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AUSGEFÜHRT AM
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Kurzfassung

Sonifikation wird zur Verklanglichung von Informationen aus Daten verwendet
und ist das Analogon zur grafischen Darstellung. Die Methode wird in zahlreichen
Disziplinen wie Ökonomie, Medizin oder Physik angewendet. Wir untersuchten,
ob eine derartige Analyse auch für den Phasenübergang der Quantenchromody-
namik vorteilhaft ist, um das Verhalten von physikalischen Observablen als Funk-
tion von Parametern wie Temperatur, Eichkopplung, Quarkmasse und anderen
Variablen des Systems zu bestimmen. Weiters versuchten wir herauszufinden, ob
es möglich ist versteckte Eigenschaften zu entdecken, welche in der graphischen
Darstellung nicht erkennbar sind.

Um die Methodik der Sonifikation für die Quantenchromodynamik zu veran-
schaulichen, analysierten wir die Eigenwerte des Dirac-Operators von der Con-
finement zur Deconfinement-Phase. Wir verarbeiteten das Spektrum für aufstei-
gende Eigenwerte mit fester Gluonkopplung β und in einer zweiten Auswertung
fixierten wir die Eigenwerte als Funktion von β. Als nächstes erzeugten wir ein
Sound-File aus den Daten des Disorder-Parameters für magnetische Monopole.
In einem weiteren Beispiel analysierten wir den Lyapunov-Exponenten für klas-
sische U(1) und SU(2) Eichfeldkonfigurationen auf einem Gitter, welche durch
Quanten-Monte-Carlo-Simulation erzeugt wurden. Zum Abschluß sonifizierten
wir die spezifische Wärme von Polymeren, die eine komplexe Phasenstruktur be-
sitzen.

Zur Erstellung der Audio-Files reskalierten wir die Rohdaten in den hörbaren
Frequenz-Bereich mit dem Kammerton von 440 Hz als Referenz. Wir variierten
die Klang-Attribute wie Dauer, Anstieg-/Abklinggeschwindigkeit, Klangfarbe und
räumliche Position, um die Charakteristik der Daten herauszuhören. Dann gene-
rierten wir ein Audio-File und wandelten es in ein mp3-File um. Diese Files
können am SonEnvir Server www. sonenvir. at aufgerufen werden.

Die vorliegenden ersten Versuche von Sonifikation in der Gitterfeldtheorie
zeigen, dass die erkennbaren Strukturen im Sound-File ähnlich jenen in der grafi-
schen Darstellung sind. In dieser Hinsicht kann Sonifikation, wie hier angewen-
det, als zusätzliches Werkzeug zur Präsentation von Daten angesehen werden. Da-
tenanalyse durch Sonifikation könnte sinnvoll sein für die Darstellung von Ergeb-
nissen, welche von mehreren Parametern und/oder höheren Raum-Zeit-Dimensio-
nen abhängen. Das Sonifikations-Programm wurde in Zusammenarbeit mit der
Universität für Musik und Darstellende Kunst in Graz und der Universität von
Graz entwickelt, wo das interdisziplinäre Forschungsprojekt SonEnvir durchge-
führt wird.



Abstract

Sonification is the use of non-speech audio to extract information from data and
represents the sound analogue to graphical visualization. The method is applied
in several disciplines as economy, medicine or physics. We investigated if it might
help to analyze lattice data and critical phenomena, together with graphical dis-
play, in order to examine the behavior of physical observables as a function of
parameters like temperature, gauge coupling, quark mass and other variables of
the system. Furthermore, we wanted to find out, if it is possible to discover hidden
features which cannot be seen in graphical diagrams.

To demonstrate the methodology of sonification for quantum chromodynam-
ics we analyzed the eigenvalues of the Dirac operator from the confinement to the
deconfinement phase. We used the spectra for ascending eigenvalues keeping β
fixed and in a second sample we fixed the eigenvalues as a function of the cou-
pling β. Next we produced a sound file for the data of the disorder parameter
for magnetic monopoles. In a further example we analyzed the leading Lyapunov
exponents of classical U(1) and SU(2) gauge field configurations on the lattice
which were initialized by quantum Monte Carlo simulations. In a last step we
sonified the specific heat belonging to the rich energy landscape of certain poly-
mers.

For the preparation of the audio files we rescaled the raw data into an audi-
ble frequency range with the standard pitch of 440 Hz as reference. We varied
the sound attributes like duration, attack/decay rate, timbre and location of the
sound to extract characteristics of the data. Then we generated audio files and
transformed them to mp3-files. They can be accessed from the SonEnvir Server
at www. sonenvir. at.

In the underlying first trials of sonification in lattice field theory, the structures
one could recognize from the sound files are similar to those from graphical visu-
alization. In this regard, sonification as applied here can be seen as an additional
tool of data representation. Data analysis through sonification might especially be
useful for displaying results depending on multiple parameters and/or belonging
to higher space-time dimensions. The sonification program was developed to-
gether with the University of Music and Dramatic Arts in Graz and the University
of Graz where the interdisciplinary research project SonEnvir is based.



1
Introduction

1.1 Visualization and Sonification

Data presentation techniques in general are based on data visualization. However,
there is an alternative which might be superior for certain types of data: acoustic
data presentation, called sonification. This new research area could help to ana-
lyze complex, high-dimensional or a huge amount of data with new techniques.
While visualization addresses the visual sense, sonification addresses the sense of
listening, a perceptual channel which is so far rather neglected for the analysis
of data. However, besides supporting the analysis of data structures themselves,
sonification finds application in various other fields, e.g. to replace visual percep-
tion for blind people or to support navigation in virtual environments, or to assist
the monitoring of complex processes.

In modern science and economy a vast amount of relevant data is stored and
made available for evaluation. Techniques to locate the numbers of interest like
data warehousing and data mining have been developed together with program
packages for visualization in order to extract the information hidden. The question
arose if methods of auditory display could help to get further insight into the
structures behind the data.

The sonification process consists of several parts. The central element is the
sonification model which assesses the interesting data as input and produces a
sound file as output. The user interacts with the sonification model, adapting
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Figure 1.1 Sonification Process

its structure and fitting the model parameters iteratively in order to uncover the
information (Fig. 1.1 [1]).

Sonification can make use of several sound attributes for presenting various
data characteristics. We list the most important attributes [2]

• pitch – perceived frequency of a sound

• loudness – the magnitude of a sound

• duration – the length of time a sound is heard

• timbre – the general prevailing quality or characteristic of a sound

• attack/decay rate – the time it takes a sound to reach its maximum/minimum

• spatial hearing – location of a sound

The International Community for Auditory Display (ICAD) covers many ac-
tivities in the field of sonification [3]. The ICAD was established in 1992 and has
been organizing international conferences since then. At the request of the NSF
in 1997 the ICAD provided a Sonification Report [4].

http://www.techfak.uni-bielefeld.de/ags/ni/projects/datamining/datason/datason_e.html
http://spdf.gsfc.nasa.gov/research/sonification/documents/Chapter5.pdf
http://www.icad.org/
http://www.icad.org/websiteV2.0/References/nsf.html
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1.2 Sonification Package

Sonification needs a realization on software and hardware platforms. A widely
used program package for sonification is called SuperCollider and was developed
by James McCartney from Austin, TX. It started as proprietary software and was
released in 2002 under the open software GPL license. The name SuperCollider
is said to have its origin from the Superconducting Super Collider (SSC) in Wax-
ahachie, TX, which was planned and begun to be constructed but was then aban-
doned and never finished.

SuperCollider is an environment and programming language for real time au-
dio synthesis. The programs to generate or process sound can be executed in real
time or not. They can be controlled by MIDI (Musical Instrument Digital Inter-
face), the mouse, graphics tablets, and over a network via Open Sound Control.
The environment consists of two applications, a client sclang (the language part)
and a server scsynth (the audio part) which communicate using Open Sound Con-
trol. The language (sclang) is an interpreter language and combines the object
oriented structure of Smalltalk and features from functional programming lan-
guages with a C programming language family syntax. SuperCollider is a free
program and runs on MacOS, Linux and Windows [5].

Beside this professional solution general mathematical analysis programs, such
as Matlab, Mathematica, or Maple, are sometimes used to do research on sound
signal processing and synthesis algorithms. But most commercially available sig-
nal analysis packages do not support real-time signal processing and direct control
of sound input or output [4].

1.3 Applications of Sonification

Sonification is used in different fields for analyzing complex or high-dimensional
data [6]

• physics

• psychology

• physiology

• mathematics and computer science

• sound engineering

• algorithmic composition / sound art

http://www.sonenvir.at/
http://www.icad.org/websiteV2.0/References/nsf.html
http://en.wikipedia.org/wiki/Sonification
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• epistemology and sociology of science

In the following an overview of the research areas of the SonEnvir project is
given. SonEnvir is an interdisciplinary project that investigates sonification in a
number of scientific disciplines, in order to develop a general sonification software
environment. It is a collaboration of four universities in Graz, Austria: The Karl
Franzens University, the University of Technology, the Medical University, and
the University for Music and Dramatic Arts [5].

Electronic Music and Acoustics The Institute of Electronic Music and Acous-
tic (IEM) is the host institution and the basis for sound expertise in SonEnvir.
The goal is to apply the technologies developed at the IEM to the problems in
sonification and push the field scientifically as well as aesthetically.

Neurology In neurology, sonification is utilized to analyze EEG-data. The EEG
(electroencephalogram) is a diagnostic method used for patients with epilepsy,
cerebral function disorders, tumors and insults. Characteristics of this method
is good resolution of data concerning time, but bad resolution concerning space.
Sonification can ease the daily routine of monitoring by sending acoustic signals
which alert the staff to react quickly on atypical brain events (epileptic fit). More-
over, it is possible to gain information about epileptic mechanisms in general and
how an epileptic fit can be detected before its occurrence. Sonification of EEG-
data is a further step to multi-media diagnostics in epilepsy.

Sociology Up to now sonification only was applied in fields of natural science.
It offers a method complementary to the usual data exploration techniques that
can also be used within social scientific contexts. Many research branches in the
social sciences are concerned with events or actions in a temporal context. Due to
its inherent time factor, sonification can be a valuable technique for the exploration
of sequential data sets.

Theoretical Physics Elementary particle physics is interested in the study of
baryons being composed of three quarks. Within a relativistic constituent-quark
model the mass spectra with different types of interactions between the quarks,
the baryon ground states and the decay widths of the baryon resonances have been
investigated. In theoretical physics it is common to use graphical methods for data
analysis. Audible data analysis was so far basically unknown and the first method
of sonification was in respect to the evaluation of baryon properties. The resulting
approach should serve as a prototype for investigating more complicated data sets.

http://www.sonenvir.at/
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Concerning the analysis of the baryon spectra via sonification the question arose if
it is possible to discover hidden symmetries (or symmetry breaking) which cannot
be seen in graphical diagrams [7].

Signal Processing and Speech Communication Problem domains investigated
in SonEnvir include electro-magnetic wave propagation (multi-path propagation)
in mobile applications and signal classification problems (e.g. non-deterministic
chaos).

1.4 Applications in this Thesis

This diploma thesis was inspired and partly supported by the SonEnvir project
[5]. The main goal was the application of auditory display to data from physical
observables across phase transitions. The studies range from quantum chromo-
dynamics to polymers. Central emphasis will be on the phase transition of QCD
from the confinement of quarks to the plasma of quarks and gluons. The physical
observable is the eigenvalue spectrum of the Dirac operator of a quark in QCD.
In two analyses of the lowest eigenvalues, keeping the gluonic coupling β fixed
and letting β run, respectively, we will sonify the restoration of chiral symmetry
when increasing the coupling to the quark-gluon plasma-phase. Subsequently, the
disorder parameter for magnetic monopoles will be considered. We shall listen to
the spike at the phase transition to the quark-gluon plasma where the monopoles
vanish.

The next study will be devoted to the leading Lyapunov exponents of U(1)
and SU(2) classical gauge field configurations on the lattice. It will be interesting
to hear the breakdown of the Lyapunov exponent at the phase transition, and to
probe the difference between the first and second order of both transitions.

The last analysis will deal with Monte Carlo simulations of polymers which
exhibit a rich phase structure. Sonification of the landscape of the specific heat
with spikes, valleys and saddle points will be challenging.

http://www.sonenvir.at/


2
Theory of QCD and QED

2.1 Lattice Quantum Chromodynamics

2.1.1 QCD Lagrangian

Today, Quantum Chromodynamics (QCD) is believed to be the fundamental the-
ory of strong interactions [8, 9]. It was constructed along the lines of the very
successful Quantum Electrodynamics (QED) as a quantized gauge field theory
with a local gauge symmetry. For this reason the Lagrangian of QCD looks simi-
lar to that of QED. In contrast to the Abelian U(1)elm gauge symmetry of QED, the
field equations of QCD are invariant under non-Abelian SU(3)color gauge trans-
formations. Whereas in QED electrons and photons are the fundamental particles,
in QCD quarks and gluons are the basic degrees of freedom. Quarks are fermionic
matter fields. They transform according to the fundamental triplet representations
of SU(3)color. Gluons are bosonic gauge fields and transform according to the
octet representation. So the Lagrangian consists of a gluonic and a fermionic part,

LQCD = LQCD
G + LQCD

F

= −1

4
F a
µν(x)F µν

a (x) +

nf∑

f=1

ψ̄f (x)(iD/−mf )ψf(x) ; (2.1)
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ψf is the Dirac spinor, mf the quark mass and nf the number of flavors. The
generalized field strength tensor F µν

a (x) is

F µν
a (x) = ∂µAνa(x)− ∂νAµa(x)− gfabcAµb (x)Aν

c (x) , (2.2)

where a, b, c = 1, . . . , 8 are SU(3) indices. Aµ
a is the gauge field, g the cou-

pling constant, and fabc are the structure constants of SU(3). The gauge covariant
derivative

Dµ(x) = ∂µ + igAµa(x)
λa

2
, (2.3)

with the generators λa of SU(3) (Gell-Mann matrices), induces the minimal gauge
invariant interaction with strength g [10].

The Lagrangian (2.1) enables the formulation of QCD as a quantum field the-
ory. One possible quantization is the path integral formulation of QCD. Renormal-
izability and asymptotic freedom can be proven and there are several theoretical
hints for quark confinement. Because of these features QCD is believed to be the
right theory of hadron physics.

2.1.2 Path Integral and Statistical Mechanics

The path integral formalism [11] is a very powerful method for calculating ob-
servables in QCD [8]. To explain the path integral we first consider a particle in
quantum mechanics. In contrast to classical mechanics, where the exact “path” of
a particle is known, in quantum mechanics one has to calculate transition ampli-
tudes

〈 q′t | qt0 〉 , (2.4)

where | qt0 〉 and | q′t 〉 are eigenstates of the space coordinate operator Q(t) in
the Heisenberg picture. The absolute square of the transition amplitude (2.4) is
proportional to the probability that a particle which at the time t0 was located at
q, at the time t will be found at the place q′.

There exist infinitely many paths connecting the initial with the final point.
Dividing the time interval [t0, t] into N + 1 equidistant time steps δt and inserting
complete systems

∫
dqti | qti 〉〈 qti | in (2.4) one obtains

〈 q′t | qt0 〉 =

∫
dqt1 . . . dqtN 〈 q′t | qtN 〉 . . . 〈 qt2 | qt1 〉〈 qt1 | qt0 〉 . (2.5)

For infinitesimal time intervals it is sufficient to consider a path that fulfills

〈 qt+δt | qt 〉 ∝ eiS(qt,qt+δt) , (2.6)
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with the action

S =

∫
dt L (2.7)

obtained from the Lagrangian L. From (2.5) and (2.6) it follows that

〈 q′t | qt0 〉 ∝ lim
N→∞

∫ N∏

i=1

dqti e
iS[q(t)] =:

∫
D[q]eiS[q(t)] . (2.8)

So to calculate a quantum mechanical transition amplitude one has to integrate
over all possible paths, weighted with the phase factor exp(iS[q(t)]). In classical
mechanics only the path with minimal action is taken into account.

Within the path integral formalism of QCD a quantum field theoretical vacuum
expectation value of an operator is calculated according to

〈O 〉 = 〈 0 |O | 0 〉 =
1

Z

∫
D[A] D[ψ] D[ψ̄] eiS[A,ψ,ψ̄] O(A,ψ, ψ̄) , (2.9)

with the vacuum-to-vacuum transition amplitude

〈 0 | 0 〉 =

∫
D[A] D[ψ] D[ψ̄] eiS[A,ψ,ψ̄] =: Z . (2.10)

In QCD the functional integration extends over all gauge field configurations
Aµa(x) (Lorentz index µ = 0, . . . , 3, group index a = 1, . . . , 8) and over all con-
figurations of the fermionic fields ψαc (x) and ψ̄αc (x) (spinor index α = 1, . . . , 4,
color index c = 1, 2, 3). Because of the anticommutation relations of the fermionic
fields these are represented by Grassmann variables.

The expectation value (2.9) diverges in general for continuous space-time.
This is a consequence of the integration over physically equivalent gauge field
configurations due to the gauge freedom. To avoid this divergence one has to
fix the gauge with an additional term Lfix in the Lagrange density LQCD. This
constrains the system and therefore the integration is done over a restricted range
of parameters. In terms of the old integration variables the emerging functional
determinant can be interpreted as a path integral over new Grassmann fields, the
so-called Fadeev-Popov ghosts, leading to the Lagrangian Lghost. Thus, the com-
plete Lagrange density of QCD is

L = LQCD + Lfix + Lghost . (2.11)

Except for the explicit calculation of gluon or quark propagators, gauge fixing
is not needed for gauge invariant objects in the lattice formulation of QCD, since
a finite number of integrations is performed with the finite Haar measure. Further
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problems of the path integral formalism like a mathematically sound definition
of the integration measure D[A,ψ, ψ̄] or oscillations due to the imaginary weight
factor eiS[A,ψ,ψ̄] do not occur on a Euclidean space-time lattice.

Despite of the imaginary exponent the vacuum expectation value (2.9) is rem-
iniscent of a thermodynamical average in statistical mechanics. For a complete
analogy between statistical mechanics and the path integral formulation of QCD
one has to change from Minkowski to four-dimensional Euclidean space. This is
achieved by an analytical continuation to imaginary time

t =: x0 → −ix4 with real x4 . (2.12)

With ∂0 = i∂4, p0 = ip4, and A0 = iA4 one obtains after a short calculation the
relation between the gluonic LagrangiansLM

G andLE
G in Minkowski and Euclidean

space (i, j = 1, 2, 3)

LM
G = −1

4
F a
αβ(x)F αβ

a (x) = −1

4

(
F a
ij(x)F a

ij(x)− 2F a
0j(x)F a

0j(x) + F a
00(x)F a

00(x)
)

= −1

4

(
F a
ij(x)F a

ij(x) + 2F a
4j(x)F a

4j(x) + F a
44(x)F a

44(x)
)

= −1

4
F a
µν(x)F a

µν(x)

=: −LE
G . (2.13)

Here, α, β = 0, . . . , 3 are four indices in Minkowski space, and µ, ν = 1, . . . , 4
are those in Euclidean space. For the fermionic Lagrangian one obtains

LM
F = ψ̄(x)(iD/−m)ψ(x) = −ψ̄(x)(Dµγµ +m)ψ(x) =: −LE

F . (2.14)

The Euclidean γ matrices fulfill the anticommutation relations

{γµ, γν} = 2δµν . (2.15)

A possible choice for the γ matrices is

γ4 =

(
1 0
0 −1

)
, γi =

(
0 σi
σi 0

)
, (2.16)

with the Pauli matrices σi. They are Hermitian

γµ = γ†µ . (2.17)

With i
∫
dx0 =

∫
dx4 one obtains the complete Euclidean action

iSM = i

∫
d4x (LM

G + LM
F ) = i

∫
dx0 d

3x (LM
G + LM

F ) =

=

∫
dx4 d

3x (−LE
G − LE

F) =: −SE . (2.18)
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The vacuum expectation value of an observable in the Euclidean path integral
formulation is

〈O 〉 =
1

Z

∫
D[A] D[ψ] D[ψ̄] e−S

E[A,ψ,ψ̄] O(A,ψ, ψ̄) , (2.19)

with

Z =

∫
D[A] D[ψ] D[ψ̄] e−S

E[A,ψ,ψ̄] . (2.20)

By imposing periodic boundary conditions in Euclidean time a total analogy with
statistical mechanics is achieved, and Z can be viewed as a partition function of a
thermodynamical system. For many physical problems like the calculation of the
mass of a particle from the asymptotic behavior of its propagator one can obtain
results directly from the Euclidean formulation. Therefore, a return to Minkowski
space often is not necessary.

2.1.3 Lattice Regularization

A well-defined expression for the path integral of a quantum mechanical particle
can be obtained by discretizing the time variable [8]. Since a continuous path
x(t) now turns into a sequence of points xk = x(tk) (k = 0, 1, . . . , n + 1), the
functional integration over all paths x(t) simplifies to an ordinary integration over
the variables xk (k = 1, 2, . . . , n). Performing the limit n → ∞ at the end of the
calculation one returns to continuum time.

In a field theory the dynamical variables are the local fields and depend on
the four Euclidean space-time variables. A generalization of the above procedure
leads to the construction of a four-dimensional hypercubic lattice with the lattice
spacing a and the lattice points x = (x1, x2, x3, x4), where x1, . . . , x4 are integers.
Defining the fields on this Euclidean space-time lattice one obtains a discrete set
of variables. The functional integration over all field configurations simplifies to
an integration over these variables.

The Fourier transform of a function f(x) defined on the periodic lattice

f̃(p) = a4
∑

x

eipxf(x) (2.21)

is periodic in p with the period pµ = 2π
a

. Therefore momentum is restricted to the
first Brillouin zone −π

a
< pµ ≤ π

a
. This removes ultraviolet divergencies. So the

introduction of a lattice provides a regularization scheme.
Internal symmetries survive discretization whereas spatial symmetries are bro-

ken. This is obvious for the Euclidean Poincaré group, which contains O(4) ro-
tations, but on the lattice only rotations through multiples of π

2
are allowed. The
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big advantage is that local gauge invariance can be preserved. Furthermore, in
the limit a → 0 one should recover the continuum theory. However, there is no
unique choice of a discrete action fulfilling this requirement.

Scalar and vector fields are located on the sites and links of the lattice, re-
spectively. The association of spinors to the lattice is much more involved. The
discretization of fermionic degrees of freedom is a difficult problem of lattice
gauge theory.

2.1.4 Discretized Gluonic Action

As a first step one defines gluonic fields on the lattice [8]. A naive discretization
of the continuum equations by simply assigning the vector potentials to the links
and substituting all derivatives with finite differential quotients would violate lo-
cal gauge invariance for finite lattice spacing a. The covariant derivative has the
correct transformation behavior only in the continuum limit a→ 0.

The differential geometry of local gauge fields opens up a possibility for their
definition on the lattice [10]. The gauge transformation

φ(x)→ exp

(
igθa(x)

λa
2

)
φ(x) = g(x)φ(x) (2.22)

can be understood as a coordinate transformation when changing the basis of a lo-
cal charge space xH at the site x. A comparison of vector fields located at different
places x is only possible when their components refer to the same coordinate sys-
tem. This is achieved via a translation

xφ(x)→ x+dxφ(x) =
(

1− igAa
µ(x)

λa
2
dxµ
)
xφ(x) , (2.23)

where the upper left index indicates the local coordinate system. This transfor-
mation preserves the features of the vectors related to unitary symmetry, being
linearity, orthogonality and normalization. Starting from (2.23) one obtains the
unitary transformation for finite translations along a curve C

U(C) = P exp


ig

∫

C

dxµAaµ(x)
λa

2


 , (2.24)

where P is a path ordering operator. It guarantees that sectors of C are not com-
muted when summing up the exponential series.
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We now consider the lattice and define the matter fields φ(x) on the lattice
sites. Then the translations of charged fields are described by gauge fields defined
on links

Uxµ = P exp

(
igAaxµ

λa

2

)
. (2.25)

So the basic gauge fields on the lattice are the fields Uxµ. In QCD they are SU(3)
fields describing the parallel transport of a color charge from x to x + µ̂, with
the unit vector µ̂ in the direction µ. The transportation of a charge in opposite
direction is described by the Hermitian conjugated gauge field

Ux+µ̂,−µ = U †xµ = U−1
xµ . (2.26)

Requiring local gauge invariance for

φ†xUxµφx+µ̂ (2.27)

one obtains the transformation law

Uxµ → gxUxµg
−1
x+µ̂ , (2.28)

with gx ∈ SU(3).
With this definition of the gauge fields on the lattice one can write down the

lattice version of the gluonic Lagrange density. There is no unique way of con-
structing the lattice Lagrangian but it has to converge to the continuum Lagrangian
for a→ 0.

In pure gauge theory without sources and sinks the flux lines of the gauge
fields are closed loops. The smallest loops on the lattice, called plaquettes, are
squares with the edge length a. The corresponding flux is

Upl,µν(x) := UxµUx+µ̂,νU
†
x+ν̂,µU

†
xν . (2.29)

Repeated application of the Baker-Hausdorff formula to (2.29) yields

Upl,µν(x) = exp
(
iga2Fx,µν

)
= 1 + iga2Fx,µν +

1

2!
(iga2)2(Fx,µν)

2 + . . . . (2.30)

The gauge invariant expression [12]

SG = β
∑

pl

(
1− 1

3
Re TrUpl

)
, (2.31)

with the inverse coupling constant β = 6
g2 , converges to the continuum action for

a→ 0

SG
a→0→

∫
d4x

1

4
Fµν(x)Fµν(x) . (2.32)
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The Wilson plaquette action (2.31) is one possible choice for the gluonic action
on the lattice.

The pure gluonic expectation value of an observable is

〈O 〉 =
1

Z

∏

links

∫
dUxµ O(U) e−SG , (2.33)

with the partition function

Z =
∏

links

∫
dUxµ e

−SG . (2.34)

The integration measure with the following features
∫
dU = 1 ,

∫
dU f(U) =

∫
dU f(V U) =

∫
dU f(UV ) , V ∈ SU(3) ,

(2.35)
is called Haar’s measure. In contrast to a path integral in the continuum, (2.33) and
(2.34) comprise only a finite number of integrals over the gauge group. No gauge
fixing is needed for gauge invariant observables. A four-dimensional hypercubic
lattice with linear dimension N has 4N 4 links. An integration over the full gauge
group SU(3), for example over the eight Euler angles, has to be performed on
each link, resulting in 32N 4 integrals over a compact interval.

One of the great advantages of the lattice formulation of QCD is that methods
of statistical mechanics can be used in a field theory. For small inverse coupling
constant β the strong coupling approximation is valid. This is an analogy to the
high temperature approximation in statistical mechanics. For large β the weak
coupling expansion can be used. For intermediate couplings Monte Carlo methods
are successful.

2.1.5 Fermions on the Lattice

Species Doubling

The Euclidean free fermionic continuum action is [8]

SF =

∫
d4x ψ̄(x)(∂µγµ +m)ψ(x) . (2.36)

Following the naive discretization scheme by defining the fermionic fields on the
lattice points and substituting the differential operator ∂µ by the symmetric differ-
ential quotient

∂µ
∧
=

1

2a
(δx+µ̂,x′ − δx,x′+µ̂) , (2.37)
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yields the following discretized action for free fermions [13]

SF = a4

{
1

2a

∑

x,µ

[
ψ̄xγµψx+µ̂ − ψ̄x+µ̂γµψx

]
+m

∑

x

ψ̄xψx

}
. (2.38)

One gets the interacting gauge invariant fermionic lattice action by inserting gauge
fields U between the ψ fields into the nonlocal terms

SF = a4

{
1

2a

∑

x,µ

[
ψ̄xγµUxµψx+µ̂ − ψ̄x+µ̂γµU

†
xµψx

]
+m

∑

x

ψ̄xψx

}
. (2.39)

In equations (2.38) and (2.39) the color, Dirac and flavor indices are omitted.
Together with the action (2.31) we now have a gauge invariant lattice regularized
version of QCD.

In fact, the above action is not suitable for describing QCD, because it has a
hidden degeneracy in the fermionic degrees of freedom. To see this let us consider
a massless free fermion as described by (2.36) for m = 0. The propagator in
momentum space is

G(p) =
1

1
a

∑
µ

γµ sin(pµa)
. (2.40)

Besides the physical pole at pµa = 0 there are 15 further poles in the first Brillouin
zone at

pµa = (π, 0, 0, 0) , (0, π, 0, 0) , . . . , (π, π, 0, 0) , . . . , (π, π, π, π) . (2.41)

The naively discretized action describes 16 fermions and consequently cannot
reproduce the original continuum Lagrange density in the limit a→ 0.

Fermion doubling is a fundamental problem for all lattice actions that preserve
the chiral symmetry in the massless continuum limit. It can be shown that it is
impossible to construct a chirally invariant lattice action that is free of degeneracy.
A chirally symmetric lattice fermion action is at least four-fold degenerate [14,
15]. One has the choice of an action that is not degenerate in the number of
fermions but breaks chiral symmetry explicitly for a finite lattice constant. This
is achieved with the Wilson method [12]. The second possibility is to preserve
chiral invariance at least partly and to accept a partial fermion degeneracy, like in
the Kogut-Susskind method [16, 17]. In the last years there was a breakthrough
in the construction of chiral fermions. Unfortunately, all solutions are technically
and numerically demanding [18, 19].



CHAPTER 2. THEORY OF QCD AND QED 15

Kogut-Susskind Fermions

The original idea of this fermionic discretization scheme is to distribute the com-
ponents of a spinor over a unit cube instead of defining it on a single lattice point
[8]. Now, two corresponding components of the spinor are separated at least by
two fundamental lattice spacings. As a consequence the first Brillouin zone re-
duces to − π

2a
< pµ ≤ π

2a
so that the pole at π

a
is outside. The degeneracy is

reduced to four.
An illustrative way to arrive at the definition of staggered fermions is the so-

called spin diagonalization. We consider a unitary local matrixAx, acting in Dirac
space, that transforms the spinors ψ̄x and ψx such that the Dirac matrices can be
written as a product of phase factors times a unit matrix

ψx = Axχx ,

ψ̄x = χ̄xA
†
x . (2.42)

Inserting this into the naive action (2.39) one obtains

SF = a4

{
1

2a

∑

x,µ

[
χ̄x∆xµUxµχx+µ̂ − χ̄x+µ̂∆†xµU

†
xµχx

]
+m

∑

x

χ̄xχx

}
, (2.43)

with

∆xµ = A†xγµAx+µ̂ ,

∆†xµ = A†x+µ̂γµAx . (2.44)

We require
∆xµ = Γxµ 1 . (2.45)

One possible choice to fulfill this requirement is

Ax = γx1
1 γ

x2
2 γ

x3
3 γx4

4 ,

A†x = γx4
4 γ

x3
3 γ

x2
2 γx1

1 . (2.46)

One obtains
∆xµ = (−1)x1+...+xµ−1 1 =: Γxµ 1 (2.47)

and
∆†xµ = ∆xµ . (2.48)

Other possible matrices A′x can be calculated from unitary transformations of Ax.
The diagonalized action SF is

a4

{
1

2a

∑

x,µ

Γxµ

[
χ̄cx,α 1αβ U

cc′
xµ χ

c′
x+µ̂,β−χ̄cx+µ̂,α 1αβ U

† cc′
xµ χc

′
x,β

]
+m

∑

x

χ̄cx,αχ
c
x,α

}
,

(2.49)
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with the Dirac indices α, β = 1, ..., 4 and the color indices c, c′ = 1, 2, 3.
Because of the unit matrix between the spinors (2.49) consists of four identical

terms. The dynamics of the system is completely described by a single term. Ne-
glecting the others the degeneracy is reduced to four. This leads to the following,
Kogut-Susskind, action

SF = a4

{
1

2a

∑

x,µ

Γxµ

[
χ̄xUxµχx+µ̂ − χ̄x+µ̂U

†
xµχx

]
+m

∑

x

χ̄xχx

}
, (2.50)

where χcx and χ̄cx are one component fields in Dirac space.
For m = 0 the reduced action is invariant with respect to the global transfor-

mations

χx→ eiα χx
χ̄x→ e−iβ χ̄x

}
for (−1)x1+x2+x3+x4 = 1

χx→ eiβ χx
χ̄x→ e−iα χ̄x

}
for (−1)x1+x2+x3+x4 = −1 , (2.51)

where α and β are independent phases. This residual symmetry originates from
the chiral symmetry of the continuum action and ensures that no counter terms are
needed for renormalization (that means mbare = 0 implies mren = 0).

Due to the partial conservation of chiral symmetry the degeneracy could not be
completely avoided, as was mentioned above in this section. In practice one intro-
duces a factor 1

4
in the action to account for the remaining degeneracy. Whether

this concept gives the correct continuum limit is an unsolved problem. Addi-
tionally, it is difficult to construct baryonic operators with well defined quantum
numbers. Although the Kogut-Susskind or staggered scheme provides an elegant
discretization method, its physical meaning is not yet fully enlightened.

Wilson Fermions

To avoid fermion doubling, in this method an extra term [8]

ra4
∑

x

∑

µ

1

2a
(ψ̄x+µ̂ − ψ̄x)(ψx+µ̂ − ψx) (2.52)

is added to the naive action (2.38), where 0 < r ≤ 1 is a free parameter [12, 13].
This term is of order O(a5)

ra4
∑

x

∑

µ

1

2a
aψ̄′x aψ

′
x ∼ O(a5) (2.53)
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and vanishes in the classical continuum limit, relative to the rest of the action,
which is of order O(a4).

The new action becomes

SF = a4

{
1

2a

∑

xµ

(
ψ̄xγµψx+µ̂ − ψ̄x+µ̂γµψx+

rψ̄x+µ̂ψx+µ̂ + rψ̄xψx − rψ̄x+µ̂ψx − rψ̄xψx+µ̂

)
+m

∑

x

ψ̄xψx

}
.(2.54)

Using

1

2a

∑

x

∑

µ

ψ̄xψx =
2

a

∑

x

ψ̄xψx ,

1

2a

∑

x

∑

µ

ψ̄x+µ̂ψx+µ̂ =
2

a

∑

x

ψ̄xψx , (2.55)

and rescaling the fields

ψ →
[
a3(4r +ma)

]−1/2

ψ ,

ψ̄ →
[
a3(4r +ma)

]−1/2

ψ̄ , (2.56)

one obtains

SF = −κ
∑

x,µ

[
ψ̄x(r − γµ)ψx+µ̂ + ψ̄x+µ̂(r + γµ)ψx

]
+
∑

x

ψ̄xψx , (2.57)

with the hopping parameter

κ =
1

8r + 2ma
. (2.58)

Defining the fermionic matrix

Mxx′ = δxx′ − κ Qxx′ (2.59)

with
Qxx′ =

∑

µ

[
(r − γµ) δx+µ̂,x′ + (r + γµ) δx,x′+µ̂

]
, (2.60)

the corresponding fermion propagator turns out to be

G(p) = M̃−1(p) ∝ 1

m+ i
a

∑
µ

sin(pµa) + r
a

∑
µ

(1− cos(pµa))
. (2.61)
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The originally degenerate particles acquire an additional mass on the former poles
from the Wilson term

pµa =





(π,0,0,0) , . . . , (0,0,0,π) m+ 2r
a

(π,π,0,0) , . . . , (0,0,π,π) m+ 4r
a

(π,π,π,0) , . . . , (0,π,π,π) m+ 6r
a

(π,π,π,π) m+ 8r
a
.

(2.62)

These states have an infinite mass in the limit a→ 0 and vanish from the spectrum.
The degeneracy is completely removed.

The diagonal parts of the Wilson term correspond to an additional mass term,
which breaks the chiral symmetry explicitly. This means that even for m = 0 the
Lagrangian is not invariant under chiral transformations.

The additional mass term also gives rise to mass counter terms in the renor-
malization process. Therefore, a vanishing bare mass m0 does not generally lead
to a renormalized mass mren = 0. This is a fundamental difference to the Kogut-
Susskind method. As a consequence the non-renormalized mass parameter in the
staggered action and the bare mass in the hopping parameter of the Wilson action
are not identical. Therefore a direct comparison of the two methods is not easy
to accomplish. In contrast to the Kogut-Susskind action, the Wilson action shows
the correct continuum limit.

2.1.6 Monopoles and Confinement

The U(1) plaquette angles θx,µν ≡ Ux,µν can be decomposed into the “physical”
electromagnetic flux through the plaquette θ̄x,µν and a number mx,µν of Dirac
strings passing through the plaquette

θx,µν = θ̄x,µν + 2πmx,µν , (2.63)

where θ̄x,µν ∈ (−π,+π]. One calls plaquettes with mx,µν 6= 0 Dirac plaquettes.
The monopole charges in elementary 3d cubes are defined as the net number of
Dirac strings entering or exiting these cubes. The worldlines of these monopoles
on the dual lattice are closed, either within the lattice volume or by the periodic
boundary conditions.

The relation between confinement and dual superconductivity of the ground
state of gauge theories has been analyzed in many studies [20, 21]. Monopoles
exist in gauge theories, carrying a conserved magnetic charge. A disorder pa-
rameter 〈µ〉 can be defined for detecting dual superconductivity as spontaneous
breaking of the U(1) symmetry related to magnetic charge conservation. 〈µ〉 6= 0
signals that the ground state is a superposition of states with different magnetic
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charge, a phenomenon which is denoted as condensation and which implies dual
superconductivity under very general assumptions.

In SU(2) a monopole species can be associated to any operator in the ad-
joint representation, with a corresponding magnetic U(1) symmetry. Condensa-
tion can be numerically investigated for different monopole species, in connection
with confinement, by lattice simulation at finite temperature. The main results of
the investigation for SU(2) were the following: Monopoles defined by different
Abelian projections do condense in the confined phase, 〈µ〉 6= 0, whereas at de-
confinement 〈µ〉 → 0. All the monopole species considered have a similar behav-
ior, and show dual superconductivity. The analysis was also extended to SU(3)
gauge group and the essentials are not changed with respect to SU(2).

2.1.7 Finite Temperature on the Lattice

It is assumed that at very high temperatures QCD undergoes a phase transition
from the confinement to the deconfinement phase [8]. There, quarks and gluons
are free particles in, what is called, the quark-gluon plasma. Especially in high
energy physics and in cosmology one is interested in an investigation of the phase
transition and the properties of the quark-gluon plasma. For this purpose a defini-
tion of QCD at finite temperatures is needed.

For a pointlike quantum mechanical particle, described by a Hamiltonian H ,
in a heat bath of temperature T ≡ 1

βB
the partition function is

Z = Tr e−βBH . (2.64)

Evaluating Z in coordinate space gives

Z =

∫
dx 〈x | e−βBH |x 〉 . (2.65)

In the path integral formalism the partition function is given by

Z =
∑

periodic paths

exp


−

βB∫

0

dx4 LE(x4)


 , (2.66)

where one has to sum over all paths fulfilling x(βB) = x(0).

Generalizing this for lattice QCD gives

Z =

∫
D[U, ψ, ψ̄] e−(SG+SF) , (2.67)
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where the fields have to be periodic in time. This means periodic boundary condi-
tions for gauge fields and anti-periodic boundary conditions for the quark fields,
because they are Grassmann variables. Additionally the thermodynamic limit has
to be performed for the lattice with the extent Nx × Ny × Nz × Nt, that means
V = Nxa Nya Nza → ∞, where the time extent Nta has to be kept fixed. The
temperature T = 1

Nta
is given by the inverse time extent of the lattice. Since

the lattice constant a depends on the coupling constant g, the temperature can be
controlled via the inverse coupling constant β = 6

g2 . Thermodynamic observables
can be calculated as usual as derivatives of the partition function with respect to
temperature, volume and so on.

2.1.8 Numerical Simulation

The aim of numerical simulations is to calculate expectation values [22]

〈O〉 =

∫
D[U, ψ̄, ψ]O(U, ψ̄, ψ)e−S[U,ψ̄,ψ]

∫
D[U, ψ̄, ψ]e−S[U,ψ̄,ψ]

. (2.68)

In pure gluonic QCD (2.68) is reduced to

〈O〉 =
1

Z

∫
D[U ]O(U)e−S[U ] . (2.69)

On an N 4 lattice with SU(3) gauge symmetry one has to evaluate 32N 4 integrals
over the generalized Euler angles. Even for small lattices it is impossible to per-
form such a number of integrals numerically. Fortunately, it is not necessary to do
that as it is sufficient to consider a small number of representative configurations
which are those with the largest statistical weight. The largest statistical weight
is given by the minimal action as for the minimal action the Boltzmann factor
e−S is large. The path integral (2.69), therefore, becomes an averaging over these
configurations

〈O〉 =
1

NKonf

NKonf∑

i=1

O({U}i) . (2.70)

This approximation converges to the exact integral in the limit of a large number
of independent configurations. The factor e−S does not appear in (2.70) as it is
taken into account in the generation of the configurations. The main purpose is,
therefore, to generate as many independent configurations with minimal action as
possible.
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Monte Carlo Method

Let Σ denote a configuration of the gauge field U [22]. In equilibrium the con-
figurations are generated with a probability P (Σ) proportional to their statistical
weight

P (Σ) ∝ e−S(Σ) . (2.71)

Such configurations can be generated by a discrete Markov process, i.e. each
configuration of the Markov chain is generated from the preceding configuration
and they are independent from each other.

Let P (Σ → Σ′) denote the transition probability from the configuration Σ to
the configuration Σ′. P (Σ→ Σ′) has to fulfill the following requirements:

• Each configuration with a finite action has to be reached in finite number of
steps

P (Σ→ Σ′) > 0 , for each Σ,Σ′ . (2.72)

• The sum of the transition probability from one configuration to any other
configuration has to be 1

∑

Σ′

P (Σ→ Σ′) = 1 . (2.73)

• Detailed balance should exist

P (Σ→ Σ′)

P (Σ′ → Σ)
=
e−S(Σ′)

e−S(Σ)
. (2.74)

If these restrictions are fulfilled each chain reaches an equilibrium in a finite num-
ber of steps. In the equilibrium the probability of finding configuration Σ is given
by (2.71). The expectation value of an observable O in the detailed balance is
given by

〈O〉 =
1

NΣ

NΣ∑

i=1

O(Σi) . (2.75)

Metropolis Algorithm

Considering the gauge field element U which is situated on a specified link of
the lattice [22]. U is then multiplied by a random matrix V ∈ SU(3) which is
close to unity. The probability for the multiplication with V has to be equal to the
probability for the multiplication with the inverse

p(V ) = p(V †) . (2.76)
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If the action decreases the old gauge field element U is replaced by V U . If the
action increases it depends on a random number r whether or not U is replaced.
Therefore,

e−[S(V U)−S(U)] − r
{
≥ 0⇒ U ′ = V U
< 0⇒ U ′ = U ,

(2.77)

where r is a uniformly distributed random number from the interval [0, 1]. Suppos-
ing the gauge field is only replaced if the action decreases then the system would
converge to the classical limit and all quantum fluctuations were suppressed. One
also prevents to fall in a local minimum by using this implementation. If the action
increases S(U ′) > S(U) then

P (U → U ′) = p(V )e−(S(U ′)−S(U) ,
P (U ′ → U) = p(V †) ,

(2.78)

and with p(V ) = p(V †) follows

P (U → U ′)

P (U ′ → U)
=
e−S(U ′)

e−S(U)
. (2.79)
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2.2 Lyapunov Exponent in U(1) and SU(2) Gauge
Theory

The study of chaotic dynamics of classical field configurations in field theory finds
its motivation in phenomenological applications as well as for the understanding
of basic principles. The role of chaotic field dynamics for the confinement of
quarks is a longstanding question. Here, we analyze the leading Lyapunov ex-
ponents of compact U(1) and of SU(2)-Yang-Mills field configurations on the
lattice. The real-time evolution of the classical field equations was initialized
from Euclidean equilibrium configurations created by quantum Monte Carlo sim-
ulations. This way we expect to see a coincidence between the strong coupling
phase and the strength of chaotic behavior in lattice simulations [23].

2.2.1 Classical Chaotic Dynamics

Chaotic dynamics in general is characterized by the spectrum of Lyapunov expo-
nents. These exponents, if they are positive, reflect an exponential divergence of
initially adjacent configurations. In case of symmetries inherent in the Hamilto-
nian of the system there are corresponding zero values of these exponents. Finally
negative exponents belong to irrelevant directions in the phase space: perturbation
components in these directions die out exponentially. Pure gauge fields on the lat-
tice show a characteristic Lyapunov spectrum consisting of one third of each kind
of exponents [24]. This fact reflects the elimination of longitudinal degrees of
freedom of the gauge bosons. Assuming this general structure of the Lyapunov
spectrum we investigate presently its magnitude only, namely the maximal value
of the Lyapunov exponent, Lmax.

The general definition of the Lyapunov exponent is based on a distance mea-
sure d(t) in phase space,

L := lim
t→∞

lim
d(0)→0

1

t
ln
d(t)

d(0)
. (2.80)

In case of conservative dynamics the sum of all Lyapunov exponents is zero ac-
cording to Liouville’s theorem,

∑
Li = 0. (2.81)

We utilize the gauge invariant distance measure consisting of the local differences
of energy densities between two field configurations on the lattice:

d :=
1

NP

∑
P
|trUP − trU ′P | . (2.82)
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Here the symbol
∑

P stands for the sum over all NP plaquettes, so this distance
is bound in the interval (0, 2N) for the group SU(N). UP and U ′P are the familiar
plaquette variables, constructed from the basic link variables Ux,i,

Ux,i = exp
(
aAcx,iT

c
)
, (2.83)

located on lattice links pointing from the position x = (x1, x2, x3) to x+ aei. The
generators of the group are T c = −igτ c/2 with τ c being the Pauli matrices in
case of SU(2) and Ac

x,i is the vector potential. The elementary plaquette variable
is constructed for a plaquette with a corner at x and lying in the ij-plane as

Ux,ij = Ux,iUx+i,jU
†
x+j,iU

†
x,j. (2.84)

It is related to the magnetic field strength Bc
x,k:

Ux,ij = exp
(
εijkaB

c
x,kT

c
)
. (2.85)

The electric field strength Ec
x,i is related to the canonically conjugate momentum

Px,i = U̇x,i via

Ec
x,i =

2a

g3
tr
(
T cU̇x,iU

†
x,i

)
. (2.86)

2.2.2 Initial States Prepared by Quantum Monte Carlo

The Hamiltonian of the lattice gauge field system can be casted into the form

H =
∑[

1

2
〈P, P 〉 + 1− 1

4
〈U, V 〉

]
. (2.87)

Here the scalar product between group elements stands for 〈A,B〉 = 1
2
tr(AB†).

The staple variable V is a sum of triple products of elementary link variables
closing a plaquette with the chosen link U . This way the Hamiltonian is formally
written as a sum over link contributions and V plays the role of the classical force
acting on the link variable U . The naive equations of motion following from this
Hamiltonian, however, have to be completed in order to fulfill the constraints

〈U,U〉 = 1,

〈P,U〉 = 0. (2.88)

The following finite time step recursion formula:

U ′ = U + dt(P ′ − εU),

P ′ = P + dt(V − µU + εP ′), (2.89)
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with the Lagrange multipliers

ε = 〈U, P ′〉,
µ = 〈U, V 〉+ 〈P ′, P ′〉, (2.90)

conserves the Noether charge belonging to the Gauss law,

Γ =
∑

+

PU † −
∑

−
U †P. (2.91)

Here the sums indicated by + run over links starting from, and those by − ending
at a given site x, where the Noether charge Γ is defined. The above algorithm is
written in an implicit form, but it can be casted into explicit steps, so no iteration
is necessary [25].

Initial conditions chosen randomly with a given average magnetic energy per
plaquette have been investigated in past years. In the SU(2) case, a linear scaling
of the maximal Lyapunov exponent with the total energy of the system has been
established for different lattice sizes and coupling strengths [24]. In the present
study we prepare the initial field configurations from a standard four dimensional
Euclidean Monte Carlo program on a 123 × 4 lattice varying the inverse gauge
coupling β [26].

We relate such four dimensional Euclidean lattice field configurations to Min-
kowskian momenta and fields for the three dimensional Hamiltonian simulation
by the following approach:

First we fix a time slice of the four dimensional lattice. We denote the link
variables in the three dimensional sub-lattice by U ′ = Ui(x, t). Then we build
triple products on attached handles in the positive time direction,
U ′′ = U4(x, t)Ui(x, t+ a)U †4(x+ a, t). We obtain the canonical variables of the
Hamiltonian system by using

P = (U ′′ − U ′)/dt,
U ∝ (U ′′ + U ′). (2.92)

Finally U is normalized to 〈U,U〉 = 1.
This definition constructs the momenta according to a simple definition of the

time-like covariant derivative. The multiplication with the link variables in time
direction can also be viewed as a gauge transformation toU4(x, t) = 1, i.e. A0 = 0
Hamiltonian gauge.



3
Sonification Results

3.1 Dirac Operator for Fixed Beta

For the first sonification in lattice field theory we took the eigenvalue spectrum of
the Dirac operator from existing data [27]. There the gauge field configurations
were generated using the standard Wilson plaquette action for SU(3) and the ma-
trix of the Dirac operator was constructed using the Kogut-Susskind prescription
(2.50). The Dirac matrix is anti-hermitian so that all eigenvalues are imaginary
and occur in pairs with opposite sign. We work on a 63 × 4 lattice with various
values of the coupling strength β. Typically there have been 10 independent con-
figurations for each value of β. In the first sonification attempt the spectra for
ascending eigenvalues keeping β fixed were analyzed [28].

Fig. 3.1 shows a graphical presentation of the 15 lowest eigenvalues from β =
5.0 to β = 6.0. The phase transition to deconfinement occurs around β = 5.7
where all quasi-zero modes vanish.

To prepare the input data for sonification we multiplied the raw data by a
factor of 10000 and added the standard pitch of 440 Hz. The outcome is shown in
Fig. 3.2 for the spectra from the confinement to the deconfinement phase.

For the sonification process we wrote a sclang program similar to the pro-
gram code of another sonification project treating baryon spectra obtained from
different constituent quark models [7]. In Fig. 3.3 we present screenshots of the
15 lowest eigenvalues for β = 5.0 and β = 6.0. Listening to the sound files
one can hear that the melody is rather similar for the β-values in the confinement
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Figure 3.1 Configuration-averaged values of the 15 lowest levels of the eigenvalue
spectrum of the Dirac operator for 6 different couplings β.
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Figure 3.2 Eigenvalue spectra transformed into audible region for β-values across
the phase transition from quark confinement to the quark-gluon plasma.
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Figure 3.3 Screenshots of the low-lying part of the spectrum of the Dirac operator
in the confinement and deconfinement region.

phase [web/cdrom] with a slight increase towards higher coupling. The quasi-
zero mode of the lowest eigenvalue stays around 440 Hz. After the transition to
the deconfinement region [web/cdrom] the sound changes clearly to higher tones.
The lowest eigenvalue starts above 800 Hz. This means that one can hear the
restoration of chiral symmetry when increasing the coupling to the quark-gluon
plasma-phase. These sample results are stored on the SonEnvir server and can be
accessed there [29].

http://www.sonenvir.at/downloads/LatticeQCD/Dublin/beta50.wav
SoundFiles/beta50.wav
http://www.sonenvir.at/downloads/LatticeQCD/Dublin/beta60.wav
SoundFiles/beta60.wav
http://www.sonenvir.at/downloads/LatticeQCD
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Figure 3.4 Configuration-averaged values of the 15 lowest levels of the eigenvalue
spectrum of the Dirac operator as a function of the gluon coupling β.

3.2 Dirac Operator as a Function of Beta

This sonification example is similar to the first one. But now we performed a
sonification keeping the eigenvalue fixed as a function of the coupling β [30].

Fig. 3.4 shows a graphical presentation of the 15 lowest eigenvalues as a func-
tion of the gluon coupling from β = 5.0 to β = 6.0. The phase transition to
deconfinement occurs around β = 5.7 where the quasi-zero modes disappear.
One observes that all eigenvalues independent of their topological content are in-
fluenced at the transition point.

For the audio files we again multiplied the raw data by a factor of 10000 and
added the standard pitch of 440 Hz. In Fig. 3.5 we depict the frequencies ob-
tained for the eigenvalue numbers 1,2,3,5,10 and 15 from the confinement to the
deconfinement phase.

In Fig. 3.6 we present screenshots of the 1st eigenvalue [web/cdrom] and the
10th eigenvalue [web/cdrom] from β = 5.0 to β = 6.0. Listening to the sound
files one can hear that the melody is changing clearly to higher tones around the

http://www.sonenvir.at/downloads/LatticeQCD/Swansea/eigenvalue1.mp3
SoundFiles/eigenvalue1.mp3
http://www.sonenvir.at/downloads/LatticeQCD/Swansea/eigenvalue10.mp3
SoundFiles/eigenvalue10.mp3
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Figure 3.5 Six selected eigenvalues transformed into the audible region for values
of β across the QCD phase transition.
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Figure 3.6 Screenshots of the lowest and the 10th eigenvalue of the Dirac operator
moving from the confinement to the deconfinement region.

critical β-value. Both eigenvalue sequences behave similarly. Only the quasi-zero
mode of the lowest eigenvalue starts around 440 Hz whereas the higher eigenvalue
begins correspondingly higher. This means that one can hear the restoration of
chiral symmetry when increasing the coupling beyond the phase transition to the
quark-gluon plasma. These sample results can also be found on the SonEnvir
server [29].

http://www.sonenvir.at/downloads/LatticeQCD
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Figure 3.7 Monopole disorder parameter ρ computed by the Pisa group as a func-
tion of β for different spatial sizes at fixed Nt = 4 with Polyakov projection and
Abelian generator F 3.

3.3 Disorder Parameter for Magnetic Monopoles

When crossing the transition point to the quark-gluon plasma the topological
charge and the monopole density exhibit drastic changes and disappear. The Pisa
group developed and computed a (dis)order parameter for magnetic monopoles
on the lattice. Fig. 3.7 displays the derivative of the logarithmic monopole density
with respect to β for SU(3) gauge theory. The kink of the monopole density is
thus transformed to a clearly visible spike, which becomes more pronounced with
increasing lattice size and stays practically independent of the Abelian projection
[21].

In Fig. 3.8 we display snapshots of the disorder parameter ρ around β = 4
and at the critical point β = 5.7 for spatial lattice size Ns = 16, the left showing
exactly one frequency whereas the right exhibits a bunch of frequencies from the
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Figure 3.8 Snapshots of the zero-value at small couplings and of the spike of the
monopole disorder parameter at the transition point.

sharp dip [31]. The sound file presents ρ [web/cdrom] for varying β with the
melody changing clearly to lower tones around criticality. This means that one
can hear the phase transition to the quark-gluon plasma where the monopoles
vanish. These sample results can be accessed from the SonEnvir server [29].

http://www.sonenvir.at/downloads/LatticeQCD/Pisa/BetaLinTime.mp3
SoundFiles/BetaLinTime.mp3
http://www.sonenvir.at/downloads/LatticeQCD
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3.4 Lyapunov Exponent in U(1) and SU(2) Theory

The numerical computation of the Lyapunov exponents in gauge theories was
carried out in the course of this thesis. At first we show a characteristic example
of the time evolution of the distance between initially adjacent configurations. An
initial state prepared by a standard four dimensional Monte Carlo simulation is
evolved according to the classical Hamiltonian dynamics in real time. Afterwards
this initial state is rotated locally by group elements which are chosen randomly
near to the unity. The time evolution of this slightly rotated configuration is then
pursued and finally the distance between these two evolutions is calculated at the
corresponding times. A typical exponential rise of this distance followed by a
saturation can be inspected in Fig. 3.9 from an example of U(1) gauge theory
in the confinement phase and in the Coulomb phase [23]. While the saturation
is an artifact of the compact distance measure of the lattice, the exponential rise
(the linear rise of the logarithm) can be used for the determination of the leading
Lyapunov exponent. The naive determination and more sophisticated rescaling
methods lead to the same result.

The dependence of the leading Lyapunov exponent Lmax on the inverse cou-
pling strength β is displayed in Fig. 3.10 for a statistics of 100 independent U(1)
configurations. As expected the strong coupling phase, where confinement of
static sources has been established many years ago by proving the area law be-
havior for large Wilson loops, is more chaotic. The transition reflects the critical
coupling to the Coulomb phase. Furthermore the maximal Lyapunov exponent
scatters more pronounced than the average energy per plaquette. Fig. 3.11 shows
the somewhat smoother transition of the energy per plaquette as a function of the
inverse coupling strength. Fig. 3.12 depicts the correlation of the Lyapunov expo-
nents and the plaquette energies for 100 U(1) configurations. The blank area is
indicative of the transition point being presumable of first order.

Next we turn to the comparison of expectation values of U(1) and SU(2)
theory. Fig. 3.13 exhibits the averaged leading Lyapunov exponent between the
strong and the weak coupling regime. The smoother fall-off of the SU(2) Lya-
punov exponent reflects the second order of the finite temperature transition to a
Debye screened phase of free quarks. Fig. 3.14 compares the averaged plaquette
energies of both gauge theories signaling the different order of their phase transi-
tions.

Fig. 3.15 shows the energy dependence of the Lyapunov exponents for both
theories. One observes an approximately linear relation for the SU(2) case while
a quadratic relation is suggested for the U(1) theory in the weak coupling regime.
From scaling arguments a functional relationship between the Lyapunov exponent
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Figure 3.9 Exponentially diverging distance of initially adjacent U(1) field con-
figurations on a 123 lattice prepared at β = 0.9 in the confinement phase (top) and
at β = 1.1 in the Coulomb phase (bottom).
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Figure 3.10 Transition of the leading Lyapunov exponents from 100 U(1) config-
urations as a function of the inverse coupling strength β.
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Figure 3.12 Scatter plots of Lyapunov exponents and plaquette energies for 100
U(1) configurations.

and the energy [24, 32] is expected

L(a) ∝ ak−1Ek(a), (3.1)

with the exponent k being crucial for the continuum limit of the classical field
theory. A value of k < 1 leads to a divergent Lyapunov exponent, while k > 1
yields a vanishing L in the continuum. The case k = 1 is special leading to
a finite non-zero Lyapunov exponent. Our analysis of the scaling relation (3.1)
gives evidence, that the classical compact U(1) lattice gauge theory has k ≈ 2
and with L(a) → 0 a regular continuum theory. The non-Abelian SU(2) lattice
gauge theory signals k ≈ 1 and stays chaotic approaching the continuum.

Summarizing, we investigated the classical chaotic dynamics of U(1) and
SU(2) lattice gauge field configurations prepared by quantum Monte Carlo sim-
ulation. The maximal Lyapunov exponent shows a pronounced transition as a
function of the coupling strength. Both for QED and QCD we find that configura-
tions in the strong coupling phase are substantially more chaotic than in the weak
coupling regime. The results demonstrate that chaos is present when particles
are confined, but it persists partly also into the Coulomb and quark-gluon-plasma
phase. Already on the finite volume of the 123 lattice the first order of the U(1)
transition and the second order of the SU(2) transition become visible.
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Turning to the preparation of the audio files, we multiplied the raw data by a
factor of 1000 and added the standard pitch of 440 Hz. In Fig. 3.16 we depict the
frequencies of the Lyapunov exponent in U(1) gauge theory and in SU(2) gauge
theory from the confinement to the deconfinement phase. Listening to the cor-
responding sound files of U(1) [web/cdrom] and of SU(2) [web/cdrom] one can
hear that the melody is changing clearly to lower tones. Both Lyapunov exponents
behave similarly. Unfortunately, it is difficult to hear the difference between the
1st order of the U(1) transition and the 2nd order of the SU(2) transition. Those
sound files can also be downloaded from the SonEnvir server [29].

http://www.sonenvir.at/downloads/LatticeQCD/Brixen/Lyapunovu1.mp3
SoundFiles/Lyapunovu1.mp3
http://www.sonenvir.at/downloads/LatticeQCD/Brixen/Lyapunovsu2.mp3
SoundFiles/Lyapunovsu2.mp3
http://www.sonenvir.at/downloads/LatticeQCD
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Figure 3.16 Comparison of the audible frequencies of the Lyapunov exponent in
U(1) gauge theory (top) and in SU(2) gauge theory (bottom) when crossing from
the strong to the weak coupling phase.
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3.5 Physical Observables across Phase Transitions
in Polymers

Monte Carlo simulations can be used not only for lattice QCD but have been
designed generally for thermodynamic systems and their phase transitions. In
this demonstration of sonification, we rely on a detailed study of the solubility-
temperature phase diagram of a polymer in a cavity with an attractive substrate
[33]. The Leipzig group identified the thermodynamic phases (Fig. 3.17) of ad-
sorbed compact and expanded (AC, AE) and desorbed (DC, DE) conformations
as well as the previously not yet clearly confirmed phase of absorbed globules
(AG). Although the polymer in the study possessed only N = 179 monomers,
these (pseudo)phases are expected to be stable also in the thermodynamic limit
N → ∞. Other noticeable phase transitions in the compact-globular adsorbed
regime (AC1-AC2d, AC1-AGe) are the energetic layering transitions from film-
like surface-layer to double-layer conformations which are also believed to sur-
vive the thermodynamic limit. In addition, further subphases of higher-order lay-
ers were found in low-temperature regions and bad solvent (AC2a1,2, AC2b, and
AC2c). The most compact three-dimensional conformation found is cubelike and
forms five layers (in subphase AC2a1).

The (pseudo)phase diagram Fig. 3.17 is based on the profile of the specific
heat CV as a function of temperature T and reciprocal solubility s. Although
this profile allows for the identification of phases and their boundaries it tells
little about the conformational transitions between the phases. For this purpose
they considered expectation values and fluctuations for the numbers of monomer-
surface contacts, ns, and intrinsic monomer-monomer contacts, nm, separately,
see Fig. 3.18. These contact numbers turned out to be sufficient to describe the
macrostate of the system and therefore are useful to describe the conformations
dominating the different phases [33].

We thank the Leipzig group for their data prior to publication to perform a
sonification demonstration at the CompPhys05 workshop [34]. Listening to the
result for the specific heat of the polymers [web/cdrom] along the T axis for s = 1
we experience the spike and the shoulder from the probably first-order transitions
around T ≈ 0.34 and T ≈ 2.44, respectively. The SonEnvir project-group in Graz
has also written a sonification tool for moving around the polymer landscape so
that one can hear the polymer structure in the vicinity of the current position.
Sample files are stored on the SonEnvir server [29].

http://www.physik.uni-leipzig.de/~janke/CompPhys05
http://www.sonenvir.at/downloads/LatticeQCD/Leipzig/simpleCutt10.mp3
SoundFiles/simpleCutt10.mp3
http://www.sonenvir.at/downloads/LatticeQCD
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by the Leipzig group. The color codes the specific heat as a function of reciprocal
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heat CV for a 179-mer in solvent with s = 1. The specific heat from these results
of the Leipzig group is taken for sonification.



4
Summary and Conclusion

This diploma thesis represents an attempt to learn about sonification in physics.
The main goal was the application of auditory display to data from physical ob-
servables across phase transitions. The studies range from quantum chromody-
namics to polymers. Central emphasis was on the phase transition of QCD from
the confinement of quarks to the plasma of quarks and gluons. The physical ob-
servable was the eigenvalue spectrum of the Dirac operator of a quark in QCD.
In two analyses of the lowest eigenvalues, keeping the gluonic coupling β fixed
and letting β run, respectively, one could hear the restoration of chiral symme-
try when increasing the coupling to the quark-gluon plasma-phase. Subsequently,
the disorder parameter for magnetic monopoles was considered. One could hear
the spike at the phase transition to the quark-gluon plasma where the monopoles
vanish.

The next study was devoted to the leading Lyapunov exponents of U(1) and
SU(2) classical gauge field configurations on the lattice. Although the breakdown
of the Lyapunov exponent at the phase transition was clearly audible, it is difficult
to distinguish between the first and second order of the transitions.

The last analysis dealt with Monte Carlo simulations of polymers. They ex-
hibit a rich phase structure. Sonification rendered two transitions of presumably
first order with different characteristics due to finite volume effects.

In the above first trials of sonification, the structures one could recognize from
the sound files are similar to those from graphical visualization. In this regard,
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sonification as applied here can be seen as an additional tool of data representation.
Of course, it could be possible to find more refined means of auditory display in
order to make further qualities apparent in some given data sets. Sonification
offers the chance to detect structures in the data sets that have been hidden to the
methods applied so far. Data analysis through sonification might especially be
useful for displaying results depending on multiple parameters and/or belonging
to higher space-time dimensions. In the context of lattice QCD it could be possible
to demonstrate the topological content of certain gauge field configurations.

Concerning the sonification process only until one understands more about
the human perception of sonification, the field will remain in trial-and-error state.
The professional sonification tool we used, SuperCollider, is very powerful but
difficult to work with. On one hand it requires some knowledge of a musician,
on the other hand the program language is rather complex. It would be desirable
to have a user interface with a limited instruction set for sonification similar to
existing graphics packages. The development of such a sonification package is
one of the aims of the SonEnvir project.



A
SuperCollider Functions

A.1 Short Introduction into the Function Syntax

SuperCollider has built-in functions for various kinds of sound sources (oscilla-
tors, noise generators, sounds file readers, live inputs), time functions (envelopes,
controls), sound processors (filters, delay lines), and output (to write sound sam-
ples to the digital-to-analog convertor or to a file) [35].

“Synth”, “SinOsc”, “LFNoise” are objects, “play” and “ar” are messages.
“{SinOsc.ar(LFNoise0.ar(10, 400, 800), 0, 0.3)}” is a function (everything be-
tween { and }, separated by commas). In the code “LFNoise0.ar(10, 400, 800)”
the “.ar” is the message, so “(10, 400, 800)” is a list of three arguments for the
“ar” message. Both “ar” and “kr” messages generate graphs describing sounds,
but “ar” uses sample rates appropriate for audio signals (audio rate) while “kr”
uses lower sample rates, appropriate for control signals (control rate).

ftp://ftp.create.ucsb.edu/pub/SuperCollider/Book/Book.pdf
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A.2 Functions Used in the Lyapunov Program

A.2.1 Impulse – Impulse Oscillator

Impulse.ar(freq, phase, mul, add)

Outputs non band limited single sample impulses.

freq - frequency in Hertz
phase - phase offset in cycles ( 0..1 )

{ Impulse.ar(800, 0.0, 0.5, 0) }.play

modulate phase:

{ Impulse.ar(4, [0, MouseX.kr(0, 1)], 0.2) }.play;

A.2.2 Decay2 – Exponential Decay

Decay2.ar(in, attackTime, decayTime, mul, add)

Decay has a very sharp attack and can produce clicks. Decay2 rounds off the at-
tack by subtracting one Decay from another.

Decay2.ar(in, attackTime, decayTime) is equivalent to:
Decay.ar(in, decayTime) - Decay.ar(in, attackTime)

in - input signal
attackTime - 60 dB attack time in seconds
decayTime - 60 dB decay time in seconds

plot({ Decay2.ar(Impulse.ar(1), 0.001, 0.01) })

// used as an envelope
{ Decay2.ar(Impulse.ar(XLine.kr(1,50,20), 0.25), 0.01, 0.2,
FSinOsc.ar(600)) }.play;
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A.2.3 Osc – Interpolating Wavetable Oscillator

Osc.ar(table, freq, phase, mul, add)

Linear interpolating wave-table lookup oscillator with frequency and phase mod-
ulation inputs.

This oscillator requires a buffer to be filled with a wave-table format signal. This
preprocesses the Signal into a form which can be used efficiently by the Oscillator.
The buffer size must be a power of 2.

This can be archived by creating a Buffer object and sending it one of the “b gen”
messages ( sine1, sine2, sine3 ) with the wave-table flag set to true.

This can also be archived by creating a Signal object and sending it the “asWavetable”
message, saving it to disk, and having the server load it from there.

table - buffer index
freq - frequency in Hertz
phase - phase offset or modulator in radians

note about wavetables:
OscN requires the b gen sine1 wavetable flag to be OFF.
Osc requires the b gen sine1 wavetable flag to be ON.

( s = Server.local; b = Buffer.alloc(s, 512, 1);
b.sine1(1.0/[1,2,3,4,5,6], true, true, true);

SynthDef("help-Osc",{ arg out=0,bufnum=0;
Out.ar(out,

Osc.ar(bufnum, 200, 0, 0.5)
)

}).play(s,[\out, 0, \bufnum, b.bufnum]); )

( s = Server.local; b = Buffer.alloc(s, 512, 1);
b.sine1(1.0/[1,2,3,4,5,6], true, true, true);

SynthDef("help-Osc",{ arg out=0,bufnum=0;
Out.ar(out,

Osc.ar(bufnum, XLine.kr(2000,200), 0, 0.5)// modulate freq
)

}).play(s,[\out, 0, \bufnum, b.bufnum]); )



APPENDIX A. SUPERCOLLIDER FUNCTIONS 51

A.2.4 AmpComp – Basic Psychoacoustic Amplitude Compen-
sation

superclass: UGen

implements the (optimized) formula: compensationFactor = (root / freq) ** exp

Higher frequencies are normally perceived as louder, which AmpComp compen-
sates.

*ar(freq, root, exp)
*kr(freq, root, exp)
*ir(freq, root, exp)

freq - input frequency value. For freq == root, the output is 1.0.
root - root freq relative to which the curve is calculated (usually lowest freq),
default value: C (60.midicps)
exp - exponent: how steep the curve decreases for increasing freq
(cf. plot function), default value 0.3333

see also [AmpCompA]

// compare a sine without compensation

{ SinOsc.ar(MouseX.kr(300, 15000, 1)) * 0.1 }.play;

// with one that uses amplitude compensation
( {

var freq;
freq = MouseX.kr(300, 15000, 1);
SinOsc.ar(freq) * 0.1 * AmpComp.kr(freq, 300)

}.play; )

// different sounds cause quite different loudness perception,
// and the desired musical behavior can vary, so the exponent can be tuned:
( {

var freq;
freq = MouseX.kr(300, 15000, 1);
Pulse.ar(freq) * 0.1 * AmpComp.kr(freq, 300, 1.3)

}.play; )

// the curves:

// exp = 0.3333
(200,210..10000).collect {|freq| (200/freq) ** 0.3333 }.plot;
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A.2.5 Splay

*ar(inArray, spread, level, center, levelComp)
*arFill(n, function, spread, level, center, levelComp)

Splay spreads an array of channels across the stereo field.
Optional spread and center controls, and levelComp(ensation) (equal power).

x = { arg spread=1, level=0.2, center=0.0;
Splay.ar(

SinOsc.ar( { |i| LFNoise2.kr( rrand(10, 20), 200, 400) } ! 10),
spread,
level,
center

);
}.play;

x.set(\spread, 1, \center, 0); // full stereo \\
x.set(\spread, 0.5, \center, 0); // less wide
x.set(\spread, 0, \center, 0); // mono center \\
x.set(\spread, 0.5, \center, 0.5); // spread from center to right
x.set(\spread, 0, \center,-1); // all left \\
x.set(\spread, 1, \center, 0); // full stereo

// with mouse control
x = { var src;

src = SinOsc.ar( { |i| LFNoise2.kr( rrand(10, 20), 200, i + 3 * 100) } ! 10);
Splay.ar(src, MouseY.kr(1, 0), 0.5, MouseX.kr(-1, 1));

}.play;



B
Lyapunov Program

Here we document a code example of the Sonification of the Lyapunov Exponent
in U(1) and SU(2) theory. We use the graphical audio-editor audacity for the
transformation of the output file format to mp3.

B.1 Sonification Program Lyapunov.sc

// Sonification of the Lyapunov-exponent in U(1) and SU(2) ...

Sound representation :
The exact rendering of the data as sound can be tuned extensively.
The data property of interest, the Lyapunov exponent is mapped to
frequency, and the beta values can be spread out as melodies
within a loop.

Here are the tuning parameter names and what they mean:

slope : can be used to make higher excitation levels
softer. 0 is all levels equally loud.

panSpread : the melody can be panned across 2 channels,
panSpread 1 is fully spread, 0 is all in
one (center) position.

panCenter : the center pos of all tones: -1 is all left,
0 is center, 1 is right.

attack : attack time of the individual sounds; short is a
hard attack, long is soft. must be greater than
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ringtime.

ringtime : how long each tone rings until it loses 99.9% energy.

bgLevel : raises the minimum volume of each value so that
one hears all tones together as a background
sound.

attSpread : how far apart in time within the loop the tones
are spaced. 0 is all attacks together, 1 is spread
over the full time of the loop.

attDelay : 0 means first value plays instantly, can be
delayed to hear background tones before indiv.
tones.

loopTime : how long one repetition of the melody should last.

The Tdef (Task) steps through both gauge fields u(1) and su(2).

( var pathname, recfilename;

q = q ? (); p = ProxySpace.push;

// read the data from u(1) and su(2) models
// change path to data file here

pathname = "D:/Daten/Sonification/";

recfilename = ["lyapunov_input_u1.txt", "lyapunov_input_su2.txt"];

q.rawData = TabFileReader.read(pathname ++ recfilename.[0], true,
true);

q.rawData = q.rawData ++ TabFileReader.read(pathname ++
recfilename.[1], true, true);

q.names = q.rawData.first; q.dataOnly = q.rawData.select { |line|
line.first.first.isDecDigit };

q.dataOnly = q.dataOnly.collect { |line, i|

// 29 values of the input-file u(1) and 29 values of the
// input-file su(2)

[ (i div: 29), i % 29 ] ++ line.collect(_.asFloat);

}.printAll;

q.data = Data(\lyapunov, [\gaugefield, \index, \beta, \lyapexp,
\freq ], q.dataOnly.flop);

// make a sine wavetable for the osc.
b = Buffer.alloc(s, 1024, 1, bufnum: 440); b.sine1([1]);

)

// Sound function
( // dynamic/spreadout settings
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˜lyapexp = { arg spread=1,
slope=0, panSpread=1, panCenter=0.0,
attack=0.01, ringtime=2.0, bgLevel=0.0,
attDelay=0.15, attSpread=0.85, looptime=10;

var freqs, amps, size, trigs;

// sets the frequency to 440 Hz
freqs = Control.names([\freqs]).kr(((1 .. 29) + 440));
size = freqs.size;

freqs = freqs.lag(0.2);
trigs = Impulse.kr(

looptime.reciprocal,
(0.. freqs.size-1).reverse / size * attSpread
+ (attSpread.min(0).abs) + attDelay

) * Line.kr(0, 1, 0.1).squared;

amps = Decay2.kr(
trigs,
attack,
ringtime * (60.midicps / freqs ** 0.25)

).max(bgLevel);

amps = amps * (0.5 ** ((0..freqs.size - 1) * slope)) * 4;

// for stereo sound
Splay.ar(Osc.ar(440, freqs, 0, AmpComp.kr(freqs.max(100),

exp: 0.4) * amps),
spread: panSpread,
center: panCenter

);
}; ˜lyapexp.play(vol: 1.0); )

// allocate the input frequency of u(1)
˜lyapexp.setn(\freqs, q.data[4].clump(29).[0]);
˜lyapexp.end;
˜lyapexp.play;

// allocate the input frequency of su(2)
˜lyapexp.setn(\freqs, q.data[4].clump(29).[1]);
˜lyapexp.end;

( // record files Task {
var pathname, recfilename;
pathname = "D:/Daten/Sonification/";
recfilename = ["Lyapunovu1", "Lyapunovsu2"];

s.recSampleFormat_("int16").recHeaderFormat_("WAV");
˜lyapexp.end;
0.5.wait;

[0, 1].do { |i|
var freqs;
// freq values
freqs = q.data[4].clump(29).[i];
˜lyapexp.setn(\freqs, freqs, \attDelay, 0.02);
s.prepareForRecord(pathname ++ recfilename.[i] ++ ".wav");
0.5.wait;
s.record;
0.1.wait;
˜lyapexp.play(fadeTime: 0.01);
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11.3.wait;
˜lyapexp.end(0.1);
0.5.wait;
s.stopRecording;

};
"done.".postln;

}.play; )
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B.2 Input File lyapunov input u1.txt

For Beta = 0.0 - 2.0 - U(1)
beta Lyapunov-exponent frequency

0.0000 1.02514851485148 1465.148515
0.1000 1.01988118811881 1459.881188
0.2000 1.01504950495049 1455.049505
0.3000 1.00312871287128 1443.128713
0.4000 1.00570297029702 1445.70297
0.5000 0.99568316831683 1435.683168
0.6000 0.98487128712871 1424.871287
0.7000 0.97243564356436 1412.435644
0.8000 0.94902970297030 1389.029703
0.8500 0.93794059405941 1377.940594
0.9000 0.91691089108911 1356.910891
0.9250 0.90443564356436 1344.435644
0.9500 0.88122772277228 1321.227723
0.9750 0.85607920792079 1296.079208
1.0000 0.78023762376238 1220.237624
1.0250 0.57564356435644 1015.643564
1.0500 0.50899009900990 948.990099
1.0750 0.46510891089109 905.1089109
1.1000 0.39714851485149 837.1485149
1.1500 0.31992079207921 759.9207921
1.2000 0.25041584158416 690.4158416
1.3000 0.12245544554455 562.4554455
1.4000 0.07699009900990 516.990099
1.5000 0.04099009900990 480.990099
1.6000 0.01429702970297 454.2970297
1.7000 0.00859405940594 448.5940594
1.8000 0.00201980198020 442.019802
1.9000 0.00087128712871 440.8712871
2.0000 0.00031683168317 440.3168317
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B.3 Input File lyapunov input su2.txt

For Beta = 0.0 - 5.0 - SU(2)
beta Lyapunov-exponent frequency

0.0000 0.68800004025765 1128.000040
0.2500 0.67845763553409 1118.457636
0.5000 0.66891523081052 1108.915231
0.7500 0.66245575684380 1102.455757
1.0000 0.65599628287708 1095.996283
1.2500 0.63661786097692 1076.617861
1.5000 0.61723943907676 1057.239439
1.7500 0.55925097960279 999.250980
2.0000 0.50126252012882 941.262520
2.1005 0.47542462426194 915.424624
2.1501 0.44342086688137 883.420867
2.1998 0.41141710950081 851.417110
2.2249 0.38543240740741 825.432407
2.2500 0.35944770531401 799.447705
2.2751 0.34050970209340 780.509702
2.3002 0.32157169887279 761.571699
2.3499 0.30865275093935 748.652751
2.3995 0.29573380300591 735.733803
2.5000 0.28281485507246 722.814855
2.7500 0.24376439881911 683.764399
3.0000 0.20471394256575 644.713943
3.2500 0.19524494095545 635.244941
3.5000 0.18577593934514 625.775939
3.7500 0.17630693773484 616.306938
4.0000 0.16683793612453 606.837936
4.2500 0.16037846215781 600.378462
4.5000 0.15391898819109 593.918988
4.7500 0.14745951422437 587.459514
5.0000 0.14100004025765 581.000040
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[10] P. Becher, M. Böhm, H. Joos, Eichtheorien der starken und elek-
troschwachen Wechselwirkung, Teubner (Stuttgart 1983).

[11] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals,
McGraw-Hill (New York 1965).

[12] K.G. Wilson, Confinement of quarks, Phys. Rev. D10 (1974) 2445.



BIBLIOGRAPHY 61

[13] A. Hasenfratz, P. Hasenfratz, Lattice gauge theories, Ann. Rev. Nucl. Part.
Sci 35 (1985) 559.

[14] L.H. Karsten, J. Smit, Lattice fermions: Species doubling, chiral invariance,
and the triangle anomaly, Nucl. Phys. B183 (1981) 103.

[15] H.B. Nielson, M. Ninomiya, Absence of neutrinos on a lattice, Nucl. Phys.
B185 (1981) 20.

[16] J. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge
theories, Phys. Rev. D11 (1975) 395.

[17] L. Susskind, Lattice fermions, Phys. Rev. D16 (1977) 3031.

[18] H. Neuberger, Lattice chirality, LATTICE98, Nucl. Phys. Proc. Suppl. 73
(1999) 697-699 [hep-lat/9807009].

[19] F. Niedermayer, Exact chiral symmetry, topological charge and related
topics, LATTICE98, Nucl. Phys. Proc. Suppl. 73 (1999) 105-119 [hep-
lat/9810026].

[20] A. Di Giacomo, B. Lucini, L. Montesi, G. Paffuti, Colour confinement and
dual superconductivity of the vacuum - I, Phys. Rev. D61 (2000) 034503
[hep-lat/9906024].

[21] A. Di Giacomo, B. Lucini, L. Montesi, G. Paffuti, Colour confinement and
dual superconductivity of the vacuum - II, Phys. Rev. D61 (2000) 034504
[hep-lat/9906025].

[22] W. Sakuler, Topologische Ladungsdichte um statische Quarks in der Gitter-
Quantenchromodynamik, Doctoral Thesis, Vienna University of Technology
(1994).
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