:  ds? = 2(du* dv* — di* dfF), v 0

joined on the null hyperplane v = 0=v* where {* ={;u*=u - g(¢£). This has a §-function in
curvature on the join (rather as the surface of a cylinder of finite extent has, at the join of the end
and the side — both of which are flat)*!. The Ricci curvature is (essentially) 8(v)aq/ atat, while th
conformal curvature is (essentially) 8(v)a%g/0¢?, 8(u)dq/a5?. Binstein’s empty space field equatl
vield

alq/a§a§= 0, whence g =r(§) + f(f),

¥ being a holomorphic (i.e. complex analytic) function.
B. Similarly join flat spaces

M,: ds*=dudv - u?d§ dg, v 0
M,: ds?=du¥do® — zt*zdf*dét*, vz 0

along v = 0 (a null cone) with {* = f({) (f being a holomorphic function); u® = u/1f' (). It tur
that this automatically satisfies Einstein’s vacuum field equations. (For a fuller discussion of th
see [29]1.) . )
In these examples the passage of a null geodesic through v =0 is determined by the conditio
that it is orthogonal to the same vectors within v = 0 on each side of the join. (The behaviour

also be found by considering an appropriate limit of C™ spaces.) This tells us how a twistof isa

2%For an introduction to Cartan forms see e.g. [27] . o

21Thjs space is in fact a limiting case of the plane-fronted waves [28], see [21], while (3.14) is a limiting case of the Robins?
Trautman waves [31].

- starred
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fected by an impulsive wave. In both cases the null geodesic is scattered in a way that can he
s given _ . . .
given a ge formulated in Hamiltonian terms,
ely on Let us see this explicitly in terms of example A. A twistor Z% representing a null line, with co-
m - . .
= ordinates as in section 2.3, has
Lof M, thr o ’

L0701 2% 2% = —indg + igdy —i8d¢ + vdu: —d¢: du

!

—indv +igdg: —ifdv + ivdE: - do: dé.
Thus it satisfies

e the sar —Z%d¢ = Zdu, ~Z3dv = Z2dg, (3.152)
d ]

na;d i _ 7=tz 70 = 1§55 + juz? (3.15b)

1n, see alg

since we are considering a point on K where v =

0). The starred version of (3.15b) also holds. Thus
ARV ALS

Z¥0 = 2%+ i(u — gz, (3.16)
n of (3.15) in terms of du, dv, d¢ we need to
me vectors in K at the point Z 1 K. Denoting a

em we have 6u = 0 if the direction lies in K. For
uire

order to write the remainder of the starred versio
se the fact that Z* and Z are orthogonal to the sa
irection at Z 0y K by &u: 6u- 8¢ inthew, v, ¢ syst
he direction to be orthogonal o that of £ we req

bu dv + 0 du = §¢df + 85dg

(3.17)
nction in hence, from (3.15)
coE bu = -8§2%7> — §t7%/72, (3.18)
| b
eld equ e starred version of this gives, from (3.12),
3, 0q . I
bu— L5020 5T _sezeagen BETF 7%, (3.19)
a¢ af
ations (3.18) and (3.19) must represent identical conditions on 8u 8¢ 6% since they must give
same 2-plane element. Hence
og
VASVAR VALY 4y (3.20)
ag
©)l. It turns @ ations (3.15), (3.16) and (3.20) define the ratios of the Z*@ components in terms of the ratios
ssion 0 components, by elimination of ¢ and u. With the most

convenient choice of scale factor
an set
VAR N AR L dg/ag: LxL = 72

Z51 =71 230 =70 —17%q — £ ag/at)

(3.2
e{=iZ'/7%. Setting
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o 7 V= | 7212
H(Z* Z )= 12%17q
we can write (3.21) comprehensively as
Z# = 7% — i3H/[8Z,,.

The same formula, with A real and homogeneous of degree one separately in Z% and in Z—a, is also
valid for case B, though I now depends on f{({), rather than g. In the infinitesimal change case we
find |
§Z% =Z*% _ 7% = _{3H/[oZ,; 8Z, =1 0H/2Z®

which are equations of the Hamiltonian type and so preserve the symplectic structure [21; 26]
In fact Z°Z_, ¢ =1iZ*dZ,,; Z* 8/0Z%;i(3/82%) & (8/0Z,) —1(8/3Z,) ® (3/82%);1dZ* r dZ,= o
are all preserved in the sense that 8(Z°Z,) = 0; 8(Z%dZ,) = 0; 8 o Z% 3/32% = Z*¥ 3/0Z% o & and s
on. If we define

oy o¥ ox o
I, ¥l:=—i X & X

azZe oz, YA YA

8 = [, H]

dZf +i dZ,

oH ) . O°H PH o
— =1 — —
o DZFAZ, 0Z0Z,

—-8(dZ%) =d (

and from these one can check the invariances mentioned above. E

If we consider any weak gravitational wave of any shape whatever, which separates two region:
of flat space-time, then we are led to equations of exactly similar form to the above. This is be-
cause weak gravitational waves can be superposed lincarly and can be broken down into a super:
position of waves of the above types only. (Actually plane waves alone will suffice for this.) The:
corresponding H functions are likewise linearly composed of those above.

We must define what we mean by ¢, o on the N associated with a general curved space. In fla
space we have seen that (2.22, 2.23)

b =iz*dZ, = P,dx*
©=idZ%n dZ, =dP, A dx? =V P,dx* A dx”

where for the right hand expressions of (3.28b) we take P, to be the tangent vector field of 2 ¢
gruence of geodesics. In curved space we use these as definitions of ¢, . This is possible becats
P,dx? and dP, A dx@, as forms applied to connecting vectors of neighbouring geodesics, are ¢0
stant (the constancy in this sense of dP, A dx® being the well-known Lagrange identity, se¢ [2_
271) and since N (modulo the phase factors) has been identified with the space of null geodest
the forms ¢, o will be invariantly defined on N.2? The expressions (3.28) lead to the interpret
tions of & and o mentioned before as respectively, time-displacement and rotation of neighbo

null geodesics.

228ee footnote on the next page.
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HZY Z ) =" +H H* =T
H''=Z ]« 30/378

(3.29)

- Explicitly, for the case A, we have

here g(£%) is holomorphic and homogencous of degree 2 in 72
H =172 H(—iZ' /7% = Z I**5(g(Z%))/o 7",

(3.30)
we obtain (3.29) if

(3.2
[21; 26] s
dZ,= o Sz

& :

8z =z’y F(x)dx.
*o

The infinity twistor appears in (3.29) becayse gravitation is not

nformal-symmetry breaking term which tells us “where’

We can similarly treat electromagnetic scattering,
th momentum P?. The acceleration of such a part

PV, PP = ofubp.

conformally invariant: /%8 js the
" infinity is.

introducing charged zero-rest-mass particles,
icle is ‘

-mass is zero. We can consider an idealised situation similar to that
take two regions of field-free space
-function amplitude. A Zero-rest-mass

I twistor. The wave imparts an impulse
space from one side to the other. The

; but-now, in the infinitesimal case & turns
and in Z_, where H = 5+ + fJ+ with
(assuming F*? satisfies the free-space Maxwell

ded to any infinitesimal scattering by linear super-
onding H functions.

in both the gravitational and electromagnetic cases,

ut to be homogeneous of degree zero separately in Z¢

tion of such waves, and hence of the corresp
¢ have encountered holomorphic functions

is closely related to some general theor
manifolds with a two-form W of maximal rank such that dW = 0). Let T be any manif

the cotangent bundle T=7sM) of a manifold M, with w = dP, A

sible bec orLany hypersurface S in T, W must be degenerate ($ being odd-dimensional), and so at each point of § there is a vector
L i h W maps to zero. If we factor out by equivalence along the integral curves of this vector field, the new manifold (of eguiv-

318, dart ence classes) again has a symplectic structure (with two less dimensions than that of T). This is assuming that the “normal®

tion obtains, whereby the factoring procedure actually produces a smooth manifold (of two less dimensions than T

the case of twistor space we may take T*(V,), the cotangent bundle of space-time, and consider the seven-dimensional sub-
§ given by P“Pa =mi?=0. The equivalence classes are the null geodesics, and the resulting six-dimensional space G can also

btaiéned by applying the same procedure to T =C, the hypersurface § now being N and the vectar field on N generating

geodesic Z and its tangsnt vector #l54" = pa unaffected, so in either case we

¥ concerning symplectic manifolds
old, with a symplectic structure W,
dx? where P, denotesa cotangent vector at x [26].
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unscattered
geodesic

-.____‘nanls‘: ngular

wave

Fig, 6,

But in general these have poles, and if not, then [/ isa bilinear function of Z%, Z_&. For the field
of this latter simple type the null geodesics emerge ultimately unscattered although waves can ;
come in and go out (fig. 6). However, in general cases where the wave possesses singularities, sin
gularities in the function can exist and scattering occurs. For instance in example B above one ¢a
see from the fact that there is no-non-singular non-constant harmonic function on a 2-sphere tha
the behaviour of f(§) on the null cone joining the two flat spaces must be singular on at least one
generator of the cone. This singularity could be cancelled by putting together an appropriate se
of such cones but we would then be back to the situation of fig, 6 where there is no scattering..

3.3. Quantization

We wish to pass from the scattering of zero-rest-mass particles by a (weak) gravitational or
tromagnetic wave to the scattering of zero rest mass fields. In general a zero rest mass field ¢ 5
is defined by a holomorphic function f{iZ%). We may now ask how to transform f in order to I¢
present the scattering of the ¢__field. A somewhat formal answer is provided if we use the corre
spondence Z, ~ —a/aZ* suggested by the fact that Z* and Z,, are canonically conjugate variables.
Thus, we write '

H(Z®, —8/3Z%) for H(Z%, Z ),

and apply it to /. We are here regarding f as describing the effect of a fixed given gravitatior{alj .
field. Now with the J considered above for the scattering of massless particles by weak gravity
get
) dg g\ o
HY » — — o ¥ 2. = .. (]czﬁ.ﬁ)
YA azP VAR VA

the commutation being possible because 18 is skew. Thus no factor ordering problem arise _S-
larly we would have '

H™ > Z%1 4 [ag/azg] Zg— —0jo7P

which is more awkward! However we aim to consider matrix elements (glH1f» and therefore.
not evaluate H~ifY as such, for ;
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(glHI =\ HTify +(gitH"If)

1d we may take H~ to act on (gl writing /™ - (5/82;)]&5 ag/az“ﬁ. So far we have not defined what
» mean by {(glf) and our next task is therefore to set up a Hilbert space of functions f. In doing so

can be guided by the need for suitably nice formal formulae and agreement with the scalar pro-
act used by Fierz {30]. k indices

. . {KAB D
rom ¢, , wemay construct a series of potentials ¢

er g satistying

My
Ve Q5.0 =641

® , . k-1
V., @Al = gdC
o YE L D...L

© (3.33)
VEE ofR P =0

o,
vam ¢AB...L ={.

t each step there is a gauge freedom in choice of 2’5} cf. [4]. Following Fierz, we may now de-
(with suitable numerical constant k)

L/ ) S .
(xigr =k [ G FEK L, dsEE (3.34)
5

_ fiere S is a spacelike surface. One must (and can) check that this is gauge independent, indepen-
tational 0 ent of the choice of surface, that one may interchange ¥ and ¢ yielding a Hermitian symmetry,
d that the product is conformally invariant (cf. [36]).

ur next task is to express the scalar product in terms of f(Z%), g( W,). Physically meaningful
e use th swers must be contour integrals since if £ is replaced by f' where f — f" is nonsingular inside the
ugate vari tegration contour of eq. (2.20) the field is not changed. Let us investigate the form that such a
ntour integral must take. Suppose we have (2%, X<, ..., W,...) which is a function homogeneous of
gree {(—4) in each variable. To integrate one must define a differential form DZX . W...,so that
¢integral depends only on the homology class (relative to the space less regions of singularity)

the region of integration (i.e. we require that the resulting object is a genuine contour integral).
ot this we use

DZ = éeamaZ"‘dZJs A dZY A dZ8
, (3.35)

oW = ée"‘ﬁ”fﬁwadwﬁ A dwy A dW,

DZX W... =DZADX A . DW A ...

hen find that d(BDZX.. W..) =0 as required for § BDZX.. W.. to be dependent on the homol-
class of the contour, and that the integral is a scalar, as we desire [21].

0 illustrate the value of such contour integrals let us digress for a moment. If we take 8(Z*) to
present an electromagnetic field, then § 3(Z%)DZ gives the charge integral for a source for the field.
gravitational field the function fAZ%) introduced before is of degree -6, so we take
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Pzeztrzyvz

and find this is the twistor describing the energy momentum and angular momentum of a source
for the field.

The same differential forms are now used for the scalar products in terms of f and g. We must
insert additional factors so that f{Z%)g(W,) has the correct homogeneity degree i.e. (—4, —4}. For
n =0, 1 this may be done by* ;

rzey  gW,) (Wzsy =2 DZW

degree—n—-2 degree—n--2

since there is then a 6-dimensional contour not homologous to zero in the 16-dimensional sub-
space of C ® C* wheref, g, (Z%W, )*? are non-singular (i.c. there is a contour surrounding the
singularities). However for n > 2 this formula is no longer satisfactory since the (Z¢ WG‘)"‘2 sin- -
gularity disappears. If we consider defining successive factors (as »n increases) by integrating th
previous ones, the factor for n = 0 will be log( W, Z), which is not homogeneous. So we take

(x), = (—x)"*T'(k) (3.3

for non-integer k and formally define the values at integers by taking the obvious limit. The po
is that for k = —1, —2,... the singular behaviour of I'(k) compensates for the lack of a pole (—x)
Thus in (3.36) for general n we write (W,2%),_, as defined by (3.37) in place of (WaZ"‘)"*z. {In
fact for n = 0 we are led to '

fog (W, Z)/(W,,C;D., | Z°APB)}

and one does then find an answer which is independent of the auxiliary twistors AY..D,.) With:
these definitions it can be checked that the basis functions used in (2.21) are orthogonal. The
functions (W-Z}, do satisfy the formal property

HW-Z) JaZ% = W (W-2) .,

which in fact is what is really used in actual calculations.

4. Evaluation of scattering amplitudes

4.1. Introduction :

In this section we consider the evaluation of scattering amplitudes for basic processes involvi
zero rest-mass particles. 1t turns out that the twistor formalism suggests that certain types of €0
tour integral be performed, each contour integral being associated with a graph of a particula
type. In the case of electromagnetic scatterings the twistor calculations give agreement with the
standard results for simple processes {e.g. Méller, Compton scattering) but a general theory

lacking which relates the twistor approach explicitly with the normal Feynman rules. Also, th

23The scalar product of two functions AZ%) and (W™ is defined to be zero unless they have the same spin and the same sign
frequency.
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correct treatment of rest-mass and of gravitational interactions within the twistor formalism has
not yet emerged. Of necessity the treatment given here will be somewhat sketchy and to some ex-

¢ - tent unmotivated. A more complete treatment will have to await a more complete theory.

f a source

The basic idea here will be to use the twistor description of massless fields in terms of holo-
morphic functions (cf. section 2.3) in order to represent the in- and out-states of a scattering pro-

- We must . cess. These in- and out-states should, strictly speaking, be wave packets, in this theory, rather than

pure momentum states. This leads to certain difficulties in making comparisons with existing theory,

where pure momentum states are almost invariably used. However, a formal method for treating

momentum states within the twistor theory will also be given.

The wave packets defining the in- and out-states can be described by (normalized) solutions of

the Zero mass spin s equations: VAP'¢, . =0, V™9 ... . =0. Since these fields are obtained
3“"1_1 sub- from the twistor holomorphic functions (Z) by means of contour integrations and they do not
n:;lnzlg the define the f’s uniquely, we must expect that any scattering amplitude which is a functional of the
Y+ sin-
X

f's, must itself be obtainable from the f’s by means of some form of contour integration. Now we
have seen an example — albeit a trivial one — of a scattering amplitude already, namely the scalar
-product {«|). This expresses the amplitude that the out-state is o given that the in-state is §...,

_ where the particle enters and leaves without interacting. The corresponding twistor contour inte-
gral is

-ating the
ve take

pole () Pawivz) (w-2), , oWz
cf. (3.37).
In order to motivate, to some extent, the generalizations of this to include interactions, it will

(4.1

(3.38 be worthwhile briefly to examine the scatterings we considered in the last section by a classical
gravitational or clectromaguetic wave. Recall that the Hamiltonian & = H* + H- for a gravitational
D,.) With cattering was defined by
mal. The.

H*=H =7 5g/oz" (4.2)

where g is a holomorphic function of Z% which is homogeneous of degree +2, whereas for an elec-

(33
: tromagnetic scattering we had '

H =f (4:3)
where f is holomorphic in Z% and homogeneous of degree 0. These homogeneity degrees may be
ompared with —6 and —4, respectively, which are the homogeneity degrees of those holomorphic
unctions which, upon contour integration, vield a linearized gravitational or electromagnetic field
cf. section 2.3). We may think of these latter holomorphic functions (the negative degree functions)
s describing the fields in a “passive” capacity, whereas the holomorphic functions {non-negative
tgree) which appear in the Hamiltonian are “active’ in that they effect scattering of other fields.
¢ must expect that there should be some way of passing from a “passive” function to an “active”
ne. A formula which achieves this must have the effect of increasing the homogeneity degree by
our in the electromagnetic case and by eight in the gravitational case.

Now consider the expressions (with numerical factors chosen for convenience)

1 |
e PoWo)(W,2%)_ oW (4.42)

theory'
;. Also, th

gL%) =

the same sigh
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1
fz = 5o b a(w YW, 25, DW
where p and ¢ have respective degrees of homogeneity —6 and —4 as is required for “passive”
gravitational and electromagnetic functions. As a consequence the functions g and f have the re-
quired “active” degrees +2 and 0, respectively. To some extent the expressions {4.4) must be re-
parded as merely formal, however. The reason for this is concerned with the nature of the singu-
larity sets of p and ¢. Recall that in order to define a zero rest-mass fieid, we required not merel

a holomorphic function, but also a division of its singularity sets in C* (or in C7) into two dis- .
connected regions, the contours being chosen so as to separate one region {rom the other. But this
is not adequate for defining the contours for (4.4). Instead, one needs, for topological reasons, a
division of the singularity sets of p and ¢ into three disconnecied regions®*, Thus more informa-
tion is required, in order to evaluate g and £, than just that which is needed to evaluate the zero:
rest-mass fields from the functions p and ¢. Having made this observation, however, we may re-.
gard eqs. (4.4) as being valid in a certain sense. This may be verified explicitly by reference to par-
ticular functions p, g of the form p(W,), g(W ) = 1/(WﬁE5)(WYF7)(W5'G5)" (with G5 =0;

n = 4,2) which represent certain piane waves. The resulting 2(£%), Y = (E”‘FﬁK"fZSemMa 1
EMEGYZ e, (K7 arbitrary) are essentially the correct “active” functions for this case. The gen
eral case may then be viewed as arising from linear combinations of such plane waves. But diffi-
culties remain if we desire to make (4.4) rigorous.

Let us now attempt to use (4.4) in order to express the scattering of a zero resi-mass field by:
gravitational field defined by p or by an electromagnetic field delined by ¢. According to sectio
3.3 we may expect to describe this scattering by means of a matrix («|H7I3) or (a LH18). Sub-..
stituting (4.2) or (4.3) (with Z, ~ —3/3Z% or Z* = 3/3Z,) into (4.1) and using (4.4) we arrive at
expressions of the form (again choosing numerical factors for convenience)

3
Paw) (W, Z7),_, 1%

d
2 D2) = (Us20) o, p(O WU

(2wi)®

1
= N B2 PO WD), (U-2)_ ("W Uy OWZU

1

G Pa(Wy b(Z) q(U) (W-2),_,(U-Z2)y DWZU

respectively.

[t will be useful to represent the singularity structure of the integrands of such contour integt
in a graphical way. The twistor variables which are to be integrated over will be represented DY
vertices, a black vertex denoting an upper index twistor (e.g. Z%) and a white vertex a lower i?d:ezi
twistor (e.g. W,). A line joining two vertices denotes the singularity corresponding to the vanishifl
of the scalar product of the two twistors representing the two vertices. Thus lines are allowed J©
ing vertices only if one is black and the other white. In addition, lines will be allowed which hav

241y fact the functions considered in section 5.2 do not suffer from this fault.
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sassive’ 7 Z
ave ther
nust bet
{ the singy
| not merely.
two dis- w W u
ther. But
1} reason a a g
e informa Fig. 7. Fig. &.
te the zero
Ne may r ertex at one end only. Such lines represent the singularities in the holomorphic functions a(Z),
srence to {Z), .-.,-.. which enter into the integrals. In general the singularities of b will be separated into
log =03 : wo sets, so two corresponding lines would emerge from t!he verfex representing Z, each of which
€npys ' nds for one set of singularities of b. We may, in fact, think in terms of particular functions » of
ase. The:g form
s. But diff )

b=(4-2)" V7B Z)y 1, (4.5)

en we may regard each of the lines with just one vertex as representing one of the two regions
Z=0,B-Z = 0. Thus the constant twistors A, B, are represented by the missing vertices at the
ds of the two lines. We call states describable by such functions (4.5) elemeniary states.

In fig. 7 the diagram representing the singularity structure for the scalar product (4.1) is de-
ted; the diagram in fig. 8 is what we have been led to for the singularity structure arising for
rproposed interaction integrals. We can make our diagrams more explicit by labelling the lines
th integers, where a single line labelled by r stands for a factor (W-Z),., . This can apply whether
not vertices appear at each end of the line, so that elementary states can be explicitly incorpo-
ed info the diagrams. For example, the scalar product between the two elementary states given

A B

Fig. 9. ‘Fig. 10.
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Fig. 11.

by aW)=W-Csy W-D)y_p1y, D(2) = (A-Z )41 (B-Z)y_y+; , namely

S P WO (WD), (W2, (42010 (B-Z),y 14 DWZ

(27'r1)5

can be explicitly expressed by the diagram of fig. 9. Similarly (restricting atfention to the electro
magnetic case only) the proposed interaction integral could be depicted by the diagram of fig. 10
the electromagnetic field being described by the function ¢(Z) = (£ 2),(F-Z),{(-Z),.

We may think of fig. 10 as describing some sort of electromagnetic vertex analogous to the one
arising in standard Feynman theory. Then we could attempt to build up the diagrams correspo
ing to simple processes such as Moller or Compton scattering, for example.

Consider Moller scattering, the standard Feynman diagram being that of fig. 11 (except that
here the electrons must be massless). We have been led to consider a twistor diagram of the sort
indicated in fig. 12 where the arms in the dotted circle are to be “summed over” or contracte
together in some other appropriate way. Because of the fact that the formula depicted diagra
matically in fig. 13 can be shown to be valid, it appears reasonable to perform our contraction
as to obtain fig. 14.

Now recall that we have employed the decomposition /7 = H* + H~ in obtaining this diagram
Were we to repeat the discussion with /™ in place of H*, we should end up with the diagram of.
fig. 15. It may seem to be plausible to associate the tw1stor diagrams of figs. 14 and 1[5 with Pl'-
cesses depicted in figs. 16a and 16b respectively, where the arrows denote helicity (in units of §
so the double arrow on the photon line occurs because the spin is 2 X ; 7. We might then lmagme
that (corresponding to H = A" + H™) the Moller scattering, fig. 11, could be expressible as the st
of two terms: fig. “16a plus 16b” or fig. “14 plus 157", However thls presupposes that it is meat
ful to express a virtual photon as a sum of two parts each of which has a well-defined helicity-
possibility is denied, in the conventional theory, owing to the fact that a virtual photon must b

at all —1
17 in rey

are gratefu
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Fig. 14. Fig. 15.

lowed to be “off the mass shell”, i.¢. to have a non-zero (and sometimes imaginary) rest-mass.
articles with non-zero rest-mass do not have a well-defined helicity. In the twistor approach, on
¢ other hand, it would be unreasonable to allow photons to have a rest-mass, since this would
0 against the basic philosophy of the theory. Nevertheless the theory could not give sensible an-
wers (for Moller scattering, for example) if it did not in some way reflect the fact which, in the
onventional formalism, is accounted for by allowing virtual photons to be off the mass shell.
his, in itself, renders it unlikely that the twistor computation of Moller scattering could be ob-
y the elsc inable as a sum of two integrals, like those represented in figs. 14 and 15, in each of which the

wm of fig. nfribution due to a virtual photon appears to be identifiable, the photon having a well-defined
- elicity?*,

Fig. 16a. Fig. 16b.

In fact this is borne out by the actual computation of the integrals for figs. 14 and 15. It turns
it that the answer in each case is simply proportional to that which it would have been, had the .
gment bearing “—1” been omitted. That is to say there is no interaction expressed by these in-
grals. On the other hand, we may envisage “‘superirnposing” the two figs. 14 and 15. The result
fig. 17 and, remarkably, the integral it expresses actually gives, as we shall see later, the correct
gular dependence for Méller scattering for massless electrons (i.e. the high energy limit for mas-
ton mus ‘¢ electrons) when the helicities of the two incoming particles are opposite (as indicated in fig,.
o ). 1t should be emphasized that at this stage there is no theoretical basis for superimposing figs.
‘and 15. On the other hand, no other reasonable way of modifying fig. 14 to obtain any scatter-
gat all — let alone the correct Méller scattering — presented itseif. The essential correctness of
- 17 in representing a single photon exchange is further substantiated by the fact that it leads

€ are grateful to B.S. DeWitt for drawing our atfention to this fact,
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naturally to a similar expression (fig. 18) which correctly gives the angular dependence for the cag
of two spin zero massless particles exchanging a photon. Here we must add the results for two dia:
grams: in the first the spinless particles have opposite “helicities” and in the second, the same
“helicity”. (It appears that, in the present theory, two separate “helicities” must be distinguishe
for a massless particle even when the spin is zero, but fo obtain the physical answer, these “helic
ties” must be summed over.) It may be remarked at this point that recent work based on the re-
sults of section 5.3 has subsequently fully justified these twistor expressions. Finally, we shall also
see later that fig. 17 leads directly to another diagram (fig. 30) which correctly gives the angular.
dependence for the high energy limit (i.e. massless particles) for Compton scattering.

4.2. Rules for diagrams

Accepting, for the moment, the correctness of fig. 17, we are led?® to suggest some additional
rules for the construction of our diagrams. First, let us insist that exactly four lines enter each
vertex. In order to depict the scalar product (cf. fig. 7), we shall then require a double line for the
internal segment. We adopt the convention that a single integer is to be attached to the double -
line as a whole. The line then stands for the factor (W,Z%),,,, where the twistors W, and Z* cor:
respond to the vertices at the two ends of the line and r the integer attached to it. Similarly we
shall occasionally need to use a triple line in a diagram, standing for the factor (W, Z9),, 5. For
completeness, a quadruple line standing for (W Z¢),,, will also be allowed, but because of the -
rule that just four lines can terminate at each vertex, such lines must be disconnected from any
other portions of the diagram. (Thus they would appear, if anything, to stand for disconnected
vacuum processes.) In fact we must have r = 0 in this case because, in order for a diagram, con-
structed according to the above rules, to represent an integral which is homogeneous of degree -
zero (necessary if the integral is to be a genuine contour integral, invariant under continuous d
formations of the contour), then we must require that: the sum of the integers on all lines enl
a given vertex is zero. The notation for the diagrams is summarized in fig. 19.

The diagram for the scalar product can now be drawn as in fig. 20. Here the in- and 0ut-state$
are explicitly expressed as the elementary states defined by (W, A% ) ( WﬁBﬁ }ory and (CD,ZC‘)l(D-g.Z
respectively. These elementary states have particular interest in that the fields are everywhere nul
see section 2.3. If n =4 and A%, C,, are null twistors then they are linearized Robinson—Trautmat
null waves [31] of a particular kind, having wavefronts which are null cones with vertices on th
null line A. If A and B are both at infinity we have a constant plane wave, while if A alone isatit

. s . . a: thase
26There are also some topological reasons, concerning the contour surfaces, for preferring diagrams constructed according 10 1%

rules. They are not conclusive, however.
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O: Ucr.:v&y ch.s etec.
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o: X%Y%Z°% ete o—te: (W2,

A-te: (A 7% =g : (W2,

Bo: [B*W,), . o=t : (V627

nity we have a plane wave of non-constant amplitude. In all these particular cases the fields pos-
ss singularities (possibly only at infinity); but if we require that in the C-picture the line AB or

N D lie entirely in C* [resp. C”} then we shall have a nowhere singular field which has positive
esp. negative| frequency (cf. section 2.3), cf. [4].

‘However, we shall not always want to represent our in- and out-states as elementary states. For
ore general situations (e.g. plane sinusoidal waves) it ceases to be useful to label the singularity

ts of az), ..... by two different integers; only their sum (= twice the spin) has significance. For

is reason, we shall frequently represent an in- or out-state by one double external line, to which
e attach merely a single integer n (this being twice the spin of the field). In fig. 21 we have drawn
¢ scalar product according to these conventions. We should keep in mind, however, that the

atus of the internal double line (marked —#) is really rather different from that of the external
yuble lines. The meaning of internal double lines has to do with the topological set-up with regard
-the contours. Roughly speaking, we have to surround each singularity denoted by a single line
yan S' (topological circle), each singularity denoted by an internal double line by an $* (topo-
gical 3-sphere) and each singularity denoted by an internal triple line by an S°, taking the appro-
iate (twisted?) topological product. Then, in effect, to get the dimension up or down to the re-
ired value for the contour (i.e. to 3v real dimensions, where v is the number of vertices) we must
1 from ‘ait nultiply” or “divide™ by the appropriate number of S'’s. (This means that for the gquadruple line
 integrate over a €P® = §7/81))

It appears to be consistent to regard a double line as a pair of single lines collapsed together in a
rtain sense. The equation represented by fig. 22 is in fact valid provided we interpret the two
parated lines which join the same two vertices (on the left-hand side of the equation) in an appro-
izte way. We cannot simply adopt the product of factors (W Z%), _, (WﬁZﬁ)bel in the integral,

te the contour is supposed to pass “between” the singularity represented by each factor. Since

n fa-b-c c g-b- A c b
__{-1)*'ps ~ -a b =
rtices on " = G-nitbei-ayy || P20) b= |b k30
. alone is g-B-c
i n a-b-c ¢ a-b-c b ¢

_according:
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Fig. 25.

the two factors here have the same singularity (namely W, Z% = 0) it is clearly impossible for the
contour to pass between them. However we can invoke the relation expressed in fig. 23 in order
to “free” these singularities from one another. The meaning of the left-hand side of fig. 22 is then
expressed in fig. 24, for which a perfectly well-defined contour does exist. We should finally re-
mark that in order fo get the numerical factors simple in these expressions?” it is convenient to :
adopt a suitable multiplying factor before the integral representing each diagram. We shall take
this factor to be (2xi) ™ *Y*" where v is the number of vertices and r is the number of extra lines -
which have to be drawn which make the multiple lines multiple (i.e. the smallest number of lines
which must be erased so that no multiple lines remain). Thus the integral for the right-hand side
of fig. 22 will be preceded by the factor (27i)®, that for the left-hand side of fig. 23 by (2mi)™*,
and that for the right-hand side of fig. 24 by (27i)™'°.

Fig. 26. Fig. 27.

It is worth remarking here on a curious way of interpreting the electromagnetic interaction €
pressed in fig. 17. Let us imagine two charged zero-mass spin + particles of positive helicity comin
together. If each particle emerges without having interacted, then the twistor diagram is that de—_
picted at the far left in fig. 25, namely two scalar product diagrams multiplied together. Accor_d_i
to fig. 22, we can re-express the situation by the diagram in the centre of fig. 25. Still there is N0
interaction. But if we imagine that the two lines marked “—1” are subject to some form of Fer
(or Bose) statistics, then we must expect to have-to add or subtract a contribution in which the
lines marked “—1” cross over — as depicted at the extreme right of fig. 25. But this resulting fig-
ure is just that which we have used, in fig. 17, to denote a single photon exchange between the -
two particles (except that the photon lines are now depicted as crossing over — simply because
the helicities of the two incoming particles have been chosen to be the same, rather than OPPOS1
Thus, the twistor formalism seems to be suggesting that the electromagnetic interaction may be.
some form of manifestation of Fermi (?) statistics as applied to the individual twistor scalar pr
duct lines which occur in the diagrams.

*"We are grateful to A. Qadir for evaluating several of these integrals in detail {32].
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It

Fig. 28.
ble for th
3 in orde The integers which occur on the lines in the twistor diagrams may be interpreted as denoting
3. 22 is th elicity. Thus the integer » appearing on a line indicates that a helicity ;7 is proceeding from the
finally re lack vertex to the white vertex which terminate the line. The fact that the integers on all the-
snient to nes terminating at any one vertex must sum to zero gives us a kelicity conservation law for dia-
thall take ams constructed in this way: the total helicity entering the diagram must equal the total helicity
<tra lines aving it. In fig. 26 the helicities involved in the photon exchange of fig. 17 are indicated. Note
ber of lis at the exchanged photon is represented by two disconnected lines, the indicated helicities being

pposite. It appears to be a characteristic feature of the twistor theory that particles are represented
y pairs of twistor scalar product lines, In the case of a free photon entering and leaving without
teraction, we can represent the scalar product diagram in either of the ways indicated in fig. 27.
bserve that when the two central lines are separated, the helicities proceed in the same direction,
ther than in the opposite direction as appears to be the case for a virtual photon exchange. In

¢ photon exchange, the two segments bearing *“— 1 may, perhaps, be thought of as the “same”
ype of segment as those into which the free photon appears to split in the right-hand diagram of

g. 27. The difference is that in the photon exchange, the lines have become quite disconnected,

ith the helicities working in opposition rather than together. Thus, the virtual photon, as a whole,
oes not have (as it should not have) a well-defined helicity.

In this theory we may think of the twistor situation depicted in fig. 28 as playing the part of

e Feynman vertex of the conventional theory. However, here the photon line is split into two
parate parts which cannot by themselves be assembled to yield a single external photon line.

is seems to reflect the fact that a single Feynman vertex represents a virtual process. But how,

en, are we to represent real processes built up from several Feynman vertices in which external
hoton lines may be present? Let us consider the simplest case, namely Compton scattering. We

ay attempt to make the correspondence indicated in fig. 29. The external photon lines are not
tassembled correctly, however, since we need to produce double lines numbered “+2” to re-
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Fig. 30. Fig. 31.

present external photons. It becomes clear that to achieve this according to the rules for the
twistor diagrams we must assemble each external photon using one twistor line from each
“Feynman vertex”. The result is given in fig. 30. Note that the two photons attach themselves to
the electron in a way which does not allow one to say that one interaction occurred completel
“before” the other one. Thus, instead of simply describing the Feynman diagram in fig. 29, we ¢
must think of fig, 30 as describing the complete process indicated in fig. 31, except that we have:
singled out a particular helicity state for the photon as well as for the (massless) electron, (Of
course, in the conventional formalism, these two diagrams must be added in any case, in order to
obtain a meaningful answer.) Remarkably enough, computation of the twistor integral of fig. 30
does in fact yield the correct angular dependence for Compton scattering of massless (i.e. high
energy limit) electrons.

4.3, Evaluation of diagrams using elementary states

So far we have not attempted to compute any of the twistor integrals. Not surprisingly these
computations can be difficult to perform. The integrals are taken over manifolds (which are the
selves not always easy to locate) of rather large dimension. Also, twistor diagrams involve “close_d--
loops™ even for the simplest processes where the conventional formalism yields “trees”. It often:
turns out that indirect methods of evaluating the integrals must be used if the computations ar
not to get out of hand. But let us just start by evaluating a few very simple twistor diagrams, Wit
out regard to the question of physical meaningfulness. The first diagram we shall evaluate is that
of fig. 32. However, before doing so we shall introduce some pictorial notation which will help .
keep track of the contractions and skewing of the twistors involved in the integrals (cf. [17). TH
is as follows:

4

stands for W A%

P stands for exfvd T | for €4 H for 23,2"‘6’;] . H_L for 65%6567
' ' [ ' '
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C
5]
/ b 2] g a8
A
\ Fig. 32.
A B ABC
H. stands for 24 8,C14D#1, for 64,B,C, DI*EFT], ete.
c D D EF
w
;
ote that TTTT = .|_.|_L.= — H_*_\_, Z — 6 ete
"I/ Z

s an example consider fig. 32. The relevant contour integral is

W dWA dW AdW

195%J_l_1_L
!

W oW W
L
5 ¢ D

54 4 w W
=q, =4, =7, = 1. Then
A B C D
i] IW dwW A dWA dw 1 W oodawadwndw
! oW =— = L1
6 STTTT I 1 1 |
AEBCD A B C D
dw W di dw dw
=d :da’ :dﬁ’ :d-yj =d(1)=0
A A B C D
68146857
oW = _doz/\dﬁf\dy

ABCD
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(4.6)

(4.7)
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1 da/\dﬁ/\d'y_ i

[ = _
! (2mi)?

1T ]
ABCD

.{Altern
luct of S

does nc
S,, wher

the value of fig. 33 with respect to C* and selecting the coefficient of D in the answer (as can
seen from an integration by parts of the integrand of fig. 34). The value of fig. 34 is thus

B F

By combining these processes we can evaluate any tree diagram with single external lines, which
has non-negative integers on its external lines.
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- For fig. 35 we have

1 PWX
I, = 4.
S (e v
AB ‘X' X X

where the contour integration is made up of four 8! integrals and one $? integral taken in succes-
sion. (Alternatively the surface of integration can involve an $* explicitly, this being a twisted
product of 8! with S*.) Assume that in the C-picture the line of intersection of the two planes,

G, H does not meet the line AB (otherwise /, becomes infinite). Choose auxiliary twistors P*, 0%,
Ry S, where for simplicity, R and 8 are general planes through AB, and P=Gn HnN §,

Q=G Hn R. Then, normalizing appropriately, we have

R RR S § S G H G H R 8

P=l=]=]l=|l=|=[=1=]=]=0, f=1=1. (4.12)
A B O A B P P QO 0 P Q

W W W W G H R A
l=ea, | =8 l=4, |=x, |=v I=n, |=p, |=0
A B P 0 x "x T x U x
he 8% integration involves the variables ¥, x, p, o given by
Y =e" cosis, X =sin 16, p=e ¥ cosif, o = sin 6.

Since ¥, X, p, 0 involve only two independent varables, the wedge product of more than two
f thern must vanish. It follows that

1

GH RSY

WX = H—H- dan dB A ($dx — xd¥) A dy A dg A (pdo — odp)
AB PO
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CH RS

36 ¢.4|1B PO

] =
(s

da A df A (Ydx — xdy) A dy A dn A (pdo — edp)

afyn s GH RS\::
;f .
W

-
AB PQ

(pdx — xd¥) A (pdo — odp) _ /ﬁ\” & (Wdx — xd¥) A (pdo — odp)
2 (pY + ox)*

R S
+—— A B

7
— ]
B 27

W |
W W A

since the part of independent of @ = | is —} _}_ , etc., and where (4.12) has
B PO

ABPO A
been made use of. Finally, integrating over the spherical polar variables § and ¢, we obfain

G H \'1
Fig. 36 provides a somewhat more complicated example. We have

OWXYZ 1 $
e
F zZ zZZ

Y
|
X Z

1111
||
ABXX
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1 gs PYZ 1 Sﬁ Dz
(27i)¢ YYYGH (270
] T cn vy [T e TT] GH
ZAB A4 B | EF , ‘
) EFZz7zZ
Z zZ zz
rite
[T coTTT]
= 4B )| | EF |
Introduce auxiliary twistors R a3, and put
G H R S
l=v, |=7%, |=p, |=1.
Z Z Z VA
hen
GHRS
1 Dz 36 —dy A dn A dp
=5 55 = (i 95
£2mi) ¢ H {(27i) GHR S GHRS |
{ i { ¥
z Z
z zZZZ
GH RS GHRS
_995 dn'a dp H'—W]gﬁ do | ! {
" (27i)? HRS HRS 27 RS RS
| | '—l'
Z z z Z
¢ : ¢af 194

Taking the contour to pass between the two zeros of the quadratic expression in the denominator

¥e obtain, after some manipulation,

Is =2ab +2bc+ 2ca — a®> — b? — ¢2)i2
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:
]

F

G cD GH

-

i A B ABEF

it can be shown that fig. 37 leads to a value

Iy (1 + T) 1.
Then, one has for fig. 38 (high energy limit of Moller scattering in terms of elementary states)
82 82
= —=  e— f& A
8D*oF, 8B oH"

4.4, Momentum state diagrams
Finally we want to consider states, which are momentum eigenstates, represented by

exp(K-Z/B-Z)

(4-. '
(AZYB Zy"!

f 4=
where A and B are generators of the null cone at infinity and K a null line meeting A. Moment
states are needed in order to obtain direct comparisons with the usual results of quantum mec

ics, since elementary states are difficult to interpret. (4.18) represents a circularly polarised pl
wave in the direction of A. We have®®

]
so(Y, 2) = 5 $ fOZ + Yydk

_ (A4-ZY' exp({AK:P[AB:P)
(AB:P)**!

**Where 48P = AO{BﬁPo‘ﬁ.
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nd Pop (i.e. x22') represents the point of intersection of ¥ and Z.2° We have Iy = A By — AgB,
nd i€ 4, =(0, k%), B, = (0, 7%), K, = (R, , 0) and e/ = k#'r8 _ (#'r" (¢ 14" = 1), The field
aull, with principal null direction that of A, as A-Z gives a simple pole. AK:P = —iitg gl Q =
ik,x% and

¢o(Y, Z) = (k*'m ;) exp(—ik“x,)
A B L = AL exp(—ik,x9).

For Maxwell fields this expression was given in section 1.2.)
Now we wish to evaluate figs. 17 and 30 using momentum states. In this case the contours will
o longer be well-defined as they become pinched. We expect, and find, a §-function singularity.
o calculate the scatterings given by figs. 17 and 30, i.e. to find the coefficient of the §-function,
e can proceed formally by making use of the operators
i} 1*¥ 3/0ZF. This acts on f, to give

Ja K3 r ZI"ﬁKﬁ exp(K-Z/B-Z)
0ZF " (B-Z) (A-Z)(B-Z)"*!

A% exp(K-Z/B-7)

“BD @Gz A e (429
ce I*94 = [*#B, = 0.
ii) 1,528 . This yields
| L6Z8F, = {A(B,ZP) — B (429} f,
= A (B 7R, in integrals,
=A.f, . (4.21)

his is because gﬁ fn(A-Z)DZ = 0, since the contour separates the singularities of 4 and B and multi-
ication by (A4-Z) enables us to contract the contour through what was formerly the singularity
eto (4-Z2)°°'.

iii) Z*P af, /0ZY . This is represented by

o a -
(Z“]‘BT;ZT+ ya a_Y_“f) oY, Z) = A, P53, (4.22)
L L AC 2B -B . = | =B
. (—mc.x i ‘ K40 ) = (.-c aqao/ach[ £ KA;(i)g) - 4.23)
0 |0 C | O

pplying operator iii) and its dual version to two connected vertices and coniracting over o, we

the effect is to multiply the numerator of the integrand by (W Z) changing (W-Z), to —a(W-2), _,.
ow we want to evaluate the cross-sections arising from diagrams of the form of fig, 39a, which
bbreviate to fig. 39b. Here the states are labelled by the spinors k4, p4, ¢4, 74 corresponding

e momentum vectors: '

t ¢, , the null-datum on the null cone at infinity, represents the full field, is proved in [11, 33] ; see also the discussion in [21]
cerning such waves and their representation.
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Fig. 3%, Fig. 39b.

K= gAA, P = pApd s =glgd rpm—

Using operator i) and integrating by parts we find
d d

¢ =714 a+l

C :ﬁ(ﬂ)a
TP

b b

Using this formula we find we need only evaluate one of the box diagrams.
Now, let us consider (say) the case when k2 and s are incoming and define

6§ =6(kik — pp + 00 — 77) = 6(k2 — 12 +52 — 2),
Define the relation =~ by
O~ 88=y85,
ie. “# =~ " means & —  vanishes whenever k% + 5% =¢* + *. Then
w: = —Rp/Tp~ —Tolk0 !
B:=—071/pr~ —pKrloK

A= —ikT/pT~ —pojko

pi=—0plTp~ —TKlOK=

The variables «, 8, A, u are related to the Mandelstam variables s, £, # used in quantum mech
scattering calculations. The extra information conveyed by the extra variable relates to the phas
(in its connection with the spin). :
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Now if
0
0 Q=25
0
en
d
a ¢ = a*BONus. (4.26)
b
. 0
(4. .\ )
To prove the supposition here, we apply (4.22,4.23) to 0 0 =xand find
0
T4 XK, + K, 3X/0T,. =0, etc. ' 4.27)
0
( _ .
Hence O 0 is a function of (kk — pp + 06 — 77) alone and it must be the 5-func-
0
n to ensure conservation of momentum.
To cope with diagrams of the form is not so simple. We can set up a
eries of relations such as
up 1 up 1
I I
7 upl —T down | =p down [ —K
| il I
up 1 up 1
nd differential operator relations analogous to (4.20)--(4.23) and eventually eliminate to derive a
$oluble} differential equation. The result is
m mechan
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_aaeﬁb-‘\clud{;( a )(b

Ftel \r

o (5 REIET )

where “; is the usual binomial coefficient.

To find the differential cross-sections from these amplitudes we must take the squares of thei
moduli. We may verity that

_ 9 ~ y
&= oy A=,
a'f —ANu An —a'B
lel2 = 1812 =~ 1 — A1 = 1 — iul?,
The quantities
il =k 1/t N2 =k, 1r 1P, ete.

can be expressed directly in terms of the scattering angle. Explicitly we have (taking the momenty
conservation relation to hold)

lal =181=C, A= lul=S

provided &% and s* are incoming (with &% — *, s* = ), or else if #* and #* are incoming ({* -
# — %), where we have set

— 1 — ai A
C=cos 30, S=sin;0,

the scattering angle # being measured in the centre-of-mass frame. _
Taking account of the modifications that are required when other pairs of states are the in- .
coming ones, we have: :

ol = 181=1/C, = lul=S/C
if k4 and ¥ are incoming (k% - 12, r® — §%) or else 5% and #¢ are incoming (s% — #*, 14 -~ k%); of

! = 181 = /S, A= lul=1/8

if k% and #* are incoming (k% - 5%, % = r*), or else ¥* and s? are incoming (% — %, s* -» k). (Su
manifestations of crossing symmetry must arise automatically in this theory owing to the anal
of the operations involved.) ;

Let us consider the high energy limit of Méller scattering (fig. 11). We represent time as pro
ceeding up the page in our diagrams. Thus we have
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-1 —1
0 0 and 0 % 0
—1 —1

0
0 and -1 -1
0

the helicities are the same. Because of Fermi—Dirac statistics applying when the heljcities are
€ same we must combine these last two amplitudes coherently, i.e. subtract them from one
mother — or else add them (since a sign uncertainty arises here owing to the lack of a definite
ule, as yet, for choosing the contour orientations) — before taking the squares of their moduli.
umming (incoherently) over the different helicities. we get, for unpolarized electrons

~1 : ~1 ? 2
J,
0 0 + + o1 -1
0\ l H
~1 —1

SRR

r the differential cross-section (ignoring possible overall factors and taking the plus sign so as to
gree with the correct answer [48]1).

The calculation for Compton scattering (or equivalently, by crossing symmetry, for pair anni-
lation) is similar, where we use

1g (¢ - K

0 —1

: the }..}'l‘: ~1 l —1 = }l_l (016 — r\gu)v1 5.

—1 0

e comparison for pair annihilation is as follows:

dgreement (ignoring an overall factor) with the standard result [48].
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5. Further developments

In this section some of the later developments in twistor theory, which have evolved since th
lecture course in 1970, will be outlined. These developments are still in progress and it will not
be appropriate to go into them in full detail, but the main ideas will be discussed.

5.1. Asymprtotic twistors

Recall the definition of a null global twistor Z% in curved space-time, given in section 3.2, as
null geodesic Z along which a spinor 7. is defined, the flagpole direction of 7 ,. being everywhere
tangent to the null geodesic and 7,. being propagated parallely along it. The basic difficulty with:
this is that we have too little structure; all we obtain is a symplectic structure, and non-null '
twistors are not even defined. There is no complex structure, essential if contour integrals are t
have a meaning; and the basic ingredient of the contour integrals we have been considering, name]
the twistor scalar product, is also missing. However, if our intention is fo employ such concepts
the construction of an S-matrix theory applicable to curved space-times, the situation is consider-
ably more encouraging. For then we can reasonably restrict attention to space-times which are, in
the appropriate sense, asymptotically flat. We shall assume, also, that the Einstein vacuum or
Einstein-Maxwell equations (without cosmological term) hold at large distances. Then each null
geodesic starts out from a region, remote from massive sources, where the space-time is flat enough
that additional twistor structure of the type required can be assigned — and likewise it ends up in’:
such a region. It turns out that the normal assumptions of asymptotic flatness are just sufficient
that non-null twistors, a complex structure, and a form of scalar product can all be defined. How-
ever, enough residual space-time curvature is still present at infinity to give a twistor space struc-
ture essentially different from that of Minkowski space-time. In effect, the twistor space becomes
curved (as a Kahler manifold). :

To carry out a detailed discussion, we shall require the picture of conformal infinity appropriate:
to an asymptotically flat space-time M. For details, see [2, 4, 4]1]. We have already considered
compactified Minkowski space in section 1.1. The essential new feature in the case of an asymp
totically flat space is that past null infinity and future null infinity cannot be usefully identified
with each other. By introducing a convenient conformal factor which falls off suitably towards
null infinity, we obtain a new metric 8., = §2%g,, which remains finite and smooth along the .
two adjoined bounding null hypersurfaces I, representing past null infinity, and 17, representmg
future null infinity. The picture is that of fig. 1 but without the identification.

In a scattering problem, the data specifying the in-states (assumed zero rest-mass) would be
given on I~ and those specifying the out-states on I*. Each point of T~ is the vertex of a light cone.
whose generators, namely the null geodesics through that point, would describe a null hypersurfact
in M which is asymptotically plane in the past. This hypersurface could therefore be thought of
a constant phase hypersurface of an incoming asymptotic plane wave. (Ignore dispersion effeCftS)
Similarly, each point of I* may be associated with a constant phase hypersurface of an outgong:
asymptotic plane wave. o

Every null geodesic in M acquires a past end-point on I~ and a future end-point on I* (tak-lng_;
“asymptotic simplicity” [2, 4], as a necessary condition for asymptotic flatness); also there 152
nuli geodesic on T* through each point on I* — since I*, being null hypersurfaces, are pgenerate
by null geodesics. The different points of one generator of T~ represent the diiferent constant
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phase hypersurfaces of the same incoming asymptotic plane wave; similarly, the points of a gener-
- gtor of I7 represent the various phase hypersurfaces of one outgoing asymptotic plane wave. Each
- generator of T~ can be shown to be naturally associated with a corresponding “opposite” genera-
:tor of 1%, That is, each incoming null direction defines a unique “‘undeflected” outgoing null di-
_rection. For a given null geodesic in i, the incoming and outgoing directions will in general be dif-
- ferent (i.e. “deflection’’ occurs). There appears to be no natural association of an individual point
of I with some uniquely corresponding point of T*. This means that we have no natural meaning
-for the phase shift between ingoing and outgoing asymptotically plane waves even when their di-
“rections agree.
. Not only is the relation between I~ and I* different, for an asymptotically flat space, from the
situation for Minkowski space, but the structure of each of 1" and T* contains information about

the asymptotic gravitational field. It turns out that the Weyl tensor C,, ., or equivalently the spinor®®

¥, 5cp must vanish on I*. But the quantity Kipea =807 C,,., (equivalently ¢ anep = SETW ,p0n)
does not (cf. (1.27)) in general. The component ¥, := b ancptHBEL in fact measures the gravita-
-tional radiation field, incoming if on T~ and outgoing if on I*, where ¢* points along the genera-
‘tors of T%. W2 is the derivative along generators of 7* of the Bondi—Sachs news function N, whose
acuum or . ssquared modulus NN may be taken to represent the energy-flux of gravitational radiation across 1%.
en each null -The quantity V governs the rate of change, along the generators of 1%, of the asymptotic shear ¢°
1e is flat enough. . of (Bondi-type) systems of advanced or retarded time hypersurfaces.

zitendsupi ~ We shall next define the space C of asymptotic twistors, In fact there are two such spaces de-

1st sufficient pending upon whether we use 1~ or I* on which to define things. For definiteness, let us choose
defined. How: I*, but we must bear in mind that a parallel discussion in terms of I~ can also be given, (For a

r space struc- retarded gravitational field we would expect to obtain a less interesting structure for T~ than for
I*, however.) Consider local twistors (w?, 7 ) (el section 3.1) defined at points of I*. We might

think that since the conformal (Weyl) curvature vanishes at every point of I*, we could use local
‘twistor transport, i.e.

ved since the
1 it will not

tion 3.2, as g
ng everywhere
ifficulty with-:
10n-null 3
tegrals are to
idering, namé_ly
ch conceptsi
o1 is consider:
s which are,

ity appropriate
considered
of an asymp-
lly identified
bly towards
along the
*, representin

by (A = _j A b - BB ,C
1V, @t = -8, PPV, T =—1Ppop 178 0 (5.1)

(ef. (3.8)), to carry the local twistor (w, 7 4-) along a curve on I* with tangent vector 2 and
hence obtain an integrable equivalence between local twistors at different points on T*. This would
lead to a single twistor space for the whole of I*. Unfortunately, things are not as simple as this
since the commutator of local twistor derivatives involves the derivative of the Weyl conformal
spinor (in fact the quantity V4,4 arcn Sf- (3.11)) and this does #ot vanish on I*, in general. Thus,
if(w?, 7 4+) 18 carried by local twistor transport from one point of I* to another over two differ-
ent routes each lying on I*, then we must expect that in general unequal results will be obtained.

We must therefore proceed somewhat differently. Let us consider local twistors on 1* which
have a spinor representation of the form

ull hypersutf_
> thought of
rsion effects:

[ an outgoing (&t 7y0) (5.2)

I (taki:flg' Where a particular selection of the spinor ¢* at each point (with flagpole poinﬁng- along the
m

lso there is @
are genera’_feii
1t constant

?"Strictly speaking, these should be denoted (f‘a peg and i/ ABCD: Tespectively, since they refer to the metric §a pandnotg, ..
However, we shall, for convenience, drop all

“hats” in this section, it being assumed that the metric E,p is being always referred
- fo.
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generator of I* through the point) is made. We can use local twistor transport along generators of.
1* to equate local twistors of this form at different points on the same generator. (The form (5,2
is preserved by (5.1), if we propagate along generators (% = t*); also no problems from non-in
tegrability can arise since the generators arc one- dlmenswnal sm]ply -connected lines.) Thus, asso-
ciated with every generator of 1™ we have a 3-complex-dimensional vector space, parameterized at
any one point of the generator by £ and the two components of 7 .. The generators of T* them-.
selves can be labelled by one further complex parameter §. Thus we can assemble a 4-complex- di

mensional manifold of quantities of this kind. This is the ““blown-up” manifoid of (future) asym
totic twistors.

We shall give some structure to this manifold shortly. For the moment, let us explain how this
picture arises, a little more fully. Consider an ordinary global null twistor Z% (cf. (3.2)) in M. T
null geodesic Z which it defines intersects I* at a single point P, say. We have 7 . parallelly prop-
agated along Z with respect to both the physical and conformally rescaled metrics (as follows
from (1.19a) since #4n'V , .. defines propagation along Z). Thus we can define 7, at P as well
at finite points of Z. Furthermore, knowledge of the point P on I* and of 7, at P will be suffi-,
cient to determine the twistor Z%. Let us label Z% by the local twistor (0, w,.) at P.

This is of the form (5.2} at P, so local twistor transport along the generator v of I* through
P, to a point Q, yields another local twistor of the form (¢!, 7). Knowing this local twistor at.
Q we can locate P simply by finding the point at which £ is reduced to zero. The 7. at that poin
enables us to locate the global twistor Z. Of course not every (5%, 7, at Q yields a point P at
which £ is reduced to zero, since £ is complex and we have one real dimension of points on y. The:
condition that P does exist, assuming that m,. is not proportional to t,., is that the local twistor,
(&4, m,.) be null, ie.

Re(§m;) =0

where 7y =7 .t Note that 727, is preserved under local twistor transport.
If u is a parameter asssociated w1th the tangent vectfor L A toy (le. Vi =4t VAA, = d/du
when applied to scalar functions on ) and if we choose t* to be parallelly propagated along ¥

(ie. V0B = 0) then (5.1) with ## =1 ¢?’ gives
difdu = —imyr.

It is convenient to choose the conformal factor €2 so that the divergence of the generators of T

vanishes. The shear of T* necessarily also vanishes [4]. The generators of I* then become par aﬂ?
to one another, in the sense that every cross-section of 1% (a spacelike 2-surface) has the same =

metric (induced by £,,) as every other. Under these circumstances it can be shown [4, 42] tha

&

= B A B _—
Plll’A'._'PBAB.ArL e _O

Then, from (5.1) we obtain
Vi = —iPyraE=0
and, in particular,

d‘fry/db& =
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:nerator .of prom this and (5.4) we obtain the formula,
u(P) = w(Q) — ig/myr (5.8)

for the location of P in terms of that of Q and the value (§¢4, 7,.) at Q. If (5.2) is not satisfied, then
this formula would give us a complex value of ¥ on . Thus we may think of the non-null twistors
s intersecting 1° in points with complex u coordinates. That is, they intersect the “complexified”
7+. This point of view will be developed further shortly.

Now consider what happens when 7. is proportional®! tot,., i.e. when m,» = 0. We have, at each
soint of 7y, a local twistor of the form

(&, ney), (5.9)

where £ and n are constant all along . It is worth examining the meaning of such a quantity in the
pase of Minkowski space. Here T* may be viewed as a light cone with a vertex, namely 7. A local

I twistor (&, 7 ..} at Q, which approaches the form (£t# . Mty) at Q in the limit, represents a
global twistor Z* where P = Z " vy approaches [ in the limit (see (5.8): the value u(P) approaches
voo). Thus, (817, ne,.) at Q represents some null twistor Z% whose null line passes through /. But
could represent this same null twistor Z* equally well using any other generator of T*, In par-
ficular, since Z itself now becomes a generator, we may use local twistors along Z to describe Z2,
se having the particular form

(0, nty.). (5.10)

Qur description of Minkowski space twistors in terms of T* thus entails a further identification to
made whenever the local twistors we use take the form (5.9). Such an identification can, in fact,
carried out for asymptotically flat space-times (although it may not always be desirable to do so).
w then do we carry out such an identification in general? There are various equivalent ways of
ieving this, but they all amount to the following. Specialize the choice of a conformal factor

ther so that the generators of T* are not only parallel but so that in addition. the cross-sections

I* are all spheres. (This can be done [41].) Then use a form of modified local twistor transport
which the parts of P, .o of the form

PllA'B' and PAB['I" (5.11)
formally put equal to zero while those of the form
Piaiar, Paiirar, Pigan, Pyiav : (5.12)

retained. (There is no inconsistency between these requirements because of (5.5).) When ap-

ed to local twistors of the form (5.9) this transport turns out to be integrable, so the required
tivalence relation between quantities (5.9) at the various points of I* may thereby be achieved.
¢ resulting equivalence classes are called asympiotic twistors entirely on 1*. The equivalence

sses defined earlier for local twistors on I* of the form (5.2) which are not of the form (5.9),
the (future) asymptotic twistors not entirely on I*. The (future) asymptotic twistors are simply
quantities of one or other of these kinds.

ere is no invariant significance in the further specialization to 7 4" = 0 since, assuming £ # 0, this condition is not invariant un-
T conformal rescaling, of. (3.1) even when the rescaling factor is chosen constant along generators of T+
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The above procedure may seem to the reader to be artificial. However, this is not really so. We
may think of it in another way. We may assume that the gravitational radiation emitted (or trang
mitted) is of an effectively finite duration, that is to say that it falls off appropriately to zero wh
the absolute value of u is large. Now the quantities (5.11) describe, in effect, the Bondi—Sachs
news function NV (and V) and so must be expected to approach zero for large il. The quantities
(5.12) are, on the other hand, constant along the generators of I* (and are, in fact, constant muy]
tiples of ¢, t,., over the whole of I7). In effect, we may think of the modified local twistor trans:
port as being the limit as [ul - = of ordinary local twistor transport on I*. In the limit, this local
twistor transport becomes integrable for the quantities (5.9).

It is worth remarking, also, that there is a limiting case of our above construction in which thing
can be seen a little more simply. This is o make a choice of Q in which the cross-sections of 1+
are planes and to send one of the generators of 1™ effectively “back to infinity™. With this chozc
of § it is possible to scale t* so that it is constant over the whole of T*. In fact, we can arrange

B =0Q.

Vot

We also have

Plig =Nty

with this choice of £, and the quantities (5.12) all vanish. Such a choice of £ and ! is a very co
venient one for calculations on I* (cf. [42, 43]). Recall also that ¥ ., = 0 on I, so very few
curvature components survive on I*, the complex quantity V being the most &gmﬁcant one. To
construct our equivalence relation between local twistors of the form (5.9), we can proceed by
making such a choice of £, so that at one point Q € I* a given local twistor is reduced to the form.
(¢4, 0). There is still just enough freedom in £ for this, provided that £ # 0. Then the other loc
twistors equivalent to this one are the ones also of this form (£¢, 0), where £ is constant through
out I*. The null line represented by the resulting asymptotic twistor is then the generator of |
which is sent back to infinity with this choice of £2.

In the case of Minkowski space, the asymptotic twistors which are entirely on I are those _
(apart from the zero twistor) whose representations in the C-picture are as points of the line L. If:
we do not carry ouf the identification, over the whole of 1*, between local twistors of the form
(5.9), but use only the previous identification given by local twistor transport along generators
(which applied also to (5.2)), then we obtain a blown-up asymptotic twistor entirely on I*. This
terminology comes from the name of a procedure sometimes applied in algebraic geometry in W
a certain set of points may, in an algebraic fashion, be replaced by another set of higher dimen- :
sionality. In this case, I is “blown-up” to become a quadric surface, each point of which repres
not only a point of 1 but also a plane through I.

Asymptotic twistor space may be viewed as a fibre bundle of, roughly speaking, spin-space 0"
spin-space (actually over the dual complex conjugate spin-space). This generalizes the situation
Minkowski space-time, where, referred to an ordmary Minkowski metric and origin, a twistor z
may be represented as (w?, 7). The base space is the space of 7 ;. (namely the dual conjugate
spin-space). The fibre over each fixed 7 ,, is the space of w* (spin-space). This bundle structure .
is Poincaré (but not conformally) invariant. There is no Poincaré invariant cross-section, but the:
(Poincaré invariant) projection to the base is given by
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1y so. W. (w, w7y (5.15)
A A

0 ZEro w here is just one Poincaré invariant injection of spin-space into the bundle as a fibre, namely the
bre over w,, = 0:

= (w?, 0). (5.16)
his gives us a short exact sequence
0-81->T7T*-58,->0 (5.17)

which th here the letters § and T represent spin-space and twistor-space, respectively, of the type indi-
ated by the indices. Taking the dual spaces we get

0« S, < T,+« 84«0 (5.18)

his exact sequence is actually also the complex conjugate of (5.17). All this structure persists®?

lso for asymptotic twistors. To see this, we must identify the required spin-space — asymptotic
in-space — for an asymptotically flat space-time. This may be done in terms of a double covering
f the cotangent bundle of the space of generators of I*. Equivalent, but more convenient for our
resent purposes, is to use the space of asymptotic twistors which are entirely on 1*. Since we have
nequivalence relation over the whole of I*, we can add two such asymptoftic twistors simply by
dding the corresponding local twistors at some given point Q of I*. The result is independent of
.We can likewise multiply such asymptotic twistors by scalars and derive a two- -complex-dimen-
onal vector space structure. The two complex quantities £, n serve as components, where (ki Ny
_to the fo the local twistor repr esentatlon at 9 We can define the required (skew-symmetrical) spinor

calar product between (E n) and (% 1) to be

12 12
i&n — int (5.19)
rovided ¢ is scaled so that
e those
e line I VS ==t (5.20)

n I°. (Eq. (5 20) is in fact consistent with our other assumptions.) The defintion (5. ]9) turns out
 be independent of Q and of the choice of £ (because the scaling (5.20) implies that !¢, is in-
ependent of £2). This invariant skew scalar product completes the definition of the structure of
ymptotic spin-space. The definition does in fact agree with the ordinary spm-space structare for
inkowski space.

Since we have defined asymptotic spin-space as a subspace of asymptotic twistor space, the in-
fon (5.16) is established (as an inclusion) for asymptotically flat space-time. Now examine the

n-8pace rojection (5.15). This can be re-expressed

(w*, 7,00 (0,71 (5.21)

here the expression on the right refers to a twistor of valence [9] and is obtained by

EXCept that the interpretation of the complex conjugate of asymptotic twistor space as being also its dual space may nat be valid.
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2% 1, 7P, (5.22)

Reverting, now, to the description of asymptotic twistors in terms of local twistors on I, we can’
derive the form {(at any Q)

0 it LB')
5% . A )
o ( 4 - 0 & 23)

for the infinity twistor. Applying (5.23) to (5.22), we obtain, with respect to Q, the version of
(5.21) which applies to asymptotic twistors:

(B, w0 (i, 0) (5.24)

(Having the same form as the complex conjugate of (5.10), the right-hand side of (5.24) describes
an asymptotic twistor of valence [9] as required.) The fibre above the asymptotic spinor given by
the right-hand side of (5.24) is the kernel of (5.24), that is, the space of (£, T, ) form - =0,
We can use £ and my, at Q, as components for this two-complex-dimensional vector space. Ther
is no invariant skew-symmetrical scalar product. Instead, the group of the fibre may be taken to
be simply L(2, €). )

We can add two asymptotic twistors if they lie in the same fibre, but there is no clear way to de
so if they are associated with different generators of T*. Any asymptotic twistor can be multiplied
by a scalar.

Let us now consider how the complex structure for the space of asymptotic twistors (or of
blown-up asymptotic twistors) is to be defined. The clearest way to do this seems to be to give an
interpretation of asymptotic twistors in terms of the complexified 1*. This is not the most satis<:
factory procedure mathematically, since in order that this complexification be possible at ali, it:18
necessary that the structure of 1* be analytic. This entails that the outgoing gravitational radiati_on
must be analytic, so gravitational pulse waves or sandwich waves (e.g. Bondi’s “‘time-bomb”) mus;
be excluded. It would be more satisfactory to define all the required structure in terms of the real
T+ — and presumably, it will eventually become possible to do this — but in any case the loss of _
generality involved in our approach may be small, since any non-analytic behaviour can be approx
imated arbitrarily closely by means of an analytic T*. :

Let us use coordinates i, ¢ for I*, where u is a real parameter define along the generators of _'T*-.
as described earlier (so u is actually a retarded time parameter which is constant along each gene
ator and which labels the generators in the standard way, i.e. { = exp(—igp)cot %B, where @ &nd_‘#’
are ordinary spherical polar coordinates for the spheres of cross-section of T7). To complexify I
we allow u to become a complex parameter v and we “free” ¢ from its complex conjugate - That
is to say, given any quantity, defined on I as an analytic function x{u, ¢, §), we extend this 10
complexified 7* - denoted €CI* — by the unique (locally at least) holomorphic function of ﬂlf
independent complex variables v, {, ¢, (still written x(v, ¢, ﬁg’,:)) whose value is given by x{i. §, $)
when v =y is real and ?= t. '

Since the range of ¢ is really to be thought of as the Riemann sphere 8* ({ = o being allowed);.
this gives the topology of €T+ asR? X S? X S2. (The parameter v ranges over € = R? and { and
each independently range over $2.} This picture is not really guite accurate, however. This is b
cause certain quantities defining the structure of I* will become singular if defined too far a\f’ay
from the real section 1" of €1*. This will apply, in particular, to the gravitational radiation fieid
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Fig. 40.

(Functions, such as (1 + «?y!, which are well-behaved for real & become singular when ex-

ded to complex values.) Thus, the manifold CI* consists just of some neighbourhood of T in

X 8% X 82 (see fig. 40).

et us consider local twistors on CI* of the form (&4, T,.) at Q € 7. Since v is complex we can
vided 7, # 0, use (5.8) to find a point P on the generator Cy of CI* (or of R2X S2X S2,if P is
ular for €I%) through Q, at which local twistor transport reduces £ to zero to give

b

(0, m,.). (5.2%)

, starting from any point on €1, or on CM, at which we have a local twistor of the form

5) we can, by means of local twistor transport, maintain the form (5.25) by moving in any
mplex) direction of the type

(8 = A (5.26)

(5.1)). In flat (or conformally flat) space, local twistor transport is integrable and defines a
al twistor Z® (section 3.1). The points at which the form (5.25) holds then constitute a com-
ified plane (a four-real-dimensional subset of CM ) whose tangent vectors are all of the type -
6). In the case of a null twistor Z¢, such a plane contains one real null line of points (namely
fine Z); m the general case, when 247 « 7 0, no point on the plane is real. This complexified
¢ (assuming that it is not contained in CT*) will intersect €T+ in a complexified line

CZ N €T*, the tangents to I being proportional to

= (5.27)

¢ these are the complex vectors of the type (5.26) which are tangent to €T*. In fact I' is a mudf
esic on €17, which follows from the fact that

BBV o, =0 (5.28)

(5.1)) together with (5.13). (If we do not choose to scale things so that (5.13) holds, then we
in that t®V, 19 is proportional to #.) Recall that the concept of a null geodesic is conformally
arfant—this applies also to complex null geodesics.
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Reverting to the general case, when M is asymptotically flat, we can likewise define the null

geodesic I" through P € €1* in the direction given by 74", and associate the local twistor (0, g o)

with each point of T", (0, 7,.) being carried along I' by local twistor transport. Now the surfaces

¢ = const. on €I* have tangent vectors of the type t*x*’, as in (5.27); the surfaces '5":= const. have

tangent vectors of the type 74¢4". Thus, I lies entirely in one ¢ = const. surface. Each point of T
is labelled by a different value of { (assuming 7. is not proportional to ¢,.). The value of v at
¢ = ¢, together with . at that point serves to define I'. Conversely, 1", together with the scaling

afforded by the choice of tangent vector 74", defines v, { and 7., and so corresponds uniquely
to an asymptotic twistor not entirely on I*. There are also null geodesics on €1* lying on ¢ = cong

planes. These have tangent vectors of the type u*¢* and may, in a similar way, be associated wi
dual asymptotic twistors not entirely on I*. All null geodesics on €I* have one or other of these
forms — except that there are some, namely the generators of €I%, which have both forms simul
taneously. These generators are associated with blown-up asymptotic twistors (entirely on 7).
The asymptotic twistors entirely on I* which are not blown up must be associated with whole
?= constant planes; the dual asymptotic twistors of the same type are associated with { = const.
planes.

This description of asymptotic twistors is given on CI™ completely without reference to the
notion of complex conjugate. It follows that the manifold of these asymptotic twistorshasa
naturally defined complex structure. This is the complex structure that we assign to asymptotic:
twistor space and which makes this space into a complex manifold. There is a snag, however. Th
is that for some asymptotic twistors, the point P that we defined to start with to obtain the form
(5.25) may not actually lie in €%, but in the region excluded fromR? X $? X S* because CI* be
comes singular there. It seems that in general the complex structure for asymptotic twistor space
must break down in such regions. However, this only occurs outside some neighbourhood of the:
space of null asymptotic twistors. But it does have the effect that although the space of asymp
twistors is compact, the subspace on which a complex structure is defined is non-compact. (It
seems rather probable that this non-compact complex manifold can be extended to become com
pact again, but this is not certain. If this can be done, then it can be done uniquely and a well-de
fined symmetry group isomorphic to the complex Poincaré group or complex conformal group
will arise. This is presently under investigation.)

To obtain the geometric meaning of the complex structure of asymptotic twistor space, let us,
consider the asymptotic analogue of the Kerr theorem?®. The asymptotic C-picture consists of
equivalence classes of proportional asymptotic twistors. Each point of C — I represents a null &
geodesic on CT* (in a ¢ = const. plane but which is not a generator). A complex analytic surface;
in C defines a complex analytic congruence of such null geodesics. Those which meet 17 (re-
presented by points on N) define a field on #,.’s (up to proportionality) on I*. Now the equat :
(5.28) must be satisfied — or, if we are not concerned with the scaling of 7 ,., but merely its flag:
pole direction — the equation |

BBtV e, =0,

33We are deeply indebted to E.T. Newman for informing us of his work with Aronson, Lind and Messmer [44] on aSYumElcal;
shear-free congruences. [t was their asymptotic version of the Kerr theorem which provided the initial inspiration for the ot
of asymptotic twistors deseribed here. Their ¢-functions correspond to complex-analytic functions on € ] * whose level sur

are ruled by null geodesics in £ = const. :

(in the ¢
se calcul

twistor
forms tl
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we define 7, away from 1* by means of parallel
“which intersect I+ in the directions defined by the
“the equation

propagation along the null geodesics (M) in M
My 's(le. #BaBV w . = 0) then we arrive at

5o B
75 gl VegTy =0

.point of P
1e of v at

at I". This will be recognized [9] as the condition that the congruence (A) should be shear-free
the scaling

(0® = 0) at T* i.e. that it should be asymprotically shear-free.

- Finally, let us define the scalar product on asymptotic twistor space. Let Z% be an asymptotic

1g on ¢ = congp. . twistor and W a dual asymptotic twistor, neither of which lies entirely on I*. Let Z% be associated
with the null geodesic " on §=¢ on CT* and W, associated with the null geodesic AonT=F, on

cl. T;'\l’ereN will be a unique generator of CI* which meets both of I" and A, namely that given by

=51, § = ¢, provided that the intersection points do not lie in the singular region. If they do (see

fig. 40), the scalar product has become singular, so suppose they do not. Then {providing also that

the singular region of € I* does not disconnect the two points) we can use local twistor transport

ry the focal twistor defining Wg to the intersection with " and perform

the scalar product at that point (or else we can carry the local twistor defining Z% to the intersec-
tion with A — it makes no difference to the answer).

- When Wy =Z, this gives us the definition of Z*Z, which comes directly from the local twistor

definition of ZO'ZQ implici_t in (5.3). (In fact, the above scalar product of Z¢ with W,G is simply the
“complexification”™ of 2°Z, where Z is allowed to become “freed” from Z%) Having a real-valyed
scalar function defined on asymptotic twistor space as well as a complex structure, we have also a
ause €I be Kéhler manifold structure (of signature (++——) [45]. This leads to a concept of covariant deriva-
wistor spac five and of curvature for asymptotic twistor space. This Kahler curvature can be computed explic-

ly in terms of quantities relating to the asymptotic space-time curvature. These quantities are
Ve, WS, Im (W) f. {9], these being the components of

iv v

auitarty —1tgtg W p i,
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nd (in the case of non-null twistors) certain integrals of such quantities up the generators of I°.
rmal group.

These calculations are too involved to be usefully described here.

g.

3.2. Scattering off a fixed source

In section 3.2 we considered the classical scattering of zero rest-mass particles (described in terms
{ null twistors) by a fixed gravitational or electromagnetic wave. Employing the Hamiltonian
tquations which arose we attempted to find the correct twistor description of the corresponding 3
‘qantum processes. In the clectromagnetic case this was successful only after the (unmotivated)
itroduction of an extra line into the diagrams; in the gravitational case success has not yet been
chieved. In this section we briefly consider a variation on this programme in which the scatiering
Beffected by the field of a fixed source rather than by a free wave. The contour integrals which
Tise present some distinctly new features — and are in several respects more satisfactory than the
jzones arising in the case of the free waves. The results obtained for the classical scattering turn out
tobe correct, but a valid procedure for obtaining the correct gquantum scatterings at first proved
lobe elusive. This narrowed down the area in which new developments in the theory were required.

The twistor description of the electromagnetic and gravitational potentials given in section 5.3 in
f:fﬁct forms the basis of these new developments.

space, let us
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In order to describe the electromagnetic or (linearized) gravitational field of a massive (spinn
source in twistor terms, it will be convenient {irst to discuss the 2-index twistor A%® which Tepr
sents its energy-momentum and angular momentum. Generally, let P, be the momentum and I
the angular momentum with respect to an origin O, of some finite phys1cal system in special rela-
tivity. Normally P, will be timelike (future-pointing) so the twistor description of sections 1.3 and’
2.1 does not d1rect1y apply. But we can always represent (P, M°?) for such cases (in many ways).
as a sum of a finite number of (P,, M*?) of the type for which the twistor description (1.32), (1 34)
does directly apply — i.¢. for which the momentum is null and future -pginting and with the spin-
vector proportional to if. In fact, we need only iwao, ( M“b) and (P M“b) say, sO

P,=P,+B,, M=+ e

where (ﬁa, Me?) is constructed from twistors (A4, 7 o) according to (1.32) and (1.34). This can'b
achieved in many ways as is not hard to verify explicitly.

Now, the expressions (1.32) and (1.34) for the momentum and angular momentum in terms of
a single twistor Z% < (w”, 7,.) are

P, =%,m,, MeP = jAFBIAE _ {eABr A B

These quantities are equivalent to a subset of the components of Z"‘Z They are defined once
Ty 7P and wUa®) are known, i.e. once the symmetrized outer product of (w?, 7,,) with (7%, O)

is known. We have /7 fZ « (7, 0) (compare (5.22)) so the angular momentum fwistor
(45B) =A
AeB =277 o (20) e 7 WB')

Y 7T 0

may be used to describe the 4-momentum and angular-momentum in the null case. In the general
timelike case we can extend this by linearity. Thus, the angular momentum twistor, quite gener
ally, is

et (AZi,uAB P )

B B
B, 0

MY = yAB A'B 4 (ABAE
We have A% of the form

A8 = 2 g

i 1
By = 21 2°Z,

the various Z‘” being the twistors representing the different null—momentuql systems into whic
our general system has been decomposed (e.g. for (5.30) we have E“ = Z”‘Z +Z°‘Z ). Note tha
has the Hermitian property
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E§ =E3. (5.37)
he left-hand side is, of course, Eﬁ.) It aiso has the semi-definiteness property

W&E‘EW‘? =0 forall W (5.38)

:ctions 1
i many w
n (1.32y

follows at once from (5.36). The form (5.35), together with (5.37), implies '
A% =APe A, =, T, (5.39)

nversely, (5.39) implies the existence of £ for which (5.35) and (5.37) hold. The semi-definite-
ss {5.38) implies that

VeA* T VP2 0 forall ¥, (5.40)

deed, the second relation in (5.39) is also implied by (5.40) and the existence of £, subject to
38), is also implied by this.
Note that removal of the trace from EG:

EY > ES —3E182 (5.41)

kes no difference to (5.35) (owing to the skew-symmetry of /f) although the relation {5.38)
uld be affected. Given A4*f satisfying (5.39), the choice of E§ in (5.35) is clearly very far from
que. In fact, the “gauge freedom’ in Eyis

EG = Ef+ 8, + 8, 1% (5.42)
noring the semi-definiteness (5.38)) where

S = g ' (5.43)
us now consider the quadratic function

AW W, (5.44)

ined in dual twistor space. Since this is holomorphic and homogencous, its vanishing defines,
Kerr’s theorem (cf. [51), the shear-free congruence of null straight lines

WA W W, =0=W W W, %0}, (5.45)

en the spin vector (1.29) vanishes, this congruence consists of all the null lines which intersect -
world line of the relativistic mass centre (see section 1.3). In the general case of a system with
, the congruence is of the more general kind considered by Kerr [47] (in connection with his
tum solution of Einstein’s equations representing a rotating black hole}. The congruence pos-
es a local rotation if and only if the system has a non-zero spin. It also turns out that the null
ctions, at each point in space-time, which are tangent to the lines of the congruence are pre-

ly the “principal null directions” [9, 46] of the angular momentum tensor M??. (These are

. flagpole directions of M and »4 | where A8 = \¢4pB) )

; into whi is the function (5.44) which also enters into the definition of a passive holomorphic function
: trating a solution of Maxwell’s equations surrounding a charged spinning (i.e. with magnetic
ment) source, or a solution of the linearized Einstein equations (the linearized Schwarzschild
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or Kerr solution) for a massive spinning source. In fact, putting

AWY = (AW, Wey?  and g(W) = (AW, W,

we have f homogeneous of degree —4 (as required for the construction of a Maxwell field) and g
homogeneous of degree —6 (as required for the construction of a linearized gravitational field).
have already noted, in section 2.3, that when g(W) is the inverse cube of a quadratic form, then
the resulting linearized gravitational field has algebraic type {2,2} — as happens to be the case fg
a (linearized) Schwarzschild or Kerr solution. It is indeed true that the functions do vield fields
of stationary sources of the required type. When the rotation vanishes, we get monopole solutions
(Coulomb in the electromagnetic case and linearized Schwarzschild in the gravitational case).

Let B,z be inverse to A%,

A”“”Bﬁ? =85,
and put
A= {det A%} = {det Baﬁ}‘m.

{Only in the case of a null momentum is A%® singular. We shall ignore this case henceforth.) One
verifies at once that the properties

Bs= By, B, " =B"1
X*B, "Xy 0  forall X*

follow directly from (5.46) and the corresponding properties (5.39) and (5.40) for A%%. Also A’
real:

A=A,

The condition for the absence of rotation turns out to be

Ay = BA.

The charge integral for an electromagnetic field was briefly mentioned in section 3.3. This was
SE f(WYDW (with some constant multiplying factor). Here we have

e=56f(wmw = q2A! (5:

The contour can be conveniently chosen to be an S®. Similarly, the integral giving the energy-1mo W
mentum and angular momentum for the source of & linearized gravitationat field is 55 W, Wﬁg(:w
which here gives: '

PWWaeWIDW =378 A

(although here A™! measures the rest-mass rather than the charge). This may be obtained by dif:
ferentiating (5.52) with respect to A%F (temporarily dropping the constraints (5.39)) since
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offa4%f = 2W Wyg (5.54)
aA 3B,
i i Boodh, ava% =B, Bsg (5.55)

form, ther
se the case f
vield fields

jotice the reversal of roles of A%f and B «p here. The angular momentum twistor arising here is ac-
pally (proportional to) B8,
We wish to consider scattering of charged massless particles off the clectromagnetic field whose

assive twistor function is f( Wﬁ). To compute the Hamiltonian we need to evaluate the integral
or the active function®;

F@*) = (W-2)o fW ;) DW. (5.56)
ince this involves the formal expression (W-Z), we had best differentiate with respect to Z%:
(54 of [aZ% =W (W-Z), FWYDW, (5.57)

This is now well-defined. The singularity structure is different from that of (5.52) since there is
e extra pole arising from (W-Z), . This pole gets in the way of the previous contour but, remark-

bly, a new contour emerges which links the new pole and is not homologous to zero. A similar
lenoMmenon occurs again if another pole (W-Y), is inserted into the integral and once more if yet
nother pole (W-X), is inserted. (To ensure uniqueness of the contour up to homology class, we
ust insist that each pole is “linked” once in a ““positive” sense.) It is worthwhile to list the results
f some relevant integrals

eforth.) One

48 Also

§ W DW M B (5.59)
W A BpGZ'DZO .
(5:“ oW = 3 ah ABu & vp o —1/2
| $ Tmzareiy 5T Mt AT ALY L) (5.60)
§ W, 0w - 8 €opys XEY 775 o
WBXﬁWTYTWSZ'd(APUWPWO) esh#venpa"AEnX)\YuZyX‘ngZT . .

i ‘
Tz = % (B gZ575)s = € log(B,,Z°7°). | (5.62)
Ur twistor scattering Hamiltonian is

H(Z*, Zg) =T(2%) + 7 (Z), (5.63)

tturns out that for functigns of the singularity structure considered here (unlike the case of a free wave) this operation can be
Ihverted. In fact, we have f « f .
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which gives
8Z, =2ie Baﬁzﬁ/BpGZ”Z".

Inserting explicit coordinates into this formula we obtain the correct lowest order **1/#” deflec
tion angle. Also (5.64) gives the correct lowest order time delay — which turns out to be a con-
stant independent of the impact parameter.

In a similar way the gravitational case can be treated. The final result is

B ;7B J°Z°Z,
ENVAYZ

= 1 e
82, x 3 BMI‘?TZB loglB ,, Z°Z° I*

which must be considered formal, to some extent, because of the logarithm term. The logarithm:
only affects the time delay, the scattering angle being given by the second term. This second te; :
is identical in form with that for the electromagnetic case except for the momentum factor

B, I°Z°Z,.

This simply ensures that the scattering angle is independent of the momentum of the scattered
particle (since the whole term now has the same homogeneity degree as 87 o) in accordance with
the equivalence principle. Owing to the logarithm term there is no meanmgqu (“invariant™) abso
fute concept of time delay. This is borne out by examination of the null orbits in the Schwarzs
solution. The time delay involves a similar logarithm term which diverges to minus infinity for:
impact parameters.

Finally there is the question of how to obtain the correct quantum versions of these scatterin
problems using twistor methods. Blindly inserting the Hamiltonian into the formula (plg? for th
scalar product does not yield the correct matrix elements but gives zero instead. It appears tha
potentials must be brought in in order to obtain the correct results. A method of mtroducmg pO.
tentials into twistor theory is given in the next section.

5.3. Potentials and massive fields

The funddmental formula (2.20) for a solution (in flat space) of the spin +n zero-rest-mass flei
equation V*¥'¢,. o =0, in terms of a general holomorphic function f{},) homogeneous of degr
—n-2 in the components of the twistor W, may be re-expressed as follows:

1 aa
bpg.sX") = 5= § AphgAgflhyg, —ix NN

DA =etB), d)g ;
(ef. (3.35)). The verification that the zero rest-mass equations are indeed satisfied is now very ¢

rect since

a

—Frtro.s 7 5m L foidh g Aghg SO, N, DN
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is manifestly symmetric in PQ...ST, where
oW, < (4, [ 40).

The formula (5.65) allows an immediate generalization to functions F(W_; Z%), holomorphic
in two twistors W, Z%, and homogeneous of respective degrees —p—2and —g—2. We can set

1 e aa
ap ggr g (x%) = Gy 55 ApoNg Mgt FOL, =440 x4y, i, DA (5.66)

P q

where DA = DX A Dy ete.; of. (3.34)). Then, since 8a.../ax7T is the sum of a term symmetric in
ts unprimed indices and a term symmeiric in its primed indices, it follows that
vPG'

Upg. sor.x = 0. (5.67)

Note that a _depends on F(W_; Z*) where W,Z% =0 only. (One can also generalize in an obvious
vay to obtain two-point fields tp o g (X% ¥P) satisfying dap 5o /03 =0, dap o p f0VG = 0.
These fields reduce to the previous ones if we set y@ = x_ byt they depend on F(W_; Z%) also where
2%+ 0.)

The equation (5.67) has considerable interest. When p = g = litreduces to V7%, . = 0, which
s the Lorenz gauge condition if a, i$ the electromagnetic potential. We can then define the electro-

magnetic field spinor by ¢, = Vi’a go+ and symmetry in AB is ensured. More generally, (5.67)
mplies that

Bp srir k- '_”Vg'ap..sc'h“..x’ (5.68)

ssymmetric in .. ST and that

Yo sc kL = Vi'QPQ..SG'..K' (5.69)
symmetric in G"..K'L" where we use the fact that ap g . is symmetric in 2._.S and in G'.._ K.
wrthermore, each of §and «y__also satisfies (5.67) (VPH'B,, e . =0, Ve s = 0).

adeed, they each arise from a formula like (5.66), in which F(W; Z%) is replaced, respectively,
35 _

~il,,Z° AF[OW,  or  iP°W aF[aZ°. (5.70)

ote that the operation (5.68) increases the number of unprimed indices by one and decreases
he number of primed indices by one, while the operation (5.69) does just the reverse. If we fol-
W one operation by the other, the result is simply equivalent to application of -3 0, where

=4 \ is the flat space D’Alembertian. Thus, we have, for the twistor translation of the
‘Alembertian:

9 9’
o) =2z,
? aZU) ob P awgpze

2
m:_z([aﬁza a—%)o(ww (5.71)

The observation that potential functions for zero rest-tnass fields could be described by holomarphic functions of W, and Z2
®lated by (5.70) had already been made by C.J.5. Clarke.
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Employing the quantum mechanical replacements —3/82% < Z, 8/3W;» Wf and o « —m?, we
obtain

m? = 211 7P

[t is reassuring that this agrees with the formula for the total mass of a system which, as in sectioy
5.2, is composed of two systems cach of zero rest-mass, namely that arising from Z% and that E
arising from W,. We have P, =Z,Z ., + W, W, SOP P* =217, WA whence (5.72) follows.

IfF(W,, ZO‘) is an eigenstate w1th elgenvalue —m* of the operatlon (5.71), then the resulting
field @ defined by (5.66) satisfies (0 + m*) « = 0. This equation, together with (3.67), implies-
that e (paired up with 8 of (5.68) or with 'y of (5.69) if desired) describes a Dirac irreducibl
“higher spin” free field of mass m (assumed positive, for the moment), and spin § (p + ¢). (If pg =,
then (5.67) becomes vacuous and is not needed. This applies, in particular to the normal Dirac
equation for the electron, for whichp = 1,q = 0 or p = 0, ¢ = 1.) Thus, we have the potentiality
to describe states of particles with non-zero rest-mass within the twistor formalism.

When m = 0 we have a way of describing the potentials directly in twistor terms. This gives a
means of introducing interactions in a much more direct way than had been possible hitherto
within the twistor formalism®®. We are not now forced into considering only source-free f1e1ds
since the application of the operator (5.71) to F can give the source terms. '

If m = 0 and sources are absent, it should be possible to obtain a function F(W ) generating t the
field ¢, ¢ asin{(5.65) from the functlon F(W,; Z%) generating the same field as in (5.66) with
q = 0. Provided F(\,, —ix*4'\ ;1344 u,., u,.) is independent of y*, i.c. provided I*aF/oZ"
we can write this

1 ) )
W) = 5= $ PN 3 17" e, 0

References

[1i R. Penrose, in Combinatorial mathematics and its applications, ed. I.J.A. Welch {Academic Press, London, 1971)-
[2] R. Penrose, Battelle Rencontres 1967, eds. C.M. de Witt and J.A. Wheeler (Benjamin, New York 1968).
[3] N.H. Kaiper, Ann Math. 50 (1949) 916;
H. Rudberg, Dissertation, University of Uppsala, Sweden 1938;
R. Penrose, in Proc. 1962 Conf. on Relativistic theories of gravitation, Warsaw (Polish Academy of Science, Warsaw 1955)
A. Uhlmann, Acta Phys. Polon. 24 (1963) 293.
[4] R. Penrose, Proc. Roy. Soc. (London) A 284 (1965) 159.
[5] R. Penrose, J. Math. Phys. 8 (1967) 345.
[6] E. Cartan, Ann. Ecole Norm. Super. 31 (1914) 263;
F. Klein, Gesammelte Math. Abh. (J. Springer, Bezlin 1921);
H. Weyl, The classical groups {Princeton University Press, Princeton, New Jersey 1939);
R. Brauer and H. Weyl, Amer. J. Math. 57 (1935) 425. '
[7] L.P. Eisenhart, Continuous groups of transformations (Princeton University Press 1933, reprinted by Dover 1961).
[8] H. Laue, Nuovo Cimento 38 (1971} 55.
[9] R. Penrose, Ann. Phys. (N.Y.) 10 (1960) 171;
E.T. Newman and R. Penrose, J. Math. Phys. 3 (1962} 566.

3%In particular the M6ller scattering formula (fig. 11) discussed in section 4.1 can now be completely justified.




wee-time

- —m*, we.

(5.72)

th, asin seétloﬁ-
™ and that -
2) follows.

the resulting
5.67), impli
Yirac irreducih
p+ q ) (If P
ormal Dirae

e potentiality

. This gives.a
e hitherto
e-free fields

) generatmg th

'5.66) with -
faﬁaF/azﬁ_

an, 1971).

1ce, Warsaw 196

wer 1961).

R. Penrose and M.AH, MacCallum, Twistor theory: an approach to the quantisation of fields and space-time 315

0] E.T. Whittaker, Proc, Roy. Soc. (London) A 158 (1937) 38;
W.T. Payne, Amer. I. Phys. 20 (1952) 253.

1] R. Penrose, Null hypersurface initial data, in A.R.L. Techn. Report 63-56, ed. P.G. Bergmann (Office of Aerospace Research,
U.8. Air Force 1963).

;[12] P.AM. Dirac, Proc. Roy. Soc. (London) A 155 (1936) 447;

M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A 173 (1939) 211,
E.P. Wigner and V. Bargmann, Proc. Nat. Acad. Sci. (Washington) 34 (1948) 211,
:[;3] E. Cunningham, Proc. London Math. Soc. 8 {1910) 77;
H. Bateman, Proc. Londonr Math. Soc. 8 (1910) 223;
I.A. McLennan Jr., Nuovo Cimento 10 (1956) 1360;
H.A. Buchdahl, Nuovo Cimento 11 (1959) 496.
4] R.K. Sachs and P.GG. Bergmann, Phys. Rev. 112 {1958)674.

:15] B.L. van der Waerden, Nachrichten von der Gesellschaft der Wiss. Gottingen (1929) 100.

j16] W.A. Hepner, Nuovo Cimento 26 (1962) 351;
Y. Murai, Prog. Theoret. Phys. 9 (1953) 147: 11 (1954) 441 and Nucl. Phys. 6 (1958) 489;

: LE. Segal, Proc. Nat. Acad. Sci. (Washington) 57 (1967) 194.

117] H. Bondi, Nature 186 (1960) 535;

 H.Bondi, AW.K. Metzner and M.J.G. van der Burg, Proc. Roy. Soc. (London)} A 269 (1962) 21;
R.K. Sachs, Proc. Roy. Soc. {London} A 270 (1962) 103.

18] E.T. Newman and T.W.J. Unti, J. Math. Phys. 3 (1962) 891.

E'[19] E. Grgin, Ph.D. thesis, Syracuse University (1966).

{20] J.A. Todd, Projective and analytic geometry {Pitman, London 1947);
L.G. Semple and L. Roth, Introduction to algebraic geometry (Clarendon Press, Oxford 1949),

{21] R. Penrose, Int. Y. Theor. Phys. I (1968) 61.

2] 1. Robinson, §. Math. Phys. 2 (1961) 290.
423} N. Kopezynski and L.8. Woronowicz, Reports Math. Phys. 2 (1971} 35.
-[24] R. Penrose, J. Math. Phys. 10 (1969) 38.
{25] R.F. Streater and A.S. Wightman, PCT, spin statistics and all that (Benjamin, New York 1964).

%] M. Crampin and F.A.E. Pirani, in Relativity and gravitation, eds. Ch.C. Kuper and A. Peres (Gordon and Breach, London 1971).
(27] N.1. Hicks, Notes on differential geometry (Van Nostrand, Princeton 1965).
[28] W.H. Brinkmann, Proc. Natl. Acad. Sci. (Washington) 9 (1923) 1;see also
I Ehlers and W. Kundt, in Gravitation; an introduction to current research, ed. I.. Witten (Joha Wiley, New York 1962) ch. 2.

129] R. Penrose, General relativity (Papets in honour of J.L. Synge), ed. L. O’'Raifertaigh for the Royal Irish Academy (Ciarendon
" Press, Oxford 1972).

[301 M. Fierz, Helv. Phys, Acta 13 (1940) 45.
;531] L. Robinson and A. Trautman, Proc. Roy. Soc. (London) A 265 (1962) 463.
132] A. Qadir, Ph.D. thesis, Birkbeck College, London (1971).
[33] R. Penrose, An analysis of the structure of spacetime (Adams Prize Essay, Princeton 1967).
i3] T. Fulton, F. Rohrlich and L. Witten, Rev. Mod. Phys. 34 (1962) 442.
'['35] A. Trautman, F.A.E, Pirani and H. Bondi, Lectures on general relativity, Brandeis Summer Institute in Theoretical Physics,
1964, vol. 1 (Prentice-Hall, Englewood Cliffs, New J ersey 1965).
P36] L. Gross, J. Math. and Phys. 5 (1963) 687.
[37] R. Penrose, in Quantum theory and beyond, ed. E.T. Bastin {Cambridge University Press 1972).
(38! R. Penrose, in Magic without magic: John Archibald Wheeler, ed. 1.R. Klauder (W.H. Freeman & Co., San Francisco 1972).
139] M. Flato, J. Simon and D, Sternhkeimer, Ann. Phys. (N.Y.) 61 (1970} 78;
- H. Kastrupp, Phys. Rev. 142 (1966) 1060.
40) L. Infeld and B.L. van der Waerden, Sitz. ber. Preuss. Akad. 9 (1933) 380.
I R. Penrose, in Relativity, groups and topology, eds. C and B. deWitt, Les Houches lectures 1963 (Blackie and Son, London
and Glasgow 1964).

i‘%l] R. Pentose, in Relativity theory and astrophysics vol. 1, ed. J. Fhlers (American Mathematical Society, Providence, Rhode
Island 1967).

(B3] E.T. Newman and R. Penrose, Proc. Roy. Soc. (London) A 305 (1968) 175.

4] B. Aronson, R. Lind, J. Messmer and E.T. Newman, J. Math. Phys. 12 (1971) 2462.

Hs | S. Helgason, Differential geometry and symmetric spaces (Academic Press, New York 1962);
E. Nelson, Tensor analysis, Mathematical Notes (Princeton University Press 1967).

.4_5] J.I.. Synge, Relativity; the special theory (North-Holland, Amsterdam 1956).

411 R.P. Kerr, Phys. Rev. Letters 11 €1963) 237.

8] I.D. Bjorken and S.D. Drell, Relativistic quantum fields (McGraw-Hill, New York 1965).






