


Gravitational Solitons

This book gives a self-contained exposition of the theory of gravitational
solitons and provides a comprehensive review of exact soliton solutions to
Einstein’s equations.

The text begins with a detailed discussion of the extension of the inverse
scattering method to the theory of gravitation, starting with pure gravity and
then extending it to the coupling of gravity with the electromagnetic field. There
follows a systematic review of the gravitational soliton solutions based on their
symmetries. These solutions include some of the most interesting in gravita-
tional physics, such as those describing inhomogeneous cosmological models,
cylindrical waves, the collision of exact gravity waves, and the Schwarzschild
and Kerr black holes.

This work will equip the reader with the basic elements of the theory of
gravitational solitons as well as with a systematic collection of nontrivial
applications in different contexts of gravitational physics. It provides a valuable
reference for researchers and graduate students in the fields of general relativity,
string theory and cosmology, but will also be of interest to mathematical
physicists in general.
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Preface

Solitons are some remarkable solutions of certain nonlinear wave equations
which behave in several ways like extended particles: they have a finite
and localized energy, a characteristic velocity of propagation and a structural
persistence which is maintained even when two solitons collide. Soliton waves
propagating in a dispersive medium are the result of a balance between nonlinear
effects and wave dispersion and therefore are only found in a very special class
of nonlinear equations. Soliton waves were first found in some two-dimensional
nonlinear differential equations in fluid dynamics such as the Korteweg–de
Vries equation for shallow water waves. In the 1960s a method, known as the
Inverse Scattering Method (ISM) was developed [111] to solve this equation in
a systematic way and it was soon extended to other nonlinear equations such as
the sine-Gordon or the nonlinear Schrödinger equations.

In the late 1970s the ISM was extended to general relativity to solve the
Einstein equations in vacuum for spacetimes with metrics depending on two
coordinates only or, more precisely, for spacetimes that admit an orthogonally
transitive two-parameter group of isometries [23, 24, 206]. These metrics
include quite different physical situations such as some cosmological, cylindri-
cally symmetric, colliding plane waves, and stationary axisymmetric solutions.
The ISM was also soon extended to solve the Einstein–Maxwell equations
[4]. The ISM for the gravitational field is a solution-generating technique
which allows us to generate new solutions given a background or seed solution.
It turns out that the ISM in the gravitational context is closely related to
other solution-generating techniques such as different Bäcklund transformations
which were being developed at about the same time [135, 224]. However, one
of the interesting features of the ISM is that it provides a practical and useful
algorithm for direct and explicit computations of new solutions from old ones.
These solutions are generally known as soliton solutions of the gravitational
field or gravitational solitons for short, even though they share only some, or
none, of the properties that solitons have in other nonlinear contexts.

x



Preface xi

Among the soliton solutions generated by the ISM are some of the most
relevant in gravitational physics. Thus in the stationary axisymmetric case
the Kerr and Schwarzschild black hole solutions and their generalizations
are soliton solutions. In the 1980s there was some active work on exact
cosmological models, in part as an attempt to find solutions that could represent
a universe which evolved from a quite inhomogeneous stage to an isotropic and
homogeneous universe with a background of gravitational radiation. In this
period there was also renewed activity in the head-on collision of exact plane
waves, since the resulting spacetimes had interesting physical and geometrical
properties in connection with the formation of singularities or regular caustics
by the nonlinear mutual focusing of the incident plane waves. Some of these
solutions may also be of interest in the early universe and the ISM was of
use in the generation of new colliding wave solutions. In the cylindrically
symmetric context the ISM also produced some solutions representing pulse
waves impinging on a solid cylinder and returning to infinity, which could be of
interest to represent gravitational radiation around a straight cosmic string. Also
some soliton solutions were found illustrating the gravitational analogue of the
electromagnetic Faraday rotation, which is a typical nonlinear effect of gravity.
Some of this work was reviewed in ref. [288].

In this book we give a comprehensive review of the ISM in gravitation and of
the gravitational soliton solutions which have been generated in the different
physical contexts. For the solutions we give their properties and possible
physical significance, but concentrate mainly on those with possible physical
interest, although we try to classify all of them. The ISM provides a natural
starting point for their classification and allows us to connect in remarkable ways
some well known solutions.

The book is divided into eight chapters. In chapter 1 we start with an overview
of the ISM in nonlinear physics and discuss in particular the sine-Gordon equa-
tion, which will be of use later. We then go on to generalize and adapt the ISM
in the gravitational context to solve the Einstein equations in vacuum when the
spacetimes admit an orthogonally transitive two-parameter group of isometries.
We describe in detail the procedure for obtaining gravitational soliton solutions.
The ISM is generalized to solve vacuum Einstein equations in an arbitrary
number of dimensions and the possibility of generating nonvacuum soliton
solutions in four dimensions using the Kaluza–Klein ansatz is considered. In
chapter 2 we study some general properties of the gravitational soliton solutions.
The case of background solutions with a diagonal metric is discussed in detail. A
section is devoted to the topological properties of gravitational solitons and we
discuss how some features of the sine-Gordon solitons can be translated under
some restrictions to the gravitational solitons. Some remarkable solutions such
as the gravitational analogue of the sine-Gordon breather are studied.

Chapter 3 is devoted to the ISM for the Einstein–Maxwell equations under
the same symmetry restrictions for the spacetime. The generalization of the



xii Preface

ISM in this context was accomplished by Alekseev. This extension is not a
straightforward generalization of the previous vacuum technique; to some extent
it requires a new approach to the problem. Here we follow Alekseev’s approach
but we adapt and translate it into the language of chapter 1. To illustrate
the procedure the Einstein–Maxwell analogue of the gravitational breather is
deduced and briefly described.

In chapters 4 and 5 we deal with gravitational soliton solutions in the
cosmological context. This context has been largely explored by the ISM and
a number of solutions, some new and some already known, are derived to
generalize isotropic and homogeneous cosmologies. Most of the cosmological
solutions have been generated from the spatially homogeneous but anisotropic
Bianchi I background metrics. Soliton solutions which have a diagonal form
can be generalized leading to new solutions and connecting others. Here we
find pulse waves, cosolitons, composite universes, and in particular the collision
of solitons on a cosmological background. The last of these is described and
studied in some detail, and compared with the soliton waves of nonlinear
physics. In chapter 5 soliton metrics that are not diagonal or in backgrounds
different from Bianchi I are considered. Nondiagonal metrics are more difficult
to characterize and study but they present the most clear nonlinear features
of soliton physics such as the time delay when solitons interact. Solutions
representing finite perturbations of isotropic cosmologies are also derived and
studied.

In chapter 6 we describe gravitational solitons with cylindrical symmetry.
Mathematically most of the gravitational solutions in this context are easily
derived from the cosmological solution of the two previous chapters but, of
course, they describe different physics. In chapter 7 we describe the connection
of gravitational solitons with exact gravitational plane waves and the head-on
collision of plane waves. We illustrate the physically more interesting properties
of the spacetimes describing plane waves and the head-on collision of plane
waves with some simple examples. The interaction region of the head-on colli-
sion of two exact plane waves has the symmetries which allow the application of
the ISM. We show how most of the well known solutions representing colliding
plane waves may be derived as gravitational solitons.

Chapter 8 is devoted to the stationary axisymmetric gravitational soliton
solutions. Now the relevant metric field equations are elliptic rather than
hyperbolic, but the ISM of chapter 1 is easily translated to this case. We
describe in detail how the Schwarzschild and Kerr metrics, and their Kerr–NUT
generalizations are simply obtained as gravitational solitons from a Minkowski
background. The generalized soliton solutions of the Weyl class, which are
related to diagonal metrics in the cosmological and cylindrical contexts, are
obtained and their connection with some well known solutions is discussed. Fi-
nally the Tomimatsu–Sato solution is derived as a gravitational soliton solution
obtained by a limiting procedure from the general soliton solution.
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In our view only some of the earlier expectations of the application of the
ISM in the gravitational context have been partially fulfilled. This technique
has allowed the generation of some new and potentially relevant solutions
and has provided us with a unified picture of many solutions as well as
given us some new relations among them. The ISM has, however, been less
successful in the characterization of the gravitational solitons as the soliton
waves of nongravitational physics. It is true that in some restricted cases soliton
solutions can be topologically characterized in a mathematical sense, but this
characterization is then blurred in the physics of the gravitational spacetime
the solutions describe. Things like the velocity of propagation, energy of the
solitons, shape persistence and time shift after collision have been only partially
characterized, and this has represented a clear obstruction in any attempt to the
quantization of gravitational solitons. We feel that more work along these lines
should lead to a better understanding of gravitational physics at the classical
and, even possibly, the quantum levels.

As regards to the level of presentation of this book we believe that its
contents should be accessible to any reader with a first introductory course in
general relativity. Little beyond the formulation of Einstein equations and some
elementary notions on differential geometry and on partial differential equations
is required. The rudiments of the ISM are explained with a practical view
towards its generalization to the gravitational field.

We would like to express our gratitude to the collaborators and colleagues
who over the past years have contributed to this field and from whom we
have greatly benefited. Among our collaborators we are specially grateful to
G.A. Alekseev, B.J. Carr, J. Céspedes, A. Curir, M. Dorca, M. Francaviglia,
X. Fustero, J. Garriga, J. Ibáñez, P.S. Letelier, R. Ruffini, and V.E. Zakharov.
We are also very grateful to W.B. Bonnor, J. Centrella, S. Chandrasekhar, A.
Feinstein, V. Ferrari, R.J. Gleiser, D. Kitchingham, M.A.H. MacCallum, J.A.
Pullin, H. Sato, A. Shabat and G. Neugebauer for stimulating discussions or
suggestions.

Rome Vladimir A. Belinski
Barcelona Enric Verdaguer
September 2000





1
Inverse scattering technique in gravity

The purpose of this chapter is to describe the Inverse Scattering Method (ISM)
for the gravitational field. We begin in section 1.1 with a brief overview of the
ISM in nonlinear physics. In a nutshell the procedure involves two main steps.
The first step consists of finding for a given nonlinear equation a set of linear
differential equations (spectral equations) whose integrability conditions are just
the nonlinear equation to be solved. The second step consists of finding the
class of solutions known as soliton solutions. It turns out that given a particular
solution of the nonlinear equation new soliton solutions can be generated
by purely algebraic operations, after an integration of the linear differential
equations for the particular solution. We consider in particular some of the best
known equations that admit the ISM such as the Korteweg–de Vries and the
sine-Gordon equations. In section 1.2 we write Einstein equations in vacuum
for spacetimes that admit an orthogonally transitive two-parameter group of
isometries in a convenient way. In section 1.3 we introduce a linear system
of equations for which the Einstein equations are the integrability conditions
and formulate the ISM in this case. In section 1.4 we explicitly construct
the so-called n-soliton solution from a certain background or seed solution by
a procedure which involves one integration and a purely algebraic algorithm
which involves the so-called pole trajectories. In the last section we discuss
the use of the ISM for solving Einstein equations in vacuum with an arbitrary
number of dimensions, and the use of the Kaluza–Klein ansatz to find some
nonvacuum soliton solutions in four dimensions.

1.1 Outline of the ISM

The ISM is an important tool of mathematical physics by means of which it
is possible to solve a certain type of nonlinear partial differential equations
using the techniques of linear physics. This book is not about the ISM, its
main concern are the so-called soliton solutions, and these only in the context

1



2 1 Inverse scattering technique in gravity

of general relativity. But since such solutions can be obtained by the ISM, it
is of course of interest to have some familiarity with the method. However,
mastering the ISM is by no means essential for reading this book because, first
to find soliton solutions one does not require the full machinery of the ISM, and
second the peculiarities of the gravitational case require specific techniques that
will be explained in detail in the following sections.

In subsection 1.1.1 we give a brief summary of the ISM including relevant
references to the literature. Terms such as Schrödinger equation, scattering
data, and transmission and reflection coefficients are borrowed from quantum
mechanics, thus readers familiar with that subject may gain some insight from
this subsection. Some readers may prefer to have only a quick glance at
subsection 1.1.1 and to look in more detail at subsection 1.1.2 where some
familiar examples of fluid dynamics and of relativistic physics are discussed. Of
particular interest for the purposes of this book is the last example discussed and
the method of how to construct solitonic solutions by purely algebraic operations
from a given particular solution.

In any case, the key points that should be retained from subsection 1.1.1 are
the following. A nonlinear partial differential equation such as (1.1) for the
function u(z, t) is integrable by the ISM when the following occur. First, one
must be able to associate to the nonlinear equation a linear eigenvalue problem
such as (1.2), where the unknown function u(z, t) plays the role of a ‘potential’
in the linear operator. Given an initial value u(z, 0), (1.2) defines scattering data:
this is the well known problem in quantum mechanics of scattering of a particle
in a potential u(z, 0) and includes the transmission and reflection coefficients
and the energy eigenvalues. Second, it must be possible to provide an equation
such as (1.3) for the time evolution of these data, such that the integrability
conditions of the two equations (1.2) and (1.3) implies (1.1). In this case the
nonlinear equation is integrable by the ISM and the solution u(z, t) is found by
computing the potential corresponding to the time-evolved scattering data. This
last step is the inverse scattering problem and requires the solution of a usually
nontrivial linear integral equation. Although the whole procedure is generally
complicated there is a special class of solutions called soliton solutions for which
the inverse scattering problem can be solved exactly in analytic form.

1.1.1 The method

Let us consider the nonlinear two-dimensional partial differential equation for
the function u(z, t)

u,t = F(u, u,z, u,zz, . . .), (1.1)

where t is the time variable, z is a space coordinate, and F is a nonlinear
function. To integrate this equation, which is first order with respect to time,
by the ISM one considers the scattering problem for the following stationary
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one-dimensional Schrödinger equation,

Lψ = λψ, L = − d2

dz2
+ u(z, t), (1.2)

where the unknown function u(z, t) plays the role of the potential. Here the time
t in u is an external parameter that should not be confused with the conventional
time in quantum mechanics, which appears in the time-dependent Schrödinger
equation associated to (1.2). We assume also that u(t, z) vanishes at z → ±∞
fast enough (like z2u → 0 or faster).

Let u(z, 0) be the Cauchy data at time t = 0 and consider the so-called
direct scattering problem, which consists of finding the full set of scattering
data S(λ, 0) produced by the potential u(z, 0). The scattering data S(λ, 0)
are the set of quantities that allow us to find the asymptotic values of the
eigenfunctions ψ(λ, z, 0) at z → −∞ through the given asymptotic values
of ψ(λ, z, 0) at z → +∞ for each value of the spectral parameter λ. This
parameter is the energy of the scattered particle and positive values are the
continuous spectrum for the problem (1.2). Moreover, a discrete set of negative
eigenvalues of λ can also enter into the problem corresponding to the bound
states of the particle in the potential u. Thus, the set S(λ, 0) should contain the
forward and backward scattering amplitudes for the continuous spectrum (in the
one-dimensional problem these are the transmission and reflection coefficients,
T (λ) and R(λ), respectively), and the negative eigenvalues λn of the discrete
spectrum together with some coefficients, Cn , which link the asymptotic values
of the eigenfunctions for the bound states ψn(λn, z, 0) at z → ±∞.

We can also consider the inverse of the problem just described. The task in
this case is to reconstruct the potential u(z) through a given set of scattering
data S(λ). This is the inverse scattering problem. It has been investigated in
detail in the last forty years and the main steps of its solution are now well
known. In principle, for any appropriate set of scattering data S(λ) it is possible
to reconstruct the corresponding potential u(z). It is easy to see that one could
solve the Cauchy problem for u(z, t) using this technique. In fact, let us imagine
that after constructing the scattering data S(λ, 0) corresponding to the potential
u(z, 0) at t = 0 we could know the time evolution of S and are able to get
from the initial values S(λ, 0) the scattering data S(λ, t) at any arbitrary time
t . Then we can apply the inverse scattering technique to S(λ, t) and reconstruct
the potential u(z, t) at any time. This would give the desired solution to the
Cauchy problem.

This programme, however, is only attractive if such a ‘miracle’ can happen
which means, for practical purposes, that we need some evolution equations
for the scattering data S(λ, t) that can be integrated in a simple way. It turns
out that for a number of special classes of differential equations of nonlinear
physics this is the case. This discovery was made by Gardner, Greene, Kruskal
and Miura in 1967 in a famous paper [111] dedicated to the method of solving
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the Cauchy data problem for the Korteweg–de Vries equation. This was the
beginning of a rapid development of the ISM and now we have a vast literature
on the subject. One of the more recent books is ref. [231], and readers can
also find textbook expositions, including historical reviews, in refs [84, 302].
The review article [259] and the book of collected papers book [247], which
includes a good introductory guide through the literature, are also very useful.

Now let us look closer at the remarkable possibility of finding the exact time
evolution for the scattering data. The fact is that for integrable cases (in the
sense of the ISM) the eigenvalues of the associated spectral problem (1.2) are
independent of time t and the eigenfunctions ψ(λ, z, t) obey, besides (1.2),
another partial differential equation which is of first order in time. This is the
key point, since this additional evolution equation for the eigenfunctions allows
us to find the exact time dependence of the scattering data. This equation can be
written as

ψ̇ = Aψ, (1.3)

where the differential operator A depends on u(z, t) and contains only deriva-
tives with respect to the space coordinate z. This remarkable set of equations,
namely, (1.2) and (1.3), is often called a Lax pair, or Lax representation of
the integrable system, or L–A pair [186]. The existence of two equations for
the eigenfunction ψ means that a selfconsistency condition must be satisfied.
In each case it is easy to show that this condition coincides exactly with the
original equation of interest, (1.1). Consequently, the problem can now be put
into a slightly different form: all integrable nonlinear two-dimensional equations
are the selfconsistency conditions for the existence of a joint spectrum and
a joint set of eigenfunctions for two differential operators whose coefficients
(which play the role of potentials) depend on u(z, t) and, in general, on its
derivatives. This was the basic point for a further generalization of the ISM
to multicomponent fields u(z, t) and to several families of differential operators.
This work was largely due to Zakharov and Shabat (see ref. [231], chapter 3,
and ref. [84], chapter 6, and references therein). Of course, only very special
classes of nonlinear differential equations admit L–A pairs and still today there
is no general approach on how to find these classes. Despite the existence of a
number of powerful techniques each differential system needs individual and,
often, sophisticated consideration.

Let us return to our problem (1.1). From what we have just said we know
that this equation is integrable by the ISM if the time evolution of the scattering
data can be found. However, it is important to understand the restricted sense
of this integrability. In order to perform an actual integration we need to be
able to solve the inverse scattering problem for the data S(λ, t). In general
this cannot be done in analytic form, because the inverse problem S(λ, t) →
u(z, t) is based on complicated integral equations of the Gelfand, Levitan and
Marchenko [231]. Also there is no possibility, in general, for analytic solutions
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of the direct scattering problem u(z, 0) → S(λ, 0). What can really be done in
general is to find the explicit expression for the asymptotic values of the field
u(z, t) at t → +∞ directly through the initial Cauchy data. Of course, the
possibility of even this restricted use of the ISM is very valuable because in
many physical problems all we need to know is the late time asymptotic values
of the field.

Soliton solutions. Another great advantage of the ISM is really remarkable: for
each integrable equation (1.1) (or system of equations) there are special classes
of solutions u(z, t) for which the direct and inverse scattering problems can be
solved exactly in analytic form! These are the so-called soliton solutions. We
mentioned before that for the continuous spectrum of positive λs the scattering
data consist of the backward and forward scattering amplitudes or the reflection
and the transmission coefficients, R(λ) and T (λ) respectively. The reflection
coefficient is identically zero for solitons, and this property is independent
of time. It can be shown that if for some initial potential u(z, 0) all the
coefficients R(λ, 0) vanish, then they will vanish at any time t due to the
evolution equations of the scattering data. The solutions u(z, t) of that kind are
often called ‘reflectionless potentials’. In such cases the values λn of the discrete
spectrum and the coefficients Cn(λn, t), the time evolution of which can be also
easily found, determine all the structure of the ISM. It is well known that the
values λn coincide with the simple poles of the transmission amplitude T (λ),
and the positions of these poles completely determine the analytical structure
of the scattering data and the eigenfunctions of the spectral problem (1.2) in
the complex λ-plane. The transmission amplitude and the behaviour of the
eigenfunctions of (1.2) and (1.3) as functions of the spectral parameter λ in
the complex λ-plane are completely determined by this simple pole structure. In
this case even a first look at the equation of the ISM suffices to see that the main
steps of the ISM for the solitonic case are purely algebraic. This is integrability
in its simplest direct sense.

1.1.2 Generalization and examples

Although we have discussed the idea of the ISM with the example of the
first-order differential equation with respect to time for a single function u(z, t),
the qualitative character of our previous statements also remains valid in any
extended integrable case. The generalization to second order equations and to
multicomponent fields u(z, t) is straightforward. In these cases instead of (1.2)
and (1.3) we have two systems of equations and the multicomponent analogue
of the spectral problem (1.2) presents no difficulties [231]. For such extended
versions of the ISM we need only a change in the terminology. The generalized
version of (1.2) is no longer a Schrödinger equation, but some Schrödinger-type
system, and the same for the inverse scattering transformation of Gelfand,
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Levitan and Marchenko. In addition the parameter λ can no longer be the energy
but is instead some spectral parameter, etc.

Further development of the ISM [312] showed that most of the known
two-dimensional equations and their possible integrable generalizations can be
represented as selfconsistency conditions for two matrix equations,

ψ,z = U (1)ψ, ψ,t = V (1)ψ, (1.4)

where the matrices U (1) and V (1) depend rationally on the complex spectral
parameter λ and on two real spacetime coordinates z and t . The column matrix
ψ is a function of these three independent variables also. Differentiating the first
of these two equations with respect to t and the second one with respect to z we
obtain, after equating the results, the consistency condition for system (1.4):

U (1)
,t − V (1)

,z + U (1)V (1) − V (1)U (1) = 0. (1.5)

This condition should be satisfied for all values of λ and this requirement
coincides explicitly with the integrable differential equation (or system) of
interest. Let us see a few examples [231], which will be of special interest.

Korteweg–de Vries equation. If we choose

U (1) = iλ

(
1 0
0 −1

)
+
(

0 1
u 0

)
, (1.6)

V (1) = 4iλ3

(
1 0
0 −1

)
+ 4λ2

(
0 1
u 0

)
+ 2iλ

(
u 0

u,z −u

)
+
( −u,z 2u

2u2 − u,zz u,z

)
, (1.7)

then the left hand side of (1.5) becomes a fourth order polynomial in λ. All the
coefficients of this polynomial, except one, vanish identically and we get from
(1.5): (

0 0
u,t − 6uu,z − u,zzz 0

)
= 0, (1.8)

which is the Korteweg–de Vries equation:

u,t − 6uu,z − u,zzz = 0, (1.9)

an equation of the form of (1.1). The function ψ in this case is the column

ψ =
(
ψ1

ψ2

)
, (1.10)

and from the first equation of (1.4) we have the following spectral problem:

ψ1,z = iλψ1 + ψ2, (1.11)

ψ2,z = −iλψ2 + uψ1, (1.12)
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which is equivalent to the Schrödinger equation (1.2). In fact, from the first
equation (1.11) we can express ψ2 in terms of ψ1, and then substituting into the
second, we get

−ψ1,zz + uψ1 = λ2ψ1, (1.13)

which coincides with (1.2) after a redefinition of the spectral parameter (λ2 →
λ).

A second example appears when one is dealing with relativistic invariant
second order field equations. From the mathematical point of view the physical
nature of the variables z and t in (1.4) is irrelevant and we can interpret them
as null (light-like) coordinates. But in order to avoid notational confusion, here
and in the following, the variables t and z are always, respectively, time-like and
space-like coordinates, and we introduce a pair of null coordinates ζ and η as

ζ = 1

2
(z + t), η = 1

2
(z − t). (1.14)

Now, instead of (1.4) and (1.5) we have, in these new coordinates,

ψ,ζ = U (2)ψ, ψ,η = V (2)ψ, (1.15)

U (2)
,η − V (2)

,ζ + U (2)V (2) − V (2)U (2) = 0, (1.16)

where U (2) = U (1) + V (1) and V (2) = U (1) − V (1).

Sine-Gordon equation. If we choose

U (2) = iλ

(
1 0
0 −1

)
+
(

0 u,ζ

u,ζ 0

)
,

V (2) = 1

4iλ

(
cos u −i sin u
i sin u − cos u

)
,

 (1.17)

we get, from (1.16), (
0 u,ζη − sin u

u,ζη − sin u 0

)
= 0, (1.18)

which is the sine-Gordon equation:

u,ζη = sin u. (1.19)

The function ψ is still the column (1.10) and the spectral problem that follows
from the first of equations (1.15) gives

ψ1,ζ = iλψ1 + i

2
u,ζψ2, (1.20)

ψ2,ζ = −iλψ2 + i

2
u,ζψ1. (1.21)
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After solving the direct scattering problem for this ‘stationary’ system it is easy
to find the evolution of scattering data in the ‘time’ η. The inverse scattering
transform then gives the solution for u(ζ, η) (see the details in ref. [231]).

In general the matrices U and V can have an arbitrary size N × N (the same
follows for the column matrix ψ) as well as a more complicated dependence on
the parameter λ. Each choice will give some complicated (in general) integrable
system of differential equations. Most of them do not yet have a physical
interpretation but a number of interesting possibilities arise.

Principal chiral field equation. Let us consider, first of all, the case when U and
V are regular at infinity in the λ-plane and have simple poles only at finite values
of the spectral parameter (we should not confuse these poles with the poles of
the scattering data in the same plane). As was shown in ref. [312] in this case
we can construct matrices U and V which vanish at |λ| → ∞, due to the gauge
freedom in the system (1.15)–(1.16). We shall restrict ourselves to the simplest
case in which U and V have only one pole each. Without loss of generality we
can choose the positions of these poles to be at λ = λ0 and λ = −λ0, where λ0

is an arbitrary constant. Now for U (2) and V (2) we have

U (2) = K

λ − λ0
, V (2) = L

λ + λ0
, (1.22)

where the matrices K and L are independent of λ. Substitution of (1.22) into
(1.16) shows that the left hand side of (1.16) vanishes if and only if the following
relations hold:

K,η − L ,ζ = 0, (1.23)

K,η + L ,ζ + 1

λ0
(K L − L K ) = 0. (1.24)

Equation (1.24) suggests that we can represent K and L in terms of ‘logarithmic
derivatives’ of some matrix g as

K = −λ0g,ζ g−1, L = λ0g,ηg−1. (1.25)

Then, (1.24) is simply the integrability condition of (1.25) for the matrix g, and
(1.23) is the field equation for some integrable relativistic invariant model:(

g,ζ g−1
)
,η

+ (g,ηg−1
)
,ζ

= 0. (1.26)

This matrix equation is associated with the model of the so-called principal
chiral field and received much attention in the 1980s and 1990s. The first
description of the integrability of this model in the language of the commutative
representation (1.16) was given in ref. [312], but a more detailed description can
be found in ref. [311] or in ref. [231]. The exact solution of the corresponding
quantum chiral field model was investigated in refs [244] and [95].
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From any solution ψ(ζ, η, λ) of the ‘L–A pair’ (1.15) one immediately gets a
solution of the field equation (1.26) for g. In fact, from (1.15), (1.22) and (1.25)
it follows that

ψ,ζψ
−1 = K

λ − λ0
= −λ0g,ζ g−1

λ − λ0
−→ g,ζ g−1, (1.27)

ψ,ηψ
−1 = L

λ + λ0
= λ0g,ηg−1

λ + λ0
−→ g,ηg−1, (1.28)

when λ → 0, which means that the matrix of interest equals the matrix
eigenfunction ψ(ζ, η, λ) at the point λ = 0,

g(ζ, η) = ψ(ζ, η, 0). (1.29)

The solution of the general Cauchy problem for (1.26) can be obtained in the
framework of the classical ISM in the form we have explained. We can also
use a more elegant and modern method, based on the Riemann problem in the
theory of functions of complex variables, which was proposed by Zakharov and
Shabat [231, 312]. Of course any method will lead us to integral equations of
the Gelfand, Levitan and Marchenko type and the Zakharov and Shabat method
is no exception. But what is important for us here is that the previous approach
is the best suited for practical calculations in the solitonic case. In this book we
will deal only with solitons and we will follow the commutative representation
(1.15) and (1.16) of the ISM.

If we are interested only in the solitonic solutions of (1.26) we do not
need to study the Riemann problem, the spectrum and the direct and inverse
scattering transforms. All we need to know is one particular exact solution
(g0, ψ0) of (1.26) and (1.15), which we will call the background solution or
the seed solution, together with the number of solitons we wish to introduce
on this background. We know already that in the solitonic case the poles
of the transmission amplitude completely determine the problem. Since the
transmission amplitude is just a part of the eigenfunction ψ(ζ, η, λ), such a
function exhibits the same simple pole structure in some arbitrarily large, but
finite, part of the λ-plane. Simple inspection shows that in this case ψ(ζ, η, λ)

can be represented in the form

ψ = χψ0, (1.30)

where ψ0(ζ, η, λ) is the particular solution mentioned before and χ is a new
matrix, called the dressing matrix, which can be normalized in such a way that
it tends to the unit matrix, I , when |λ| → ∞. Then the λ dependence of the χ

matrix for the solitonic case is very simple:

χ = I +
N∑

n=1

χn

λ − λn
, (1.31)
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where λn are arbitrary constants and the χn matrices are independent of λ. The
number of poles in (1.31) corresponds to the number of solitons which we have
added to the background (g0,ψ0). Of course the set of λn constitutes the discrete
spectrum of the spectral problem (1.15), but this need not concern us here. After
choosing any set of parameters λn and a background solution (g0,ψ0), we should
substitute (1.30) and (1.31) into (1.15), and the matrices χn will be obtained by
purely algebraic operations. After that, from (1.31), (1.30) and (1.29) we obtain
the solution for g(ζ, η) in terms of the background solution g0:

g = χ(ζ, η, 0)g0 = g0 −
(

N∑
n=1

λ−1
n χn

)
g0. (1.32)

This is an example of the so-called dressing technique developed by Zakharov
and Shabat. For the pure solitonic case it is straightforward to compute the new
solutions from a given background solution.

1.2 The integrable ansatz in general relativity

If we wish to apply the two-dimensional ISM to the Einstein equations in
vacuum

Rµν = 0, (1.33)

where Rµν is the Ricci tensor, we need to examine the particular case in which
the metric tensor gµν depends on two variables only, which correspond to
spacetimes that admit two commuting Killing vector fields, i.e. an Abelian
two-parameter group of isometries. In this chapter we take these variables to
be the time-like and the space-like coordinates x0 = t and x3 = z respectively.
This corresponds to nonstationary gravitational fields, i.e. to wave-like and
cosmological solutions of Einstein equations (1.33), and the two Killing vectors
are both space-like. In any spacetime using the coordinate transformation
freedom, xµ = xµ(x ′ν), we can fix the following constraints on the metric tensor

g00 = −g33, g03 = 0, g0a = 0. (1.34)

Here, and in the following the Latin indices a, b, c, . . . take the values 1, 2. In
these coordinates the spacetime interval becomes

ds2 = f (dz2 − dt2) + gabdxadxb + 2ga3dxadz, (1.35)

where f = −g00 = g33. If we now restrict ourselves to the case in which
all metric components in (1.35) depend on t and z only, the Einstein equations
for such a metric are still too complicated for the ISM or, more precisely, it is
unknown at present whether the ISM can be applied in this case. The situation
is different in the particular case in which ga3 = 0. Since it is not possible to
eliminate the metric coefficients ga3 by any further coordinate transformation
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such a simplification should be considered as a real physical constraint. This
corresponds to assuming the existence of 2-surfaces orthogonal to the group
orbits, i.e. to assuming an orthogonally transitive group of isometries, which
is a restriction on the two commuting Killing vectors. We should note that in
the stationary axisymmetric case the two commuting Killing vectors already
guarantee the existence of orthogonal 2-surfaces, provided some conditions on
the nonsingular symmetry axis are satisfied [236, 179]. Therefore, from now on,
we shall deal with the simplified block diagonal form of the metric (1.35):

ds2 = f (t, z)(dz2 − dt2) + gab(t, z)dxadxb. (1.36)

The stationary axisymmetric gravitational fields correspond to the analogue
of this metric when the independent variables are both space-like. From the
mathematical point of view the ISM for the stationary case presents no essential
differences with respect to the present case and the solutions in such a case can
be extracted from that case after appropriate complex transformations. However,
due to the essential difference in the boundary conditions problem in the two
cases it is better to consider the stationary metrics separately; we shall deal with
this case in chapter 8.

The metric (1.36) was first considered in 1937 by Einstein and Rosen [90]
for a diagonal matrix gab, when the Einstein equations (1.33) actually reduce to
one linear equation in cylindrical coordinates. The inclusion of the off-diagonal
component g12 changes the situation drastically, and converts the Einstein
equations into an essentially nonlinear problem. In the language of the weak
gravitational waves this corresponds to the appearance of a second independent
polarization state of the wave. For the stationary analogue of the metric
(1.36) such a generalization means (under reasonable boundary conditions) that
rotation has been included. Equations for the metric (1.36) were first considered
by Kompaneets [176], who noted some of their general properties. In the
past, several authors using different simplifying assumptions have obtained
a number of exact nontrivial solutions for a metric of the type (1.36) or its
stationary analogue (most of these solutions are listed in ref. [179]), but a regular
integration procedure was only found in 1978 [23].

From the physical point of view the metric (1.36) and its stationary ana-
logue have many applications in gravitational theory. It suffices to say
that to such a class belong the classical solutions of the Robinson–Bondi
plane waves, the Einstein–Rosen cylindrical wave solutions and their two-
polarization generalizations, the homogeneous cosmological models of Bianchi
types I–VII including the Friedmann–Lemaı̂tre–Robertson–Walker models, the
Schwarzschild and Kerr solutions, Weyl’s axisymmetric solutions, etc. For
many more contemporary results the reader can refer to refs [179, 180]. All
this shows that in spite of its relative simplicity a metric of the type (1.36)
encompasses a wide variety of physically relevant cases, and that a method
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for integrating the corresponding Einstein equations could significantly move
forward some of our understanding of gravitational theory.

It turns out that this case can be successfully treated by means of some
generalization of the Zakharov–Shabat form of the ISM. The Einstein equations
for the metric (1.36) are most conveniently investigated in the null coordinates
(ζ, η) introduced in (1.14). In what follows we shall always denote by g
the two-dimensional real and symmetric matrix with elements gab, i.e. the
two-dimensional block of the metric tensor (1.36):

g =
(

g11 g12

g21 g22

)
. (1.37)

For the determinant of this matrix it is convenient to introduce the notation

det g = α2, (1.38)

and we shall always consider that α is nonnegative: α ≥ 0. This is in agreement
with the fact that the points α = 0 usually (but not always) correspond to
physical singularities and in such cases continuation of the solutions through
these points is meaningless. It turns out that the R0a and R3a components of
the Ricci tensor for the metric (1.36) are identically zero. The remaining system
of the vacuum Einstein equations (1.33) for this metric decomposes into two
sets. The first one follows from equations Rab = 0 and with the use of the null
coordinates (1.14) can be written in the form of a single matrix equation:(

αg,ζ g−1
)
,η

+ (αg,ηg−1
)
,ζ

= 0. (1.39)

The second set follows from the equations R00 + R33 = 0 and R03 = 0, and
gives the metric coefficient f (t, z) in terms of the matrix g, solution of (1.39),
via the relations:

(ln f ),ζ (lnα),ζ = (lnα),ζζ + 1

4α2
Tr A2, (1.40)

(ln f ),η(lnα),η = (lnα),ηη + 1

4α2
Tr B2, (1.41)

where the matrices A and B are defined by

A = −αg,ζ g−1, B = αg,ηg−1. (1.42)

It is easy to see that the integrability condition for (1.40) and (1.41) with respect
to f is automatically satisfied if g satisfies (1.39). The equation R00 − R33 = 0
can be written in the form

(ln f ),ζη = 1

4α2
Tr AB − (lnα),ζη, (1.43)
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but this is not a new equation, it is just a consequence of the system (1.38)–(1.42)
when α is not a constant. The special case in which α is constant does not
deserve special treatment because it corresponds to flat Minkowski spacetime.
In fact, it follows from (1.40) and (1.41) that in this case, Tr A2 = Tr B2 = 0,
and it is easy to see that this can happen only for g = constant. In this specific
case (1.40) and (1.41) do not determine the coefficient f and one needs (1.43)
which, since A = B = 0, has the solution f = exp [ f1(ζ ) + f2(η)], with
arbitrary functions f1 and f2. But now a simple coordinate transformation ζ =
ζ(ζ ′) and η = η(η′) reduces the new coefficient f to a constant.

It is remarkable that the basic set of Einstein equations for the metric (1.36),
i.e. (1.39), is very similar to (1.26) for the principal chiral field. The difference
is that in (1.39) we have the additional factor α = (det g)1/2 instead of a
constant. If one were to forget (1.40) and (1.41), then (1.39) would formally
have nontrivial solutions even when α is constant and these would correspond
to a subclass of solutions of chiral field theory. However, as we have just seen,
such a special class of solutions has no relevance for the gravitational field.

Therefore, the technique described in the previous section requires some
generalization in order to be applied to the gravitational field. As will be seen
shortly, the general idea of the method remains the same: it is based on the
study of the analytic structure of the eigenfunctions of the two operators (as
functions of a complex parameter λ), which can be associated by a definite law
to the system (1.38)–(1.39). In particular, for soliton solutions of (1.38)–(1.39),
the structure of the poles of the corresponding functions in the λ-plane plays
a fundamental role. For α not constant, (1.38)–(1.39) require the introduction
of generalized differential operators entering into the ‘L–A pair’, which depend
on the function α(ζ, η), and which also contain derivatives with respect to the
spectral parameter. For soliton solutions this leads to ‘floating’ poles of the
eigenfunctions, and instead of stationary poles λn = constant as in chiral field
theory we now have pole trajectories λn(ζ, η).

The complete solution of the problem, i.e. the construction of the ‘L–A
pair’ for (1.38)–(1.39) together with the general ISM for its integration and
the procedure for computing the solitonic solution was presented by Belinski
and Zakharov in ref. [23], where the first solitonic solution for the gravitational
field was exhibited. In the next section we will follow the main lines of this
paper together with paper [24] where the technique for the stationary analogue
of metric (1.36) was developed. In connection with this we have to mention
two important independent results which appeared at about the same time. The
first is due to Maison [206], who constructed the linear eigenvalue problem
in the spirit of Lax for the stationary analogue of metric (1.36). Due to the
above discussed peculiarity of the gravitational equations his result was, of
course, more sophisticated than the standard form of the Lax equations, but
he posed the correct conjecture that the existence of the ‘L–A pair’ that he
found entails the complete integrability of the system. The second result was
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due to Harrison [135, 136] and Neugebauer [224], who derived the analogue
of the Bäcklund transformation for the stationary case of metric (1.36). By
means of the Bäcklund transformation it is possible to get from a given solution
a new solution, which usually can be seen as one soliton added to the given
background solution. The existence of the Bäcklund transformation implies
the complete integrability of the system. In his approach Harrison used the
‘prolongation scheme’ devised by Wahlquist and Estabrook (see ref. [247]).
Technically the constructions of Maison, Harrison and Neugebauer differ from
the ISM developed in refs [23] and [24], but practice has proved that this last
approach is more suitable for direct and explicit calculations. The equivalence of
the ISM, which in this context is also sometimes called soliton transformation,
with Harrison’s Bäcklund transformations or Neugebauer’s Bäcklund transfor-
mations was proved by Cosgrove [64, 65, 66].

1.3 The integration scheme

We now turn to a systematic investigation of (1.38)–(1.39). The trace of (1.39),
taking into account the condition (1.38), yields

α,ζη = 0. (1.44)

Thus, the square root of the determinant of the matrix g satisfies a wave equation
(this result was already known to Einstein and Rosen [90]) with solutions

α = a(ζ ) + b(η), (1.45)

where a(ζ ) and b(η) are arbitrary functions. We shall later need a second
independent solution of (1.44) which we denote by β(ζ, η) and we choose it
in the form

β = a(ζ ) − b(η). (1.46)

It should be understood that metric (1.36) admits, in addition, arbitrary
coordinate transformations z′ = f1(z + t)+ f2(z − t), t ′ = f1(z + t)− f2(z − t),
which do not change the conformally flat form of the f (dz2 − dt2) part. By
an appropriate choice of the functions f1 and f2 one can bring the functions
a(ζ ) and b(η) in (1.45) into a prescribed form. When this freedom is used
to write (α, β) as spacetime coordinates we say that the metric (1.36) has the
canonical form and (α, β) are called canonical coordinates. For instance, if the
variable α(ζ, η) is time-like (corresponding to solutions of cosmological type)
the coordinates can be chosen in such a way that α = t and β = z; in this
case α and β are canonical coordinates. It is, however, more convenient to carry
through the analysis in a general form, without specifying the functions a(ζ )
and b(η) in advance, and turning to special cases when necessary.

It is easy to see that (1.39) is equivalent to a system consisting of (1.42) and
two first order matrix equations for the matrices A and B. From (1.39) and
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(1.42) the first obvious equation for A and B is

A,η − B,ζ = 0. (1.47)

The second equation is easily derived as an integrability condition of (1.42) with
respect to g. We obtain in this manner

A,η + B,ζ + α−1[A, B] − α,ηα
−1 A − α,ζα

−1 B = 0, (1.48)

where the square brackets denote the commutator.
In close analogy with the ideas described in section 1.1 the main step now

consists in representing (1.47) and (1.48) in the form of compatibility conditions
of a more general overdetermined system of matrix equations related to an
eigenvalue–eigenfunction problem for some linear differential operators. Such a
system will depend on a complex spectral parameter λ, and the solutions of the
original equations for the matrices g, A and B will be determined by the possible
types of analytic structure of the eigenfunctions in the λ-plane. Although as
we have already mentioned at present there is no general algorithm for the
determination of such systems, this can be done [23] for the particular case of
(1.38)–(1.39). To do so we introduce the following differential operators

D1 = ∂ζ − 2α,ζ λ

λ − α
∂λ, D2 = ∂η + 2α,ηλ

λ + α
∂λ, (1.49)

where the symbol ∂ with a subscript denotes partial differentiation with respect
to the corresponding variable and λ is a complex parameter independent of the
coordinates ζ and η. It is easy to verify that the commutator of the operators
D1 and D2 vanishes identically when α satisfies the wave equation. Thus taking
(1.44) into account we have

[D1, D2] = 0. (1.50)

We now introduce, as in section 1.1, a complex matrix function ψ(λ, ζ, η),
which in this context is usually called the generating matrix, and consider the
system of equations

D1ψ = A

λ − α
ψ, D2ψ = B

λ + α
ψ, (1.51)

where the matrices A and B are real and do not depend on the parameter λ

(the same requirements are satisfied, of course, by the real function α). Then
it turns out that the compatibility conditions for (1.51) coincide exactly with
(1.47)–(1.48). In order to see this it is necessary to operate with D2 on the first
of equations (1.51) and with D1 on the second one, and subtract the results. On
account of the commutativity of D1 and D2 we get zero on the left hand side,
while on the right hand side we get a rational function of λ which vanishes if,
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and only if, the conditions (1.47)–(1.48) are satisfied. It is easy to see that a
solution of the system (1.51) guarantees not only that the equations satisfied by
the matrices A and B are true, but also yields a solution of (1.42), i.e. the sought
matrix g(ζ, η) which satisfies the original equations (1.38)–(1.39). The matrix
g(ζ, η) is simply the value of the generating matrix ψ(λ, ζ, η) at λ = 0:

g(ζ, η) = ψ(0, ζ, η). (1.52)

Indeed, in this case (1.51) for λ = 0 (for solutions which are regular in the
neighbourhood of λ = 0) exactly duplicate (1.42). The matrix g(ζ, η) must, of
course, be real and symmetric; later we shall formulate additional restrictions to
the solutions of (1.51) which guarantee these requirements.

The procedure of integration assumes knowledge of at least one particular
solution. Let g0(ζ, η) be a particular solution of (1.38)–(1.39), then by means
of (1.42) one can determine the matrices A0(ζ, η) and B0(ζ, η), and integrating
(1.51) one can obtain the corresponding generating matrix ψ0(λ, ζ, η). We now
make the substitution

ψ = χψ0 (1.53)

in (1.51), and obtain the following equations for the dressing matrix χ(λ, ζ, η):

D1χ = 1

λ − α
(Aχ − χ A0), D2χ = 1

λ + α
(Bχ − χ B0). (1.54)

There are additional conditions to be imposed on the dressing matrix χ in order
to ensure the reality and symmetry of the matrix g. The first consists of requiring
the reality of χ on the real axis of the complex λ-plane (the matrix ψ must also
satisfy this condition). This implies

χ(λ) = χ(λ), ψ(λ) = ψ(λ), (1.55)

where a bar denotes complex conjugation. Note that often for the sake of brevity
we do not indicate the arguments ζ and η of some functions. The second
condition is less trivial and is related to the following invariance property of
the solutions of the system (1.54). Let us assume that the matrix χ(λ) satisfies
(1.54). Replacing the argument λ in this matrix by α2/λ, we obtain the new
matrix χ ′(λ):

χ ′(λ) = gχ̃−1(α2/λ)g−1
0 , (1.56)

where the tilde denotes transposition of the matrix. Direct verification suffices
to convince oneself that the new matrix χ ′(λ) also satisfies (1.54) if the matrix
g is symmetric. We shall assume that χ ′(λ) = χ(λ) to guarantee the symmetry
of the matrix g. Thus this condition takes the form

g = χ(λ)g0χ̃(α2/λ). (1.57)
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Moreover, it is necessary to require that when λ → ∞ the dressing matrix
χ(λ, ζ, η) tends to the unit matrix,

χ(∞) = I. (1.58)

Then these relations imply
g = χ(0)g0, (1.59)

a result which also follows from conditions (1.52)–(1.53).
Thus, the problem now consists of solving (1.54) and determining the

dressing matrix χ that satisfies the supplementary conditions (1.55) and (1.58).
The following important point should be emphasized. The solution g(ζ, η) must
also satisfy the requirement that det g = α2. The function α(ζ, η) is the same
for the background solution g0 and for the generalized g (recall that α is a given
solution of the wave equation (1.44)) and, by definition, the background solution
also satisfies the requirement det g0 = α2. Therefore, as follows from (1.59),
one must impose on the matrix χ another restriction: detχ(0) = 1. However,
it is more convenient not to worry about this condition during computations and
to use a simple renormalization in the final results in order to obtain the correct
functions. These (correct) functions will be called physical functions. It is easy
to establish the legitimacy of this procedure from (1.39). In fact, if we obtain a
solution of that equation with det g = α2, the trace of (1.39) implies that det g
satisfies the equation(

α(ln det g),ζ
)
,η

+ (α(ln det g),η
)
,ζ

= 0. (1.60)

We can then form the physical matrix g(ph) by

g(ph) = α(det g)−1/2g, (1.61)

and it is easy to see that g(ph) satisfies (1.39) and also the condition det g(ph) =
α2. The matrices A and B are also subject to appropriate transformations,
namely,

A(ph) = A − α
{
ln[α(det g)−1/2]

}
,ζ

I, (1.62)

B(ph) = B + α
{
ln[α(det g)−1/2]

}
,η

I, (1.63)

where A and B are defined in terms of g according to (1.42) and A(ph) and B(ph)

are defined by the same formulas but in terms of the matrix g(ph).

1.4 Construction of the n-soliton solution

In the general case, in direct analogy with the theory of principal chiral fields, the
determination of the matrix χ(ζ, η, λ) amounts to solving the Riemann problem
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of analytic function theory which, in turn, is reduced to solving a singular
matrix integral equation [23]. The general solution for χ represents the sum
of the solitonic and the nonsolitonic parts. In this book we consider the purely
solitonic solutions, i.e. when the nonsolitonic part is absent. This problem does
not require the use of the Riemann problem and can be solved explicitly.

The existence of solutions of the soliton type is due to the presence in the
λ-plane of points at which the determinant of χ has simple poles. Thus the
purely solitonic solutions correspond to the case in which χ is representable
as a rational function of the parameter λ with a finite number of simple poles,
and is such that it tends to the unit matrix when λ → ∞ as required by (1.58).
From the reality condition for g, i.e. (1.55), it follows that these poles are either
on the real axis of the complex λ-plane or come in pairs, i.e. for each complex
pole λ = µ there is a corresponding complex conjugate pole λ = µ. From the
symmetry condition (1.57) it follows that for each pole λ = µ there is a point
λ = α2/µ of degeneracy of χ where the determinant of χ vanishes. The inverse
matrix χ−1 has the same properties, as can easily be seen from (1.55) and (1.57).
It thus follows that the dressing matrix χ has the form

χ = I +
n∑

k=1

Rk

λ − µk
, (1.64)

where the matrices Rk as well as the numerical functions µk no longer depend
on λ. The reality condition discussed above implies that in the sum of (1.64)
to each real term µk there should correspond a real matrix Rk , and that to each
complex function µk there should correspond another function µk+1 = µk , and
that Rk+1 = Rk . It can be seen from (1.64) and (1.59) that the solution of (1.39)
for the matrix g(ζ, η) is

g(ζ, η) =
(

I −
n∑

k=1

µ−1
k Rk

)
g0. (1.65)

Let us now determine the matrix Rk explicitly. For this it is necessary to
substitute (1.64) into (1.54) and impose that these equations be satisfied at the
poles λ = µk(ζ, η). First, it can be seen that these equations explicitly determine
the dependence of the positions of the poles on the coordinates ζ and η, i.e. the
functions µk(ζ, η). In fact, the right hand sides of (1.54) at the points λ = µk

have only first order poles, whereas the left hand sides, D1χ and D2χ , have
second order poles. The requirement that the coefficients of the powers (λ −
µk)

−2 vanish on the left hand sides yields the following equations for the pole
trajectories µk(ζ, η):

µk,ζ = 2α,ζµk

α − µk
, µk,η = 2α,ηµk

α + µk
. (1.66)
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These equations have the following invariance: if µk is a solution of (1.66), then
α2/µk is also a solution. The solutions of (1.66) are the roots of the quadratic
equation

µ2
k + 2(β − wk)µk + α2 = 0, (1.67)

where wk are arbitrary complex constants. For each given wk , (1.67) yields two
roots, µk and α2/µk . If the modulus of the first root, |µk |, is in the interval [0, α]
the modulus of the second root, |α2/µk |, is outside this interval. This enables us
to introduce the notion of µin

k and µout
k corresponding to these two choices. All

the poles µin
k of the χ matrix (1.64) are inside the circle |λ| = α in the complex

λ-plane, and all the poles µout
k are outside this circle. These solutions for µk can

be written in the form

µin
k = (wk − β)

{
1 − [1 − α2(β − wk)

−2]1/2
}
, (1.68)

µout
k = (wk − β)

{
1 + [1 − α2(β − wk)

−2]1/2
}
, (1.69)

and the branches of the square roots in these formulas should conform to the
adopted definition of the solutions, i.e. |µin

k | < α and |µout
k | > α. For example,

in the case of real poles (real constants wk) in the region where 1 − α2(β −
wk)

−2 > 0, the square roots take only positive values. The behaviour of µin
k and

µout
k as functions of α and β is shown for this case in fig. 1.1 and fig. 1.2.
Let us rewrite (1.54) in the form

A

λ − α
= (D1χ)χ−1 + χ

A0

λ − α
χ−1, (1.70)

B

λ + α
= (D2χ)χ−1 + χ

B0

λ + α
χ−1. (1.71)

Since the left hand sides of these equations are regular at the poles λ = µk , it
is necessary that the residues of these poles on the right hand sides vanish at
λ = µk . This requirement leads to the following equations for the matrices Rk :

Rk,ζ χ
−1(µk) + Rk

A0

µk − α
χ−1(µk) = 0, (1.72)

Rk,ηχ
−1(µk) + Rk

B0

µk + α
χ−1(µk) = 0, (1.73)

where use has been made of the relation

Rkχ
−1(µk) = 0, (1.74)

which follows from the identity χχ−1 = I , at the poles λ = µk . It can be
seen from (1.74) that Rk and χ−1(µk) are degenerate matrices and their matrix
elements can be written in the form

(Rk)ab = n(k)
a m(k)

b , [χ−1(µk)]ab = q(k)
a p(k)

b , (1.75)
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Fig. 1.1. The behaviour of µk as a function of β for some fixed value of α for a real
pole (real wk). For definiteness we choose the value of the arbitrary constant wk to be
in the range −α < wk < α. The smooth lines show µk for the case µin

k and the broken
lines correspond to the case µout

k .

thus (1.74) implies that
m(k)

a q(k)
a = 0. (1.76)

Here and in the following, summation will be understood to be over repeated
vector and tensor indices a, b, c, d (recall that these take the values 1 and 2
only).

Substituting (1.75) into (1.72) and (1.73) we obtain the equations which
determine the evolution of the vectors m(k)

a :[
m(k)

a,ζ + m(k)
b

(A0)ba

µk − α

]
q(k)

a = 0,

[
m(k)

a,η + m(k)
b

(B0)ba

µk + α

]
q(k)

a = 0. (1.77)

A solution of these equations is easily expressed in terms of a given particular
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Fig. 1.2. The behaviour, in the real-pole case, of µk as a function of α for some fixed
value of β: (a) β > wk , and (b) β < wk . As in the previous figure the smooth line
corresponds to µin

k and the broken line to µout
k .

solution ψ0 of (1.51). Introducing the matrices

Mk = (ψ−1
0 )λ=µk = ψ−1

0 (µk, ζ, η), (1.78)

it is not difficult to see that these satisfy the equations

Mk,ζ + Mk
A0

µk − α
= 0, Mk,η + Mk

B0

µk + α
= 0. (1.79)

Thus, a solution of (1.77) for the vectors m(k)
a will be

m(k)
a = m(k)

0b (Mk)ba = m(k)
0b [ψ−1

0 (µk, ζ, η)]ba, (1.80)

where the m(k)
0b are arbitrary complex constant vectors. In the solution (1.80)

for the vectors m(k)
a , there may also be arbitrary complex factors depending

on the index k and the coordinates ζ and η. However, such factors reduce to
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an inessential renormalization of the vectors m(k)
a and disappear from the final

expression for the matrices Rk ; we therefore set them equal to 1.
There remains the task of determining the vectors n(k)

a and thus the matrices
Rk . This can be done by means of the supplementary condition (1.57) that
must be satisfied by the dressing matrix χ . Substituting (1.64) into (1.57) and
considering the relation obtained in this way at the poles of the matrix χ(α2/λ),
i.e. at the points λ = α2/µk , we conclude that the matrices Rk satisfy the
following system of n algebraic matrix equations:

Rk g0

[
I +

n∑
l=1

(α2 − µkµl)
−1µk R̃l

]
= 0, (1.81)

where k = 1, . . . , n. Substituting in this (1.75) for the matrices Rk we obtain a
system of linear algebraic equations for the vectors n(k)

a :

n∑
l=1

�kln
(l)
a = µ−1

k m(k)
c (g0)ca, (1.82)

where the matrix �kl is symmetric and its elements are

�kl = −m(k)
c m(l)

b (g0)cb(α
2 − µkµl)

−1. (1.83)

If we introduce the symmetric matrix �kl inverse to �kl ,

n∑
m=1

�km�ml = δkl, (1.84)

where δkl is the Kroneker symbol, we get from (1.82) for the vectors n(k)
a ,

n(k)
a =

n∑
l=1

µ−1
l �kl L

(l)
a , (1.85)

where
L (l)

a = m(l)
c (g0)ca. (1.86)

Now, using (1.75), (1.85) and (1.86) we get, from (1.65), the metric components
gab:

gab = (g0)ab −
n∑

k,l=1

µ−1
k µ−1

l �kl L
(k)
a L (l)

b . (1.87)

With this expression the matrix g is obviously symmetric. Let us now consider
the reality condition. If all the functions µk(ζ, η) are real the components gab

are automatically real when we take all the arbitrary constants appearing in the
solution to be real. In fact, the particular solution ψ0(λ, ζ, η) is always assumed
to satisfy the second of the conditions (1.55) and consequently ψ0(λ) is real on
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the real axis of the λ-plane, i.e. at the points λ = µk . It can now be seen from
(1.80) that the arbitrary constants m(k)

0b that occur in the vectors m(k)
a must be real,

and then the vectors m(k)
a will also be real. It then follows that all the quantities

from which the matrix g is made are real. If we now assume that there are
also complex values among the functions µ1, µ2, . . . , µn , the conditions (1.55)
then require that all the complex poles appear only as conjugate pairs; for each
complex pole λ = µ its complex conjugate λ = µ must also appear. Let us
assume that there is such a pair of poles λ = µk and λ = µk+1 with µk+1 = µk .
To these poles there correspond vectors m(k)

a and m(k+1)
a , which according to

(1.80) are given by

m(k)
a = m(k)

0b [ψ−1
0 (µk, ζ, η)]ba, m(k+1)

a = m(k+1)
0b [ψ−1

0 (µk+1, ζ, η)]ba. (1.88)

A simple analysis shows that the matrix g will be real if for each such pair of
complex conjugate poles the arbitrary constants m(k)

0b and m(k+1)
0b are taken to

be conjugate to each other: m(k+1)
0b = m(k)

0b . But since the function ψ0(λ, ζ, η)

satisfies the condition ψ0(λ) = ψ0(λ), this means that the vectors m(k)
a and

m(k+1)
a corresponding to each pair of conjugate poles are also conjugate to each

other, i.e. m(k+1)
a = m(k)

a . Accordingly, we can formulate the following rule to
determine the choice of the arbitrary constants m(k)

0b in (1.80). To ensure that the
matrix g is real, it is necessary to choose the arbitrary constants m(k)

0b in (1.80) so
that the vectors m(k)

a corresponding to real poles λ = µk are real, and the vectors
m(k)

a and m(k+1)
a corresponding to the pair of complex conjugate poles λ = µk

and λ = µk+1 = µk are complex conjugate to each other.

1.4.1 The physical metric components gab

Satisfying the requirements that g be real and symmetric is still not enough to
have a physical solution. It must not be forgotten that g must also satisfy the
supplementary condition (1.38); therefore we now calculate the determinant of
the matrix g. The form (1.87) is not convenient for this calculation, and we use
a different representation of our solution. We note that the process of perturbing
the background solution g0 and obtaining from it the n-soliton solution g, as
described above, is formally equivalent to the introduction of the n solitons one
a time, in succession. The first step is to go from the background metric g0 to
the metric g1 containing one soliton, corresponding to the presence in the matrix
χ (which we call at this stage χ1) of one pole only λ = µ1.

This one-soliton solution is easily obtained from the results given above. Now
we have only one pole trajectory µ1(ζ, η) which is one of the functions (1.68)
or (1.69) containing one arbitrary constant w1. The vector m(1)

a follows from
(1.80) for k = 1. From (1.85), (1.84) and (1.83) it is easy to get the vector n(1)

a

and, after that, the matrix (R1)ab = n(1)
a m(1)

b . Substituting this matrix into (1.64)
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we can write the dressing matrix χ1 in the form:

χ1 = I + µ−1
1 (λ − µ1)

−1(µ2
1 − α2)P1, (1.89)

where

(P1)ab = m(1)
c (g0)cam(1)

b

m(1)
d (g0)d f m(1)

f

. (1.90)

We now get for the one soliton solution g1,

g1 = χ1(0)g0 = [I − µ−2
1 (µ2

1 − α2)P1]g0. (1.91)

It is not difficult to compute the determinant of g1. First, we note the following
remarkable properties of the matrix P1, which follow easily from (1.90):

P2
1 = P1, Tr P1 = 1, det P1 = 0. (1.92)

Using these properties and the general relation,

det(I + F) = 1 + Tr F + det F, (1.93)

which holds for any arbitrary 2 × 2 matrix F , we get from (1.91) that

det g1 = µ−2
1 α2 det g0. (1.94)

We can now take the solution g1 as a new background solution and repeat the
operation of adding another soliton to it, corresponding to the pole λ = µ2. To
do this we compute the matrix χ−1

1 , the inverse of the matrix χ1 given in (1.89).
Using the property P2

1 = P1 it is easy to check that

χ−1
1 = I + µ2

1 − α2

α2 − λµ1
P1. (1.95)

Now we form the new background generating matrix ψ1 = χ1ψ0, take its inverse
ψ−1

1 , with the help of (1.95), calculate it at the point λ = µ2, and then find the
corresponding vector m ′(2)

a ,

m ′(2)
a = m ′(2)

0b [ψ−1
1 (µ2, ζ, η)]ba.

After that, we construct the matrix P ′
2, in analogy with (1.90):

(P ′
2)ab = m ′(2)

c (g1)cam ′(2)
b

m ′(2)
d (g1)d f m ′(2)

f

,

which satisfies the same properties (1.92) as P1. Then we construct the dressing
matrix χ2(λ) as

χ2 = I + µ−1
2 (λ − µ2)

−1(µ2
2 − α2)P ′

2,
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and we get the two-soliton solution g2:

g2 = χ2(0)g1 = [I − µ−2
2 (µ2

2 − α2)P ′
2][I − µ−2

1 (µ2
1 − α2)P1]g0. (1.96)

Repeating this process we get the n-soliton solution (1.87) in the form

g =
(

n∏
k=1

[I − µ−2
k (µ2

k − α2)P ′
k]

)
g0, (1.97)

where P ′
1 ≡ P1 and all the matrices P ′

k satisfy the same properties as the matrix
P1, i.e.

P ′2
k = P ′

k, Tr P ′
k = 1, det P ′

k = 0. (1.98)

Naturally the explicit form of the matrices P ′
k quickly becomes cumbersome as

k increases, and therefore this way of calculating the solutions is less convenient
than the method described previously. But the representation of the solution in
the form (1.97) is useful for the study of some particular questions and specially
for calculating the determinant of the matrix g. The key point for this calculation
is that since the matrices P ′

k satisfy the properties (1.98), the contribution from
each factor in (1.97) to the determinant of g can be calculated trivially, and the
result is

det g = α2n

(
n∏

k=1

µ−2
k

)
det g0 = α2n+2

n∏
k=1

µ−2
k . (1.99)

We still have to construct an n-soliton solution g(ph) which satisfies not only
(1.39) but also the supplementary condition (1.38). For this ‘physical’ solution
we have already derived the formula (1.61), consequently the final result for the
n-soliton solution is

g(ph) = α

(
α2n+2

n∏
k=1

µ−2
k

)−1/2

g = α−n

(
n∏

k=1

µk

)
g. (1.100)

We should keep in mind that both signs are allowed in front of the matrix g(ph)

due to the invariance of Einstein equations (1.38)–(1.42) with respect to the
reflection g(ph) → −g(ph). This sign should be chosen separately for each
case in order to ensure the correct signature of the metric. This completes the
determination of the metric components gab for the n-soliton solution. We also
note from (1.70)–(1.71) that one can obtain explicit expressions for the matrices
A and B by equating the residues on the left and the right hand sides of these
equations at the poles λ = α and λ = −α; the result is:

A = 2ααζ

[
n∑

k=1

(α − µk)
−2 Rk

]
χ−1(α) + χ(α)A0χ

−1(α), (1.101)

B = 2ααη

[
n∑

k=1

(α + µk)
−2 Rk

]
χ−1(−α) + χ(−α)B0χ

−1(−α). (1.102)
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The matrices Rk come from (1.75) and from (1.80) and (1.85). We then need to
use expression (1.99) for the determinant of g in order to calculate the physical
values of the matrices A and B, i.e. A(ph) and B(ph), in agreement with the
prescriptions (1.62)–(1.63).

1.4.2 The physical metric component f

To complete the construction of the n-soliton solutions for the metric (1.36)
we also need to calculate the metric coefficient f from (1.40)–(1.41) using the
matrix g already found. Surprisingly enough the coefficient f in the general
n-soliton case can also be calculated explicitly by algebraic operations only,
like the metric components gab. Here it is convenient to perform the calculation
of this coefficient in two stages. First we calculate the value of f which follows
from (1.40)–(1.41) when we substitute in them the nonphysical solution g given
by (1.87) which does not satisfy the condition det g = α2. Then we use a
simple procedure to find the physical value of the coefficient, f (ph), which is
also obtained from the same equations (1.40)–(1.41) when g(ph) is substituted in
them instead of g. Calculating the traces Tr A2 and Tr B2, using the expressions
(1.101)–(1.102) for the matrices A and B, and substituting into (1.40)–(1.41),
we find f by direct integration. It is a remarkable fact that this integration
can actually be carried out. The key point in calculating the coefficient f
corresponding to an n-soliton solution is to calculate it, first, for the one-soliton
solution (the coefficient will be denoted in this case by f1). From (1.89)–(1.94)
after the necessary computations following the scheme indicated above, we get
for the one-soliton solution,

f1 = C1 f0
(
µ2

1 − α2
)−1

αµ2
1�11, (1.103)

where C1 is an arbitrary constant, f0 is the particular background solution for
f , which corresponds to the solution g0, and �11 is the single component of the
matrix (1.83), which is a 1 × 1 matrix in this case (k = 1, l = 1):

�11 = (µ2
1 − α2

)−1
m(1)

a m(1)
b (g0)ab, (1.104)

where the vector m(1)
a follows from (1.80) for k = 1.

The next step in the calculation is to take the solution (g1, f1) as a new par-
ticular solution and repeat the operation, as we explained before in connection
with the evaluation of g2. Thus we get the coefficient f2 which corresponds
to the two-soliton solution with the poles λ = µ1 and λ = µ2. At this second
step we already have to deal only with algebraic computations since the need for
integration appears in the whole procedure only once, in the transition from the
background solution (g0, f0) to the solution with one soliton (g1, f1). Omitting
the details of these calculations, the result is

f2 = C2 f0
(
µ2

1 − α2
)−1 (

µ2
2 − α2

)−1
α2µ2

1µ
2
2

(
�11�22 − �2

12

)
. (1.105)
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Here C2 is an arbitrary constant, f0 is the background solution as in (1.103) and
�11, �22 and �12 are the components of the matrix (1.83). We now have three
independent components of �kl , since the indices k and l can take two values, 1
and 2.

Equations (1.103) and (1.105) suggest that in the general n-soliton case the
coefficient f is given by the expression

f = Cn f0α
n

(
n∏

k=1

µ2
k

)[
n∏

k=1

(µ2
k − α2)

]−1

det�kl, (1.106)

where Cn is an arbitrary constant and k, l = 1, 2, . . . , n. We see from (1.103)
and (1.105) that this formula indeed holds for n = 1 and n = 2, and we can
prove by induction that it holds for arbitrary n. The proof for the stationary
analogue of metric (1.36) is given in the appendix of ref. [24]. For the
nonstationary case, (1.36), the proof is almost identical and we do not give it
here; it shows that (1.106) is indeed correct in general.

Now we must determine the physical value f (ph) of the coefficient f , i.e. the
value that would be obtained from (1.40)–(1.41) if we had substituted in them
the physical matrix g(ph) of (1.100) instead of g. For the matrices A(ph) and
B(ph) we have the formulas (1.62) and (1.63). When we substitute the matrices
A(ph) and B(ph) in (1.40)–(1.41) instead of A and B, we find that the physical
coefficient f (ph) is given by the formula

f (ph) = f α1/2 F, (1.107)

where f is the value of the coefficient given by (1.106) and the function F is
defined by the equations:

(ln F),ζ = − α

8α,ζ

[
(ln det g),ζ

]2
, (ln F),η = − α

8α,η

[
(ln det g),η

]2
.

(1.108)
Then substituting the expression (1.99) for det g we find that these equations
are easily integrated (the essential ingredient for such integration comes from
relations (1.66)), and we get

F = CFα
−(n2+2n+1)/2

(
n∏

k=1

µk

)n−1 [ n∏
k=1

(µ2
k − α2)

][
n∏

k>l=1

(µk − µl)
−2

]
,

(1.109)
where CF is an arbitrary constant. From this and (1.106)–(1.107) we get the
final expression for the physical value of the coefficient f :

f (ph) = C f f0α
−n2/2

(
n∏

k=1

µk

)n+1 [ n∏
k>l=1

(µk − µl)
−2

]
det�kl, (1.110)
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where C f is an arbitrary constant which should be taken with the appropriate
sign in order to ensure the correct sign for f (ph). For clarity we point out that
the product

n∏
k>l=1

(µk − µl)
−2

is equal to 1 for n = 1, to (µ2 − µ1)
−2 for n = 2, to (µ3 − µ2)

−2(µ3 −
µ1)

−2(µ2 − µ1)
−2 for n = 3, and so on. Therefore the final expression for the

n-soliton solution can be written in the form

ds2 = f (ph)(dz2 − dt2) + g(ph)
ab dxadxb, (1.111)

where f (ph) is given by (1.110) and the matrix elements g(ph)
ab are given by

(1.100) and (1.87).

1.5 Multidimensional spacetime

In this section we consider the application of the ISM described in sections
1.2, 1.3 and 1.4 to spacetimes with an arbitrary number of dimensions N ,
but which admit N − 2 commuting Killing vector fields (N ≥ 4). There
is some interest in this generalization in connection with ideas of using a
compactified multidimensional world for the construction of a selfconsistent
unified theory [162, 175, 132, 86]. Of course, the ansatz we are considering
in this book is too poor for such purposes, given that it does not allow for
a dependence of the metric in the extradimensional coordinates. All the
multidimensional gravitational potentials should depend on two variables only,
as in the four-dimensional case, otherwise the ISM described in the previous
sections cannot be applied. Dependence in the extradimensional coordinates is
important if one wishes to introduce into the theory nontrivial (non-Abelian)
symmetry groups, which are related to the internal symmetries of the particles
[86]. It may happen, however, that some of the multidimensional gravitational
solitons and instantons that can be constructed by the method we are considering
here could be used for the extradimensional unification approach. Bearing this in
mind, we outline here the generalization of the ISM to multidimensional gravity,
together with a simple example of its application in five dimensions. Further
applications are given in section 5.4.3.

For definiteness, let us consider the case when all Killing vectors are space-
like and the metric is nonstationary. Thus we write the metric in the same form
(1.36) with the only difference that now the indices a, b run over N − 2 values
and gab(t, z) is a (N −2)×(N −2) matrix. For the determinant of this matrix we
adopt the same notation (1.38) and it is easy to show that the Einstein equations
in vacuum R(N )

AB = 0 (A, B = 1, . . . , N ) are equivalent to the system (1.39)–
(1.42), where g, A and B are now (N − 2) × (N − 2) matrices. The function
α(t, z) still satisfies the wave equation (1.44).
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The basic fact is that the integration scheme of section 1.3 (excluding the
last three formulas, (1.61)–(1.63)) and the procedure for the construction of
the n-soliton solution described in section 1.4 remain unchanged. All the
expressions in these sections are valid, with the exception of those which
describe the transition from the metric coefficients gab and f to their physical
values g(ph)

ab and f (ph). In fact, there is only one point where the structure of the
equations differs from the N = 4 case: the explicit construction of the physical
metric components g(ph)

ab and f (ph). It is obvious that instead of (1.61) we now
have to write

g(ph) = α2/(N−2)(det g)1/(2−N )g, (1.112)

then det g(ph) = α2, as it should be. Since for det g we have the same expression
(1.99), we have

g(ph) = α−2n/(N−2)

(
n∏

k=1

µk

)2/(N−2)

g. (1.113)

From this it is easy to obtain the corresponding generalization of (1.62) and
(1.63), and to write the physical matrices A(ph) and B(ph) in terms of the matrices
A and B. By representing the physical component f (ph) as f (ph) = FN f , where
f is given by (1.106), and substituting it together with A(ph) and B(ph) into
(1.40)–(1.41), we get equations for the coefficient FN . These equations can be
integrated exactly: the final result for the metric component f (ph) is [285, 288]

f (ph) = f0α
−n(n+4−N )/(N−2) det(�kl)

n∏
k=1

[
µ

2(n−3+N )/(N−2)
k (µ2

k − α2)(4−N )/(N−2)
]

×
n∏

k,l=1;k>l

(µk − µl)
4/(2−N ). (1.114)

Of course, for N = 4, (1.113) and (1.114) coincide with (1.100) and (1.110),
respectively. Also, we recall that f (ph) is only determined up to an arbitrary
multiplicative constant. Thus, it is always possible to introduce a constant factor
in (1.114) in order to correct the physical value of f (ph) if necessary.

Apart from the direct interpretation of the multidimensional metric compo-
nents g(ph)

AB as gravitational potentials of the multidimensional spacetime, we
can also use another well known interpretation of such a theory as ordinary
four-dimensional general relativity with vector and scalar fields given by the
extradimensional metric components. For this picture let us introduce here, and
for the rest of this section, the following conventions:

1. The capital Latin indices A, B, . . . are the N -dimensional spacetime indices,
and take N values.

2. The small Latin indices i, k, l, . . . from the second part of the alphabet
correspond to the usual four-dimensional spacetime indices, and take four
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values only. All fields depend on time and one space-like coordinate, which
we denote as t and z, respectively.

3. The Greek indices α, β, . . . label coordinates of the extra dimensions, and
take N − 4 values.

4. The small Latin indices from the first part of the alphabet a, b, . . . , h label
the ignorable coordinates (on which the fields have no dependence) and run
over N − 2 values.

5. The small Latin indices from the first part of the alphabet with a bar,
a, b, . . . , h label the two ignorable coordinates of the four-dimensional
spacetime (not the extradimensional sector), and take only two values.

First, let us look at the field contents of multidimensional gravity from the
point of view of an effective four-dimensional theory. We start with the N -
dimensional metric tensor, which we call ‘physical’ for convenience, and the
N -dimensional Kaluza–Klein interval:

ds2
(N ) = g(ph)

AB dx Adx B

= g(ph)
ik dxi dxk + 2g(ph)

iα dxi dxα + g(ph)
αβ dxαdxβ, (1.115)

where g(ph)
AB depends only on the coordinates of the four-dimensional spacetime,

g(ph)
AB = g(ph)

AB (xi ); (1.116)

this is the Kaluza–Klein ansatz. Let us define new fields Gik , A(α)
i and γαβ by

g(ph)
ik = e2σ Gik + A(α)

i A(β)

k γαβ, (1.117)

g(ph)
iα = A(β)

i γαβ, (1.118)

g(ph)
αβ = γαβ, (1.119)

where

e2σ = (det γαβ)
−1/2. (1.120)

Equations R(N )
AB = 0 then describe a selfconsistent system for the interaction of

the gravitational field, Gik , with N − 4 vector fields A(α)
i and (N − 4)(N − 3)/2

scalar fields γαβ . These vectors and scalars correspond to Abelian Yang–Mills
fields and to some generalization of massless Klein–Gordon fields (presumably
Higgs bosons); however, the interaction among these fields is unusual. Direct
calculation shows that equations R(N )

AB = 0 are equivalent to the system,
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Rk
i − 1

2
δk

i R = 2(σ;iσ ;k − 1

2
δk

i σ;mσ ;m)

+ 1

4

(
κα
βiκ

βk
α − 1

2
δk

i κ
α
βmκ

βm
α

)
+ 1

2
e−2σ γαβ

(
F (α)

mi F (β)mk − 1

4
δk

i F (α)
mn F (β)mn

)
, (1.121)

F (α)ik
;k = 2σ;k F (α)ik − κα

βk F (β)ik, (1.122)

κ
βk
α ;k = 1

2
e−2σ γαµF (β)

mn F (µ)mn, (1.123)

where
F (α)

ik = A(α)
i,k − A(α)

k,i , (1.124)

and
κα
βi = γ αµγµβ,i . (1.125)

The raising and lowering of the four-dimensional indices, as well as the four-
dimensional covariant differentiation in these equations are defined with respect
to the metric Gik , also Rk

i in (1.121) is the usual four-dimensional Ricci tensor
for the metric Gik . The matrix γ αβ in (1.125) is the inverse of γαβ (γ αµγµβ =
δαβ ). Covariant derivatives on the scalar σ are obviously σ;k = σ,k and σ ;k =
Gkmσ,m .

The conformal factor exp(2σ) in (1.117) was introduced in order to exclude
second derivatives of the scalar fields in the stress-energy tensor on the right
hand side of (1.121). Note that if we had interpreted exp(2σ)Gik as the four-
dimensional metric, instead of Gik , then second derivatives of ln det γαβ would
appear in (1.121). With our choice we have a Klein–Gordon-like structure in the
scalar sector. This choice is sometimes referred to as the Einstein frame. We
should stress, however, that there are no sound theoretical reasons to single out
a four-dimensional physical metric from a multidimensional spacetime.

Equations (1.121)–(1.125) were derived for a general metric of the form
(1.115)–(1.116) in order to remind the reader of the possible four-dimensional
physical interpretation of the coefficients g(ph)

AB . But, if we wish to develop the
integrable ansatz in such a theory, it is necessary to take the following particular
case of metric (1.115):

ds2(ph)
(N ) = f (ph)(t, z)(dz2 − dt2) + g(ph)

ab
(t, z)dxadxb

+ 2g(ph)
aα (t, z)dxadxα + g(ph)

αβ (t, z)dxαdxβ, (1.126)

and to construct the n-soliton solution (1.113)–(1.114) for the coefficients
g(ph)

AB (t, z) in this expression as explained in the beginning of this section. Then
from (1.117)–(1.119) one can write this solution in terms of the potentials Gik ,
A(α)

i and γαβ , which will satisfy (1.121)–(1.125) automatically. The set of scalar
fields γαβ are just the components g(ph)

αβ , according to (1.119). From (1.118) and
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(1.126) it follows that the vectors A(α)

a are,

A(α)
t = 0, A(α)

z = 0, A(α)

a = g(ph)
aβ γ βα. (1.127)

The corresponding four-dimensional spacetime interval is obtained from (1.117)
and (1.126)

ds2
(4) = Gzzdz2 + Gtt dt2 + Gabdxadxb, (1.128)

where

Gzz = −Gtt = e−2σ f (ph), Gab = e−2σ
(

g(ph)
ab

− A(α)

a A(β)

b
γαβ

)
. (1.129)

For illustrative purposes let us apply the described approach to five-
dimensional spacetime and construct a five-dimensional ‘black hole’ solution
which one can try to interpret as a four-dimensional black hole with some scalar
and vector field sources. From the ‘no hair’ theorems we know that this is not
possible. In fact, the explicit construction will show the problems with this type
of solution.

In refs [23, 24] (see also section 8.3) it is proved that the Kerr black hole is just
a double-soliton solution with two real-pole trajectories on a flat background.
We can try to generalize this statement by saying that one may obtain an
N -dimensional black hole as a double soliton with two real-pole trajectories
on an N -dimensional flat background. The fact that we have presented the
multidimensional approach in this section for the nonstationary metric only is
not a problem because, as we will see, it is very simple to obtain the stationary
version by a simple complex transformation of the time coordinate. Thus, let us
start with the flat N -dimensional background

ds2
(N ) = −dt2 + dz2 + (g0)ab dxadxb, (1.130)

where g0 is the (N − 2) × (N − 2) diagonal matrix

g0 = diag(t2, 1, 1, . . . , 1). (1.131)

For such a background we have α = t , β = z, i.e. canonical coordinates, and
condition (1.38) is satisfied. The background generating matrix ψ0 follows from
(1.51) as

ψ0 = diag(t2 + 2zλ + λ2, 1, 1, . . . , 1), (1.132)

which satisfies condition (1.52). We take two pole trajectories,

µ1 = w1 − z +
√
(w1 − z)2 − t2,

µ2 = w2 − z −
√
(w2 − z)2 − t2,

 (1.133)

where w1 and w2 are two real arbitrary parameters, and we consider the
spacetime region where the expressions under the square roots are both positive
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(the square roots are both defined as positive quantities). Now we perform the
steps for the construction of the two-soliton solution as described in sections
1.3 and 1.4, but in N dimensions. We thus get the metric coefficients gab and
the 2 × 2 matrix � defined in (1.83). Finally, from (1.113)–(1.114) we obtain
the physical metric coefficients f (ph) and g(ph)

ab . The main point is that this
metric becomes stationary, remaining real and with the correct signature, after
the complex transformation,

t = iρ, (1.134)

together with the replacement of f (ph) by (constant)× f (ph), with some suitable
constant. We then introduce instead of w1 and w2, two new real parameters z1

and ζ defined by
w1 = z1 + ζ, w2 = z1 − ζ, (1.135)

and instead of ρ and z, two new coordinates r and θ defined by

ρ = [(r − µ)2 − ζ 2
]1/2

sin θ, z = z1 + (r − µ) cos θ, (1.136)

where µ is some new real arbitrary constant. The remaining two coordinates
of the four-dimensional spacetime can be considered as the time t and the
azimuthal angle ϕ. Finally, we need to set to zero some combination of the
arbitrary parameters to ensure asymptotic flatness of the solution at space-like
infinity r → ∞. In this limit we then get the flat metric in standard spherical
coordinates r, θ, ϕ. This is the way to obtain the N -dimensional generalization
of the black hole metric. Its explicit N -dimensional expression is quite compact,
but it does not seem to have enough physical interest for it to be worth giving its
exact form here. Instead, we will write the explicit form of the five-dimensional
version only, which contains the most relevant features of these solutions.

Five-dimensional Kerr solution. When N = 5 the spacetime interval (1.115) is

ds2
(5) = g(ph)

ik dxi dxk + 2g(ph)
i5 dxi dx5 + g(ph)

55 (dx5)2. (1.137)

Now we have only one scalar field σ and one vector field Ai and from (1.117)–
(1.120) it follows that

g(ph)
ik = e2σ Gik + Ai Ake−4σ , g(ph)

i5 = Ai e
−4σ , g(ph)

55 = e−4σ . (1.138)

Equations (1.121)–(1.125) of the four-dimensional theory now reduce to the
system:

Rk
i − 1

2
δk

i R = 6(σ;iσ ;k − 1

2
δk

i σ;mσ ;m)

+ 1

2
e−6σ

(
Fmi Fmk − 1

4
δk

i Fmn Fmn

)
, (1.139)

Fik
;k = 6σ;k Fik, (1.140)

σ
;k
;k = −1

8
e−6σ Fmn Fmn, (1.141)
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where
Fik = Ai,k − Ak,i . (1.142)

The double-solitonic solution for g(ph)
ik , g(ph)

i5 and g(ph)
55 , whose derivation has

been described above, gives the following exact solution to (1.139)–(1.142):

ds2
(4) = Gikdxi dxk

= ωT

[
(r − µ)2 − ν2

(r − µ)2 − ν2 cos2 θ

]1/3 (
dr2

�
+ dθ2

)
+ 1

ωT

{
−(ω − 2µr)dt2 − 4µqar sin2 θ dtdϕ

+
[
(r2 + a2)2q2 − �a2q2 sin2 θ − �ωs2 r − µ − ν

r − µ + ν

]
sin2 θ dϕ2

}
(1.143)

e2σ = 1

T

(
r − µ − ν

r − µ + ν

)1/3

(1.144)

Ar = 0, Aθ = 0,

Aϕ = −2µsa

ωT 2

(
r − µ − ν

r − µ + ν

)
r sin2 θ,

At = qs

T 2

[
1 − r − µ − ν

r − µ + ν

(
1 − 2µr

ω

)]
.


(1.145)

Here s, µ and a are arbitrary constants. The constant parameters ν and q follow
from

ν2 = µ2 − a2, q2 = 1 + s2, (1.146)

and the functions T , ω and � are

T =
[

q2 − r − µ − ν

r − µ + ν

(
1 − 2µr

ω

)
s2

]1/2

, (1.147)

ω = r2 + a2 cos2 θ, (1.148)

� = r2 − 2µr + a2. (1.149)

This solution was obtained in ref. [22] where its asymptotic structure at space-
like infinity r → ∞ was also studied. Note, however, that the four-dimensional
physical metric used in ref. [22] is exp(2σ)Gik , instead of Gik . From (1.144)
and (1.147) it follows that in this limit exp(2σ) → 1, which means that the first
nonvanishing terms in the asymptotic expansion of the ‘electromagnetic’ field
and the rotational metric component (the tϕ-metric component) are the same as
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in [22]. Thus, from the point of view of a distant observer the solution (1.143)–
(1.149) describes an object with mechanical angular momentum µqa, ‘electric’
charge 2qs(µ+ ν) and ‘magnetic’ moment 2µsa. These statements can also be
verified by direct analysis of the asymptotic expansion at r → ∞ of the metric
(1.143) and the ‘electromagnetic’ tensor Fik . This last tensor is obtained from
the potentials (1.145), which have the following first nonvanishing terms to first
order:

Aϕ = −1

r
2µsa sin2 θ, At = 1

r
2qs(µ + ν). (1.150)

To identify the mass we need the second order term in the expansion of the
t t-metric component. Due to the effect of the conformal factor exp(2σ) it is
slightly different from the value indicated in ref. [22]. In fact, it is easy to see
from (1.143) that

Gtt = −1 + 2

r

[
µ + 1

2
s2(µ + ν)

]
+ · · · , (1.151)

therefore, the mass is µ+(1/2)s2(µ+ν). Apart from this, this object is a source
of the scalar field σ , whose expansion is

e2σ = 1 − 1

r

[
s2(µ + ν) + 2

3
ν

]
+ · · · . (1.152)

This interpretation could make sense for a very distant observer, but the physical
meaning of the solution as a whole is unclear. It is definitely not a black hole
because of the physical singularity at the sphere radius r = µ + ν, where one
would expect a regular event horizon for a black hole (we assume that both µ

and ν are positive). We could introduce a new radial coordinate R = r −(µ+ν)

and accept as physical only the region R > 0, and then we could interpret the
solution as describing some exotic point-like source with a naked singularity.

As we have mentioned already the impossibility of having a solution that
represents a regular perturbation of the black hole is a consequence of the
well known ‘no hair’ theorems, and our example just illustrates this situation.
However, it is worth mentioning that this example shows in some sense the
deviation from these theorems for the particular case of the extreme black
hole. Indeed, if we put ν = 0 (i.e. a = µ) then from (1.143)–(1.149) the
additional singularities due to the scalar and vector fields disappear. The solution
represents in this case a regular finite perturbation of the extreme Kerr metric
in the whole spacetime region outside the central ring singularity ω = 0, i.e.
at points which are not too close to this singularity. The character of this
singularity differs from the unperturbed case because of the factor T (this factor
gives the perturbation) which is singular even for ν = 0 at points r = 0 and
θ = π/2, if one approaches these points in some definite way. Nevertheless, in
connection with the ‘no hair’ theorems it is more important that these scalar and
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vector fields do not destroy the qualitative structure of the spacetime outside the
central singularity. In any case this particular example has no great significance
because it is unstable with respect to the appearance of the nonzero quantity ν,
and because the physical meaning of the extreme Kerr metric is unclear.

One last remark on this solution is the following. The ratio between the
‘magnetic’ and mechanical angular momenta for this object is 2µsa/µqa,
which gives 2s(1 + s2)−1/2. This can be made exactly equal to 2 in the
limit s → ∞. It is interesting that such a limit really exists for the solution
(1.143)–(1.149). To obtain it one needs to make s → ∞ and a → 0 keeping
the product sa finite and assuming that ν is negative (but µ > 0). In the limit
a/µ � 1 we have the expansion ν = −

√
µ2 − a2 = −µ + a2/(2µ) + · · ·. It is

a simple exercise to obtain the final form of the solution after taking this limit.



2
General properties of gravitational solitons

In this chapter we give some general properties of the gravitational soliton
solutions. The simplest soliton solutions, those with fewer poles, are studied
in general and the pole fusion limit is described in section 2.1. In section 2.2
the case of a diagonal, but otherwise arbitrary, background metric is considered.
It turns out that the integration of the spectral equations for the background
solution in this case reduces to quadratures and the one- and two-soliton
solutions can be given in general. Section 2.3 is devoted to the characterization
of the gravitational solitons by some of the properties that solitons have in
nongravitational physics. We see that the properties of the solitons do not always
have a correspondence in the gravitational case. But under some restrictions
some of these properties such as the topological charge can be identified.
Thus, we can identify gravitational solitons and antisolitons, and, in particular,
a remarkable solution that is the gravitational analogue of the sine-Gordon
breather.

2.1 The simple and double solitons

Here we give a suitable form to the one- and two-soliton solutions, the simplest
particular cases of the multisoliton solution described in section 1.4, and
investigate some of their general properties. Everywhere in this chapter we deal
only with physical values of the metric coefficients which obey the full system of
Einstein equations (1.38)–(1.42) and, for simplicity, we omit the label ‘ph’ in
these coefficients.

One-soliton solution. The one-soliton solution was explicitly obtained in sec-
tion 1.4. The physical value of the matrix g(1) follows from (1.91), (1.80) and
(1.83)–(1.87) for n = 1 (k, l = 1) and from (1.100) and is given by,

g(1)
ab = α−1µ1(g0)ab + (αµ1 Q11)

−1(α2 − µ2
1)L (1)

a L (1)
b , (2.1)

37
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where Q11 is defined as

Q11 = m(1)
a m(1)

b (g0)ab. (2.2)

The arbitrary constants w1 in (1.67) and m(1)
0a in (1.80) are real. Since the

constants m(1)
0a enter into the numerator, L (1)

a L (1)
b , and the denominator, Q11, of

(2.1) in an homogeneous quadratic manner, the components g(1)
ab depend only on

the ratio m(1)
01 /m(1)

02 . Consequently, the one-soliton solution depends on two real
arbitrary constants.

The physical value of the coefficient f (1) for the one-soliton solution comes
from (1.110) for n = 1 (k, l = 1):

f (1) = C (1)
f f0α

−1/2(α2 − µ2
1)

−1µ2
1 Q11, (2.3)

where C (1)
f is an arbitrary constant. We recall that for µ1 we have two possible

choices, µin
1 and µout

1 , which are given by (1.68) and (1.69). Thus we have
actually two one-soliton solutions.

Two-soliton solution. In the case of two-solitons we have two pole trajectories,
µ1 and µ2, which are the roots of the quadratic equation (1.67) for k =
1, 2. Now we have two arbitrary constants, w1 and w2, which can be either
complex conjugate to one another (w2 = w1 and then µ2 = µ1) or both
real (then µ1 and µ2 are real). In either case wk brings into the solution two
arbitrary real constants. The physical metric components g(2)

ab follow from
(1.83)–(1.87), (1.80) and (1.100) for n = 2 (k, l = 1, 2), and after some
algebraic transformations can be written in the form

g(2)
ab = (g0)ab + D−1(µ2 − µ1)(α

2 − µ1µ2)[µ
−1
1 (α2 − µ2

1)Q22L (1)
a L (1)

b

−µ−1
2 (α2 − µ2

2)Q11L (2)
a L (2)

b − (µ2 − µ1)Q11 Q22(g0)ab], (2.4)

where we have introduced the notation

Qkl = m(k)
a m(l)

b (g0)ab (k, l = 1, 2) (2.5)

and
D = Q11 Q22(α

2 − µ1µ2)
2 − Q2

12(α
2 − µ2

1)(α
2 − µ2

2). (2.6)

The expression for g(2)
ab can be written in several convenient forms. We have

chosen (2.4) as the most suitable for our purposes. To derive this form we have
used the identity,

(Q11 Q22 − Q2
12)(g0)ab = Q11L (2)

a L (2)
b + Q22L (1)

a L (1)
b − Q12

(
L (1)

a L (2)
b +L(2)

a L (1)
b

)
,

(2.7)
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which follows from the definitions (1.86) and (2.5) for the vectors L (k)
a and the

quantities Qkl . We remark also that det Qkl can be expressed through the vectors
m(k)

a as

det Qkl = Q11 Q22 − Q2
12 = α2

(
m(1)

1 m(2)
2 − m(2)

1 m(1)
2

)2
, (2.8)

whereas D can be rewritten, from (2.6), as

D = α2 Q11 Q22(µ1 − µ2)
2 + (α2 − µ2

1)(α
2 − µ2

2) det Qkl . (2.9)

From (1.110) for n = 2 (k, l = 1, 2) we get the physical value of the coefficient
f (2) for the two-soliton solution:

f (2) = C (2)
f f0α

−2(µ1µ2)
3(α2 −µ1µ2)

−2[(α2 −µ2
1)(α

2 −µ2
2)]

−1(µ1 −µ2)
−2 D,

(2.10)
where C (2)

f is some arbitrary constant. Using (2.5)–(2.9) it is easy to prove that
D is always real and has the same sign throughout the spacetime. The same is
true for Q11 in (2.3) and the remaining products in (2.3) and (2.10). Therefore
the signature of the one- and two-soliton metrics is preserved throughout the
spacetime.

Let us return to the one-soliton solution. As can be seen from (1.68)–(1.69),
the solution is restricted to the coordinate patch in the (ζ, η)-plane, or the (α, β)-
plane, where

(β − w1)
2 ≥ α2. (2.11)

Since the functions α and β have the structure (1.45)–(1.46), the boundary of
region (2.11), i.e. the lines (β −w1)

2 = α2, is the pair of null lines a(ζ ) = w1/2
and b(η) = −w1/2, which form a light cone (see fig. 2.1). The solution will
be real only outside this cone, i.e. inside the two regions defined by (2.11).
On the cone we have µ2

1 = α2 and the matrix g(1) coincides exactly with the
background matrix g0, as can be seen from (2.1). The solution for g(1) can also
be defined in the region (β − w1)

2 < α2 using the following considerations,
which have a general character and refer to all soliton solutions with real poles
of the dressing matrix χ(λ, ζ, η). A real pole λ = µ1 is given by one of the
expressions (1.68)–(1.69) for k = 1 with a real constant w1. When we move
along the coordinate plane and go from the region (2.11) into a region where
(β−w1)

2 < α2, the function µ1 becomes complex. Obviously a continuation of
the matrix g(1) into this region will be the solution corresponding to the two-pole
situation with λ = µ1 and λ = µ2 = µ1, where

µ1 = (w1 − β)
(

1 ∓ i
√
α2(β − w1)−2 − 1

)
.

However, for both of these functions we have |µ1|2 = α2 and the poles are
located on the circle |λ|2 = α2 of the λ-plane. Using (1.83)–(1.85) it is easy to
prove in general that the dressing matrix χ is identically equal to the unit matrix
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(i.e. the vectors n(k)
a vanish) if all the poles are located on this circle. In this case

the soliton solution g = χ(0)g0 coincides with the background solution g0.
For the two-soliton situation this can be seen from (2.4). If µ2 = µ1, then

the second term in (2.4) vanishes due to the factor α2 − µ1µ2 = α2 − |µ1|2 and
thus we have g(2)

ab = (g0)ab. Consequently in the region (β − w1)
2 < α2 the

one-soliton solution g(1) remains unperturbed and coincides identically with the
background solution g0. The one-soliton matrix g(1) while remaining continuous
on the entire (α, β)-plane, suffers discontinuities in its first derivatives on the
light cone (β − w1)

2 = α2. These discontinuities are then reflected into the
metric coefficient f , which is determined by (1.40)–(1.41) through the first
derivatives of g. Indeed, it follows from (2.3) that f (1) contains the factor
(α2 − µ2

1)
−1, which becomes singular on the light cone α2 − µ2

1 = 0. The
coefficient f (1) should be determined by (2.3) in the region (2.11) and by its
background value f (1) = f0 in the region (β − w1)

2 < α2.
With this definition, the metric coefficient f as well as its derivatives can

suffer discontinuities on the boundary between these two regions. From the
physical point of view this suggests that the solitary waves which are generated
in this way might be considered, at least in some cases, as gravitational shock
waves; we shall find some examples of this in section 4.5. This is one of the
peculiar features of the gravitational solitary waves generated by real poles of
the matrix χ . However, when real poles are absent and the dressing matrix χ

contains pairs of complex conjugate poles there are no discontinuities in the
metric and its derivatives along the corresponding light cones. In this case the
perturbed gravitational field is present in the whole spacetime and the metric
differs from the background metric everywhere.

We remind the reader that on the axis α = 0 in fig. 2.1 we usually (but not
always) have a physical singularity. If α is a time-like variable (in this case
we can chose α = t) such a singularity is of the usual cosmological type and
the picture of the soliton metric is that of a big bang cosmology in which at
t = 0 two solitary shock waves are generated. Their wavefronts travel towards
space-like infinity at the speed of light, giving rise to the perturbed regions I and
II, in such a way that the intermediate region III remains unperturbed.

Let us now consider the case of two real poles. This case will be discussed
with the aid of fig. 2.2, which shows the behaviour of g(2) in the (α, β)-plane. In
this case, (1.68)–(1.69) give two determinations for µ1 and two determinations
for µ2. For any choice of the pair (µ1, µ2) the following is true. Two singular
light cones arise with equations (β − wk)

2 = α2 (k = 1, 2). In regions I, V and
VI,

(β − wk)
2 ≥ α2, k = 1, 2, (2.12)

and in these regions we have two-soliton solutions. If we cross the null line
α = β − w1 from region I into region II the function µ2 will remain real,
but µ1 will become complex with modulus |µ1| = α. Then the solution in
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Fig. 2.1. Soliton solution with one real pole (w1 real). Here the light cone (β−w1)
2 =

α2 divides the spacetime into three regions I, II and III, separated by the null lines l1:
α = −(β − w1) (µ1 = α), and l2: α = β − w1 (µ1 = −α). The one-soliton solution is
defined only in regions I, where µ1 < 0, and III, where µ1 > 0. This solution may be
matched throughout the light cone to the background solution in region II. The resulting
solution, however, suffers discontinuities in its first derivatives on the light cone.

region II will be a three-soliton solution with one real pole, µ2, and two complex
conjugate poles µ1 and µ1 which are located on the circle |λ|2 = α2 of the
λ-plane. A simple inspection of (1.83)–(1.85) shows that two of the vectors
n(k)

a corresponding to the poles µ1 and µ1 vanish, and the dressing matrix χ in
region II will contain one pole only at λ = µ2. Hence, in region II we have a
one-soliton solution and on the boundary α = β − w1 discontinuities arise.

If we now cross from region II into region III similar arguments show that
we will have the background solution (g0, f0) in region III, with discontinuities
also on the boundary α = β − w2. The whole schematic picture is shown in
fig. 2.2. When α is a time-like variable we again may have some cosmological
model with an initial big bang singularity on the axis α = 0. Two pairs of
gravitational shock waves in different space positions are now generated at the
big bang and a new interaction phenomenon appears because two solitary waves
collide head-on in region VI. In regions I and V we have also two interacting
solitary waves but they run towards infinity one ahead of the other. In region IV
(analogously in region II) the solution is one solitonic with one pole µ1. The
collision process of the waves in region VI takes a finite time; after this time the
waves decouple and determine an inner unperturbed region III.

When α is a time-like variable the one- and two-soliton solutions have
obvious cosmological interpretations. However, α can also be space-like and
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I

II

III

IV

V VI

l1

l 2

l3

l 4

w1w2

Fig. 2.2. Soliton solution with two real poles (w1 and w2 real). Here the two light
cones, for the two wk (k = 1, 2), are defined by (β − wk)

2 = α2, and divide the
spacetime into six regions: I, II III, IV, V and VI. Now µ1 is real in regions I, IV, V and
VI, whereas µ2 is real in regions I, II, V and VI. Thus the two-soliton solution is defined
only in regions I (where µ1 < 0, µ2 < 0), V (where µ1 > 0, µ2 > 0) and VI (where
µ1 > 0, µ2 < 0); region VI is the ‘interaction’ region. This solution may be matched
with the one-soliton solution in region II throughout the null line l2: α = β − w1
(µ1 = −α) and with the corresponding one-soliton solution in region IV throughout
the null line l3: α = −(β − w2) (µ2 = α). The resulting solution may be matched
with the background solution in region III throughout the null lines l4: α = β − w2
(µ2 = −α) and l1: α = −(β − w1) (µ1 = α). The final solution, however, suffers
discontinuities in its first derivatives on the light cones.

in this case we can choose α = z. This corresponds to the cylindrical wave
interpretation and α, in fact, becomes the radial coordinate. The coordinate β

is now the time variable and x1 and x2 are the coordinates along the symmetry
axis and the azimuthal angle. In this situation, fig. 2.1 shows the contraction of
the cylindrical solitary wave (region III) to the axis of symmetry α = 0. The
back front of the wave α = −(β −w1) contracts at the speed of light and behind
the wave, in region II, it remains the unperturbed background spacetime. The
wave collapses at the time β = w1 and starts to reflect from the symmetry axis.
In region I there is an expansion of the wave into the background space with
a null wavefront α = β − w1. The analogous process for a double-solitonic
cylindrical wave is shown in fig. 2.2. Now, there are two contracting waves in
the past (β < w2), the first one starts to reflect at the instant β = w2 while the
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second (with wavefront α = −(β −w1)) continues its contraction until the time
β = w1. Between the times w2 and w1 an interaction region VI, the head-on
collision region, is formed.

We have already mentioned that discontinuities arise only when real poles
are present in the dressing matrix χ . When only pairs of complex conjugate
poles appear the soliton metric is smooth everywhere (if the background metric
is also smooth). In this case it is easy to evaluate the asymptotic behaviour of the
solution in the limit α → ∞, when β is some fixed value. It follows from (1.68)
and (1.69) that in this limit |µk | → α and all poles tend to be located on the circle
|λ|2 = α2, which means that the solution tends to the unperturbed background
solution. In this asymptotic region the solitonic perturbation becomes small
enough that all nonlinear effects are negligible. The solitary waves in this limit
behave like gravitational waves in the linear approximation of general relativity.

2.1.1 Pole fusion

Let us now turn to discuss in some detail the relations between the perturbations
g(1), g(2) and the background g0. For the one-soliton case we can easily see that
in general no choice of the arbitrary parameters m(1)

0a can lead from (g(1), f (1)) to
(g0, f0). This means that the one-soliton perturbation g(1) is, in general, a finite
perturbation of g0, i.e. by varying the parameters m(1)

0a one cannot, in general,
find a solution (g(1), f (1)) that is (in some suitable sense) arbitrarily close to the
given background. The situation, however, is different in the case of two-soliton
perturbations.

Let us now consider the limit w2 → w1 and choose µ1 and µ2 to be the
corresponding roots of (1.67) so that, also, µ2 → µ1. Then, in general, when
the arbitrary constants m(2)

0a and m(1)
0a are considered as independent of w2 and

w1, the function det Qkl from (2.8) will not vanish. Then (2.9) shows that D
will not vanish when w2 → w1. From (2.4) we can see that g(2)

ab tends to the

background metric (g0)ab. By replacing C (2)
f in (2.10) with C (2)′

f (w1 − w2)
2 we

may arrange the terms in such a way that also f (2) will tend to f0. Therefore in
this case the background metric (g0, f0) is obtained as a limit of the two-soliton
perturbation (g(2), f (2)). This means that this family contains metrics that are
arbitrarily close to the background.

On the other hand, when we choose the constants m(k)
0a in such a way that

they depend on wk and in the limit w2 → w1 we have also m(2)
0a → m(1)

0a
(and correspondingly µ2 → µ1), the function D vanishes and, in general,
(2.4) implies that g(2) does not tend to g0, but to the new kind of one-soliton
perturbation of g0. This sort of ‘pole fusion’ procedure leads to a kind of
one-soliton solution that corresponds to a second order pole of the dressing
matrix χ . This is a new and nontrivial phenomenon in the framework of the
ISM that we have described. It may seem that we are forced to use only the
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simple pole structure of the dressing matrix χ , but the existence of the ‘pole
fusion’ limiting procedure shows that this is not the case. Indeed, if w2 → w1,
µ2 → µ1 and we denote the relative small parameter by ε = w2 −w1, then it is
easy to show that for µ1 and µ2 we get the expansions

µ1 = µ + εm1 + O(ε2), µ2 = µ + εm2 + O(ε2),

where µ, m1 and m2 are some finite regular quantities independent of ε.
If, in addition, we assume that in the limit ε → 0 the arbitrary constants

m(2)
0b tend to the m(1)

0b according to the law m(2)
0b − m(1)

0b ∼ ε, we have the same
behaviour for the vector m(k)

a , i.e. m(2)
a − m(1)

a ∼ ε. Then it follows from (1.83)
and (2.5)–(2.6) for k, l = 1, 2 that

det�kl = (α2 − µ2
1)

−1(α2 − µ2
2)

−1(α2 − µ1µ2)
−2 D,

and it is obvious from (2.8)–(2.9) that det�kl ∼ ε2. The evaluation of the vectors
n(k)

a using (1.85) shows that the first terms of the expansion are singular: n(k)
a ∼

ε−1. On the other hand (1.82) shows that the sum n(1)
a + n(2)

a has a regular
expansion: n(1)

a + n(2)
a = finite + O(ε). This means that the matrices R1 and R2

in the dressing matrix χ , i.e.

χ = I + R1(λ − µ1)
−1 + R2(λ − µ2)

−1,

have the following expansion:

R1 = ε−1 R + F1 + O(ε), R2 = −ε−1 R + F2 + O(ε),

where the matrices R, F1 and F2 are independent of ε. Whereas each term
R1(λ−µ1)

−1 and R2(λ−µ2)
−1 diverges separately at ε = 0, the sum does not,

i.e. the matrix χ has a well defined limit when ε → 0:

lim
ε→0

χ = I + (F1 + F2)(λ − µ) + R(m1 − m2)

(λ − µ)2
,

and it is easy to see that m1 − m2 = 0. Consequently, this limit corresponds to
the specific one-soliton solution which comes from a second order pole in the
dressing matrix χ .

The same analysis can be performed for the general n-soliton case and as a
result of the fusion of n poles into a single pole we can obtain the one-soliton
solution when the matrix χ has one multiple pole of order n. If the number
of poles n is even, there is the possibility of fusing them into two poles with
multiplicity n/2. One example of such a fused two-soliton solution in the
case of stationary gravitational fields is the well known Tomimatsu–Sato metric
which we describe in chapter 8. In such a case the multiplicity n/2 is just the
Tomimatsu–Sato distortion parameter δ.
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2.2 Diagonal background metrics

We saw in section 1.4 that the main step in the construction of solitonic solutions
in closed form is the computation of the set of vectors m(k)

a . Once these
vectors are known the rest can be performed by purely algebraic manipulations.
However, to compute the m(k)

a one needs to integrate the system of differential
equations (1.51), in order to find the background generating matrix ψ0(λ, ζ, η).
Fortunately in many cases we may choose a background metric g0 which is
simple enough that exact solutions for ψ0 can be found. An important case
corresponds to the election of a diagonal matrix g0 since this produces a diagonal
generating matrix ψ0 as well [157, 192]. Of course, the concrete functional form
of the diagonal components of g0(ζ, η) is also of importance but in this and in
the next sections we will only exploit the diagonality restriction of g0. Even at
this level one can extract many interesting results using the ISM approach to
general relativity. Concrete functional dependences of g0 will be used in the
following chapters, where we describe several applications of the ISM. In this
chapter only at the ends of this and the next section will we consider particular
background metrics as examples.

First we note that for a diagonal g0 it is more convenient to compute the
vectors m(k)

a directly from (1.77), avoiding the problem of integrating ψ0 from
the differential system (1.51). Any diagonal solution g0 of the Einstein equations
(1.38)–(1.39) can be represented in the form

g0 = diag(αeu0, αe−u0), (2.13)

where α(ζ, η) satisfies (1.44), and u0(ζ, η) is a solution of the equation

(αu0,ζ ),η + (αu0,η),ζ = 0. (2.14)

The background metric in this case takes the form,

ds2 = f0(dz2 − dt2) + αeu0(dx1)2 + αe−u0(dx2)2, (2.15)

and the coefficient f0 can be calculated from (1.40)–(1.41) with the matrices A
and B following from (1.42), where we should substitute g by g0.

A simple analysis of (1.77) and (1.76) shows that in this case the general
solution for the vectors m(k)

a is

m(k)
1 = Akµ

−1/2
k exp(−ρk/2 − u0/2), m(k)

2 = Akµ
−1/2
k exp(ρk/2 + u0/2),

(2.16)
where each function ρk (k = 1, 2, . . . , n) can be found by quadratures from the
following relations:

ρk,ζ = α + µk

α − µk
u0,ζ , ρk,η = α − µk

α + µk
u0,η, (2.17)
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and where Ak are arbitrary constants. Although these constants do not appear
in the final result we keep them in (2.16) in order to ensure the correct complex
structure of the vectors m(k)

a , which is necessary for the reality of the metric.
The integrability condition for these two equations is satisfied automatically due
to (1.66) and (2.14). Each function ρk(ζ, η) has an additive arbitrary constant
which is complex in general; the values of these constants together with the
parameters Ak , which are also complex in general, should be chosen in such
a way that the reality conditions for the metric discussed in section 1.4 are
satisfied: i.e. a real m(k)

a for a real µk and a complex conjugate pair of vectors
m(k)

a for each complex conjugate pair of µk . Thus, we have reduced the problem
of integration of ψ0(λ, ζ, η) from (1.51) to the integration of the functions ρk

from (2.17); but this is trivial because all the functions on the right hand side of
(2.17) are given. The substitution of the vectors m(k)

a of (2.16) into the general
formulas derived in section 1.4 will give us an n-soliton solution on the diagonal
background.

The exact expressions for one and two gravisolitons on the diagonal back-
ground can be obtained from (2.1)–(2.3) and (2.4)–(2.10) after substitution of
the vectors m(k)

a of (2.16) into L (k)
a , Q11 and Qkl of (1.86), (2.2) and (2.5),

respectively. Let us give here the final results.

One-soliton solution. The one-soliton solution with the diagonal background
metric (2.13)–(2.15) can be written in the form

g(1) = 1

µ1 cosh ρ1

(
(µ2

1eρ1 + α2e−ρ1)eu0 α2 − µ2
1

α2 − µ2
1 (α2eρ1 + µ2

1e−ρ1)e−u0

)
, (2.18)

f (1) = f0α
1/2µ1 cosh ρ1(α

2 − µ2
1)

−1, (2.19)

where the two possible choices for the function µ1 are given by (1.68)–(1.69)
for k = 1, and the function ρ1 can be found from (2.17) also for k = 1.

We have to keep in mind that for any solution g of (1.38)–(1.39) the matrix
−g is also a solution, and that the same sign symmetry is valid for the metric
component f . Due to this freedom one can always choose the correct signs in
front of g and f in (2.18)–(2.19) in order to ensure positivity for f and the (++)
signature for g.

Two-soliton solution. The two-soliton solution can be written in the following
form:

g(2)
11 =

{
1 + 1

D

[
cosh 2τ + (µ1 + µ2)

(µ1 − µ2)
sinh 2τ

+ cosh 2σ − (α2 + µ1µ2)

(α2 − µ1µ2)
sinh 2σ

]}
αeu0, (2.20)
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g(2)
22 =

{
1 + 1

D

[
cosh 2τ − (µ1 + µ2)

(µ1 − µ2)
sinh 2τ

+ cosh 2σ + (α2 + µ1µ2)

(α2 − µ1µ2)
sinh 2σ

]}
αe−u0, (2.21)

g(2)
12 = 2α

D

[
(µ1 + µ2)

(µ1 − µ2)
sinh σ sinh τ + (α2 + µ1µ2)

(α2 − µ1µ2)
cosh σ cosh τ

]
, (2.22)

where

D = 4µ1µ2
[
α2(α2 − µ1µ2)

−2 cosh2 σ + (µ1 − µ2)
−2 sinh2 τ

]
, (2.23)

and all possible values of the functions µ1 and µ2 are given by (1.68)–(1.69) for
k = 1 and k = 2. To simplify the expressions we have introduced the notation

σ = ρ1/2 + ρ2/2, τ = ρ1/2 − ρ2/2, (2.24)

where the functions ρ1 and ρ2 follow from (2.17) for k = 1 and k = 2. For the
metric coefficient f (2) we have,

f (2) = f0µ1µ2 D(α2 − µ2
1)

−1(α2 − µ2
2)

−1. (2.25)

Kasner background. A particularly interesting background metric is the Kasner
solution which is introduced in section 4.2 and plays an important role in many
applications. In this case the function u0 in (2.13) is

u0 = d lnα, (2.26)

where d is an arbitrary real parameter: the Kasner parameter. The integration
of (2.17) is very easy if we take into account the expressions (1.66) which relate
the derivatives with respect to the null coordinates ζ and η of the function α,
with the analogous derivatives of the pole trajectories µk . The result is

ρk = d ln
(µk

α

)
+ Ck, (2.27)

where Ck are the arbitrary constants, in general complex, that we have referred to
above. Note that a diagonal limit of the solution (2.18)–(2.19) may be obtained
by taking C1 → ∞, provided a constant proportional to exp(C1) multiplies f (1)

(the f coefficients are determined up to a multiplicative constant, see (1.110));
similarly diagonal limits of (2.20)–(2.25) may obtained by taking C1 = C2 ≡
C → ∞, or C1 = −C2 ≡ C → ∞, provided the multiplicative arbitrary
constant in f (2) is proportional to exp(2C). Here we have assumed that the pole
trajectories are real, thus the Ck are also real.
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2.3 Topological properties

It was shown in the previous sections that from the mathematical point of view
gravitational solitons indeed have the status of solitons. However, the place of
these objects in the physical applications of general relativity is far from clear.
This is because gravisolitons have a number of unusual properties with respect
to their partners in nongravitational physics. Close examination shows that one
finds difficulties in the physical interpretation of gravisolitons when trying to
use an analogy with their nongravitational relatives. The reasons for this are the
following:

1. The gravisolitons amplitudes and shapes are not preserved in time.

2. The gravisolitons velocities change in time and, furthermore, the definition
of velocity is not clear.

3. In general, for real-pole trajectories, the field of the gravisolitons is not
smooth in spacetime, it has discontinuities in the first derivatives at some
null hypersurfaces as was explained in section 2.1.

4. There is no time evolution of the gravisolitons from a free (noninteracting)
state at t = −∞ to a free state again at t → ∞ due to the unavoidable
existence of cosmological singularities between these asymptotic regions.
Therefore the description of the collision process needs special care.

5. There is no notion of energy (and consequently of its mass) for the gravi-
soliton. We remind the reader that any physical description of a soliton starts
with the statement that this object represents some localized perturbation
with finite energy. We also note that this is an important ingredient in soliton
quantization [245]

6. It is not clear from our previous discussion whether a gravisoliton represents
a topological object and whether some topological charge can be associated
to it.

In this section we show that some of these problems can be solved at least
up to a level where a qualitative understanding of them is possible. Our main
interest now will concentrate on the last point referring to the topological
properties of gravisolitons. In what follows we will see that despite the
peculiarities in the physical properties of gravisolitons, there remain some
analogies between them and the sine-Gordon kinks. By means of these analogies
one can elucidate some of the physical aspects of the gravisoliton behaviour.
It can be shown that for a wide class of cosmological and wave metrics the
gravisolitons can be regarded as sine-Gordon kinks embedded in some (very
special) external field. A number of the properties of sine-Gordon kinks can be
generalized for their gravitational partners in an exact mathematical way. In this
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way one can show that the gravitational solitons are topological objects and that
they can carry topological charge. There is attraction between a gravisoliton
and an antigravisoliton and repulsion between two gravisolitons with the same
charge. Also there is a bound state of a gravisoliton and an antigravisoliton
which oscillates in time and which is the direct analogue of the sine-Gordon
breather solution. Along with the clarification of these topological aspects we
will gain some qualitative understanding of such notions as the velocity and
head-on collision of gravisolitons. These results have been described in ref.
[14]. However a number of problems, especially the exact formulation of the
soliton energy, still remain for future development.

In order to have cosmological type solutions α should be time-like (i.e.
α,ζα,η < 0) at least near the cosmological singularity. It has already been
mentioned in section 1.2 that in this case the cosmological singularity corre-
sponds to α = 0 and, thus, we are forced to consider only half of the α axis
(α ≥ 0). The variable β of (1.46) will be automatically space-like in the
region where α is time-like. In this section, for simplicity, we restrict ourselves
to the following topological structure of the spacetime. We assume that α is
time-like and β is space-like everywhere, and that (α, β) form the single patch
of the natural coordinates, which cover the whole two-dimensional section of
the maximally extended physical spacetime. Furthermore, each pair of real
numbers α, β in the ranges 0 < α, −∞ < β < ∞ represent one, and only
one, point of this spacetime and vice versa. We consider as a second equivalent
coordinate system in the same spacetime the variables (t, z): this means that
the map between (t, z) and (α, β) is everywhere smooth and one to one in both
directions. As a consequence we have to use only those functions α(t, z) and
β(t, z) for which the Jacobian α,tβ,z − α,zβ,t = 1

2(α,ζ β,η − α,ηβ,ζ ) = −α,ζα,η

has no zeros or infinities. It should be emphasized that all these restrictions
are essential. Only for such types of gravisolitons can the close analogy
between our integrable gravitational ansatz and the sine-Gordon theory be
shown, and a sensible notion of topological charge be introduced. It may well
happen that outside these additional conditions there is no way to characterize
the solutions by some topological charge; for example, when each pair of
coordinates (α, β) or (t , z) corresponds to two different points of the relevant
two-dimensional section of the spacetime as was proposed in [122]. We do not
consider these quite different (although possible) spacetime constructions in this
section.

Let us turn again to the one-soliton (2.18)–(2.19) on the diagonal background
(2.15). To ensure subluminal soliton speed in this solution it is necessary to
choose the background metric function u0(t, z) to have space-like character
(u0,ζu0,η > 0). In this case, as follows from (2.17), the variable ρ1(t, z) also
has space-like character and the curve ρ1 = 0 is time-like. Indeed, it can be
seen from (2.18) that the field of the soliton perturbation is concentrated at the
points where ρ1 = 0. This is especially clear in the approximation in which α
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and µ1 can be considered as slowly varying functions with respect to ρ1 and u0,
see below.

Thus in what follows we shall use only the background solutions in which u0

is space-like and, also, only those functions u0(t, z) for which the pair (α, u0)
are acceptable time and space coordinates, i.e. for which the Jacobian α,ζu0,η −
α,ηu0,ζ nowhere vanishes or diverges.

Before we continue the analysis of simple soliton solutions let us look more
carefully at the separation that we made by relations (1.68)–(1.69) of the poles
µk into two classes: µin

k and µout
k . It is obvious that at each fixed spacetime point,

µk belongs either to the class ‘in’ or to the class ‘out’; and, more importantly,
the same is true for the entire pole trajectory µk(ζ, η). It can be seen that under
the spacetime topological restrictions adopted earlier and as a consequence of
general continuity requirements the property that the pole trajectory µk(ζ, η) is
µin

k or µout
k is global: if at some spacetime point µk = µin

k , then µk will remain
µin

k everywhere, and likewise for µout
k . In other words, the pole trajectory can

never cross the circle |λ| = α. The simplest way to see this is to substitute into
(1.67) the quantities µk and wk in the form

µk = |µk |eiϕk , wk = Rewk + i Imwk . (2.28)

Then (1.67) is equivalent to the following two relations:

cosϕk = |µk |(|µk |2+α2)−1(2 Rewk−2β), sinϕk = 2|µk |(|µk |2−α2)−1 Imwk .

(2.29)
From the second relation it is obvious that no trajectory can cross from the
region where |µk |2 > α2 to the region where |µk |2 < α2 and vice versa.
One particular, but typical, example of the pole trajectories behaviour is shown
in fig. 2.3. This figure corresponds to some fixed value of α in (2.29). In
this case (2.29) represents a two-dimensional dynamical system in the phase
space (Reµk, Imµk) in which the function β − Rewk serves as a dynamical
parameter along the trajectories, and Imwk corresponds to an arbitrary constant
identifying each individual trajectory. This diagram shows very clearly the
absolute separation of ‘in’ and ‘out’ pole trajectories.

The behaviour of the pole trajectories displayed on fig. 2.3 also confirms that
in the case of a real pole µk the choice µk = µin

k or µk = µout
k , solutions of

the quadratic equation (1.67), has been made in the correct way. The problem
is that in the case of real µk (real constant wk) the entire spacetime consists of
the two disconnected causal domains: β − wk < −α and β − wk > α. There is
no obvious physical reason why one cannot choose µk to be µin

k in one of these
domains and µout

k in the other. The dynamical system we present in fig. 2.3
shows that such a choice would be against the natural continuity requirements.
The correct choice of µk through the entire spacetime should result from the
general complex picture by going continuously to the limit Imwk → 0. In this
way we obtain a unique rule for choosing the real solutions to (1.67). From fig.
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Fig. 2.3. The phase diagram for the pole trajectories µk(α, β) for some fixed k, i.e. the
solution of the quadratic equation (1.67) for arbitrary complex values of the constant wk .
The variable α is fixed, the dynamical parameter along the trajectories is β − Rewk and
the arrows indicate that this parameter increases. The different values of the parameters
Imwk correspond to different trajectories. For trajectories located on the axis and on
the circle |µk | = α we have Imwk = 0. Because the circle |µk | = α is an invariant
one-dimensional manifold for this dynamical system (it is also made of trajectories) no
trajectory can cross this circle to go from region |µk | > α to region |µk | < α or vice
versa.

2.3 it is easy to see that this rule requires that we should keep the ‘in’ or ‘out’
property of the trajectories globally, i.e. even through the causally disconnected
regions. This rule is realized by (1.68)–(1.69) for the real µk when we take
the prescription that the square root in these formulas should be understood
everywhere as a positive quantity only.

We turn again to the one-soliton solution (2.18)–(2.19). It is quite clear from
the above that there are, actually, two such solutions: one for µ1 = µin

1 and
another for µ1 = µout

1 . We will see in what follows that there is enough evidence
to consider these two solutions as belonging to two different topological sectors
and, consequently, as having different topological indices. In other words, it
can be assumed that there is no homotopy between these two solutions. If
such homotopy were to exist, it should manifest itself also in the approximation
where the function α (together with β and µ1) is slowly varying with respect
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to the functions ρ1 and u0. However, in this extremal case the theory based on
(1.38)–(1.39) tends to coincide with the sine-Gordon theory, for which solutions
with µ1 = µin

1 and µ1 = µout
1 emerge as well known topologically different

solutions associated with topological charges 1 and −1. This correspondence
helps us to find in the exact gravitational case the one-dimensional manifolds
between which the one-soliton map acts, which is necessary for a sensible notion
of homotopy.

To verify these assertions we need to change the metric components of
matrix g for more suitable field variables which do not depend on arbitrary
linear transformations of the dummy coordinates x1 and x2. It is possible
to construct such invariants only from the matrices g,ζ g−1 and g,ηg−1. The
first three nontrivial quantities of this kind are Tr[(g,ζ g−1)2], Tr[(g,ηg−1)2]
and Tr(g,ζ g−1g,ηg−1). The simplest invariants Tr(g,ζ g−1) = 2α,ζα

−1 and
Tr(g,ηg−1) = 2α,ηα

−1 are trivial, because they do not carry any information
on the soliton behaviour. With the notation

[ln(g11α
−1)],ζ = R1 cos(γ /2+ω/2), (g12g−1

11 ),ζ g11α
−1 = R1 sin(γ /2+ω/2),

(2.30)
[ln(g11α

−1)],η = R2 cos(γ /2−ω/2), (g12g−1
11 ),ηg11α

−1 = R2 sin(γ /2−ω/2),
(2.31)

we obtain

Tr[(g,ζ g−1)2] = 2R2
1 + 2(α,ζ )

2α−2, Tr[(g,ηg−1)2] = 2R2
2 + 2(α,η)

2α−2,

(2.32)
Tr(g,ζ g−1g,ηg−1) = 2R1 R2 cosω + 2α,ζα,ηα

−2. (2.33)

Thus, the invariants we need are R1, R2 and ω. It is remarkable that (1.39),
together with the selfconsistency conditions for (2.30)–(2.31), are reduced to
the system:

ω,ζη +
(

R1,η

R1
+ α,η

2α

)
ω,ζ +

(
R2,ζ

R2
+ α,ζ

2α

)
ω,η

=
[(

α,ζ R2

2αR1

)
,ζ

+
(
α,η R1

2αR2

)
,η

+ R1 R2

]
sinω, (2.34)

2αR1,η+α,η R1+α,ζ R2 cosω = 0, 2αR2,ζ +α,ζ R2+α,η R1 cosω = 0, (2.35)

which contains these invariants only, and the system:

(γ /2 + ω/2),η = −R2 sin(γ /2 − ω/2) + α,ζ R2(2αR1)
−1 sinω, (2.36)

(γ /2 − ω/2),ζ = −R1 sin(γ /2 + ω/2) − α,η R1(2αR2)
−1 sinω, (2.37)

from which the function γ can be found by quadratures, and which also
involves the given invariants only. The integrability conditions of (2.36)–(2.37)
is ensured by (2.34)–(2.35).
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It is reasonable to consider the field ω (mod 2π ) as the main gravisolitonic
characteristic, because this field has qualitative features which we usually
associate with solitons. Indeed, one can define the solitonic vacuum states
as the exact solutions of the system (2.34)–(2.37), which correspond to the
discrete set of constant values of ω, i.e. ω = 2πn, where n is an integer.
With these values of ω, (2.34)–(2.37) can be solved exactly. In fact, for the
functions R1 and R2 we get R1 = φ,ζ , R2 = φ,η, where φ is a solution
of the equation (αφ,ζ ),η + (αφ,η),ζ = 0. Equations (2.36)–(2.37) are now
equivalent to the Bäcklund transformation and give for γ the kink solution:
γ = 4 arctan exp[−(−1)nφ − C], where C = constant. It turns out, however,
that this is a fictitious or pure gauge kink because it can be removed by a linear
transformation (with constant coefficients) of the dummy coordinates x1 and x2

(note that γ is not invariant with respect to such a transformation). Indeed, after
computing the matrix g from (2.30)–(2.31) it is easy to see that the matrix g
can be made diagonal g = diag (α exp[(−1)nφ + C], α exp[−(−1)nφ − C]),
by this linear transformation. This means that γnew = 2πm, where m is
an integer. Since any diagonal solution for g has this form, we conclude
that any diagonal matrix g represents one of the vacuum states with respect
to the invariant gravisolitonic field ω. This picture conforms to our intuitive
idea of considering the solutions of (1.39) with diagonal g as containing
no true solitons because the Einstein field equations for g in this case are
linear.

Because the function µ1(ζ, η) satisfies the differential equations (1.66), it is
easy to show that for α time-like the variable µ1α

−1 is also time-like. Then it can
be seen that for the solution (2.18) the variables µ1α

−1 and ρ1 also form a pair of
acceptable time and space coordinates, respectively. The analysis shows that for
each fixed value of the new time µ1α

−1 (i.e. on the straight lines (β −w1)α
−1 =

constant in the (α, β)-plane) the function ω(ρ1) acts as a regular map between
the one-dimensional ρ1-space and the ω-circle. The map is one to one in both
directions and the angle ω covers exactly once the segment [0, 2π ] when ρ1 runs
between its natural boundaries (from ρ1(α = 0) to ρ1(α = ∞)). It turns out that
for this map the integer quantity sign(α2 − µ2

1) corresponds to the Brouwer
degree. This quantity is equal to +1 for µ1 = µin

1 and to −1 for µ1 = µout
1 .

The above arguments show that two related one-soliton solutions are associated
with different topological indices and act like bridges between neighbouring
vacua of the field ω. This is in agreement with general properties of topological
solitons.

2.3.1 Gravisolitons and antigravisolitons

The previous analysis gives additional ground for considering the curve ρ1 =
0 in the solution (2.18) as a soliton world line. A measure of the degree of
nondiagonality of this solution, with respect to the diagonal background (2.13),
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can be evaluated as:

g(1)
12√

(g0)11(g0)22
= g(1)

12

α
= 1

cosh ρ1

(
α

µ1
− µ1

α

)
. (2.38)

For a fixed value of the ‘time’ µ1α
−1 this measure tends to zero for large

absolute values of ρ1. Consequently, when ρ1 is far from zero the metric (2.18)
is effectively diagonal, but it does not tend to the background. However, we
have shown already that for a diagonal metric the gravisoliton disappears, thus
the soliton is mainly concentrated around the curve ρ1 = 0.

Due to the close relation between gravisolitons and sine-Gordon kinks we can
support qualitatively the topological nature of gravisolitons for the extreme case
when α (or a and b in (1.45)) is a slowly varying variable with respect to ρ1 and
u0. In this case the variables β and µ1 are also slowly varying because they are
expressed algebraically in terms of a and b. In the first approximation (2.35)
gives R1,η = 0, R2,ζ = 0 and, without loss of generality, one can take R1 =
constant and R2 = constant. From (2.34) it follows that ω,ζη = R1 R2 sinω

and we have for γ a Bäcklund transformation (2.36)–(2.37). The solution (2.18)
has its own natural place in this approximation, (2.14) gives u0,ζη = 0 and
for u0 space-like one can choose the coordinates in such a way that u0 = mz,
where m > 0 is an arbitrary constant. Integrating (2.17), which is trivial in the
first order approximation (α and µ1 are constants), and substituting (2.18) into
(2.30)–(2.31) (at this step we differentiate only the rapidly varying functions ρ1

and u0) we obtain R1 = R2 = m and

ω = 4 arctan eρ1, ρ1 = m
α2 + µ2

1

α2 − µ2
1

(
z + 2αµ1

α2 + µ2
1

t + z0

)
, (2.39)

where z0 depends only on the slowly varying functions α, β and µ1, i.e. it is a
constant in the first order approximation. Due to the obvious identity(

α2 + µ2
1

α2 − µ2
1

)−2

≡ 1 −
(

2αµ1

α2 + µ2
1

)2

, (2.40)

we see that (2.39) describes a sine-Gordon soliton with mass m and local
velocity v = −2αµ1(α

2+µ2
1)

−1. It is clear now that the ‘slow-α’ approximation
is valid when this soliton is heavy enough, i.e. when its mass is much bigger than
the spacetime derivatives of α (and we are not too close to the singularity α = 0).
We see also that a topological charge +1 or −1, i.e. the sign(α2 − µ2

1), can be
associated with this soliton. This coincides with the result of our previous exact
analysis.

The approximation of slowly varying α becomes exact if α = constant,
exactly. In this case the equation for ω is the exact sine-Gordon equation and we
have stationary poles (µk = constant) in the matrix χ in (1.64). Consequently,
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we can say that for the exact sine-Gordon theory the soliton topological charge
can be defined by the location of the stationary pole λ = µ1 with respect
to the circle |λ| = α. The nontrivial and remarkable fact is that also for
our gravitational ansatz (which represents a deformed sine-Gordon theory) the
notion of topological charge can be maintained and described in terms of the
same terminology. The generalization is straightforward: the stationary position
of the pole λ = µ1 inside or outside the circle |λ| = α in the exact sine-Gordon
theory implies the confinement of the entire pole trajectory λ = µ1(ζ, η) inside
or outside the circle |λ| = α in general relativity.

Following this line of thought we may call the solution (2.18)–(2.19) for the
case µ = µin

1 a gravisoliton (S) and for the case µ = µout
1 an antigravisoliton

(A). However, the real physical manifestation of the topological charge can
be seen only in the collision process of two such objects. If the notion of
topological charge was introduced in the correct way attractive forces in the
system SA and repulsive forces should be present in the systems SS and AA.
It is somewhat problematic to see this in a direct way but we can use the
same trick as in the sine-Gordon theory. First we need to show that there are
three types of two-soliton solutions: the first describes the SS scattering, the
second describes the SA scattering, and the third describes the time oscillating
bound state of two solitons. The third solution if it exists can be called the
gravibreather. If it turns out that the gravibreather can represent the SA bound
state only, and that the combinations SS and AA do not have solutions of this
kind, this would be a proof of the presence of attraction between gravisoliton
and antigravisoliton and of repulsion between gravisolitons of the same charge.
If so, a real metric of correct signature for the gravibreather should follow from
the SA scattering solution by its analytic continuation to purely imaginary values
of the relative collision velocity of the colliding gravisolitons. At the same time
the analogous analytic continuation of the SS and AA type solutions should
lead to an unphysical (complex) metric tensor. Let us show that this is really the
case.

The two-soliton solution on the background metric (2.15) was given by
(2.20)–(2.25). We know that µ1 and µ2 can be either both real or complex
conjugate to each other. Because β can be replaced by β + constant without any
physical consequences we can set

w1 = w, w2 = −w (2.41)

in this solution. From (1.68)–(1.69) it follows that for real µ1 and µ2 we should
take real w, whereas the complex conjugate pair of µ corresponds to purely
imaginary values of w.

Let w be real and positive, and choose the real µ1 and µ2 to be µ1 = µin
1 and

µ2 = µin
2 . The region (in the α, β coordinate plane) of the gravisoliton head-on

collision is now the triangle VI (see fig. 2.2) with vertices (α = w, β = 0),
(α = 0, β = w) and (α = 0, β = −w). Indeed because u0 is space-like, from
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(2.17) and (2.24) it follows that σ is space-like and τ is time-like. Let us look
at the asymptotic form of the matrix g(2) in (2.20)–(2.23) in the region VI for
large absolute values of σ and τ . It is not difficult to prove that at an early time,
τ � −1, and in the far region to the left, σ � −1 (but inside VI), the asymptotic
form of the solution (2.20)–(2.23) coincides exactly with the functional form of
the one-soliton solution for some diagonal background metric (vacuum) and
pole trajectory µ2. At τ � −1 but far to the right, σ � 1, (2.20)–(2.23) gives
the one-soliton solution, which corresponds again to the diagonal background
metric and pole trajectory α2µ−1

1 . When τ increases these two solitons will
collide (the σ distance between them decreases) and at τ � 1 the state g(2)

decays into two free solitons again: in the region σ � −1, (2.20)–(2.23) give
the one-soliton metric with pole α2µ−1

1 on the diagonal background, and in the
region σ � 1, g(2) coincides with the one-soliton solution with pole µ2 and
diagonal background metric. Thus the picture is clear: the two-soliton solution
(2.20)–(2.23) before and after the collision describes a pair of free gravisolitons
on the vacuum backgrounds and the ‘free poles’ associated with them are α2µ−1

1
and µ2 instead of µ1 and µ2. This means that the two-soliton solution in the case
µ1 = µin

1 and µ2 = µin
2 describes the collision process between a gravisoliton

with an in-pole and an antigravisoliton with an out-pole, i.e. scattering in the SA
system.

An analogous situation arises in the case in which µ1 = µout
1 and µ2 = µout

2 .
In this case we have scattering between a gravisoliton with an in-pole α2µ−1

1 and
an antigravisoliton associated with the out-pole µ2. A similar analysis shows
that in the case µ1 = µout

1 and µ2 = µin
2 , or vice versa, the solution (2.20)–(2.23)

describes the scattering of two gravisolitons of the same charge, i.e. scattering
in the SS or the AA systems. In this case, as follows from (2.17)–(2.24), σ is
time-like and τ is space-like. The asymptotics for large absolute values of σ

and τ are the same as in the previous case, and at the initial (σ � −1) and final
(σ � 1) stages of the collision we have again a pair of free gravisolitons with
‘free poles’ µ2 and α2µ−1

1 , but now both of them are in-poles (or out-poles for
µ1 = µin

1 and µ2 = µout
2 ).

There is also a third class of two-soliton solutions in (2.20)–(2.23). It
corresponds to the case in which µ1 and µ2 form a complex conjugate pair. For
u0 space-like this solution becomes the gravitational analogue of the breather.
In this case µ2 = µ1, the variable τ and µ1 − µ2 become purely imaginary,
but the metric (2.20)–(2.25) remains real with the correct physical signature.
After the substitution τ = iτ ′ we get the real variable τ ′ which is time-like,
as can be seen from (2.17)–(2.24), and the two-soliton solution appears to be
oscillating in time τ ′ (but not periodically). This solution corresponds to the
purely imaginary values of the constant w in (2.41). Thus, the gravibreather
can be considered as the analytic continuation in w of one of the two-soliton
solutions with real µ1 and µ2. The main question now is of which type is it: SS,
AA or SA?
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2.3.2 The gravibreather solution

It is a simple task to prove that the gravibreather emerges from the SA state
only. The analytic continuation we need comes from the general solutions to the
equations

µ2
1 + 2(β − w)µ1 + α2 = 0, µ2

2 + 2(β + w)µ2 + α2 = 0, (2.42)

for arbitrary complex values of the constant w. Let us define the function F(s)
by the equation F2 = s2 − α2, where s is complex valued and α is considered
formally as a fixed real parameter. This function is analytic on the Riemann
surface containing two sheets glued to each other at the cut between the points
s = α and s = −α. On the first sheet we have F > 0 for (Im s = 0,Re s > α),
F < 0 for (Im s = 0,Re s < −α), and Im F > 0 for (Im s > 0,Re s = 0),
Im F < 0 for (Im s < 0,Re s = 0). At the corresponding points of the second
sheet, F has the opposite signs. Using the function F(s) we obtain two distinct
pairs of the w-analytical solutions to (2.42),

µ1 = w − β + F(w − β), µ2 = −w − β − F(w + β), (2.43)

and

µ1 = w − β + F(w − β), µ2 = −w − β + F(w + β). (2.44)

On the real w axis in the real regions of µ1 and µ2 the choice (2.43) gives
µ1 = µout

1 and µ2 = µout
2 for the first w-sheet and µ1 = µin

1 and µ2 = µin
2 for

the second. In contrast, in the same real regions the choice (2.44) corresponds
to the ‘out–in’ or ‘in–out’ (depending on the sheet) pair µ1 and µ2.

Using the definition of F it is easy to prove that on the imaginary w axis this
function has the property that

F(w + β) = −F(w − β). (2.45)

Consequently the choice (2.43), and only this choice, gives the complex
conjugate pair µ2 = µ1 when w becomes purely imaginary. This means that the
gravibreather follows from (2.20)–(2.23) by analytic continuation from the real
to purely imaginary values of w, only in those cases in which for the real values
of w the poles µ1 and µ2 form an ‘in–in’ or ‘out–out’ pair, i.e. (as has already
been shown) just in those cases in which the two-soliton solution represents the
collision between a gravisoliton and an antigravisoliton.

The choice (2.44) corresponds to collision of gravisolitons of the same charge.
However, in these cases µ1 and µ2 for imaginary w cannot be complex conjugate
to each other, i.e. we obtain in this w region an unphysical solution with a
complex valued metric tensor.

The last thing we have to show is that the w continuation above is equivalent
to the analytic continuation of the solution (2.20)–(2.23) from the real to the



58 2 General properties of gravitational solitons

imaginary values of the relative collision velocity of the colliding solitons. It has
been shown before that the measure of the local soliton velocity corresponding
to some one-soliton pole trajectory µ is −2αµ(α2 + µ2)−1. This expression
is invariant under the interchange µ → α2µ−1, thus it is the same for a
gravisoliton and an antigravisoliton. Due to this property and to the previous
analysis we conclude that the solution (2.20)–(2.23) for any pair of real µ1

and µ2 describes the collision of two gravisolitons with initial velocities v1 =
−2αµ1(α

2 +µ2
1)

−1 = α(β−w)−1 and v2 = −2αµ2(α
2 +µ2

2)
−1 = α(β+w)−1.

Inside region VI, i.e. in the collision region, we have v1 < 0 and v2 > 0.
The functions α and β in these formulas should be referred to that symbolic
point in the interior of region VI where the world lines of the colliding solitons
intersect. The relativistic formula for the relative velocity is vrel = (v2 −v1)(1+
v1v2)

−1 = 2αw(w2−α2−β2)−1. Thus, the purely imaginary values of w indeed
correspond to the purely imaginary values of the relative velocity of the colliding
gravisolitons.

Independently of its topological properties, the gravibreather can be interest-
ing in its own right. Let us write this solution here in a more suitable and simpler
form than the general expressions (2.20)–(2.25). It is convenient to choose
coordinates in such a way that α = q sinh t cosh z, and β = q cosh t sinh z,
where q > 0 is an arbitrary constant. We take the simplest space-like solution
of u0 in (2.14), i.e. u0 = 2kβ, where k = constant. This background
represents vacuum solutions for the Bianchi VI0 homogeneous cosmological
model. Then the two-soliton perturbation on the background (2.15) with the
poles µ1 = q(sinh z − i)(1 − cosh t) and µ2 = q(sinh z + i)(1 − cosh t) (these
are solutions of (2.42), where w = −iq) is the following exact solution to the
Einstein equations:

ds2 = D

(q sinh t cosh z)1/2
ek2q2 sinh2 t cosh2 z(dz2 − dt2) + q sinh t cosh z

D

× {[(cosh t cosh σ − sinh σ)2 + (sinh z sin τ − cos τ)2
]

×e2kq cosh t sinh z(dx1)2

+ [(cosh t cosh σ + sinh σ)2 + (sinh z sin τ + cos τ)2
]

×e−2kq cosh t sinh z(dx2)2

+4(cosh t cosh σ cos τ − sinh z sinh σ sin τ)dx1dx2
}
, (2.46)

where

D = sinh2 t cosh2 σ + cosh2 z sin2 τ,

σ = 2kq sinh z + σ0,

τ = 2kq(cosh t − 1) + qτ0.

 (2.47)
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Here σ0 and τ0 are arbitrary constants. The substitutions t → t/ iw, z →
z/ iw and q → iw replace (2.46) by the two-soliton solution related to the SA
scattering process inside region VI.

The gravibreather (2.46) represents an inhomogeneous cosmological model
which starts with an anisotropic Kasner-like behaviour near the singularity (t =
0), approaches the background solution (2.15) at t → ∞, and oscillates in time
in between. Some numerical results with details of the gravibreather behaviour
can be found in refs [177, 110].



3
Einstein–Maxwell fields

The purpose of this chapter is to describe the integration scheme for Einstein–
Maxwell equations. We begin in section 3.1 by writing the Einstein–Maxwell
equations in a suitable form when the spacetime admits, as in chapter 1, an
orthogonally transitive two-parameter group of isometries. We then formulate
in section 3.2 the corresponding spectral equations which take in this case the
form of 3×3 matrix equations. It turns out that one cannot simply generalize the
procedure of chapter 1, since some extra constraints have to be imposed on the
linear spectral equations to be able to reproduce the Einstein–Maxwell equations
as integrability conditions of such linear equations. In sections 3.3 and 3.4 we
show how these problems can be overcome and the n-soliton solution can be
constructed. Because the procedure is rather involved we formulate the basic
steps in a recipe of 11 points which should be useful for practical calculations.
Finally in section 3.5, as an illustration of the procedure given, the analogue of
the sine-Gordon breather in the Einstein–Maxwell context is deduced and briefly
described.

3.1 The Einstein–Maxwell field equations

In sections 1.2–1.4 we established the complete integrability of Einstein equa-
tions in vacuum for the metric (1.36) by means of the ISM, and the same will
be done for the stationary analogue of this metric in chapter 8. However,
the inclusion of matter, i.e. the appearance of a nonzero right hand side in
the Einstein equations, generally destroys the applicability of the ISM. This is
because the stress-energy tensor produces a nonvanishing right hand side in the
basic equation (1.39) that prevents the application of the ISM. However, there
are some special cases in which the ISM works even when matter is included.
A few of these cases will be described in sections 5.4.2 and 5.4.3 but these are
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more or less simple generalizations of the vacuum case. Here we will describe
a new and really nontrivial situation: the complete integrability of the coupled
Einstein–Maxwell field equations.

Some results for the Einstein–Maxwell system can be extracted from the
five-dimensional vacuum gravitational equations. We saw in section 1.5 that
such five-dimensional systems represent from the four-dimensional point of
view the dynamics of coupled gravitational, electromagnetic and massless
scalar fields; see (1.139)–(1.142). The scalar field corresponds to the g55

component of the five-dimensional metric tensor. The source for this field is
the electromagnetic invariant Fik Fik that appears on the right hand side of the
wave equation for such a scalar field. If one wishes to avoid the presence of the
scalar field it is necessary to impose on the electromagnetic field the constraint
Fik Fik = 0. For this special case the Einstein–Maxwell equations are equivalent
to the five-dimensional gravitational vacuum equations. In this special case it
is a simple matter to generalize the ISM approach of sections 1.2–1.4 to the
five-dimensional situation and construct soliton solutions. The ‘L–A pair’ for
such a constrained gravitational–electromagnetic system has been described in
ref. [13]. However, this is again a trivial generalization of the four-dimensional
vacuum case and there is no way to extend this standard extradimensional
approach to include the general electromagnetic field with Fik Fik = 0 avoiding,
simultaneously, the appearance of scalar fields.

The main new step for the solution of the Einstein–Maxwell equations was
made by Alekseev [4] in 1980, although the most detailed and comprehensive
account of his approach was given in his 1988 paper [5]. The key idea of
this method cannot be simply extracted from our sections 1.2–1.4 and it is no
overstatement to say that it is again part of one of those miracles that pervade the
field of integrable systems. Thus for the sake of the completeness of this book
we will present in this chapter Alekseev’s approach to the problem of integration
of the Einstein–Maxwell equations. We follow closely ref. [5], although
translated to our language. However, apart from the Einstein–Maxwell breather,
which we will describe in section 3.5, we will not consider other applications to
calculations of concrete solutions in closed form. Practically all known results
in this field can be found in ref. [5], and refs [73, 74, 120, 110, 123].

It should be mentioned here that the integrability ansatz of the Einstein–
Maxwell equations and the n-soliton solutions was also given by Neugebauer
and Kramer in 1983 [226] in the framework of their development of the
pseudopotential method [178]. In 1981 Cosgrove [65] obtained one-soliton
solutions for this system in the framework of the Hauser–Ernst formalism [138].
However, we follow Alekseev’s approach because it is closely related to the
method we are using in this book.

First let us describe the integrable ansatz of the Einstein–Maxwell equations.
It is convenient not to restrict ourselves from the beginning to the nonstationary
metric (1.36), and include also the stationary case by writing the metric in the
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form,
ds2 = f (xρ)ηµνdxµdxν + gab(x

ρ)dxadxb. (3.1)

In this chapter the Greek indices take only two values and correspond to the
coordinates t, z for the nonstationary case and to ρ, z for the stationary metric
(8.1). The two-dimensional matrix ηµν is

ηµν =
(−e 0

0 1

)
, (3.2)

where e = 1 and e = −1 for the nonstationary and stationary solutions,
respectively. For the determinant of the two-dimensional matrix g (with
components gab) we adopt the notation

det g = eα2. (3.3)

In order to make the integrable ansatz compatible with the metric (3.1) one
should assume the following structure for the electromagnetic potentials:

Aµ = 0, Aa = Aa(x
ρ). (3.4)

Then, the only nonvanishing components for the covariant and contravariant
electromagnetic tensor field are

Fµa = Aa,µ, Fµa = 1

f
ηµνgac Ac,ν . (3.5)

Here, and in the following, gab are the components of the inverse matrix of gab,
i.e. gacgcb = δa

b .
Einstein–Maxwell equations (with an appropriate choice of units) can be

written in the form

Rb
a = 2

(
Fλa Fλb − 1

2
δb

a Fλc Fλc

)
, (3.6)

Rµ
ν = 2

(
Fνc Fµc − 1

2
δµν Fλc Fλc

)
, (3.7)

( f αFµa),µ = 0. (3.8)

Because the two-dimensional trace in the Greek indices on the right hand side
of (3.7) vanishes identically, these equations can be written in the following
equivalent form:

Rµ
µ = 0, Rµ

ν − 1

2
δµν Rλ

λ = 2

(
Fνc Fµc − 1

2
δµν Fλc Fλc

)
. (3.9)
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Direct calculation shows that the first of these equations is

ηµν(ln f ),µν + ηµν(lnα),µν + 1

4
gabgcdηµνgbc,µgda,ν = 0, (3.10)

and that the second does not contain the second derivatives of the metric
coefficient f :

ηνρ

[
1

2
(ln f ),µ(lnα),ρ + 1

2
(ln f ),ρ(lnα),µ

]
− 1

2
δνµη

ρσ (ln f ),ρ(lnα),σ

− ηνρ(lnα),µρ + 1

2
δνµη

ρσ (lnα),ρσ

− 1

4
gabgcd

[
ηνρgbc,µgda,ρ − 1

2
δνµη

ρσ gbc,ρgda,σ

]
= gcd Ad,ρ

[
2ηνρ Ac,µ − δνµη

ρσ Ac,σ
]
. (3.11)

The trace of this last equation vanishes identically. Consequently it gives only
two independent relations from which the metric coefficient f can be found by
quadratures if the matrix gab and the potentials Aa are known. As in the vacuum
case, (3.10) will then be satisfied due to the Bianchi identities, and we can forget
about this equation from now on. Also, as in the vacuum case, the integration
of the coefficient f from (3.11) does not present a major difficulty and will be
carried out at the end of the procedure. Thus we turn our attention to the problem
of the matrix gab and the potentials Aa from the system (3.6) and (3.8). It is
easy to see that this system does not contain the coefficient f and that it forms
a closed and selfconsistent system of equations for gab and Aa . Calculating Rb

a
and using the definitions (3.5) we can write these equations in the form:

ηµν 1

α
(αgbcgac,µ),ν = −4ηµνgbc Aa,µ Ac,ν + 2δb

aη
µνgcd Ac,µ Ad,ν, (3.12)

ηµν(αgac Ac,µ),ν = 0. (3.13)

It is important that the trace of the right hand side of (3.12) vanishes identically
and that the function α(xµ), in accordance with its definition (3.3), should satisfy
the vacuum ‘wave’ equation,

ηµνα,µν = 0. (3.14)

In this chapter we will often use a matrix notation. Thus, for definiteness
in any matrix (Mik , Mik , Mi

k or M k
i ) the first index, independent of its up

or down position, will always enumerate the rows, and the second index will
enumerate the columns. This rule, of course, also applies to the matrix (3.2)
which has already been introduced. For the Kroneker delta, however, we will
not distinguish the first and the second indices since it is irrelevant in this case
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and we will write δk
i . Let us introduce two-dimensional antisymmetric matrices,

εµν = εµν =
(

0 1
−1 0

)
, (3.15)

and the same for the Latin indices,

εab = εab =
(

0 1
−1 0

)
. (3.16)

Now we are in the position to start the description of the integration scheme.
Following Alekseev’s suggestion of exploiting the duality properties of the
electromagnetic field, we introduce some auxiliary potentials Ba which will only
play an intermediary role and will not be present in the final results. In terms of
the original potentials Aa , these are defined by,

Ba,µ = − 1

α
ηµνε

νλgabε
bc Ac,λ. (3.17)

It is easy to verify that the integrability condition for this equation, εµν Ba,µν =
0, coincides with the Maxwell equation (3.13). Relation (3.17) can also be
written in its inverse form:

Aa,µ = 1

α
ηµνε

νλgabε
bc Bc,λ. (3.18)

Let us now combine Aa and Ba into a single complex electromagnetic
potential $a , defined by

$a = Aa + i Ba, (3.19)

then (3.17)–(3.18) are, respectively, the imaginary and real parts of the equation
for $a:

$a,µ = − i

α
ηµνε

νλgabε
bc$c,λ, (3.20)

from which the Maxwell equations for $a trivially follow:

ηµν(αgac$c,µ),ν = 0. (3.21)

By direct calculation one can show that Einstein equations (3.12) can be written
as

ηµν 1

α
(αgbcgac,µ),ν = −2gbcηµν$a,µ$c,ν . (3.22)

The imaginary part on the right hand side of this equation vanishes because the
left hand side is real. That this is indeed the case is a consequence of (3.17).
Also due to this relation and the identity

εadεbc = δa
bδ

d
c − δa

c δ
d
b , (3.23)

the real part of the right hand side of (3.22) coincides exactly with the right
hand side of (3.12). It is thus clear that any solution of (3.19)–(3.22), gab and
Aa = Re$a , is also a solution of the Einstein–Maxwell equations (3.12)–(3.13).
Note the auxiliary role played by the potential Ba .
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3.2 The spectral problem for Einstein–Maxwell fields

In agreement with the general ideas of the ISM we should now find a way
to represent the Einstein–Maxwell equations (3.19)–(3.22) as selfconsistency
conditions of a linear spectral problem. Our experience in five-dimensional
geometry suggests that we should look for the solution in the framework
of the same spectral problem (1.51), but for three-dimensional matrices A,
B and ψ . First let us rewrite the three-dimensional version of (1.51) in
terms of the coordinates xµ introduced in (3.1)–(3.2), in order to develop a
universal approach both to the stationary and the nonstationary cases. This
three-dimensional generalization is straightforward and can be written as

�µψ =
(

eλ

λ2 − eα2
ηµρε

ρσ Kσ − eα

λ2 − eα2
Kµ

)
ψ, (3.24)

where the operators �µ are

�µ = ∂µ + 2e(λ2ηµρε
ρσα,σ − λαα,µ)

λ2 − eα2
∂λ, (3.25)

and ηµρ and ερσ are given by the definitions (3.2) and (3.15). The matrices Kµ

and ψ are now three-dimensional and the function α(xµ) is the same as before,
i.e. it satisfies (3.14). For the nonstationary case we have e = 1 and x1 = t ,
x2 = z, and then the metric (3.1) coincides with (1.36) . If we use the null
coordinates (1.14) it is easy to see that �2+�1 = D1, �2−�1 = D2, where D1

and D2 are the operators introduced in (1.49). Taking the sum and the difference
of (3.24) for µ = 2 and µ = 1, we get exactly the three-dimensional version of
the spectral problem (1.51), where A = −(K2 + K1) and B = K2 − K1. For the
stationary case one should take e = −1 and x1 = z, x2 = ρ, then when α = ρ,
it follows from (3.25) that �1 = D1 and �2 = D2 where D1 and D2 are now
the operators (8.7) which are defined in chapter 8. Equations (3.24) for µ = 1
and µ = 2 now coincide directly with the three-dimensional spectral problem
(8.6), where V = K1 and U = K2.

It is easy to see that due to the ‘wave’ equation (3.14) for the function α the
operators �µ commute:

�µ�ν − �ν�µ = 0, (3.26)

and that the selfconsistency conditions for (3.24) are

ηµν Kµ,ν = 0, (3.27)

εµν

(
Kµ,ν + 1

α
KµKν − 1

α
α,ν Kµ

)
= 0. (3.28)

The second of these equations implies that the two matrices Kµ can be written
in terms of a single matrix X in the form

Kµ = αX ,µX−1. (3.29)
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Then (3.28) is just the integrability condition of (3.29) for X , and (3.27) gives a
really nontrivial condition in the form of the following differential equation for
the matrix X

ηµν(αX ,µX−1),ν = 0. (3.30)

In general this equation does not reproduce the Einstein–Maxwell system,
but it does so for some special class of matrices X . To single out this class
we should impose on X some additional constraints that are not a consequence
of the selfconsistency conditions of the spectral problem (3.24), but that are
compatible with them. To formulate these constraints in the three-dimensional
matrix form let us introduce first the following matrix %:

% =
( 0 1 0

−1 0 0
0 0 0

)
. (3.31)

In what follows we shall use the small Latin indices from the first part of the
alphabet (i.e. from a to h) for the enumeration of the first and second rows
and columns of the three-dimensional matrices, whereas for the third rows and
columns we shall use the star symbol. With this convention the matrix %, for
example, can be written in the following form:

% =
(
%ab %a∗

%∗b %∗∗

)
=
(
εab 0
0 0

)
. (3.32)

It is now convenient to introduce two special combinations made up of the
matrix X and its derivatives. Thus we define Uµ by

Uµ = ieαηµρε
ρσ X−1 X ,σ + 4e(α2 X−1),µ%. (3.33)

The additional constraints we need to impose on the matrix X can now be
written as

X = X†, (3.34)

XUµ = −4ieαηµρε
ρσ%Uσ , (3.35)

where † means Hermitian conjugation. These are the two fundamental con-
straints. However, we can still impose three new constraints on the matrix X .
These new constraints are weaker, are easily imposed and do not represent a loss
of generality. In fact, the first is

X∗∗ = 2. (3.36)

It is easy to see from (3.31)–(3.35) that X∗∗
,µ = 0, so that X∗∗ = constant. Due to

the invariance of the equations with respect to the rescaling X → cX , α → cα
(c is an arbitrary constant) the value of the constant X∗∗ can be chosen at will.
We chose 2 in (3.36) in order to make a more direct comparison with ref. [5].



3.2 The spectral problem for Einstein–Maxwell fields 67

The second of these new constraints is the requirement that the determinants
of the two-dimensional blocks constructed from the first and second rows and
columns of the matrices Uµ are not zero. We recall that we are using the
following notation for the components of the matrices X and X−1:

X =
(

Xab Xa∗

X∗b X∗∗

)
, X−1 =

(
(X−1)ab (X−1)a∗
(X−1)∗b (X−1)∗∗

)
. (3.37)

Consequently the upper and left two-dimensional blocks of matrices Uµ, as
follows from definition (3.33), are

(Uµ)
b

a = ieαηµρε
ρσ [(X−1)a∗ X∗b

,σ +(X−1)ac Xcb
,σ ]+4e[α2(X−1)ac],µε

cb. (3.38)

Because det X = 0 and det% = 0, it follows from (3.35) that det Uµ = 0. Thus
our second new constraint can be formulated as

rank(Uµ) = 2, det[(Uµ)
b

a ] = 0. (3.39)

These properties will be satisfied automatically by the construction of the
solutions and, in practice, do not mean a loss of generality.

The third of these new constraints is that at least one of the diagonal elements
of the two-dimensional matrix

Xab − 1

2
Xa∗ X∗b (3.40)

does not vanish. This condition can also be easily imposed and does not
represent a loss of generality for the Einstein–Maxwell fields.

It is easy to show that the unique structure for the matrix X that follows from
the constraints (3.34)–(3.40) is

X =
(−4εacgcdε

db + 8εac$cε
bd$d 4εac$c

4εbc$c 2

)
,

X−1 =
(− 1

4εacgcdεdb − 1
2εacgcd$d

− 1
2εbcgcd$d

1
2 + gcd$c$d

)
,

 (3.41)

where gab are the components of the two-dimensional matrix g−1, the inverse
of g. We recall that the two-dimensional matrix g, with components gab, is real,
symmetric and has determinant det g = eα2. Equation (3.20), which is satisfied
by the complex electromagnetic potentials $a , is now a consequence of the
(a∗)-components of (3.35). Also, substitution of this form of the matrix X into
the selfconsistency equation (3.30) exactly reproduces the Einstein–Maxwell
equations (3.21)–(3.22) and nothing else.

At this point we have finished the first step of our procedure: the formulation
of the basic additional constraints for the matrix X in three-dimensional form,
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i.e. constraints (3.34)–(3.35). However, we are still far from the solution of
our problem. In fact, to find a way to construct a solution of the spectral
equation (3.24) which satisfies the constraints is not a trivial task. To this end we
introduce a new generating matrix ϕ, which is related to the generating matrix
ψ of the vacuum case by

ψ = (X − 4iλ%)ϕ. (3.42)

Substitution of this expression into (3.24) shows that due to the additional
constraint (3.35) this new generating matrix ϕ satisfies the following spectral
equation:

�µϕ =
[

iλ(λ2 + eα2)

(λ2 − eα2)2
Uµ − 2ieαλ2

(λ2 − eα2)2
ηµρε

ρσUσ

]
ϕ, (3.43)

where Uµ are the matrices (3.33). The advantage of this representation of our
spectral problem is that it consists of rational functions not only with respect to
the original spectral parameter λ, but also with respect to a new parameter w

defined by

w = −1

2

(
λ + 2β + eα2

λ

)
, (3.44)

where β is the second independent solution of the ‘wave’ equation (3.14), which
has the following connection to the function α:

β,µ = −eηµρε
ρσα,σ . (3.45)

In nonstationary cases, when e = 1, the pair α and β is just (1.45) and (1.46).
Due to this connection the parameter w(xµ, λ) satisfies the identity

�µw = 0. (3.46)

Relation (3.44) can be understood as a transformation λ = λ(α, β,w) from
the parameter λ to the new spectral parameter w. After this transformation is
applied to any generating matrix ϕ(xµ, λ) it must be understood that such a ma-
trix becomes a function of xµ and w only (more precisely as ϕ[xµ, λ(α, β,w)]).
In this sense and due to identity (3.46), for any matrix ϕ we have

�µϕ = (∂µϕ)w, (3.47)

where the right hand side is the usual partial derivatives with respect to the
coordinates xµ performed under the assumption that w is some free parameter
independent of xµ. The key point now is that the application of this transfor-
mation to (3.43) shows its rational dependence on w together with a simple
structure of differential operators:

∂ϕ

∂xµ
= 1

2i

[
w + β

(w + β)2 − eα2
Uµ + eα

(w + β)2 − eα2
ηµρε

ρσUσ

]
ϕ. (3.48)
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The analyticity of this equation with respect to the spectral parameter w is im-
portant, because it allows us to apply to the construction of its solitonic solutions
the dressing procedure used in the vacuum case, but with the meromorphic
structure of the dressing matrices in the complex w-plane. At the same time
the simplicity of the differential operators allows us to impose the additional
constraints (3.34)–(3.35) in a simple way. It is worth emphasizing that it is not
possible to have both of these properties simultaneously satisfied for the spectral
equation in its original form (3.24). This does not mean that the original form is
not appropriate at all, it just means that it needs a more sophisticated treatment
than the standard approach described in sections 1.2–1.4.

3.3 The components gab and the potentials Aa

The construction of the n-soliton solution for the metric components gab and the
electromagnetic potentials Aa can now proceed following steps similar to the
vacuum case as described in sections 1.2–1.4. However, the different analytic
structure and the complexity of the constraints in this case make the procedure
a little more cumbersome. First we need to build the n-solitonic solution of the
spectral problem (3.48) in general, i.e. without assuming any additional structure
for the matrices Uµ (i.e. a structure that does not follow automatically from
(3.48) itself). After that we will impose all the necessary additional constraints
(i.e. the conditions that follow from (3.33)–(3.40)).

3.3.1 The n-soliton solution of the spectral problem

Let us start this first stage with the introduction of a new matrix & ν
µ :

& ν
µ = 1

2i

(w + β)δνµ + eαηµρε
ρν

(w + β)2 − eα2
, (3.49)

and then the spectral equation (3.48) takes the form

ϕ,µ = & ν
µ Uνϕ. (3.50)

Let ϕ(0) and U (0)
µ be some background solution of (3.50) with some given

functions α and β. Then we search for the new ‘dressed’ solution, corresponding
to the same functions α and β, of the form

ϕ = χϕ(0). (3.51)

Because ϕ(0) is a solution, from (3.50) we obtain the following equation for the
dressing matrix χ :

χ,µ = & ν
µ (Uνχ − χU (0)

ν ). (3.52)
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Now we will use small Latin indices from the second part of the alphabet (i.e.
indices i , j , k, l, . . . ) to enumerate quantities related to the poles of matrix χ .
We assume that χ and χ−1 have n simple poles,

χ = I +
n∑

k=1

Rk

w − wk
, χ−1 = I +

n∑
k=1

Sk

w − w̃k
. (3.53)

Here and in what follows we do not assume summation over repeated indices i ,
k, l, . . . . Such a summation will be always indicated by the symbol

∑
. At this

stage wk and w̃k can be arbitrary functions of the coordinates xµ. Also in what
follows we consider that all the 2n functions wk and w̃k are different. From the
identity χχ−1 = I we have the following conditions for the matrices Rk(xµ)

and Sk(xµ):

Rkχ
−1(wk) = 0, χ(w̃k)Sk = 0, (3.54)

where expressions of the type F(wk) mean the values of the function F(w, xµ)

at w = wk . The dependence on the coordinates xµ is omitted for simplicity.
Equations (3.54) imply that we can look for matrices Rk and Sk of the form

(Rk)
B

A = n(k)
A m(k)B, (Sk)

B
A = p(k)

A q(k)B . (3.55)

Here and in the rest of this chapter we use capital Latin letters from the first
part of the alphabet (i.e. from A to H ) to enumerate the matrix components. We
should keep in mind that the final results will be applied to the three-dimensional
case, thus in agreement with our previous prescriptions the capital Latin indices
will take the three values A = (a, ∗), B = (b, ∗), . . . , H = (h, ∗). Nevertheless,
the construction of the solution of the spectral equation (3.48) that we are
carrying out is valid for matrices of any dimension.

The substitution of (3.55) into (3.54) gives two systems of algebraic equations
from which one can express all vectors n(k)

A and q(k)
A in terms of the vectors m(k)

A

and p(k)
A as

n∑
l=1

p(k)
B m(l)B

wl − w̃k
n(l)

A = p(k)
A , (3.56)

n∑
l=1

m(k)B p(l)
B

wk − w̃l
q(l)A = −m(k)A. (3.57)

If we now introduce the n × n matrix Tkl (i.e. a matrix with respect to indices i ,
k, l, . . . ) and its inverse matrix (T −1)kl ,

Tkl = p(k)
B m(l)B

wl − w̃k
,

n∑
l=1

Til(T
−1)lk = δik, (3.58)
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we obtain

q(k)A = −
n∑

l=1

(T −1)lkm(l)A, n(k)
A =

n∑
l=1

(T −1)kl p(l)
A (3.59)

for the vectors q(k)A and n(k)
A .

To obtain the vectors m(k)A and p(k)
A we use (3.52), which can be written in

the form
& ν

µ Uν = χ,µχ
−1 + & ν

µ χU (0)
ν χ−1, (3.60)

or, equivalently, as

& ν
µ Uν = −χ(χ−1),µ + & ν

µ χU (0)
ν χ−1. (3.61)

All the terms in these equations are meromorphic functions of w that vanish at
w → ∞. Thus to satisfy these equations it suffices to eliminate the residues of
all their poles. The left hand sides of both equations are regular at the points
w = wk and w = w̃k . The first terms on the right hand sides generate the
second order poles at these points if wk and w̃k depend on the coordinates xµ.
Consequently, the first result we have from (3.60) and (3.61) is that

wk = constant, w̃k = constant. (3.62)

Note that due to the simplicity of the differential operators in the spectral
equation (3.50) the poles and zeros of matrices χ and χ−1 in the w-plane are
stationary points and not trajectories as in the vacuum case.

Now the right hand sides of (3.60)–(3.61) contain only simple poles at the
points w = wk and w = w̃k , and the elimination of their residues gives the
following equations for the matrices Rk and Sk :

Rk,µχ
−1(wk) + & ν

µ (wk)RkU (0)
ν χ−1(wk) = 0, (3.63)

χ(w̃k)Sk,µ − & ν
µ (w̃k)χ(w̃k)U

(0)
ν Sk = 0. (3.64)

The solution of these equations can be expressed in terms of the background
generating matrix ϕ(0) in the same way as was used in section 1.4 for the two-
dimensional case. It is easy to check that if we substitute the matrices Rk and Sk

into (3.63)–(3.64), take into account the conditions (3.54) and the fact that ϕ(0),
U (0)

µ is a solution of (3.50), then the system (3.63)–(3.64) is a set of differential

equations for the vectors m(k)A and p(k)
A . The general solution of which is†

m(k)A = k(k)
B [(ϕ(0))−1(wk)]

B A, (3.65)

† In (3.65) and (3.66) for the vectors m(k)A and p(k)
A there may also be arbitrary complex factors

which can depend on the index k and the coordinates xµ. However, such factors are not present
in the final expressions for the matrices Rk and Sk , we therefore set them equal to 1.
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p(k)
A = l(k)B[ϕ(0)(w̃k)]AB, (3.66)

where k(k)
B and l(k)B are arbitrary constants (i.e. 2n arbitrary constant vectors),

and we write the components of the matrix ϕ−1 (inverse of ϕ) with upper indices,
i.e.

[ϕ−1(w)]AD[ϕ(w)]DB = δA
B .

The structure of the coefficients & ν
µ , see (3.49), shows that in (3.60)–(3.61)

we still have poles with nonzero residues at the two points where (w + β)2 −
eα2 = 0. If we define

√
e as

√
e = 1 if e = 1,

√
e = i if e = −1, (3.67)

these poles can be written as w = w+ and w = w−, where

w+ = −β + e
√

eα, w− = −β − e
√

eα. (3.68)

Elimination of the residues of (3.60), or (3.61), at these poles does not produce
any new constraints on the matrices Rk and Sk , but gives the values of the
matrices Uµ in terms of Rk , Sk and the background matrices U (0)

µ :

Uµ = 1

2

[
χ(w+)U (0)

µ χ−1(w+) + χ(w−)U (0)
µ χ−1(w−)

]
+ 1

2
e
√

eηµρε
ρσ
[
χ(w+)U (0)

σ χ−1(w+) − χ(w−)U (0)
σ χ−1(w−)

]
. (3.69)

With this formula we have finished the construction, in general, of the n-soliton
solution of the spectral equation (3.50). This means that we can now express the
matrices Uµ, ϕ and χ in terms of the background solution U (0)

µ , ϕ(0) up to the
freedom of choosing arbitrary constants wk , w̃k representing the positions of the
poles of the matrices χ and χ−1 in the w-plane, and the freedom of choosing
the arbitrary constants k(k)

B , l(k)B in the vectors m(k)A and p(k)
A .

It is clear that one can use this freedom to further specify the solution when
necessary. This, in fact, is necessary because the solution we have constructed
for the matrices Uµ does not guarantee that these are the same matrices that
can be expressed in terms of X by (3.33), and that such X satisfies (3.30) and
the additional constraints (3.34)–(3.40). It is remarkable, and nontrivial, that all
these additional requirements can indeed be satisfied due to the above freedom
of parameters. This is a consequence of the fact that our spectral equations
have ‘conserved integrals’ (some authors call them ‘involutions’), i.e. some
expressions quadratic in the generating matrix that give zero under the action
of the operators �µ.

This property has already been used in section 1.3 and will be used again in
section 8.1. In fact, the additional conditions (1.57) and (8.12) are consequences
of this property. It is instructive to clarify this point more carefully. As we have
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seen the two-dimensional system (1.51), and also (8.6), can be represented by
(3.24)–(3.25) with two-dimensional matrices ψ and Kµ. Let us imagine that we
impose on the solutions of this two-dimensional problem the constraint

�µ

[
ψ̃

(
eα2

λ

)
Wψ(λ)

]
= 0,

where W is some matrix function of λ and xµ. Because of identity (3.46), this
means that the expression inside the square brackets above can depend only on
the parameter w:

ψ̃

(
eα2

λ

)
Wψ(λ) = Q(w),

where Q(w) is some arbitrary matrix. If we choose this matrix to be symmetric
then we can make it the same for all solutions ψ because we have the
freedom of the transformation ψ(λ) → ψ(λ)γ (w), where γ (w) is an arbitrary
matrix. This transformation changes nothing in the spectral equation (3.24) but
transforms the matrix Q according to Q(w) → γ̃ (w)Q(w)γ (w). We recall
that w(eα2/λ) = w(λ), as follows from the definition of w, and that γ (w)

is insensitive to the replacement λ → eα2/λ. By this transformation we can
force the symmetric matrix Q(w) to have the same fixed value Q(0)(w) for all
solutions, including the background solution ψ(0). In other words, each solution
can be normalized with the help of an appropriate matrix γ (w) in such a way
that for any pair of solutions ψ(0) and ψ we can write

ψ̃

(
eα2

λ

)
Wψ(λ) = ψ̃(0)

(
eα2

λ

)
W (0)ψ(0)(λ),

where W (0) is the matrix W constructed with the background solution generated
by ψ(0). If we apply the dressing formula ψ = χψ(0) to this relation the result
can be written as

W −1 = χ(λ)(W (0))−1χ̃

(
eα2

λ

)
.

The choice of matrix W depends on the type of additional constraints we
need for the final solution. In the two-dimensional pure gravitational case (the
vacuum case) it was necessary to make the metric tensor g symmetric and this
corresponds to the choice W = g−1. In such a case we have

g = χ(λ)g0χ̃

(
eα2

λ

)
,

which is exactly (1.57) for the nonstationary metric (e = 1), and (8.12) for
the stationary field (e = −1). In both cases this condition ensures that g is
symmetric.
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3.3.2 The matrix X

Let us now return to the Einstein–Maxwell three-dimensional problem. Here the
analogue of the two-dimensional metric tensor is the three-dimensional matrix
X . However, this matrix needs to be Hermitian, not symmetric. Furthermore,
the dressing matrix χ(w) is rational on w, which means that the replacement
λ → eα2/λ is irrelevant in this case. This suggests that we impose the basic
additional constraints (3.34) and (3.35) assuming the existence of a ‘conserved
integral’ of the following form:

∂µ
[
ϕ†(w, xµ)W (w, xµ)ϕ(w, xµ)

] = 0 (3.70)

with some, as yet unknown, matrix W . The definition of the Hermitian
conjugation of matrix functions that depend on the complex parameter w is
the following: to obtain the Hermitian conjugation M†(w, xµ) of any matrix
M(w, xµ) as a function of w one should first calculate the value of the matrix
M at the complex conjugate point w, i.e. the value M(w, xµ), and then take the
usual Hermitian conjugate of this value.

The existence of the integral (3.70) means that ϕ†Wϕ = Q(w), where Q
depends only on w, not on the coordinates xµ. We impose that matrix Q(w) be
Hermitian: Q = Q†. In this case the freedom of the transformation ϕ(w, xµ) →
ϕ(w, xµ)γ (w), which obviously exists for the spectral equation (3.50), allows
us to normalize each solution in such a way that the matrix Q will have the
same canonical form for each solution. Indeed, under this transformation Q
transforms as Q → γ † Qγ . Since Q is Hermitian its transformed form can
be made universal, i.e. the same for all solutions, by choosing an appropriate
transformation matrix γ (w) for each solution. Moreover, this universal form can
be made diagonal, real and independent of w. Thus, without loss of generality,
and within the class of Hermitian matrices Q, the integral (3.70) can be written
as

ϕ†(w, xµ)W (w, xµ)ϕ(w, xµ) = C, (3.71)

where
C = diag (C1, C2, C3), C1, C2, C3 = constant, (3.72)

and where the three constants, C1, C2 and C3, are real. This immediately implies
that

C = C†. (3.73)

In fact, even the constants C1, C2 and C3 can be eliminated from the solutions
by making their modulus equal to 1. However, we will keep the matrix C in
the more general form (3.72) in order to leave open the possibility for more
convenient choices of arbitrary parameters in the final form of the solution.

Since (3.71) is universal it is also valid for the background solution

ϕ(0)†W (0)ϕ(0) = C, (3.74)
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where W (0) is the matrix W calculated for the background solution. From (3.71)
and (3.74) we have

W −1 = χ(W (0))−1χ†. (3.75)

Now let us assume that the matrix W −1 has no singularities at the points where
the matrices χ and χ† have poles. Then in order to satisfy (3.75) one needs first
to eliminate the residues of these poles on the right hand side of this relation,
i.e. at w = wk and w = wk . Let us consider first the set of points w = wk . The
residues at these points vanish if(

I +
n∑

k=1

Rk

wl − wk

)
(W (0))−1(wl)R†

l = 0, (3.76)

or, in components,

n∑
k=1

m(k)D
[
(W (0))−1(wl)

]
DB

m(l)B

wk − wl
n(k)

A = [(W (0))−1(wl)
]

AD
m(l)D. (3.77)

It follows from (3.73)–(3.74) that we should construct any background solution
in such a way that the matrix W (0) is Hermitian. Now it is easy to check that the
equation eliminating the residues on the right hand side of (3.75) at the second
set of poles, i.e. at w = wk , coincides exactly with (3.77). Therefore this is the
only equation we need in order to have regularity of (3.75) at the points where
the matrices χ and χ† are singular.

Equation (3.77) is an algebraic system from which the vectors n(k)
A can be

expressed in terms of the vectors m(k)A. Note, however, that this can be achieved
in another way, since from the algebraic system (3.56) the vectors n(k)A can also
be found in terms of m(k)A. Thus if we substitute into such a system (3.66) for
the vectors p(k)

A , (3.56) takes the form

n∑
k=1

m(k)D
[
ϕ(0)(w̃l)

]
DB

l(l)B

wk − w̃l
n(k)

A = [ϕ(0)(w̃l)
]

AD
l(l)D. (3.78)

Of course, this equation should coincide with (3.77). The coincidence takes
place when

w̃k = wk, (3.79)

and† [
(W (0))−1(wl)

]
DB

m(l)B = [ϕ(0)(w̃l)
]

DB
l(l)B . (3.80)

The first condition shows that the poles of the inverse matrix χ−1 should be
located at the points which are complex conjugate to the poles of the matrix

† There may also be arbitrary factors that depend on the index l on the right hand side of (3.80).
However, they are not essential because they do not appear in the final form of the solution and
we can set them equal to 1.
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χ . To discover the second condition we should substitute (3.65) into (3.80) for
the vectors m(k)A and the expression for (W (0))−1 in terms of ϕ(0) and C which
follows from (3.74):

(W (0))−1 = ϕ(0)C−1ϕ(0)†. (3.81)

After this substitution we should take into account the conditions (3.72)–(3.73)
for the matrix C and the fact that now w̃k = wk . Then the resulting form of
(3.80) is very simple:

k(k)
A = CABl

(k)B
, (3.82)

where CAB are the components of the diagonal matrix C . This allows us to write
all the constants k(k)

A in terms of the constants l(k)A, or vice versa.
It is easy to check that the same results are obtained if we start our analysis

from the ‘conserved integral’ (3.75) written in its inverse form:

W = (χ−1)†W (0)χ−1. (3.83)

In this case, again under the conditions that the matrix W has no singularities at
the points w = w̃k and w = w̃k , and that matrix W (0) is Hermitian, we get only
one system of algebraic equations for which the residues of all the poles on the
right hand side of (3.83) vanish:

n∑
k=1

p(k)
D

[
W (0)(w̃l)

]B D
p(l)

B

w̃k − w̃l
q(k)A = [W (0)(w̃l)

]D A
p(l)

D . (3.84)

In addition, we already had the algebraic equations (3.57) for the vectors q(k)A.
Substituting (3.65) for m(k)A into (3.57) we obtain

n∑
k=1

p(k)
D

[
(ϕ(0))−1(wl)

]B D
k(l)

B

w̃k − wl
q(k)A = [(ϕ(0))−1(wl)

]D A
k(l)

D . (3.85)

Imposing that (3.84) and (3.85) should coincide leads again to (3.79) and to the
following constraint:[

(ϕ(0))−1(wl)
]B D

k(l)
B = [W (0)(w̃l)

]B D
p(l)

B . (3.86)

After substitution of (3.66) for the vectors p(l)
B and of the expression for W (0) in

terms of ϕ(0) and C into this last equation, we obtain that this equation coincides
exactly with (3.82). This shows the selfconsistency of the procedure.

3.3.3 Verification of the constraints

Up to this point we do not need to know the explicit structure of the matrices
W and W −1, apart from their regularity at the points w = wk and w = wk and
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the Hermiticity of their background values. Under these conditions the relations
(3.79) and (3.82) between the free constant parameters ensure the absence of
poles at the points w = wk and w = wk on the right hand side of (3.75), or
(3.83). It is now time to fix the exact structure of matrix W in such a way that
(3.83) is satisfied not only at the poles but everywhere in the complex w-plane,
and that it also satisfies the constraints (3.33)–(3.35). The analysis based on refs
[4, 5] shows that this goal can be achieved if we choose the matrix W to be a
linear function of w of the following form:

W = X − 1

4
X E X + 4i(w + β)%, (3.87)

where

E =
( 0 0 0

0 0 0
0 0 1

)
. (3.88)

With this choice the matrix

W − (χ−1)†W (0)χ−1 (3.89)

clearly has no singularities at finite values in the w-plane. It has also no
singularities at infinity because the matrix χ−1 tends to unity as w → ∞
and W → W (0) since the fixed constant matrix % has the same value for
the background and dressed solutions. This eliminates the poles in (3.89) at
infinity in the w-plane. However, this expression still has nonzero finite values
at w → ∞, which should vanish if we wish to satisfy (3.83). Using (3.53) and
(3.87) it is easy to calculate the first nonvanishing term of the matrix (3.89) at
w → ∞. Equating this term to zero we get

X − 1

4
X E X = X (0) − 1

4
X (0)E X (0) + 4i(S†% + %S), (3.90)

where X (0) is the background value of the matrix X and

S =
n∑

k=1

Sk . (3.91)

The components of the matrix S follow from (3.55) and (3.59),

S B
A = −

n∑
k,l=1

(T −1)kl p(l)
A m(k)B . (3.92)

Now (3.83) is completely satisfied because (3.89) represents an analytic function
at each point on the w-plane which vanishes at infinity. Such a function is
everywhere zero in the w-plane.
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Due to the special structure of the matrix E it is easy to prove by direct
computation the Hermiticity of the matrix X from the Hermiticity of the matrix
X − 1

4 X E X . Then it is easy to see from (3.90) that the Hermiticity of the
matrix X (0) implies the Hermiticity of the dressed matrix X . Another important
property follows from (3.90), namely, that X∗∗ = 2 if X (0)∗∗ = 2. Because the
background solution X (0) satisfies, by definition, all the additional constraints
(including (3.34) and (3.36)) (3.90) guarantees that all these constraints are
satisfied for the dressed solution X .

Since (3.90) gives the matrix X − 1
4 X E X , we need to know how to calculate

the matrix X from this. Let us introduce a new matrix

G = X − 1

4
X E X. (3.93)

Note that this matrix G coincides exactly with the matrix G that appears in refs
[4, 5]. This expression can easily be inverted under the condition that X∗∗ = 2.
The result is

X = G + G EG, if X∗∗ = 2. (3.94)

Thus after calculating G from (3.90) we can obtain X using the above equation.
Now we need to show that the matrix X constructed in this way and the

matrices Uµ, which we found in (3.69), indeed satisfy the additional constraints
(3.33) and (3.35) (recall that in (3.69) we should take into account the additional
restrictions (3.79) and (3.82) for the arbitrary constants). Let us start with the
second constraint. To prove its validity it suffices to show that the constraint
(3.35) is conserved under the dressing procedure, because the background
solution satisfies this condition by definition. First we should remark that if
X∗∗ = 2, then it follows from (3.93) that the inverse of matrix G is

G−1 = X−1 + 1

2
E, if X∗∗ = 2. (3.95)

Due to this property and the trivial identity E% = 0 it is easy to see that we
have an equivalent form of condition (3.35), which is obtained by just replacing
X on the left hand side by G:

GUµ = −4ieαηµρε
ρσ%Uσ . (3.96)

Another equivalent equation can be obtained by multiplying (3.96) by
e
√

eηνλε
λµ, and taking the sum and the difference of the new equation and the

original one. The result is(
G ± 4ie

√
eα%

) (
Uµ ± e

√
eηµρε

ρσUσ

) = 0. (3.97)

From (3.87), (3.93) and (3.68) we have,

G ± 4ie
√

eα% = W (w±). (3.98)
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Using (3.83) we see that the dressing formulas for the first factors in (3.97) are

G ± 4ie
√

eα% = (χ−1)†(w±)
(
G(0) ± 4ie

√
eα%

)
χ−1(w±). (3.99)

The dressing formulas for the second factors in (3.97) can be obtained by
multiplying (3.69) by e

√
eηνλε

λµ and taking the sum and the difference of this
new equation with (3.69) itself. We thus obtain

Uµ ± e
√

eηµρε
ρσUσ = χ(w±)

(
U (0)

µ ± e
√

eηµρε
ρσU (0)

σ

)
χ−1(w±). (3.100)

The product of these two last equations clearly shows that if the left hand side of
(3.97) is zero for the background solution, it is also zero for the dressed solution.
Thus we conclude that condition (3.35) is valid because the background solution
verifies it and because we have already ensured that (3.50) and (3.70) are
satisfied.

Formula (3.100) shows that under the dressing procedure the invariants of the
matrices Uµ ± e

√
eηµρε

ρσUσ are conserved. If, for example, the rank of these
matrices for the background solution is 1 (this is really the case as can easily
be seen using the background version of equation (3.97)) then it is also 1 for
the dressed solution. Since Uµ are defined by the sum of these two matrices the
rank of Uµ is 2, and this ensures the additional constraint (3.39). As we have
already mentioned this condition was automatically satisfied by the construction
method of the solution. Now we see that this is also due to the structure of the
background solution.

It follows from (3.100) that the traces of the matrices Uµ ± e
√

eηµρε
ρσUσ are

also conserved under the dressing procedure. However, it is more convenient
to deal directly with the traces of the matrices Uµ, by taking the trace of (3.69).
From this equation we have simply that Tr Uµ = Tr U (0)

µ . Since (3.33) is trivially
valid for the background solution, we have that Re Tr U (0)

µ = 0, which one can
easily verify using (3.41) for the background matrix (X (0))−1 and the fact that
the two-dimensional matrix g(0) is real and symmetric. As a consequence we
have that for the dressed matrices Uµ,

Re Tr Uµ = 0. (3.101)

Finally we need to prove that our matrices Uµ and X are connected by (3.33).
Again, for the background solution such a relation is trivially satisfied because
we started with a given matrix X (0) and the new matrices U (0)

µ were just defined
using (3.33). However, when we start from the spectral equation (3.50) we first
obtain some solution for ϕ and Uµ and we introduce the matrix X later, in a
way that is completely independent of (3.33). In this case (3.33) represents an
additional constraint connecting Uµ and X .

To prove the validity of the constraint (3.33) one can start from the conserved
integral, [

ϕ† (G + 4i(w + β)%) ϕ
]
,µ

= 0. (3.102)
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After differentiation and by substitution into this formula of the expression
(3.48) for ϕ,µ (and its Hermitian conjugate ϕ†

,µ), we multiply the result by
(w+β)2−eα2 and obtain on the left hand side of (3.102) a quadratic polynomial
in the spectral parameter w, or more precisely in w + β. Since our solution
already ensures that condition (3.102) is satisfied, all the coefficients in this
polynomial vanish. The zero value of the coefficient of the quadratic term gives
the identity

(G + 4iβ%),µ = 2(U †
µ% − %Uµ). (3.103)

The remaining coefficients of the polynomial give nothing new: the linear
coefficient just leads again to (3.103), and the free coefficient leads to (3.96).

It would be nice to prove the validity of (3.33) by the method we used before,
i.e. by proving that the dressing procedure preserves this relation. However,
we have no suitable dressing formula for the right hand side of (3.33). Instead,
we can calculate the exact structure of the matrices Uµ from those equations for
which we have already proved the validity. Then we can check the correctness of
(3.33) by direct substitution. At this stage we know that (3.34)–(3.40), (3.101)
and (3.103) are valid and that matrix X has the structure of (3.41). Detailed
analysis in which a key role is played by (3.35) in the form (3.96) and by (3.103)
and (3.101), shows that this system leads to the following unique structure for
the matrices Uµ:

(Uµ)
b

a = gac,µε
cb − i

α
ηµρε

ρσ gacε
cd gd f,σ ε

f b + 2$a,µ$cε
cb,

(Uµ)
∗

a = −$a,µ,

(Uµ)
b

∗ = 2$cε
cd(Uµ)

b
d ,

(Uµ)
∗

∗ = 2εab$a,µ$b.


(3.104)

Direct substitution of this result together with the matrix X , see (3.41), into
(3.33) shows that this equation is identically verified. This is the final step in
the proof that the matrix X which follows from (3.90) is the same matrix X
which first appeared in (3.29), and that it has the structure (3.41) and satisfies
(3.30). As a consequence, the functions gab and Re$a , which can be extracted
from (3.90) using (3.93), (3.94) and (3.41), indeed represent a solution of the
Einstein–Maxwell equations.

3.3.4 Summary of prescriptions

Let us summarize now, step by step, the set of practical prescriptions for
constructing n-soliton solutions of the Einstein–Maxwell equations starting with
a given background solution.

1. Take some background solution g(0)
ab and A(0)

a of the Einstein–Maxwell
equations (3.12)–(3.13). Calculate the determinant of the matrix g(0)

ab and
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find the function α(xµ) from the relation α2 = e det g(0)
ab , after choosing

some definite root of this quadratic equation, for example α > 0.

2. Take the previous g(0)
ab , A(0)

a and α, and find, using (3.17), the auxiliary
potentials B(0)

a (up to two arbitrary real additive constants), and write the
background value of the complex electromagnetic potentials $(0)

a = A(0)
a +

i B(0)
a .

3. Substitute the values g(0)
ab and $(0)

a into (3.41). This gives the background
value X (0) of the matrix X .

4. Calculate the background matrices U (0)
µ by substituting into (3.33) the

previous values of X (0) and α.

5. Use (3.45) to find the function β(xµ), up to some arbitrary real additive
constant.

6. From (3.87) compute the background matrix W (0) in terms of X (0) and β.

7. Substitute α, β and U (0)
µ into the spectral equation (3.48) and find the

normalized solution for the background generating matrix ϕ(0)(w, xµ), i.e.
the solution that satisfies (3.74) with the matrix C defined by (3.72)–(3.73).

8. Using the previous ϕ(0) construct the vectors m(k)A and p(k)
A according to

(3.65)–(3.66), where w̃k = wk , and where the constants k(k)
A and l(k)A are

related by (3.82).

9. With these values for m(k)A and p(k)
A construct the matrix Tkl using (3.58),

and again taking w̃k = wk .

10. Substitute the matrix Tkl and the vectors m(k)A and p(k)
A into (3.92) to obtain

the matrix S.

11. Finally, from (3.90) with the help of (3.93) and (3.94) calculate the
components of the matrix X in terms of the components of the matrices
X (0) and S. The matrix X thus obtained when written in the form (3.41)
gives the dressed solution gab and Aa of the Einstein–Maxwell equations in
terms of the Xab and Xa∗ components of X as

gab = 1

4
εca

(
Xcd − 1

2
Xc∗ X

d∗
)
εdb, (3.105)

Aa = 1

4
εca Re Xc∗. (3.106)
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3.4 The metric component f

To complete the construction of the n-soliton solution for the Einstein–Maxwell
field we need to compute the metric coefficient f from (3.11). First, let us
transform this equation into a more convenient form. It is easy to show that, as
a consequence of (3.17) and (3.19), the right hand side of (3.11) can be written
as

2ηνρgcd Ac,µ Ad,ρ − δνµη
ρσ gcd Ac,σ Ad,ρ = 1

2
ηνρ
(
gcd$c,µ$d,ρ + gcd$c,µ$d,ρ

)
.

(3.107)
From (3.41) one can compute the components of the matrices X ,µX−1 in

terms of gab and $a , and then it is easy to see that

gabgcd gbc,µgda,ρ + 2gcd$c,µ$d,ρ + 2gcd$c,µ$d,ρ = Tr
(
X ,µX−1 X ,ρ X−1

)
.

(3.108)
We know already (see the right hand sides of equations (3.12) and (3.22)) that

ηµρgcd$c,µ$d,ρ = 0. (3.109)

Thus it follows from (3.108) that

gabgcdηρσ gbc,ρgda,σ = ηλσ Tr
(
X ,λX−1 X ,σ X−1

)
. (3.110)

Taking into account (3.107), (3.108) and (3.110) we get the following form for
(3.11)

(ln f ),µ(lnα),ν + (ln f ),ν(lnα),µ − ηµνη
λσ (ln f ),λ(lnα),σ = Pµν, (3.111)

where

Pµν = 2(lnα),µν − ηµνη
λσ (lnα),λσ + 1

2α2
Tr(KµKν)− 1

4α2
ηµνη

λσ Tr(KλKσ ),

(3.112)
where Kµ are the matrices (3.29).

It is easy to solve (3.111) with respect to the first derivatives of the metric
coefficient f :

(ln f ),µ = eαηµγ ε
γσ D−1ελρα,λPρσ , (3.113)

where
D = ηµνα,µα,ν. (3.114)

After some simple transformations involving the first two terms on the right
hand side of (3.112), and after exploiting the fact that function α satisfies (3.14),
we obtain

(ln f ),µ = (ln |D|),µ − (lnα),µ

+ 1

4
eηµγ ε

γσ D−1ελρ(lnα),λ
[
2 Tr(Kρ Kσ ) − ηρση

κν Tr(Kκ Kν)
]
.

(3.115)
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We have already explained (see the text after (3.25)) how to choose the index e,
the coordinates xµ and matrices Kµ for the nonstationary and stationary cases.
Following these rules one can check that (3.115) gives (1.40) and (1.41) exactly
for the nonstationary fields and (8.4) for the stationary case.

In principle, (3.115) can be considered as a final version of (3.11), from
which the metric coefficient f can be calculated after the matrix X is known.
However, it is more convenient to express the right hand side of (3.115) in terms
of the matrix G, using (3.94), because the basic equation (3.90) for the n-soliton
solution directly gives the matrix G, not X . From (3.94) it is easy to check that

Tr(KµKν) = α2 Tr
(
G,µG−1G,νG−1

)+ α2 Tr
(
EG,µG−1G,ν + EG,νG−1G,µ

)
.

(3.116)
Now, substituting this equation for Tr(KµKν) into (3.115), and using (3.103)
we can write G,ν in terms of the matrices Uµ. Then a rather long calculation,
for which all previous information about the matrices G, Uµ, the potentials $a

and, in particular, (3.17) and (3.96) is used, we obtain the final result for the
differential equation for f :

(ln f ),µ = (ln |D|),µ−(lnα),µ+i D−1ελνα,ν Tr
[
(G−1 + E)U †

λ%Uµ

]
. (3.117)

Let us return to (3.61) and take its asymptotic form at w → ∞. Keeping only
the first nonvanishing terms which are of order w−1 we have

Uµ = U (0)
µ − 2i S,µ, (3.118)

where S is the matrix (3.92). Using this result, (3.90) and (3.93) we can write the
last term of (3.117) in terms of the matrix Tkl (see (3.58)) the vectors p(k)

A , m(k)A

and its derivatives. After that we can compute the coefficient f from (3.117)
by quadratures. The integration is rather long and will not be done here. It was
performed† by Alekseev [5] the final result is very simple:

f = C0 f (0)T T , (3.119)

† Instead of matrix S Alekseev used matrix R =∑n
k=1 Rk , which is essentially the same because

R = −S, as follows from the identity X X−1 = I . The two equations α = α(xµ) and
β = β(xµ) can be inverted and we can write xµ = xµ(α, β), thus one can introduce the
derivatives ∂xµ/∂α and ∂xµ/∂β. It is easy to check that ∂xµ/∂β = D−1εµνα,ν . This shows
that the last trace term in (3.117) coincides with the trace term in the corresponding differential
equation for f in ref. [5] up to a sign. But this is correct because the function β(xµ) that we
are using in this book has the opposite sign with respect to that used in ref. [5].

It should also be mentioned that the absence of the term (ln |D|),µ in the corresponding
equation for the coefficient f in ref. [5] appears to be an error. In fact, since the function α is
the same for the background and for the dressed solutions, the form of (3.119) cannot change
due to this error. The discrepancy, however, is only present in the explicit structure of the
background coefficient f (0). Of course, this background value of f should be calculated from
the correct equation (3.117). It is worth mentioning also that our complex electromagnetic
potential $a has the opposite sign with respect to that used in ref. [5], and that our matrix Tkl
is called �kl in that reference.
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where C0 = constant, f (0) is the background value of the metric coefficient f
and T is the determinant of the n × n matrix Tkl ,

T = det Tkl . (3.120)

To end this section it is worth making some remarks on the relation between
soliton solutions described here for the particular case when $a = 0 (vacuum)
and the vacuum soliton solutions which can be constructed using the technique
we have described in sections 1.2–1.4. There is not yet a comprehensive analysis
of this relation. However, the results obtained in [72, 74, 110] show that
to all appearances the n-soliton vacuum solution corresponding to n poles in
the complex w-plane in Alekseev’s approach is equivalent to the 2n-soliton
solution corresponding to n pairs of complex conjugate poles in the complex
λ-plane in the framework described in sections 1.2–1.4. By equivalent we
mean that two solutions can be transformed into each other by a coordinate
transformation. Nevertheless, it is clear that in the vacuum case the ISM
described in sections 1.2–1.4 which uses the complex structure in the λ-plane
gives in some sense a richer set of soliton solutions, since it also includes
solutions which correspond to an odd number of poles in the λ-plane. There are
no analogues of such solutions in the framework that uses the complex structure
in the w-plane.

Finally we remark that all the formulas in this chapter become essentially
simpler if one uses the null coordinates ζ and η instead of coordinates xµ (which
are complex conjugate in the stationary case),

ζ = 1

2
x2 +

√
e

2
x1, η = 1

2
x2 −

√
e

2
x1. (3.121)

However, in this case instead of one expression for the formulas in terms of the
Greek indices one should write two different expressions which correspond to
the ζ and η components. For e = 1, (3.121) give coordinates (1.14) because, as
we have mentioned already, for the nonstationary case x2 = z and x1 = t .

3.5 Einstein–Maxwell breathers

We end this chapter with the explicit example of an Einstein–Maxwell soliton
solution which generalizes the gravibreather described in section 2.3.2. This
solution, called an Einstein–Maxwell breather, was first derived and studied
by Garate and Gleiser [110]. For a certain range of parameters, the so-
lution represents two electrogravitational plane waves which originate at an
initial cosmological singularity. Near the singularity the solution displays a
breather-like behaviour, but at late times one finds two weak electrogravita-
tional waves propagating on a homogeneous Bianchi VI0 cosmological back-
ground.



3.5 Einstein–Maxwell breathers 85

The solution we describe here is the same as the solution in ref. [110], but
since our purpose is also to illustrate how the procedure described in this chapter
works, we will derive it using our language. As usual, the main problem is to
obtain a normalized background generating matrix ϕ(0)(w, xµ) of the spectral
equation (3.48). Fortunately, this problem was solved by Garate and Gleiser
[110] and we can use their result. Let us now proceed to the construction of
the one-soliton solution (with respect to the spectral parameter w) following the
programme, summarized in 11 steps, of section 3.3.4.

1. As our background metric we take the solution used at the end of section
2.3.2, i.e. metric (2.15) with u0 = 2kβ,

ds2 = f0(dz2 − dt2) + αe2kβ(dx1)2 + αe−2kβ(dx2)2, (3.122)

where α and β are the functions (1.45) and (1.46):

α = a(z + t) + b(z − t), β = a(z + t) − b(z − t), (3.123)

and
f0 = |α2

,t − α2
,z|α−1/2ek2α2

. (3.124)

Here k is an arbitrary constant (note that it has the opposite sign with respect
to the same constant in ref. [110]). If α is a time-like variable (α2

,t −α2
,z > 0),

the coordinates can be chosen so that α = t and β = z. In this case
(3.122) represents the vacuum Bianchi VI0 model. However, keeping α and
β arbitrary does not complicate the calculations and we will use this more
general form in what follows. The background matrix g(0)

ab is obviously

g(0)
ab = diag

(
αe2kβ, αe−2kβ

)
. (3.125)

The background value of the electromagnetic potential is chosen as

A(0)
a = 0. (3.126)

Since we are dealing with a nonstationary metric the indicator e which
appeared first in (3.2) should be e = 1, and the Greek indices now
correspond to the coordinates t, z. The components of matrices (3.2) and
(3.15) are ηt t = −1, ηzz = 1, and εt z = εt z = 1, εzt = εzt = −1.

2. The second step of the programme is trivial. In accordance with (3.126)
we choose B(0)

a = 0 and for the background value of the complex
electromagnetic potential we have

$(0)
a = 0. (3.127)



86 3 Einstein–Maxwell fields

3. From (3.41) it follows that with this choice for g(0)
ab and $(0)

a

X (0) = diag
(
4αe−2kβ, 4αe2kβ, 2

)
. (3.128)

4. From (3.33) we obtain the following structure for the matrices U (0)
µ ,

U (0)
µ =

 iηµρε
ρσ (α,σ − 2kαβ,σ )

(
αe2kβ

)
,µ

0

−(αe−2kβ
)
,µ

iηµρε
ρσ (α,σ + 2kαβ,σ ) 0

0 0 0

.

(3.129)

5. The function β was defined in (3.123) and it is easy to check that (3.45) is
automatically verified.

6. From (3.87) the matrix W (0) becomes

W (0) =
 4αe−2kβ 4i(w + β) 0

−4i(w + β) 4αe2kβ 0
0 0 1

. (3.130)

7. Now we arrive at the crucial point, namely, the construction of the back-
ground generating matrix ϕ(0)(w, xµ) of the spectral equation (3.48) which
satisfies the additional condition (3.74). For this we first need to choose
some concrete values for the components of the diagonal and real matrix C .
As follows from the analysis in ref. [5] one convenient choice is

C = diag(−4, 4, 1). (3.131)

As we explained in section 3.3.2 this choice can be made without loss of
generality. Now the Garate–Gleiser [110] solution for ϕ(0) may be written
as†

ϕ(0)(w, xµ) =

ϕ
(0)
11 ϕ

(0)
12 0

ϕ
(0)
21 ϕ

(0)
22 0

0 0 1

, (3.132)

† In ref. [110] this solution was written in the form ϕ(0)K , where ϕ(0) is given by (3.132)–(3.134)
and K is some constant matrix. However, this complication is not necessary at this stage. If
ϕ(0)K is a solution of (3.48), so is ϕ(0). Thus K can be taken to be the unit matrix without loss
of generality. The arbitrary constants that make K will reappear later among the constants k(k)A
and l(k)A in the vectors (3.65)–(3.66).
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where

ϕ
(0)
11 = i

ekβ

√
2

(
cosh k'

σ−
− sinh k'

σ+

)
,

ϕ
(0)
12 = ekβ

√
2

(
cosh k'

σ+
− sinh k'

σ−

)
,

ϕ
(0)
21 = −e−kβ

√
2

(
cosh k'

σ−
+ sinh k'

σ+

)
,

ϕ
(0)
22 = −i

e−kβ

√
2

(
cosh k'

σ+
+ sinh k'

σ−

)
,



(3.133)

and
σ± =

√
w + β ± α, ' = σ+σ−. (3.134)

Direct substitution of this matrix ϕ(0)(w, xµ) together with the previous
matrices U (0)

µ , W (0), and C into (3.48) and (3.74) shows that these equations
are indeed satisfied (this is a rather long calculation). The functions σ± are
defined in such a way that their real parts are always positive, and they
satisfy the equation

σ±(w, xµ) = σ±(w, xµ). (3.135)

It is important to use this last property of σ± when checking the validity of
(3.74).

8. Now we consider the case in which the dressing matrix χ of (3.53) has
only one pole in the complex w-plane, namely w = w1, where w1 is some
fixed complex number. From (3.132)–(3.134) we can compute the matrix
ϕ(0)(w, xµ) at the point w = w1, i.e. ϕ(0)(w1, xµ), and from (3.66) we
obtain the vector pA (since there is only one pole we omit the index (1) on
the vectors m(1)A, p(1)

A , and the constants k(1)
A , l(1)A):

pa = lc
[
ϕ(0)(w1, xµ)

]
ac

, p∗ = l∗, (3.136)

where l1, l2 and l∗ are three arbitrary complex constants. We should recall,
however, that one of these constants (if not zero) can be fixed without loss
of generality: this is a consequence of the rescaling freedom l A → ζ l A for
an arbitrary complex factor ζ (see the footnote in section 3.3.1). We keep
this in mind but will preserve the general form for the constant vector l A

for symmetry reasons and to avoid losing particular cases when some of its
components are zero.

From (3.65) the vector m A, under the condition (3.82) and with matrix C
given by (3.131), can be expressed in terms of the vector pA as

ma = pb N ba, m∗ = p∗, (3.137)
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where the 2 × 2 matrix N (with components N ab) is

N =
(

4αe−2kβ 4i(w1 + β)

−4i(w1 + β) 4αe2kβ

)
. (3.138)

This last result allows us to express the final form of the solution in terms
of the vector pa only.

9. In the single-soliton case the matrix Tkl of (3.58) has only the 11-
component, which can be written with the help of (3.137) as

T11 = 1

w1 − w1

(
l∗l

∗ + pa pb N ba
)
. (3.139)

10. Now, from (3.92) and again using (3.137), we obtain the matrix S B
A :

S ∗
∗ = − 1

T11
l∗l

∗
, S b

a = − 1

T11
pa pc N cb,

S b
∗ = − 1

T11
l∗ pc N cb, S ∗

a = − 1

T11
pal

∗
.

 (3.140)

11. Finally, following step 11 of section 3.3.4 and using equation (3.119) for
the metric component f , we have the solution

ds2 = f (t, z)(dz2 − dt2) + gab(t, z)dxadxb, (3.141)

where the metric coefficients are given in terms of the vector pa and the
matrix N by

gab = g(0)
ab − i

(
1

T11
pa pc N cdεdb − 1

T 11
pb pc N

cd
εda

)
− 4l∗l

∗

T11T 11
pa pb, (3.142)

f = C0 f0T11T 11, (3.143)

where g(0)
ab and f0 are the coefficients of the background solution, (3.125)

and (3.124), respectively, and εab is the antisymmetric matrix (3.16). It is
easy to see that the two-dimensional matrix gab of (3.142) is indeed real and
symmetric. The Maxwell potential Aa is

Aa = −i

(
1

T11
l
∗

pa − 1

T 11
l∗ pa

)
, (3.144)

which is obviously real.
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Thus, we have finished the construction of the solution. However, it is worth
writing it in a more closed and compact form using some special choice of
coordinates, i.e. of α and β. First, it is clear that for the one-soliton solution
we can choose the position of the pole w1 on the imaginary axis

w1 = iq0, (3.145)

where q0 is some arbitrary real and positive constant (this choice is again
possible due to the freedom of the transformation β → β + constant). We can
now choose functions α and β as we did in section 2.3.2 for the gravibreather
solution:

α = q0 sinh t cosh z, β = q0 cosh t sinh z, t > 0. (3.146)

With this choice we have for the functions σ±

σ+ =
√

q0

2

[
e(z+t)/2 + ie−(z+t)/2

]
,

σ− =
√

q0

2

[
e(z−t)/2 + ie−(z−t)/2

]
,

 (3.147)

and for '
' = q0(sinh z + i cosh t). (3.148)

Let us also make a definite choice for the arbitrary parameters la , which can
be fixed by the rescaling freedom la → ζ la . Since one of the parameters, l1

or l2, should be different from zero (otherwise we have the trivial solution) we
impose the following constraint:

(l1)2 + (l2)2 = 1

4
. (3.149)

This constraint fixes two of the four arbitrary real parameters contained in la .
The general solution of this equation is

l1 = 1

2
cosh s0 cos t0 + i

2
sinh s0 sin t0,

l2 = 1

2
cosh s0 sin t0 − i

2
sinh s0 cos t0,

 (3.150)

where s0 and t0 are two arbitrary real parameters. The vector pa follows now
from (3.136), but it is more convenient to give its conjugate value pa:

p1 = i

2
√

2
ekβ

(
coshϒ

σ−
− sinhϒ

σ+

)
,

p2 = i

2
√

2
e−kβ

(
coshϒ

σ−
+ sinhϒ

σ+

)
,

 (3.151)
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where
ϒ = kq0 sinh z − s0 + i(kq0 cosh t − t0). (3.152)

With these expressions for pa and from (3.139), (3.142) and (3.143), it is a
simple exercise to compute the metric coefficients gab and f . If we write the
arbitrary complex constant l∗ in the form

l∗ = ν0eiδ0, (3.153)

where ν0 and δ0 are two real arbitrary parameters, we have the solution (3.141)
with the following metric coefficients:

g11 = q0 sinh t cosh z

D1

[(
cosh t cosh σ − sinh σ + ν2

0 sinh t
)2

+ (sinh z sin τ − cos τ − ν2
0 cosh z

)2]
e2kq0 cosh t sinh z,

g22 = q0 sinh t cosh z

D1

[(
cosh t cosh σ + sinh σ + ν2

0 sinh t
)2

+ (sinh z sin τ + cos τ − ν2
0 cosh z

)2]
e−2kq0 cosh t sinh z,

g12 = 2
q0 sinh t cosh z

D1
[sinh z sinh σ sin τ

− cosh t cosh σ cos τ − ν2
0 (cosh z sinh σ + sinh t cos τ)

] ;



(3.154)

f = D1√
q0 sinh t cosh z

ek2q2
0 sinh2 t cosh2 z; (3.155)

where the functions D1, σ and τ are defined by

D1 = (sinh t cosh σ + ν2
0 cosh t

)2 + (cosh z sin τ − ν2
0 sinh z

)2
,

σ = 2kq0 sinh z − 2s0,

τ = 2kq0 cosh t − 2t0 + π

2
.

 (3.156)

The electromagnetic potential (3.144) can be written in the form

Aa = 4
q0ν0

D1
Re
{
eiδ0 pa

[
ν2

0

(
sinh2 z + cosh2 t

)+ sinh t cosh t cosh σ

− sinh z cosh z sin τ − i (sinh t sinh z cosh σ + cosh z cosh t sin τ)
]}
.

(3.157)

Substituting the vector pa of (3.151) in the above result we can get the final
expression in closed form for the potential Aa . The explicit form, however, is
rather long and we do not display it here.

When ν0 = 0 (i.e. l∗ = 0) we have Aa = 0 and the metric (3.154)–(3.156)
represents a vacuum solution which coincides exactly with the gravibreather
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solution (2.46)–(2.47). To obtain exact coincidence one takes a reflection of
one of the coordinates xa (for example x1 → −x1) and relates the arbitrary
parameters q0, s0 and t0 with the parameters q, σ0 and τ0 which appear in (2.46)–
(2.47) as: q0 = q, 2s0 = −σ0 and 2t0 = 2kq − qτ0 + π/2.

The explicit expressions (3.154)–(3.157) are simple enough that the asymp-
totic behaviour of the solution in different spacetime regions (t → ±∞, z →
±∞ and t ∼ z) can be studied analytically. Such an explicit representation was
not used by Garate and Gleiser [110], nevertheless they were able to describe the
main asymptotic properties of this solution using both analytical and numerical
analysis. These authors also studied numerically the electromagnetic energy
density, as well as a scalar invariant proportional to the square of the Riemann
curvature tensor for this metric. They showed that |w1| = q0 can be interpreted
as the wave width and that, when kq0 ∼ 1, the spacetime near z = 0 and at
early times t ∼ 0 has an oscillating behaviour typical of a gravitational breather
[177]. At late times, however, the solution describes two weak electromagnetic
plane waves propagating in a Bianchi VI0 background. These waves which are
due to the solitonic perturbation of this background start near z = 0 at the initial
cosmological singularity t = 0.



4
Cosmology: diagonal metrics from Kasner

One context in which the ISM described in chapter 1 has been widely used is
the cosmological context, especially for the generation of exact inhomogeneous
cosmological models. The purpose of this and the next chapter is to review such
applications and to provide an overview of the corresponding soliton solutions
and their physical significance.

In this chapter we concentrate on spacetimes that can be described by a
diagonal metric obtained as soliton solutions from a Kasner background. This
background, which is a homogeneous but anisotropic cosmological model, is
reviewed in section 4.2. Section 4.3 is devoted to the characterization of
diagonal metrics. Several physical relevant quantities including the Riemann
tensor in an appropriate frame, the optical scalars and the Bel–Robinson
superenergy tensor which are useful for the interpretation of these diagonal
metrics in the cosmological context, and also in the cylindrically symmetric
and plane-wave contexts, are introduced. A brief review of some key equations
of the ISM adapted to canonical coordinates is given in section 4.4. The
ISM is then used to generate diagonal soliton solutions. Since the relevant
field equations for diagonal metrics are linear, the soliton solutions can be
generalized in several ways. The relation between these solutions and the
known general solution of the linear problem is given, and the solutions are
classified according to the type (real or complex) and the number of pole
trajectories which define them. The solutions with real poles are discussed
in section 4.5. Some interesting connections between different anisotropic
but homogeneous models, and some inhomogeneous generalizations are found.
We discuss the matching of solitonic regions with their backgrounds and find
solutions representing pulse waves propagating on Kasner backgrounds, the
cosmic broom, and some related solutions called cosolitons. In section 4.6
solutions with complex-pole trajectories are analysed. Generally these are more
interesting as cosmological models since the metrics are regular except at the
cosmological singularity. Solutions with one pole trajectory are interpreted as

92
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composite universes. We describe the collision of soliton-like perturbations on
an homogeneous Kasner background. A comparison of this collision with the
soliton collision of nonlinear physics is discussed. Only some features of the
truly nonlinear nondiagonal soliton solutions are preserved when the diagonal
limit is taken.

4.1 Anisotropic and inhomogeneous cosmologies

The large structure of the present Universe seems to be isotropic and spatially
homogeneous. Physical cosmology is based on the relativistic Friedmann–
Lemaı̂tre–Robertson–Walker (FLRW) models which describe the Universe as
completely homogeneous and isotropic in all its evolution [237, 301, 314, 240].

Cosmological models which are not FLRW have also been studied in the
past and, particularly, in recent years. For a comprehensive review of exact
inhomogeneous cosmological models see the book by Krasiński [180]. This
study was motivated partly by the need to explore the consequences of Einstein’s
theory of gravity (the theory in which all cosmological models are described)
and partly because the FLRW cannot explain several features and enigmas of
the present Universe. For instance, trying to explain why the Universe is FLRW
today when it might have been anisotropic at early times motivated the ‘chaotic
cosmology’ program [221]. Also one would like to explain the fact that if
one perturbs the FLRW models [204, 223], one encounters decaying modes
which would have been much more important in the past, suggesting a finite
deviation from FLRW at early epochs, or that purely statistical fluctuations
in FLRW models cannot collapse fast enough to form the observed galaxies
[209]. The study of non-FLRW models started with the anisotropic and spatially
homogeneous models in which a three-dimensional isometry group G3 acts
simply transitively on the hypersurfaces of homogeneity [91, 18, 92]. These
models are included in the Bianchi classification and some of them have the
interesting property that they evolve towards isotropy [208, 257]. Spatially
inhomogeneous cosmologies have been limited mainly to the case of spacetimes
admitting an Abelian two-parameter group, G2, of isometries. They were
initiated by Gowdy’s spatially compact models [126, 125]. Later, there was
increased interest in such cosmologies [293, 294, 295, 298, 45, 2]. See the
reviews by Carmeli et al. [48], MacCallum [210, 211, 212], Verdaguer [288]
and Bonnor et al. [39] for a summary of the main work.

Part of this interest has been motivated by the possibility that there could
exist a background of gravitational waves [255, 50]. Present and proposed
experiments may be close to detecting it [315, 274] and much effort has been
devoted to find the means for doing so. If these waves have a cosmological
origin they would generally have a longer period than the waves generated at
the present epoch and could be observable by new detection techniques, for
example, by the Doppler tracking of interplanetary spacecraft [146, 28, 216],
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by monitoring perturbations to planetary orbits [27, 279, 217], by the imprints
they leave on the cosmic microwave background [181, 44], or by scrutinizing
the timing noise in pulsars [215, 29, 147, 253]. The last two methods give the
strongest constraints, so far, on the present amount of gravitational waves of
cosmological origin. One way in which a background of gravitational waves
could arise would be as a superposition of waves from many individual bursts
generated astrophysically at some time in the past [255, 249, 273]. The origin of
some waves may be oscillating loops of cosmic strings [290, 280, 281]. In the
inflationary models [133, 203, 3, 144], the quantum fluctuations of gravitational
modes may lead to a spectrum of long wavelength gravitational waves [256].
Another possibility is that the waves may be primordial in the sense that they
derive from the initial conditions of the Universe at the Planck time in an
FLRW universe [131, 314], as suggested by some quantum cosmology models
[134, 282].

Another possibility is that the primordial waves may reflect a purely classical
irregularity in some initial structure of the Universe. In this case the waves
would not look like radiation at sufficiently early times because they would have
wavelengths larger than the Universe’s particle horizon. Also their amplitude
would severely distort the background spacetime. Thus, classical primordial
waves could also arise if the early Universe deviated considerably from the
smooth structure we observe today. Depending on the type of initial irregularity,
one might expect an isotropic stochastic background with a wide range of
wavelengths if the Universe started off completely chaotic [221, 248].

Finding exact cosmological solutions which evolve towards homogeneous
cosmological models with a background of cosmological gravitational waves
is of interest as a classical mechanism for the creation of such a background.
Inhomogeneous cosmological solutions admitting a G2 provide examples of
such a mechanism, although, of course, they produce a very correlated grav-
itational wave background (all waves travelling in the same direction) rather
than a stochastic background like the one probably present. Such a correlated
background might be generated by a less extreme form of irregularity [148]
or as consequence of the dissipation of an initial inhomogeneous cosmological
singularity [308, 309].

Most of the inhomogeneous solutions studied so far can be considered as
generalizations of homogeneous Bianchi models in which the homogeneity is
broken in one direction. In fact, all Bianchi models from type I to type VII and
the locally rotationally symmetric (LRS) types VIII and IX admit an Abelian
subgroup G2 of isometries and can be written [257] as

ds2 = f (t)(dz2−dt2)+ηcd(t)e
c
a(z)e

d
b (z)dxadxb (a, b, c, d = 1, 2), (4.1)

where the functions ec
a(z) depend only on the particular Bianchi type. One may

break the homogeneity in the z-direction by assuming that f and ηcd are also
functions of z: f (t, z) and ηcd(t, z). Adams et al. [2, 1] have studied solutions
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which describe gravitational waves in Bianchi backgrounds, particularly of type
I, by solving the Einstein equations when the above assumption is made.

Spacetime metrics admitting an orthogonally transitive two-parameter group
of isometries, i.e. admitting an Abelian G2 group of isometries with 2-surfaces
orthogonal to the group orbits, can be written [179] in block diagonal form:

ds2 = f (t, z)(dz2 − dt2) + gab(t, z)dxadxb, (a, b = 1, 2), (4.2)

where we have assumed two space-like commuting Killing vector fields ∂x1

and ∂x2 . This class of metrics is often referred to as Gowdy models, even
when no compact spatial sections are considered. They include (4.1) and their
inhomogeneous generalizations and were first introduced in ref. [20]. As can be
seen from chapter 1, this metric coincides with (1.36) and the ISM allows one
to generate new solutions in a systematic way once a particular background or
seed solution is given.

4.2 Kasner background

Most soliton solutions of cosmological interest have been obtained by the
ISM from a background metric consisting of one of the homogeneous Bianchi
models. This is only natural because Bianchi models are well understood
and classified and, as we have seen in the last section, they can be easily
generalized to spacetimes with G2 isometries by breaking their homogeneity
along one direction. Also this may provide a first approach for a classification
of inhomogeneous cosmologies [294].

Among all Bianchi models the simplest one, Bianchi I, which is given in
vacuum by the Kasner metric [164, 184], has been the most fruitful. The
ISM and generalizations applied to the Kasner metric lead to a large class of
inhomogeneous solutions and even to large families of homogeneous Bianchi
models, thus relating solutions which were previously unrelated. The reason
why the Kasner metric is of special interest in cosmology may be related to
the fact that in some sense the ‘generic’ cosmological solution of the Einstein
equations near the cosmological singularity is described by a succession of
Kasner epochs, as has been indicated in the analysis of refs [20, 21].

More specifically in the case of the collision of parallel-polarized plane
waves, whose interaction region is described by a metric (1.36), or (4.2), with
a diagonal gab (as we shall see in chapter 7), Yurtsever [308, 309] has proved
that as the singularity is approached (α = t → 0), which corresponds to the
cosmological singularity in our context, the metric is asymptotic to a Kasner
solution for each fixed β = z, in agreement with the analysis of refs [20, 21].
Since, as we shall see, the ISM does not change the singular character of a
background metric, although it may introduce new singularities, the use of the
Kasner metric as background seems reasonable for the generation of a quite
general family of cosmological solutions.
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In canonical coordinates, i.e. in coordinates such as (1.36) with the condition
that α = t and β = z (see (1.45)–(1.46)), the Kasner metric can be written as

ds2 = t (d
2−1)/2(dz2 − dt2) + t1+ddx2 + t1−ddy2, (4.3)

where d is an arbitrary parameter, the Kasner parameter. Expression (4.3) is
related to the standard Kasner form [20, 184, 179]:

ds2 = −dT 2 + T 2p1dx2 + T 2p2dy2 + T 2p3dz2, (4.4)

where p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1, by the time transformations T =

t (d
2+3)/4 and

p1 = 2(1 + d)

d2 + 3
, p2 = 2(1 − d)

d2 + 3
, p3 = d2 − 1

d2 + 3
. (4.5)

The parameter d may be chosen either positive (d > 0) or negative (d <

0) since one may obtain one solution from the other by interchanging the
coordinates x and y.

The value |d| = 1 corresponds to a region of the Minkowski spacetime, and
d = 0 is an LRS space with Petrov type D metric. Other values of d correspond
to Petrov type I metrics. The z axis is expanding for |d| > 1 and contracting for
|d| < 1; as we shall see this leads to quite different behaviours for the generated
soliton metrics.

4.3 Geometrical characterization of diagonal metrics

From a diagonal background in canonical coordinates (1.36), the ISM generally
leads to nondiagonal metrics, i.e. metrics with two polarizations when they
admit a wave interpretation. But one may restrict the parameters involved in
the ISM so that all new solutions are diagonal, i.e. one polarization. This
is simply done by taking some of the parameters to be zero. Therefore the
diagonal metrics thus obtained may be considered as a limit of the more general
nondiagonal soliton solutions and as such they deserve attention since they
preserve some of the features of the more general case. In particular, the pole
trajectories are the same and, since these trajectories characterize the shape and
the propagation of the solitons, this feature will be preserved in the nondiagonal
case. In contrast, a feature that will obviously not be represented is the typical
nonlinear interaction between the modes of polarization that follows from (1.39)
in the general case.

Furthermore, the diagonal metrics characterized by having hypersurface
orthogonal Killing vectors are also of interest on their own. Equations (1.39)
become linear when the metric is written in the Einstein–Rosen form [90] and
a superposition principle applies to their solutions. This will lead to several



4.3 Geometrical characterization of diagonal metrics 97

generalizations of the soliton solutions, some of which contain interesting
spacetimes.

A great advantage of the diagonal metrics is that a fairly complete study of
the spacetime they describe and of their physical properties can be made. The
Riemann tensor becomes explicitly calculable in most cases and some of the
Riemann components and optical scalars have direct physical meaning. In this
section we give the main elements for the intrinsic characterization of these
metrics, which will be of use later.

4.3.1 Riemann tensor and Petrov classification

Metric (4.2), when g12 = 0, takes the form

ds2 = f (t, z)(dz2 − dt2) + g11(t, z)dx2 + g22(t, z)dy2 , (4.6)

and the Riemann tensor can be written as the 6 × 6 matrix

R(αβ)

(γ δ) =
(

E B
−B E

)
, (4.7)

where the indices are (01), (02), (03), (23), (31) and (12). Here E and B are the
‘electric’ and ‘magnetic’ 3 × 3 matrices whose nonzero components are

E11 = e1, E22 = e2, E33 = e3, B12 = B21 = b,

with

e1 = 1

2 f

[
g′′

22
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2
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,
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2 f
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,
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2 f

(
1

2
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11
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2

ġ11

g11

ġ22
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2 f

(
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11
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2
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ġ11

g11
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2
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11
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ḟ
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.



(4.8)

Here a dot denotes ∂t and a prime ∂z . All these quantities are easily calculated for
soliton solutions. Since we are dealing with vacuum solutions e1 + e2 + e3 = 0.

For some purposes, particularly when considering spacetimes which exhibit
propagation of waves, it is best to express the Riemann tensor in terms of an
appropriate null tetrad of vectors (�n, �l, �m, �m∗), which satisfy:

lµnµ = −1, mµm∗µ = 1 (4.9)
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(all other scalar products among these vectors vanish), and in terms of which the
spacetime metric can be written as

gµν = mµm∗
ν + m∗

µmν − nµlν − lµnν. (4.10)

For the metric (4.6) we choose the following null tetrad:

�n = (1/
√

2 f )(∂t + ∂z), �l = (1/
√

2 f )(∂t − ∂z),

�m = (1/
√

2g11)∂x + i(1/
√

2g22)∂y, �m∗ = (1/
√

2g11)∂x − i(1/
√

2g22)∂y.

}
(4.11)

The nonvanishing components of the Riemann tensor, which are also those of
the Weyl tensor, Cµναβ , since Cµναβ = Rµναβ in vacuum, are given in this tetrad
by the following three scalars:

)0 = Rµναβnµmνnαmβ = 1

2
(e2 − e1) + b,

)2 = 1

2
Rµναβnµlν(nαlβ − mαm∗β) = −1

2
e3,

)4 = Rµναβlµm∗νlαm∗β = 1

2
(e2 − e1) − b.

 (4.12)

These components now have a direct physical interpretation [265]: )0 and )4

represent the radiative part of the gravitational field, whereas )2 contains the
Coulomb part; )0 gives the radiative component along the left-directed waves
and )4 along the right-directed waves.

There are only two independent scalar invariants [179]:

I = )0)4 + 3)2
2 , J = )2()0)4 − )2

2 ) , (4.13)

and the d’Inverno and Russell-Clark [81] algorithm for the algebraic classifica-
tion of the Riemann tensor reduces to the following: if I 3 = 27 J 2 the metric
is of Petrov type D, otherwise it is type I. The case of plane waves I = J = 0,
i.e. type N, cannot be treated in canonical coordinates, but the ISM can also be
applied in this case.

It may also be convenient to use a boosted tetrad, i.e. instead of (�n, �l, �m, �m∗)
to use

(A�n, A−1�l, �m, �m∗), (4.14)

where A is a positive function. Then the Riemann, or Weyl, scalars (4.12),
()0, )2, )4), are simply replaced by

(A2)0, )2, A−2)4). (4.15)

This is especially useful for studying the asymptotic behaviour of the metric
on the null directions �n or �l. Thus, for instance, let us consider a null congruence
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defined by the null vector k0 = k3 and k1 = k2 = 0. The geodesic equation
kβkα;β = 0 is simply

(∂t + ∂z)(k
0 f ) = 0, (4.16)

and we can choose the normalization k0 = (1/
√

2)/ f so that �k = (1/
√

f )�n is
the tangent to the affinely parametrized null congruence. Now if we take A =
1/

√
f in the null tetrad (4.14), A−1�l, �m and �m∗ are parallel transported along the

null congruence �k. This can be easily checked by computing the commutators
[�k, �m], [�k, A−1�l] and realizing that for our metric (4.6) [ �m, �m∗] = 0 always.
The Weyl scalars (4.15) in such a parallel propagated tetrad give the physical
tidal forces, so that if one of them diverges at some spacetime point, the null
congruence finds infinite tidal forces and therefore a curvature singularity. Thus
there is no need to compute the scalar invariants I and J (4.13) to find such
a singularity. Similarly, the singularities may be checked along the direction
�l, by considering the tetrad (4.14) with A = √

f . Then A�l is tangent to a
null congruence with affine parametrization and A�n, �m, and �m∗ are parallel
transported along it.

4.3.2 Optical scalars

For a spacetime with G2 symmetry, such as (4.2), there is always a preferred
null congruence. The covariant derivative of a geodesic null vector field kα is
invariantly characterized by three optical scalars: the expansion, θ , the shear, σ ,
and the rotation or twist, ω. These are given by [89, 179, 299]

θ = 1

2
kα;α , ω2 = 1

2
k[α;β]k

α;β, σσ ∗ = 1

2
k(α;β)k(α;β) − 1

4
(kα;α )2.

(4.17)
Note also that θ + iω = kα;βmαm∗β and σ = −kα;βmαmβ in terms of a null
tetrad, but those quantities are invariant and independent of the choice of such a
tetrad.

For a diagonal metric such as (4.6), ω = 0 (the null congruence is hypersur-
face orthogonal) and the expansion and shear become

θ = 1

2
√

2

1

f t
, σ = 1

2
√

2

1

f

(
1

t
− ġ11

g11
− ġ22

g22

)
. (4.18)

When a metric defines a preferred vector field a classification of the vector
field is also a characterization of the metric. On the other hand, a geodesic null
vector field can be interpreted as the tangent vector to optical rays. Therefore
the expansion and shear are important quantities for studying metrics (4.6): they
give physical information on the spacetime in which the rays propagate.
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4.3.3 Superenergy tensor

In general relativity we do not have a local definition for the energy of the
gravitational field. Several quantities have been proposed for the energy density
or energy flux of the gravitational field. For instance, for spacetimes with
cylindrical symmetry, Thorne [272] was able to define a C-energy flux vector
that obeys a conservation law (we shall introduce this quantity in the cylindrical
context in chapter 6). But in the general context one of the most interesting
quantities is the Bel–Robinson superenergy tensor T µναβ , which is defined as
the gravitational analogue of the electromagnetic stress-energy tensor [10, 11].
It therefore represents the energy density of local relative acceleration. However,
the Bel–Robinson tensor does not have the dimensions of an energy density, but
of the square of an energy density (superenergy). It is given by

T µναβ = Rµρασ Rν β
ρ σ + ∗Rµρασ∗ Rν β

ρ σ , (4.19)

where ∗Rµναβ is the dual tensor of Rµναβ , ∗Rµναβ = ηµνρσ R αβ
ρσ (ηµνρσ is the

totally antisymmetric covariant Levi-Civita tensor), ε = T µναβuµuνuαuβ repre-
sents the superenergy density as seen by an observer with velocity uµ(uµuµ =
−1) and

Pα = −(δαµ + uαuµ)T
µνρσuνuρuσ (4.20)

is the corresponding Poynting vector.
Now for metric (4.6) we may define an orthonormal tetrad given by

�e0 = (1/
√

f )∂t , �e1 = (1/
√

g11)∂x , �e2 = (1/
√

g22)∂y, �e3 = (1/
√

f )∂z.

(4.21)
By projecting the Riemann tensor and its dual onto this tetrad, we can calculate
the superenergy density and the Poynting vector, as seen by an observer at rest
in this frame:

ε = e2
1 + e2

2 + e2
3 + 2b2, P0 = P1 = P2 = 0, P3 = 2(e1 − e2)b. (4.22)

We have a clear analogy with electromagnetism. There is only a superenergy
flux along the z-direction. Note, for instance, that for the Kasner metric (4.3),
P3 = 0, since b = 0. Associated with these quantities we may define a
three-velocity field as the ratio of the superenergy tensor flux (Poynting vector)
to the superenergy density v(t, z) = P3/ε. Such a quantity is not covariant
since it is a velocity measured with respect to the orthonormal frame (4.21).
However, it may be significant when we analyse inhomogeneities propagating
on a background, such as the Kasner background, in which such a field is zero.

We note that a similar three-velocity may be defined in Minkowski space with
the electromagnetic field using the Poynting flux ‘vector’ T 0µ, which satisfies
T 0µ

,µ = 0 (T µν is the electromagnetic stress-energy tensor). The three-velocity
vi may be written in this case as [222] vi = (tanhα)ni , where

[tanh(2α)]ni = T 0i/T 00 = 2(E × B)i (E2 + B2)−1 (4.23)
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(the factor 2 in the tanh is due to the tensorial character of T µν), ni is unitary
and E and B are the electric and magnetic fields. Now an observer propagating
at such a velocity measures no flux of electromagnetic energy. For a null
electromagnetic field (E2 = B2, E · B = 0) such a speed is the speed of light. In
analogy we shall see later that, for the gravitational case, in the regions where
gravitational radiation dominates, the velocity v(t, z) = P3/ε also approaches
unity.

4.4 Soliton solutions in canonical coordinates

Given that the most used background solution in the cosmological context is the
Kasner metric, which depends on t only and has det g0 = t2, it is useful, for
practical purposes, to rewrite some of the equations for the n-soliton solutions
obtained by the ISM of sections 1.3 and 1.4 in terms of canonical coordinates.
Thus, we impose that t = α and z = β. This determines the arbitrary functions
that define α and β in (1.45)–(1.46). We recall from (1.14) that z = ζ + η and
t = ζ − η and that ∂ζ = ∂z + ∂t and ∂η = ∂z − ∂t . Equation (1.38) is now

det g = t2, (4.24)

where we assume that t ≥ 0. The Einstein equations (1.39)–(1.42) become

U,t − V,z = 0, (4.25)

(ln f ),t = −1

t
+ 1

2t
Tr(U 2 + V 2), (4.26)

(ln f ),z = 1

2t
Tr(U · V ), (4.27)

where U and V are the 2 × 2 matrices U = tg,t g−1 and V = tg,zg−1, which are
related to the matrices A and B of (1.42) by: 2U = −(B + A) and 2V = B − A.
The linear system for the generating matrix ψ(λ, t, z) associated with system
(4.25) (i.e. the spectral equations, or the ‘L–A pair’) is

D1ψ = − tV + λU

λ2 − t2
ψ, D2ψ = − tU + λV

λ2 − t2
ψ, (4.28)

where D1 and D2 are the operators

D1 = ∂z − 2λ2

λ2 − t2
∂λ, D2 = ∂t − 2λt

λ2 − t2
∂λ, (4.29)

where λ is a complex spectral parameter. Equations (4.28) are trivially obtained
by writing (1.51) in the new variables. Also, as before, the matrix g(t, z)
solution of (4.25) follows from the generating matrix when λ = 0:

g(t, z) = ψ(0, t, z). (4.30)
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We recall from sections 1.3 and 1.4 that the procedure for constructing the
n-soliton solution is to start with a given particular background solution g0

and to integrate the linear system (4.28) to find a solution ψ0(λ, t, z) for the
background generating matrix. One then looks for solutions of ψ of the type
ψ = χψ0, where χ is the dressing matrix, which is assumed to have the form
(1.64), where the n pole trajectories µk(t, z) (k = 1, 2, . . . , n) satisfy equations
(1.66) which in the new variables are

µk,z = 2µ2
k

t2 − µ2
k

, µk,t = 2tµk

t2 − µ2
k

. (4.31)

The solutions of these equations are the roots of the quadratic equation (1.67),
namely

µ2
k + 2(z − wk)µk + t2 = 0, (4.32)

where wk are arbitrary complex constants. The solutions may be written as

µ±
k = wk − z ± [(wk − z)2 − t2]1/2, (4.33)

where the superscripts − and + stand for the labels in and out, respectively, in
(1.68)–(1.69) with the prescriptions that the branches of the square roots should
be chosen in such a way that |µ−

k | < t and |µ+
k | > t (see section 1.4 for a

detailed discussion of this prescription). Next one constructs the vectors m(k)
a

according to (1.80), which now reads

m(k)
a = m(k)

0b [ψ−1
0 (µk, t, z)]ba, (4.34)

where m(k)
0b are arbitrary complex constant vectors. With these vectors one

may construct the symmetric matrix �kl defined in (1.83). This is almost the
final step in the construction of the n-soliton solution: next one inverts this
matrix according to (1.84) and constructs the matrix g using (1.87). This
matrix does not satisfy the condition (4.24), but this is easily overcome by the
definition (1.100) of the physical matrix g(ph), which is a solution of (4.25) and
satisfies (4.24). The physical coefficient f (ph) which solves (4.26)–(4.27) is
then constructed using (1.110). Everywhere in this chapter we will use only the
physical values of the metric components defined by (1.100) and (1.110) and,
for simplicity, we will not use the label (ph) in the physical n-soliton solutions.

Kasner background. In this chapter we shall deal mostly with the Kasner
metric as the background solution, thus we need to compute the corresponding
background generating matrix ψ0. We recall that this is the only nonalgebraic
step in the construction of the n-soliton solution. Thus we start with the matrix
g0 = diag(t1+d, t1−d), where d is the Kasner parameter, then the corresponding
U and V matrices are, respectively, U0 = diag(1 + d, 1 − d) and V0 = 0. The
linear equation (4.28) is now easily integrated and leads to

ψ0(λ, t, z) = diag
(
(t2 + 2zλ + λ2)(1+d)/2, (t2 + 2zλ + λ2)(1−d)/2

)
, (4.35)
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which satisfies (4.30), i.e. g0 = ψ(λ = 0). This background generating matrix
is the starting point for most solutions in this chapter. The vectors m(k)

a of (4.34)
are now written, using the definition of the pole trajectories (4.32), as

m(k)
a =

(
m(k)

01 (2wkµk)
−(d+1)/2,m(k)

02 (2wkµk)
(d−1)/2

)
. (4.36)

The constant vectors m(k)
0a have the normalization freedom m(k)

0a → ζ km(k)
0a ,

where ζ k are some constants. This transformation does not change the matrix g
of (1.87) and changes the coefficient f of (1.110) by a constant only. This result
may be compared with the analogous result for m(k)

a obtained in (2.16) with the
solutions (2.26)–(2.27) for the Kasner metric. The relation of the parameters
used here (m(k)

0a , wk) with the previous parameters (Ak,Ck) is simply

A2
k = m(k)

01 m(k)
02 (2wk)

−1, e−Ck = m(k)
01

m(k)
02

(2wk)
−d, (4.37)

where we still have the normalization freedom.

4.4.1 Generalized soliton solutions

Starting with a diagonal metric as the background solution we can easily
generate diagonal soliton solutions by taking some of the arbitrary parameters
m(k)

0b in (4.34) to be zero; here we shall take m(k)
01 = 0.

The general expression for the metric coefficients g11 and g22 can be obtained
for n solitons by adding solitons one at a time. For any diagonal background
metric the result is

g11 =
n∏

k=1

(µk/t)(g0)11, g22 = t2/g11. (4.38)

In fact, from (1.87) we have that g11 = (g0)11 since the vectors L (k)
a defined in

(1.86) satisfy L (k)
1 = 0, then (4.38) follows trivially from (1.100); recall that we

now use the canonical coordinates t = α and z = β. Note that this result is
general and independent of the background metric. When g0 depends on t only,
the coefficient f is best found by integrating (4.26)–(4.27) directly, rather than
using (1.110). For the Kasner background we get [51],

f = f0tn(n−2d)/2
n∏

k=1

[
µ2+d−n

k (µ2
k − t2)−1

] n∏
k,l=1;k>l

(µk − µl)
2. (4.39)

Here and below, t ≥ 0 and we write all formulas containing the functions
µk in a formal way, although we understand that each time a choice of sign is
made that ensures the well defined sense of our expressions and the physical
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signature of the metric. Since the metric coefficient f is determined (up to a
multiplicative constant) once the ‘transversal’ metric coefficients gab(t, z) are
known, some essential features of the metric can be seen from gab. However,
we should bear in mind that the spacetime geometry is also determined by f
and that this coefficient is related in a nonlinear way to gab. Thus a complete
solution is not known until all metric coefficients f and gab are given.

We can now proceed to the generalization of the n-soliton solutions (4.38)
and (4.39). The key to such a generalization is that the metric coefficients g11

and g22 can be written in the Einstein–Rosen form in terms of a single function
$(t, z) that satisfies an hyperbolic linear equation. That is, by writing

g = diag(te$, te−$), (4.40)

(4.25) are reduced to the familiar ‘cylindrical’ wave equation

$,t t + 1

t
$,t − $,zz = 0, (4.41)

and (4.26)–(4.27) become

(ln f ),t = − 1

2t
+ t

2

[
($,t)

2 + ($,z)
2
]
, (ln f ),z = t$,z$,t . (4.42)

Then (4.38) can be written as

$ = $0 + $s, $s =
n∑

k=1

ln(µk/t), $0 = d ln t, (4.43)

where $s stands for the soliton part and $0 for the background part, and the
expression d ln t is applicable in the case of the Kasner background. Since
$s satisfies a linear equation one may easily generalize the above solutions.
For instance, for complex-pole trajectories µk , the real and imaginary parts of
$s lead both to independent solutions. Also, any solution can be multiplied
by any real or complex number to get another solution. In particular, this is
equivalent in some cases to considering degenerate poles. These new solutions
are called generalized soliton solutions. In the next sections we shall consider
such generalized solutions for both real and complex poles, giving also the f
coefficient. In each case we shall consider in detail solutions related to one and
two poles since they are shown to give the generic behaviour for all cases.

General solution of the linear equation. For further reference and to allow
comparison with the soliton solutions, it is worth reviewing here some of the
well known solutions of the wave equation (4.41). Under the condition that $
be bounded in z the general solution of (4.41) (apart from the last equation of
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(4.43)) can be written in Fourier Bessel integrals [300, 2] as

$F B =
∫ ∞

0

{
[Ak sin(kz) + Bk cos(kz)]J0(kt)

+ [Ck sin(kz) + Dk cos(kz)]N0(kt)
}
dk, (4.44)

where J0 and N0 are the Bessel and Neuman functions of order zero, and
Ak, Bk,Ck and Dk are k-dependent coefficients. Note that if we impose
compact spatial sections, as required in Gowdy cosmologies, the above integral
is substituted by a sum (Fourier series) of terms periodic in z. Since N0(kt) is
singular at t = 0 whereas J0(kt) is regular there, the parameters (Ck, Dk) and
(Ak, Bk) play a very different role near t = 0. Adams et al. [2] call ‘chaotic’ the
solutions with nonzero parameters (Ck, Dk), and nonchaotic those which have
(Ak, Bk) as the only nonzero parameters. In fact, in the limit t → 0:

$F B ≈
∫ ∞

0
[Ak sin(kz) + Bk cos(kz)]dk

+ 2

π
(0.577 − ln 2 + ln t)

∫ ∞

0
[Ck sin(kz) + Dk cos(kz)]dk, (4.45)

so that the chaotic part diverges logarithmically and may be seen as contributing
to the Kasner solution where it introduces z-dependent Kasner parameters. This
term leads to the Kasner-like cosmological singularity [20].

At large t , however, both the chaotic and nonchaotic parts behave in a similar
fashion, and the solutions $F B can be considered as a superposition of travelling
waves along the z axis with the amplitude decreasing as t−1/2. As t → ∞, (4.44)
can be written as

$F B ≈ 1√
2π t

∫ ∞

0

[
E+

k cos(kt − kz + φ+
k ) + E−

k cos(kt + kz + φ−
k )
] dk√

k
,

(4.46)
where, following Adams et al. [2], the amplitude and phase of the waves are
defined in terms of (Ak , Bk , Ck , Dk) by

(E±
k )2 = (Bk ± Ck)

2 + (Dk ∓ Ak)
2, tanφ±

k = (Dk ∓ Ak)/(Bk ± Ck). (4.47)

We shall see later that many soliton solutions are not bounded at |z| → ∞ and
thus cannot be expressed in terms of the Fourier Bessel integrals (4.44). Instead
the solutions in (4.43) may be expressed as superpositions of the well known
solution of the linear wave equation (4.41) given by Lamb [183, 254],

$ ≡
∫ sk−z−t

0

gk(ν)dν

[(sk − z − ν)2 − t2]1/2
, (4.48)

where gk(ν) are arbitrary bounded functions and sk are arbitrary constants. The
values that these functions, and parameters, take in the soliton case will be
specified later.
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There are some other soliton solutions, namely those resulting of the super-
position of two opposite poles (‘soliton–antisoliton’ pairs) that are bounded at
|z| → ∞ and can be written in terms of the nonchaotic part of (4.44). This has
been used by Feinstein [97] to define an effective energy for the corresponding
soliton solutions.

4.5 Solutions with real poles

Real-pole trajectories are obtained from (4.33) with wk = z0
k (real), the poles

are then
µ±

k = zk ± (z2
k − t2)1/2, zk ≡ z0

k − z (4.49)

with either sign being allowed. In (4.49) the square root is positive for positive
values of zk and negative for negative values of zk , then the minus and plus
signs stand for the in and out labels, respectively, in (1.68)–(1.69). The two
functions are not independent since, as a consequence of µ−

k = α2/µ+
k , we

have µ−
k = t2/µ+

k . The parameters z0
k are sometimes called the soliton ‘origins’

since they mark the origins of the light cones z2
k = t2. It is obvious that these

pole trajectories are only defined in terms of canonical coordinates outside such
light cones z2

k ≥ t2. On the light cones (µk/t)2 = 1, from (4.43) it is obvious
that $ continuously matches a solution that does not include the k-pole (if we
consider just one pole trajectory, then this matches the background metric). The
first derivatives of the metric coefficients g11(t, z) and g22(t, z) are, however,
discontinuous along such a light cone. This has usually been interpreted as
implying that it leads to shock wave solutions [16]. For the true solitons (i.e.
solutions corresponding to a collection of simple poles) such an interpretation is
indeed possible. However, we will see in subsection 4.5.2 that for the so-called
generalized soliton solutions (which correspond to the degenerate poles already
mentioned in section 2.1) such a statement is not generally true: sometimes
this discontinuity leads to a curvature singularity on the light cones and to
continue the solution across the light cone is meaningless, and sometimes it
simply reflects the fact that canonical coordinates behave badly there. It is thus
clear that in terms of the canonical coordinate patch the spacetime is divided by
a set of intersecting light cones with origins at z0

k as in fig. 4.1.
It is now convenient to write down the main asymptotic values for µk/t ,

which is the main ingredient of the solutions (4.43). We may distinguish four
asymptotic regions in canonical coordinates:

(i) The future time-like infinity or ‘causal region’ (|zk | � t → ∞) for all k,
which is contained in the intersection of the set of light cones with origins
at z = (z0

1, z0
2, . . . , z0

n).

(ii) The future null infinity (|zk | ∼ |z| = t → ∞).

(iii) The space-like infinity (t � |zk | ∼ |z| → ∞).
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t

zz0
1 z0

2 z0
3 z0

4

Fig. 4.1. This represents the light cones for four real-pole soliton solutions with
equally spaced origins.

(iv) The ‘initial region’ (|zk |, |zk | � t → 0), i.e. the region near t = 0 which
is generally a cosmological singularity if the Kasner metric is used as the
background.

In the regions z2
k ≥ t2 the limiting values of µ±

k are µ±
k /t → 1 if z → −∞

and µ±
k /t → −1 if z → +∞ at future null infinity, and

µ−
k

t
= t

2zk

[
1 + 0

(
t2

z2
k

)]
,

µ+
k

t
= 2zk

t

[
1 + 0

(
t2

z2
k

)]
, (4.50)

both at space-like infinity and in the initial region.
The first set of generalized soliton solutions is obtained from (4.43) by simply

multiplying each term in the sum by an arbitrary real parameter hi [53]. Since
this is equivalent to considering degenerate poles, the metric coefficient f may
be found from (4.39) by taking appropriate limits. The final result is:

$ = d ln t +
s∑

k=1

hk ln
(µk

t

)
, (4.51)

f = t [(d−g)2−1]/2
s∏

k=1

[
µ

hk (hk+d−g)
k (z2

k − t2)−h2
k/2
] s∏

k,l=1;k>l

(µk −µl)
2hk hl , (4.52)

where we have taken s pole trajectories and g ≡∑2
k=1 hk .

Each term with index k (which we designate as $k) in (4.51) is simply related
to the solution (4.48). In fact, the superposition (4.51) corresponds to the case
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gk(ν) = hk for 0 < ν < ∞ and sk = z0
k ; then the integration of (4.48) leads to

$k = hk ln

(
µ+

k

t

)
≡ hk cosh−1

( zk

t

)
. (4.53)

Note that if we take µ−
k , this is equivalent to changing hk to −hk .

It is interesting to point out how the soliton limits of solutions (4.51)–(4.52)
for two poles, i.e. h1 = h2 = 1 or h1 = −h2 = 1, can be obtained from the
nondiagonal two-soliton solutions (2.20)–(2.25). Thus the case h1 = h2 = 1 is
recovered when the parameters C1 and C2 in (2.27) are C1 = C2 → ∞, and one
makes use of the identity

(t2 − µ1µ2)(µ1 − µ2) = 2(w2 − w1)µ1µ2. (4.54)

The case h1 = −h2 = 1 is recovered when the parameters C1 and C2 in (2.27)
are C1 = −C2 → ∞, and one makes use of the identity

(µ±
k )

2 − t2 = ±2µ±
k

√
z2

k − t2. (4.55)

Another type of generalized soliton solution may be obtained by changing hk

to ihk in (4.51) [53, 173]. In fact, according to (4.53) the above change leads
to the solutions hk cos−1(zk/t). Such solutions are valid inside the light cones
|zk | ≤ t , so that in some sense they are complementary to solution (4.51). For
this reason they are also called cosoliton solutions. Note that this is equivalent
to extending the solution for real poles ln(µk/t) inside the above light cone and
taking into account that the imaginary part of a complex solution of a linear
equation is also a real solution of the same equation. The evaluation of the
coefficient f is in this case a bit more involved.

The final result is

$ = d ln t +
s∑

k=1

hk cos−1
( zk

t

)
, (4.56)

f = t (d
2−1−gs )/2 exp

[
d

s∑
k=1

hk cos−1
( zk

t

)] s∏
k=1

[
(t2 − z2

k)
h2

k/2
]

×
s∏

k,l=1;k>l

(
zkzl − (t2 − z2

k)
1/2(t2 − z2

l )
1/2

zkzl + (t2 − z2
k)

1/2(t2 − z2
l )

1/2

)(hk hl )/2

, (4.57)

where gs ≡∑s
k=1 h2

k . Of course, by superposing solutions of the type (4.51) and
(4.56), one may obtain new solutions. In the next subsections we shall consider
solutions (4.51)–(4.52) and (4.56)–(4.57) by studying in detail solutions with
one and two (opposite) poles. This will suffice for understanding the general
case.



4.5 Solutions with real poles 109

4.5.1 Generation of Bianchi models from Kasner

Here we consider the generalized soliton solution with one pole. That is, by
taking s = 1 and denoting h1 by h, solution (4.51)–(4.52), for µ+

k , reads

$ = d ln t + h cosh−1
( z1

t

)
, |z1| ≥ t, (4.58)

f = t [(d−h)2−1]/2µhd
1 (z2

1 − t2)−h2/2. (4.59)

This solution was first given by Wainwright et al. [297]. Its connection to
the Kasner metric via the ISM was noted by Kitchingham [172] and Verdaguer
[285]. Generally, it does not have a cosmological interpretation since, besides
the singularity at t = 0, it is also singular at space-like infinity (t � |zk | → ∞)
and on the light cone z2

1 = t2, with the exception of some particular values of
the parameters h and d. This may be easily checked from the Riemann tensor,
whose components using tetrad (4.11) are:

)0 = )+, )4 = )−, )2 = 1

2 f

(
(1 − d2 − h2)

4t2
+ dhz1

2t2(z2
1 − t2)

1
2

)
, (4.60)

where

)∓ = 1

2 f

(−d(d2 − 1)

4t2
+ 3hd2(z1 ± t)

1
2

4t2(z1 ∓ t)
1
2

−3dh2(z1 ± t)

4t2(z1 ∓ t)
+ h(h2 − 1)(z1 ± t)

3
2

4t2(z1 ∓ t)
3
2

)
,

with f given in (4.59). From this it follows that the hypersurface z2
1 = t2

is singular except when h2 = 1 and h2 ≥ 3/2. Note that this includes the
true soliton case, i.e. h = ±1 (the plus or minus sign depends on the pole
trajectory election µ+

1 or µ−
1 ) in which case the solution may be obtained from

the corresponding nondiagonal one-soliton solution. The singularity may be
seen by approaching the hypersurface −z1 = t by the geodesic null vector
A−1�l with A = √

f , as was indicated in subsection 4.3.1. Then in the boosted
tetrad (4.14) A�n, �m and �m∗ are parallel propagated along A−1�l and the Riemann
components become (4.15). When the null hypersurface is not singular one
may match this solution to the Kasner background inside the light cone z2

1 ≤ t2

and then the light cone does contain a shock wave. However, the singularity
at space-like infinity prevents giving to (4.58)–(4.59) a reasonable meaningful
physical interpretation. We shall discuss shock waves in the next subsection.

By far the most interesting case of (4.58)–(4.59) is when h2 = d2 + 3, since
in this case the metric has only the cosmological singularity at t = 0 and the
solution is the Ellis and MacCallum family of vacuum Bianchi models. This
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can be seen more clearly by introducing new coordinates (T, Z) related to (t, z)
by the coordinate change, adapted to spatial homogeneity [48],

t = e−2aZ sinh(2aT ), z1 = e−2aZ cosh(2aT ), (4.61)

where a is an arbitrary positive parameter. Then µ1/t = [tanh(aT )]−1 and the
solution (4.58)–(4.59) for this special case becomes the Ellis and MacCallum
[91] metric

ds2 = [sinh(2aT )]1+d2
[tanh(aT )]d

√
3+d2

(d Z2 − dT 2)

+ [sinh(2aT )]1+d[tanh(aT )]
√

3+d2
e−2a(1+d)Z dx2

+ [sinh(2aT )]1−d[tanh(aT )]−
√

3+d2
e−2a(1−d)Z dy2. (4.62)

The particular case d = 0 (axisymmetric background) corresponds to the
Bianchi V model, whereas d2 = 1 (Minkowski background) leads to the
Kantowski–Sachs solutions of Bianchi type III. Other values of d correspond
to Bianchi type VIh (Bbi case). All these solutions have the cosmological
singularity at T = 0 [207] and are of type I in the Petrov classification with the
exception of d2 = 1, which is of type D. In this way we see that some Bianchi
models of types III, V and VI are related to Bianchi I models via generalized
soliton solutions.

4.5.2 Pulse waves

Next we consider generalized soliton solutions with two opposite poles. The
results of the last subsection suggest that when we have superposition of poles
(µ+

k only or µ−
k only) with the same signs of the constants hk in (4.51) the metric

will generally be singular at space-like infinity. This is due essentially to the
asymptotic behaviour of the pole trajectories at space-like infinity as described
in (4.50). It is obvious that if we superpose poles µ+

k (or µ−
k ) with opposite

signs of the constants hk we may get solutions which behave asymptotically
like the Kasner background at space-like infinity. For instance, if we take s =
2, h1 = h = −h2, then according to (4.50) µ±

1 /µ
±
2 → 1 at space-like infinity

and $ → d ln t in (4.51). From (4.51)–(4.52) such a generalized soliton solution
with opposite poles is

$ = d ln t + h
[
cosh−1

( z1

t

)
− cosh−1

( z2

t

)]
, min(|z1|, |z2|) ≥ t, (4.63)

f = t (d
2−1)/2(µ1 − µ2)

−2h2
µ

h(h+d)
1 µ

h(h−d)
2 [(z2

1 − t2)(z2
2 − t2)]−h2/2, (4.64)

where µ1 and µ2 both belong to type µ+ or are both of type µ−.
Solution (4.63)–(4.64) is known as the Carmeli and Charach pulse-wave

solution [45, 48] and is supposed to represent pulse waves propagating on a
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Fig. 4.2. The two light cones with origins at z0
1 and z0

2 divide the canonical coordinate
patch into six regions.

Kasner background. This is achieved as follows. The two light cones z2
1 = t2

and z2
2 = t2 divide the spacetime in canonical coordinates into the six regions

shown in fig. 4.2. Solution (4.63)–(4.64) applies to regions I, V and VI.
This solution may be matched through the light-cone hypersurface to metric
(4.58)–(4.59) for one pole in region II and with the soliton solution obtained
from (4.58)–(4.59) changing z1 to z2 in region IV. Both these solutions may be
matched to the Kasner background in region III. On the other hand we know
that at space-like infinity, which is contained in regions I and V, the solution
(4.51)–(4.52) will tend to the Kasner background also. Therefore one is tempted
to interpret the resulting solution as an inhomogeneous cosmological model
representing two pulse waves propagating at the speed of light on a Kasner
background.

However, this interpretation cannot always be maintained, because for some
values of the parameters the metric is singular on the null hypersurfaces defined
by the light cones. Furthermore, the matching of soliton solutions with real poles
to the background metric described in section 2.1 does not contain all necessary
details and a more exact prescription for the matching must be given. Gleiser
[118] was the first to consider such a detailed prescription for the matching of
soliton solutions with real poles to the Minkowski background. His analysis
based on Taub’s study of spacetimes with distribution valued curvature tensors
[269] can be generalized to the present case [70, 25, 130]. Other possible
extensions of the soliton solutions beyond the null hypersurfaces have also been
considered in ref. [130].
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Before discussing the matching procedures, it is worth noting that (4.63) can
be written in terms of the Fourier Bessel integrals (4.44) [97] as

$ = d ln t +
∫ ∞

0
Ak sin

[
k

(
z − z0

1 + z0
2

2

)]
J0(kt)dk,

Ak = 2h

k
sin

[
k(z0

2 − z0
1)

2

]
,

 (4.65)

i.e. in the case z0
1 + z0

2 = 0 (as in fig. 4.2) the second term in $ corresponds
to the nonchaotic part of (4.44) with Bk = 0. This means that at late times the
solution may be interpreted as a superposition of travelling waves (4.46) with
amplitude and phase given by (4.47).

For the matching of the different regions, we consider first the Riemann tensor
for metric (4.63)–(4.64). With the tetrad (4.11) this has the components

)0 = )+, )4 = )−,

)2 = 1

2 f

[
1 − d2 − 2h2

4t2
+ hd

2t2

(
z1

(z2
1 − t2)

1
2

− z2

(z2
2 − t2)

1
2

)
+ h2

2t2

z1z2 − t2

(z2
1 − t2)

1
2 (z2

2 − t2)
1
2

]
,


(4.66)

where

)∓ = 1

2 f

[−d(d2 − 1)

4t2
+ 3hd2

4t2

(
(z1 ± t)

1
2

(z1 ∓ t)
1
2

− (z2 ± t)
1
2

(z2 ∓ t)
1
2

)
− 3h2d

4t2

(
(z1 ± t)1/2

(z1 ∓ t)1/2
− (z2 ± t)1/2

(z2 ∓ t)1/2

)2

+ 3h3

4t2

(
(z1 ± t)(z2 ± t)

1
2

(z1 ∓ t)(z2 ∓ t)
1
2

− (z1 ± t)
1
2 (z2 ± t)

(z1 ∓ t)
1
2 (z2 ∓ t)

)
+ h(h2 − 1)

4t2

(
(z1 ± t)

3
2

(z1 ∓ t)
3
2

− (z2 ± t)
3
2

(z2 ∓ t)
3
2

)]
,

with f given by (4.64). This must be compared with the curvature tensor (4.60)
in the regions II and III. In region III (Kasner) the curvature tensor is simply
deduced from any of the previous ones taking h = 0.

For simplicity, we shall only consider the matching between regions I and II
through the light cone −z2 = t and between regions II and III through −z1 = t .
The singularities on the latter were discussed in the previous subsection and, as
was the case for the one-pole solution, one can see from (4.66) that there is also
a curvature singularity on −z2 = t unless h2 = 1 or h2 ≥ 3/2. Again this can
be seen by approaching the hypersurface −z2 = t by the geodesic null vector
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A−1�l with A = 1/
√

f . Notice that there is no divergence on the light cone for
the true two-soliton solutions, i.e. when h ≡ ±1.

To analyse the matching surfaces one must use regular coordinates near them.
Note that canonical coordinates are not appropriate since the metric coefficient
f diverges near the light cones so that such coordinates are ill defined there. It is
useful to introduce null coordinates [70] and then take an affine parametrization
of one of them near the hypersurface. For example in region II we define

u1 = (−z1 + t)/2, v1 = (−z1 − t)/2. (4.67)

Now f (u1, v1) diverges on the light-cone hypersurface v1 = 0. Thus we may

define a new (affine) coordinate V1 by V1 = v
(2−h2)/2
1 (if h2 = 2) and the new

f coefficient is smooth at v1 = 0. We see that if h2 > 2 the hypersurface
v1 = 0 is at infinity in the affine coordinate, therefore the global interpretation
of that spacetime is not clear. However, if h2 < 2 then the light cone v1 = 0
corresponds also to V1 = 0. Therefore the only reasonable values for a
cosmological interpretation of the matched spacetime are

h2 = 1, 3/2 ≤ h2 < 2. (4.68)

The matching between regions II and III is done as follows. We introduce
null coordinates ũ1 = (−z1 + t)/2, ṽ1 = (−z1 − t)/2 in region III. Such
coordinates are regular at the null surface −z1 = t for the Kasner background.
With coordinates (u1, V1) in region II and (ũ1, ṽ1) in region III all metric
coefficients match continuously across the hypersurface v1 = 0, although they
have discontinuous first derivatives with respect to v. A similar analysis can
be done for the matching between regions I and II, i.e. one introduces null
coordinates on I, u2 = (−z2 + t)/2, v2 = (−z2 − t)/2, which are not regular at

v2 = 0, and then V2 = v
(2−h2)/2
2 , which is regular. The matching with region II

is done as before.
Then following Taub [269] one may compute the Ricci tensor components

RV1V1 and RV2V2 on the matching hypersurfaces v1 = 0 and v2 = 0, respectively.
These components depend on the jump across the hypersurface of the first
derivative with respect to V1, and V2, of

√
det gab(= t). These components

are

RV1V1 = − 1

u1
δ(V1), RV2V2 = − 1

u2
δ(V2). (4.69)

The delta functions signal the presence of a null fluid with negative energy
density along the matching hypersurfaces. Note also that our spacetime has
only a cosmological singularity. Therefore, provided (4.68) is satisfied, the
spacetime resulting from this matching has a physical interpretation as a pair of
gravitational shock waves which start as inhomogeneities on the z axis (region
VI) and propagate in opposite directions on a Kasner background (regions V and
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I). The shock waves are inhomogeneous regions (regions IV and II) with shock
fronts formed by null fluids of negative energy density, i.e. no ordinary matter.
These waves sweep the space in such a way that they leave the region in between
(region III) in the exact homogeneous Kasner background. Some authors call
this a ‘cosmic broom’. By superposing solutions of this type one gets an
example of a cosmological model in which some inhomogeneities near the
initial cosmological singularity evolve towards a superposition of gravitational
shock waves propagating on a homogeneous (Kasner) background.

4.5.3 Cosolitons

Let us now consider the family of generalized soliton solutions (4.56)–(4.57)
that are valid in the intersection of the light cones |zk | ≤ t (k = 1, . . . , s)
and which are known as cosolitons. To analyse this superposition of s pole
trajectories we consider first, as always, the solution with one pole, i.e. s = 1:

$ = d ln t + h cos−1
( z1

t

)
, |z1| ≤ t, (4.70)

f = t (d
2−h2−1)/2(t2 − z2

1)
h2/2 exp

[
dh cos−1

( z1

t

)]
, (4.71)

where we have written h ≡ h1. Using the null tetrad (4.11) the nonnull Riemann,
or Weyl, scalars for this metric are

)0 = −(2 f )−1 X+, )4 = −2( f )−1 X−,

)2 = −(8 f )−1[(1 + h2 − d2)t−2 − 2hz1dt−2(t2 − z2
1)

−1/2],

}
(4.72)

where f is defined in (4.71) and

X± = (t2 − z2
1)

−1/2
[
hz1t−2(3d2 − h2 − 1) ± ht−1(3d2 − h2 − 3)

]
/4

+ (t2 − z2
1)

−1h2d(2 + z2
1t−2 ± 3z1t−1)/2

+ (t2 − z2
1)

−3/2h
[
z1 + z3

1 ± t (2 + h2z2
1t−2)/2

]
+ dt−2(d2 − h2 − 1)/4.

The algebraic classification of this tensor is easily performed by using the
Russell–Clark algorithm as described after (4.13). One sees that for h = 1
the metrics are of Petrov type I. For h = 0 the metric, of course, reduces to
the Kasner background which includes a metric representing a region of flat
spacetime (d2 = 1) and a type D metric (d = 0).

Unlike the generalized soliton solutions with one pole, (4.58)–(4.59), which
are defined in the complementary region |z1| ≥ t and which include a subfamily
of spatially homogeneous metrics (h2 = d2 + 3), there are no values of the
parameter h (h = 1) for which metric (4.70)–(4.71) is spatially homogeneous
[234]. Such a metric has curvature singularities at t = 0 and on the light cone
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|z1| = t for any value of the parameter h (h = 1). This means that they have
no clear cosmological interpretation and that, unlike the case of metric (4.58)–
(4.59), it is not possible to match the spacetime they describe with another metric
outside the light cone, in spite of the fact that the transversal metric coefficients
match continuously with those of the Kasner metric or with those of (4.58)–
(4.59). Therefore one cannot interpret the cosoliton solutions as representing
shock waves on a Kasner background.

As we have done in the previous section one might now consider the solution
with two opposite poles, i.e. take s = 2 and h = h1 = −h2 in (4.56)–(4.57).
This solution is only valid in region III of fig. 4.2, and, due to the singularities
on the light cones bounding such a region, it does not seem to lead to any
meaningful cosmological model unless one considers that it represents some
limit of complex-pole solutions. Such solutions will be the subject of the next
section.

4.6 Solutions with complex poles

Complex pole trajectories are obtained from (4.33) when

wk = z0
k − ick, ck = 0, (4.73)

where z0
k and ck are real. The main difference with respect to the real-pole

trajectories used in section 4.5 is that these are now defined over all the canonical
coordinate patch and the metrics that they induce are regular on the light cones
z2

k = t2. It is useful to write (4.33) as

µk/t = √
σkeiγk , (4.74)

where
√
σk is understood as a positive quantity and the explicit forms of the

functions σk(t, z) and γk(t, z) are

σ±
k = Lk±(L2

k−1)1/2, Lk ≡ (z2
k+c2

k)t
−2+[1−2(z2

k−c2
k)t

−2+(z2
k+c2

k)
2t−4]1/2,

(4.75)

γk = cos−1

(
2zk

√
σk

t (1 + σk)

)
, (4.76)

where, again, the minus and plus signs stand for the labels in and out,
respectively, of (1.68)–(1.69). The square roots in (4.75) are also understood
to have only positive values. Note that as a consequence of µ−

k = α2/µ+
k , we

have σ+
k = (σ−

k )−1 and that 0 < σ−
k < 1 and 1 < σ+

k < ∞.
Some of the properties of the resulting metrics can be foreseen from the

asymptotic values of the pole trajectories, since they are the main ingredient
of the solution. For the four asymptotic regions defined in section 4.5, in the



116 4 Cosmology: diagonal metrics from Kasner

canonical coordinate patch, we have the values

σ−
k = 1 − 2|ck |

t
+ O

(
c2

k

t2
,

ckz2
k

t3

)
, future time-like infinity,

σ−
k = 1 − 2

[
[c2

k + (z0
k)

2]1/2 − sign(z)z0
k

t

]1/2

+ O

(
z0

k

t
,

ck

t

)
,

future null infinity,

σ−
k = t2

4z2
k

[
1 + O

(
t2

z2
k

,
c2

k

z2
k

)]
, space-like infinity,

σ−
k = t2

4(c2
k + z2

k)

[
1 + O

(
t2

z2
k + c2

k

)]
, initial region.



(4.77)

The time evolution of σ−
k (t, z) is represented in fig. 4.3 for ck = 0.2. The

slope of the curves between small and large values of z is governed by the
parameter ck : the smaller ck the steeper the slope. Since the ‘soliton-like’
waves can be associated with the z-derivatives of σk the parameter ck reflects
the ‘width’ of the solitons. All the metric-dependent equations can be obtained
from the pole equations (1.66). In terms of σk , these become

σk,z = 8zkσ
2
k (1 − σk)

Hk(1 + σk)t2
, σk,t = 2σk(1 − σ 2

i )

Hkt
, Hk ≡ (1 − σk)

2 + 16c2
kσ

2
k

(1 − σk)2t2
.

(4.78)

After one derivation these equations enable one to find the Riemann tensor
for the n-soliton with complex poles in terms of σk(t, z). It is easy to see, using
(4.77), that σk,z has a maximum at null infinity, indicating that the corresponding
soliton solutions contain inhomogeneities propagating at the speed of light as
t → ∞.

By using the linearity of (4.41) for $ the soliton solutions (4.43) can be
generalized as follows. First, any complex solution induces two real solutions
corresponding to its real and imaginary parts. Second, any solution can be
multiplied by an arbitrary real parameter. The generalized soliton solutions will
essentially be of two classes: the superposition of the real parts of ln(µk/t)
(which correspond to the modulus of the pole trajectories), and the superposition
of the imaginary parts of ln(µk/t) (which correspond to the pole phases). In the
first class we have from (4.43),

$ = d ln t +
s∑

k=1

hk ln
√
σk, (4.79)

where d, hk are real parameters and s, the number of poles, is an integer. The
parameter hk indicates the k-pole degeneracy. The metric coefficient f can be
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Fig. 4.3. This shows the function σ−
k (t, z) for different values of t , as defined by

(4.75). The origin is z0
k = 0 and the width parameter is ck = 0.2. The function is

unchanged if one reverses the sign of z. When σ−
k approaches 1, the corresponding

soliton solution approaches the background metric.

found by either directly integrating (4.42) or, more easily, by taking appropriate
limits in the corresponding soliton solution (4.39). The result, up to an arbitrary
multiplicative parameter, is

f = t (d
2−1−g2)/2

s∏
k=1

σ
hk (2hk+d−g)/2
k (1 − σk)

−h2
k/2 H

−h2
k/4

k

×
s∏

k,l=1;k>l

{[
(σk + σl)t

2 − 8zkzlσkσl

(1 + σl)(1 + σk)

]2

− 64c2
kc2

l σ
2
k σ

2
l

(1 − σk)2(1 − σl)2

}hk hl/2

,

(4.80)

where g ≡ ∑s
k=1 hk , and Hk is given in (4.78). Note that the real-pole solution

(4.51)–(4.52) may be obtained from this in the limit ck → 0.
The second class of generalized soliton solutions can be obtained from the

imaginary part of the complex-pole trajectories (4.74), i.e.

$ = d ln t +
s∑

k=1

hkγk . (4.81)

The corresponding metric coefficient f can be obtained again by making
appropriate use of (4.42). The computation here is more complex than in the
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previous case, however [113]. The final result, up to an arbitrary multiplicative
constant, is

f = t (d
2+2g−1)/2 exp

(
d

s∑
k=1

hkγk

)

×
s∏

k=1

σ
hk (hk−1)/2
k

[
(z2

k − c2
k − t2)2 + 4c2

k z2
k

]hk (hk−1)/4

×(1 − σk)
−h2

k/2 H hk (2−hk )/4
k t−h2

k

×
s∏

k,l=1;k>l

(A−
kl/A+

kl)
hk hl/2, (4.82)

where

A±
kl = (σk + σl)(1 − σ 2

k )(1 − σ 2
l )t

2

− 8σkσl [zkzl(1 − σk)(1 − σl) ± ckcl(1 + σl)].

Note that the solution (4.56)–(4.57) may be obtained from this in the limit
ck → 0. Solutions (4.81)–(4.82) are also called cosoliton solutions.

These complex-pole solutions are also related to the solution (4.48) of the
linear equation (4.41). In fact, each term with index k (which we designate
by $k) can be obtained from the integration of (4.48) when gk(ν) = hk and
sk = z0

k − ick (i.e. sk is now a complex parameter) which leads to

$k = hk ln

(
µ+

k

t

)
≡ hk cosh−1

(
z0

k − ick − z

t

)
. (4.83)

This solution is now complex, but its real and imaginary parts are the two real
solutions (4.79) and (4.81), respectively. This is equivalent to Synge’s method
of complexification of the real wave solution (4.53), which amounts to making
the parameter z0

k complex [263, 99, 100].
In the following three subsections we shall study these metrics in detail. As

for the case of real poles, we shall consider the case for one and two opposite
poles. The general case, as well as solutions obtained by superposition of (4.79)
and (4.81), can be understood in terms of these two simple cases. As we shall
see both lead to physically relevant cosmological solutions.

4.6.1 Composite universes

These are the generalized soliton solutions corresponding to the real part of
ln(µ1/t) for one complex pole, s = 1, h1 = h and c1 = w

$ = d ln t + h ln
√
σ1. (4.84)
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The spacetimes they describe have been called composite universes [46, 99,
100], because when w → 0, the wave solution (4.84) goes to the solution with
real poles (4.58) in the region outside the light cone z2

1 ≥ t2, whereas it goes to
the background metric inside the light cone, i.e.

σ±
1 → [z1/t ± (z2

1/t2 − 1)1/2]2, z2
1 ≥ t2 ; σ±

1 → 1, z2
1 ≤ t2. (4.85)

The first solution corresponds to the Wainwright et al. solution discussed in
subsection 4.5.1 and the second to the Kasner metric. It would seem that
it corresponds to the matching of spacetimes discussed in that subsection.
However, this is not the case because when w → 0, the f coefficient diverges
inside the light cone as 1/w2. This does not invalidate the solution obtained
in this limit, because f can always be multiplied by any arbitrary parameter.
However, it does invalidate the use of the same canonical variables to cover the
whole spacetime.

Therefore we shall now consider in detail the case w = 0. For this it is better
to drop the canonical variables (t, z) and introduce new variables (T, Z) which
give a simpler form for σ1 [286],

t = w cosh(2aZ) sinh(2aT ), z1 = w sinh(2aZ) cosh(2aT ), (4.86)

where a is an arbitrary parameter. Note that this coordinate change is of the type
that preserves the metric form (1.36). Now σ±

1 = [tanh(aT )]±2 and the metric
takes the form

ds2 = F(T, Z)(d Z 2 − dT 2) + [cosh(2aZ) sinh(2aT )]

×{[cosh(2aZ) sinh(2aT )]d[tanh(aT )]hdx2

+ [cosh(2aZ) sinh(2aT )]−d[tanh(aT )]−hdy2}, (4.87)

where

F(T, Z) ≡ [cosh2(2aZ) + sinh2(2aT )]1−h2/4

×[cosh(2aZ)](d
2−1)/2[sinh(2aT )](d

2+h2−1)/2[tanh(aT )]hd .

Here we have taken w = 1, or else w can be absorbed into the variables x, y
and the arbitrary constant that can multiply the factor F(T, Z). This solution has
been written in a form resembling the Ellis and MacCallum solution (4.62) and it
is apparent from comparing these solutions that when T � |Z | → ∞, solution
(4.87) approaches the Wainwright et al. generalization of (4.62). That this is
the case is proved by comparing the Riemann tensor components as given in
the next paragraph. Note that the coordinates (T, Z) in both solutions defined,
respectively, in (4.61) and (4.86) also approach each other in this asymptotic
region.
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Now it is a simple matter to obtain the curvature tensor for metric (4.87),
using the null tetrad (4.11) by changing (t, z,) and f (T, Z ) and F , respectively.
The corresponding Riemann, or Weyl, scalars (4.12) are

)0 = 2a2 F−1 X+, )4 = 2a2 F−1 X−,

)2 = −a2 F−1

{
1

2
(d2 − 1)

[
cosh(2aZ)]−2

+
[

hd cosh(2aT ) + 1

2
(d2 + h2 − 1)

]
[sinh(2aT )]−2

}
,


(4.88)

where

X± ≡ −1

2
d(d2 − 1)

{
1 − 1

2
[cosh(2aZ)]−2

}
+ h(h2/4 − 1) cosh(2aT )[cosh2(2aZ) + sinh2(2aT )]−1

+ [(d/4)(1 − 3h2 − d2)

+ (h/4)(1 − h − 3d2) cosh(2aT )][sinh(2aT )]−2

± sinh(2aZ)[sinh(2aT )]−1

× {h(h2/4 − 1) cosh(2aZ)[cosh2(2aZ) + sinh2(2aT )]−1

+ (1 − d2)(3h/4 + d/2) cosh(2aT )[cosh(2aZ)]−1}. (4.89)

For h = 0, the solution is, as expected, the homogeneous Kasner solution, in
nonstandard coordinates, with a curvature singularity at T = 0. Now, for h = 0
it is easy to see from (4.88) that the metric has in general a curvature singularity
at T = 0 (cosmological singularity) and space-like curvature singularities at
T � |Z | → ∞; therefore, its interest as a cosmological model is doubtful.
The only exception is the case h2 = d2 + 3, which has the cosmological
singularity only. This is similar to what happens with the Ellis and MacCallum
solution (4.62). An important difference, however, is that metric (4.87) is not
homogeneous even when the above equality holds, with the exception of when
d = 1, h = 2 as we see in what follows.

It can be shown that metric (4.87) is inhomogeneous by proving that it admits
only a two-dimensional isometry group with the obvious Killing fields ∂x and
∂y . The key to the proof [286] is that the Jacobian ∂(I, J )/∂(T, Z), where I and
J are the two curvature scalar invariants (4.13), is different from zero for d = 1
and h = 2; so that I and J could be used as coordinates of the metric to furnish
an invariant description of the spacetime. Then some results of the ‘equivalence
problem’ [163] ensure that the dimension of the isometry group is 2.

Although the spacetime (4.87) is inhomogeneous, it is related to an interesting
family of homogeneous cosmological models. If we take d = 1, metric
(4.87) is just the vacuum solution corresponding to some LRS Bianchi type
III stiff perfect fluid solutions which will be described in section 5.4.2. In
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fact, corresponding to one of the three inequivalent Abelian two-dimensional
subgroups of the LRS Bianchi III symmetry group classified by Jantzen [157],
a family of stiff perfect fluid solutions has been given by Kitchingham [174] as

ds2 = [sinh(2aT )]2[tanh(aT )]h(d Z2 − dT 2) + [sinh(2aT ) cosh(2aZ)]

×{sinh(2aT ) cosh(2aZ)[tanh(aT )]hdx2 + [sinh(2aT ) cosh(2aZ)]−1

×[tanh(aT )]−hdy2}, (4.90)

with scalar field σ ≡ (1 − h2/4)1/2 ln[tanh(aT )] (not to be confused with the
pole trajectory in (4.84)). Soliton solutions with massless scalar fields and
perfect fluids formed by stiff matter will be considered in section 5.4. Here
it suffices to say that metric (4.90) corresponds to a spacetime with a comoving
stiff perfect fluid with energy density and pressure −σ,µσ

,µ, and four-velocity
uα = −(−σ,µσ

,µ)−1/2σ,α. This is a homogeneous metric with coordinates
(T, Z) adapted to spatial homogeneity. The difference between metric (4.90)
and metric (4.87) for d = 1 lies in the F(T, Z) coefficients; the ratio of those
coefficients is

{1 + cosh2(2aZ)[sinh(2aT )]−2}1−h2/4.

This ratio gives a measure of the inhomogeneity of the metric (4.87) with
d = 1; it shows that this inhomogeneity becomes enhanced at small values
of T . Consequently, the inhomogeneous vacuum solution (4.87) becomes
homogeneous when a stiff perfect fluid is introduced. Of course, for h = 2
the solution (4.90) is a vacuum solution and agrees with metric (4.87) for d = 1,
h = 2. Therefore, the three-dimensional isometry group of metric (4.87) when
d = 1, h = 2 is the LRS Bianchi III symmetry group and the coordinates (T, Z)

are adapted to spatial homogeneity.
More physical insight into the inhomogeneous solution (4.87) can be obtained

from the optical scalars (4.18), which give physical information on the behaviour
of light propagation in the spacetime. Analysing the expansion, and the shear, of
null rays defined by T = Z + C (−∞ < C < ∞) one arrives at the conclusion
that the inhomogeneities cannot be seen as localized waves propagating on a
homogeneous background. The inhomogeneity involves the whole spacetime
and is more important near the cosmological singularity. As the spacetime
expands it approaches homogeneity.

4.6.2 Cosolitons

These are the solutions related to the imaginary parts of the complex poles as
given by (4.81)–(4.82). As for the case of the solutions considered in previous
sections, these metrics can be studied by considering solutions with one pole
and with two opposite poles. The qualitative features of the general solution
(4.81)–(4.82) for an arbitrary number of pole trajectories are given by these two
cases.
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Cosolitons with one pole. Let us now consider s = 1, h1 = h in (4.81)–(4.82).
This solution was first given by Feinstein and Charach [99], who called it a
cosoliton. Note that when c1 → 0, $ goes to the continuation of the one-pole
solution for real poles, equation (4.70), in the region |z1| ≤ t and it goes to the
Kasner background metric in the region |z1| ≥ t .

Let us now analyse the behaviour of this solution in some asymptotic regions.
Near the initial singularity (t → 0)

$ = d ln t + hγ1, f = 2−h(h−1)t (d
2−1)/2edhγ1 [1 + O(t2)], (4.91)

and the curvature tensor becomes singular, unless d2 = 1 (Minkowski back-
ground). At null infinity (|z| � t → ∞) the solution approaches the Kasner
background and the Riemann components become

)0 = −(4c3/2
1 f )−1h(1 − h2/2)t−1/2[1 + O(t−1/2)],

)2 = f −10(t−3/2), )4 = f −1 O(t−1),

}
(4.92)

which implies a Petrov type N behaviour for the leading Riemann components.
At time-like infinity,

$ = d ln t + hγ1, f = 2−h(h−1)t (d
2+h2−1)/2edhγ1 [1 + O(t−2)],

γ1 = π/2 − (z1/t)[1 + O(t−2)],

and the Riemann components behave as ) ∼ f −1 O(t−2). The metric does not
tend to the Kasner background in this region but to an inhomogenous spacetime.
At space-like infinity it does go to the Kasner background and the Riemann
components approach the Riemann components of the Kasner metric.

Therefore the cosoliton metrics with one pole represent inhomogeneous
cosmological models: they have the cosmological singularity only, unless d2 =
1, and are regular in the whole range of canonical variables. They describe a
spacetime that starts almost Kasner-like with a localized inhomogeneity which
then grows at the speed of light leaving an inhomogenous spacetime. Thus, as
was the case for the ‘composite universes’ of subsection 4.6.1, the cosolitons do
not describe localized inhomogeneities propagating on Kasner backgrounds.

Cosolitons with two opposite poles. Let us now turn to the cosolitons with two
opposite poles, i.e. solutions (4.81)–(4.82) with s = 2, and h1 = −h2 = h.
Equation (4.81) and the asymptotic properties of γk , as given by (4.76)–(4.77),
ensure that the poles give localized perturbations only. Here one can describe
the collisions of such perturbations (or solitons) as in section 4.6.3, where such
a collision is studied in some detail. Let us perform an asymptotic analysis of
such solutions.
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Near the initial singularity (t → 0) we have

$ = d ln t + h(γ1 − γ2), f = 4(1−h)/ht (d
2−1) exp[hd(γ1 − γ2)][1 + O(t2)],

γk = sin−1[ck(c
2
k + z2

k)
−1/2] + O(t2),

where k = 1, 2. From the Riemann components one sees that the metric
becomes singular unless d2 = 1 (Minkowski background).

At null infinity the metric coefficients are determined by

γk = π − (ck)
1/2t−1/2[1 + O(t−1/2)], k = 1, 2,

and approach the Kasner values, but the curvature tensor becomes

)0 = (4 f )−1h(c1c2)
−3/2

[
(r3/2

2 − r3/2
1 ) − h2

2
(r1/2

2 − r1/2
1 )3

]
× t−1/2[1 + O(t−1/2)],

)2 = f −1 O(t−3/2), )4 = f −1 O(t−1).

 (4.93)

Thus the leading terms behave as a Petrov type N metric, i.e. pure radiation
(cf. (4.92)). At space-like and time-like infinities the metric coefficients and the
Riemann components go to the corresponding Kasner values at a rate O(|z|−1)

or O(t−1), respectively. Therefore, these solutions can be interpreted as cos-
mological models representing an inhomogeneous localized perturbation which
evolves towards gravitational radiation on an expanding Kasner background. As
in the models described in section 4.6.3, these are examples of the generation
of cosmological gravitational radiation from purely classical irregularities in the
initial structure of the spacetime.

4.6.3 Soliton collision

From (4.77) we see that all σ−
k approach unity at future time-like infinity and this

means that the soliton solutions approach the background metric there, but since
σ−

k approach zero at space-like infinity the soliton solutions depart from the
background metric in general. That was the case, for instance, for the solutions
with one pole of section 4.6.1 or the more general case of superpositions of poles
with the same sign. However, if we superpose opposite poles, i.e. hk = −hl , we
may get solutions which approach the background metric at space-like infinity
also, since σ−

k σ+
l → 1 there. Note also that all σ−

k approach unity at null infinity
but at a lower rate than in other regions. This allows us to describe localized
perturbations on a Kasner background; moreover such perturbations decrease
as O(t−1/2) at null infinity which is typical of gravitational waves. Another
interesting feature of these solutions is the following. Since two poles will in
general define two different light cones (if z0

1 = z0
2), we have the possibility of
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describing the collision of two such perturbations where the light cones intersect,
see fig. 4.2.

In this subsection we shall review the properties of solutions with opposite
poles. All such solutions have the cosmological singularity only and are
interesting as inhomogeneous cosmological models. They represent highly
inhomogeneous cosmologies which evolve towards homogeneous Bianchi I
models with gravitational radiation. They are an example of the creation of
a background of gravitational radiation as a consequence of initial classical
inhomogeneities in line with the work of Adams et al. [2, 1] or the ‘dissipation’
of an initial inhomogeneous cosmological singularity in the sense of refs
[308, 309]. Throughout we shall use ‘solitons’ to refer to the (soliton-like)
perturbations of these models, but we shall discuss the relation with the solitons
of nonlinear physics at the end of this subsection.

Thus we shall now consider solutions (4.79)–(4.80) with s = 2 and h1 =
−h2 = h. The pole degeneracy |h| is sometimes called the ‘intensity’ of the
solitons but its specific value does not play an important role here. The case
h = 1 (i.e. the true soliton solution which may be considered as the limit of a
nondiagonal metric) was studied in ref. [150]. The case h1 = −h2 = · · · =
hs−1 = −hs = 1 has also been studied [151], but the main features are present
in the two-pole case, s = 2.

It is worth noticing that the solution (4.79)–(4.80) with two opposite poles
(with w ≡ c1 ≡ c2) can be written in terms of the Fourier Bessel integral (4.44)
[97] as

$ = d ln t +
∫ ∞

0
Ak sin

[
k

(
z − z0

1 + z0
2

2

)]
J0(kt)dk,

Ak = 2h
e−wk

k
sin

[
k(z0

1 − z0
1)

2

]
,

 (4.94)

which corresponds to the nonchaotic part of the solution, with Bk = 0. This
leads to the interesting interpretation of (4.94) as the superposition of travelling
waves, (4.46), at late times. The superposition amplitude Ak reduces to (4.65)
in the real-pole limit w → 0.

First, we should note that whereas in all asymptotic regions the transversal
metric coefficients tend to the Kasner values, see (4.79), this is true for the
longitudinal coefficient f only at space-like infinity. In fact, let us call f0 =
t (d

2−1)/2 (the Kasner value), then at null and time-like infinities f will go to f0

multiplied by a factor that depends on the soliton parameters ck . For instance,
for solutions for which c2

1 ∼ c2
2 ∼ w2 � 1, f → f0w

−4 at time-like infinity
and f → f0w

−4 at null infinity along the light cones of the inner solitons
(those which have collided, see fig. 4.2) but f → f0w

−2 along the light
cones of the outer solitons. It appears that each collision increases the value
of the coefficient f relative to the Kasner background value: after each collision
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Fig. 4.4. Time evolution of the Riemann tensor component )4 (divided by f in
order to make the solitons which collide apparent, i.e. in the boosted tetrad) giving
the gravitational strength of the right moving solitons. The widths and origins of the
solitons are c1 = c2 = 0.05 and z0

1 = 0, z0
2 = 1. The Kasner background has )4 = 0,

for d = 0. The three curves from left to right according to the positions of their peaks
represent the time sequence t = 0.1, t = 0.5 and t = 0.9.

the background suffers an expansion along the direction of propagation of the
solitons. In general [151] one finds that along a soliton which undergoes n
collisions, f → f0w

−2(n+1), and that at time-like infinity, f → f0w
−2s . The

parameters ck also control the widths of the soliton-like perturbations.

The localized structure of the solitons and the intrinsic properties of the metric
can be seen from the Riemann tensor. Thus we choose the tetrad (4.11) and
make use of (4.78) as recursion relations to obtain the Riemann components
(4.12) in terms of σ1 and σ2 only. The results are rather involved and it is best
to display a graphical representation of the coefficients. In fig. 4.4 the radiative
part of the gravitational field )4 in the boosted tetrad (4.14) with A = √

f
(i.e. A�n, �m and �m∗ are parallel transported along the null congruence A−1�l) is
represented for d = 0 (axisymmetric Kasner). This field induces time varying
tidal forces to test particles on the plane orthogonal to the propagation of the
solitons moving to the right. From this, one can see the localized structure
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(soliton-like) of the perturbations and the nondispersive nature of the wave. The
amplitude of )4 decreases as t−1/2 (typical of gravitational waves) but this is due
to the background expansion and does not imply dispersion. Initially the solitons
show tails and a complicated structure, but as time increases the tails disappear.
The radiative part of the gravitational field )0 has a similar behaviour for the
solitons moving to the left, and the Coulomb component )2 is stronger near the
soliton origins: z1 = 0, z2 = 1.

The asymptotic values of the Riemann components at null infinity, when
calculated analytically, show that, for z > 0, )0/)4 → 0 and )2/)4 → 0 so
that the metric in its leading terms behaves as a Petrov type N spacetime: pure
gravitational radiation travelling to the right. The metric is, however, Petrov
type I. At null infinity for z < 0, the dominant term is )0.

Frame-independent properties can also be seen from the scalar invariants
(4.13), I and J . In fig. 4.5 the time evolution of the ratio I/I0, where I0

is the Kasner value, is shown for the same model. Before the collision four
solitons with small tails are seen, after the collisions the outer solitons are clear
but the intensities of the inner solitons are very small due to the w−4 factor in
the longitudinal expansion. The same factor makes the value of I at time-like
infinity very small too.

More physical information on the collision process may be obtained by
investigating the focusing effect on null congruences resulting from the collision
of solitons. Thus we shall consider the expansion, θ , and shear, σ , defined in
(4.18) produced on the null congruence with tangent �k defined by �k = (1/

√
f )�n

in section 4.3.1. These quantities give a measure of the energy content of the
solitons. The Kasner background produces homogeneous expansion, θ0, and
shear, σ0, on the above null congruence as a consequence of its overall expansion
on the (x, y)-plane. The solitons will produce inhomogeneities on θ and σ and,
as a consequence of their energy, they will focus the null rays. The ratio of the
expansion θ/θ0 is shown in fig. 4.6. Initially the focusing produced by the four
solitons is clear. By the Raychaudhuri equation [299] this can be interpreted
as due to the gravitational ‘energy’ of the solitons, which may be measured
by the θ2 and σ 2 they produce. After the collisions θ becomes smaller as a
consequence of the factor w−4 in the f coefficient but is still positive, so that
the overall expansion prevents the formation of singularities in the future.

The results for the shear show that it suffers a jump as the congruence crosses
a soliton; the left-directed solitons appear more clearly than the right-directed
ones (note that the congruence is right-directed). It behaves in a way similar to
)0 [151] and after the passage of the solitons it slowly approaches the Kasner
shear. This behaviour is qualitatively very similar to the collisions of plane
gravitational waves in an expanding cosmology [52].

Another interesting quantity which one may study is the velocity field (4.23)
associated with the Bel–Robinson tensor (4.19). Initially as t → 0, the velocity
field satisfies |v| ∼ 0 almost everywhere. At null infinity |v| → 1 − 0(1/t) and
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Fig. 4.5. Time evolution of I/I0 for d = 0. The curves are represented against the
propagation axis (z axis). The width and origins of the solitons are as in fig. 4.4. The
different curves from bottom to top of figure represent the time sequence t = 0.1, 0.3
(before collision), 0.5 (collision time, tc), and 0.7 (after collision).

at space-like and time-like infinities |v| ∼ 0. This may be interpreted in terms
of fluxes of (super)energy. Recall from section 4.3.3 that an observer moving
at such a velocity measures no flux. In fig. 4.7 the velocity field of the metric
for d = 0 is shown. Initially one can see the effect of the four solitons as
four localized regions (with some tails) with large velocity fields, two indicating
fluxes to the right and two to the left. After the collision the localized regions
broaden and we have two main localized regions to the right (with a front tail)
both with positive fluxes (to the left we have negative fluxes). The region in
between has almost no velocity flux. This means that at large times an observer
at rest near the origin measures no energy flux, whereas an observer near the
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Fig. 4.6. Time evolution of the expansion ratio θ/θ0 produced by the solitons on the
null geodesics generated by the null vector �k. Same model as in fig. 4.4 but with soliton
widths c1 = c2 = 0.1. The three curves from top to bottom of figure represent the time
sequence t = 0.1, tc = 0.5 and t = 0.9.

solitons needs to go to a speed close to the speed of light to measure no energy
flux, except at two points where the observer’s speed should be very small. An
interpretation of this is that the solitons represent the resulting net flux of energy.
This interpretation is consistent with solitons in the cylindrical case where a
C-energy may be defined and a similar analysis in terms of this energy can be
performed [109, 113], see section 6.2.3. In this way we do not need to interpret
the solitons as travelling waves, the soliton shapes just reflect the interfering
effect of the two competing fluxes. We will now see by a perturbative analysis
that, in fact, the maximum of the soliton perturbation moves at a speed greater
than light, and the same is true in the cylindrical case, so that to consider the
gravitational solitons as travelling waves may not be correct.

Perturbative analysis. One may gain a better understanding of some gravi-
soliton features such as shape and motion by performing a perturbative analysis.
For this we again consider (4.79)–(4.80) with the restrictions s = 2, h1 =
−h2 = h, but now we will take z0

1 = z0
2, so that instead of the two light cones we

had before we have only one and, therefore, we have only one soliton moving
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Fig. 4.7. Time evolution of the soliton velocity field v. The parameters and time
sequence are the same as in fig. 4.4 but the soliton widths are c1 = c2 = 0.08. The
top curve shows the velocity field at t = 5.0.
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to the right and another to the left, i.e. there is no soliton collision in this case.
Define δw ≡ c2 − c1, and call w ≡ c1, σ ≡ σ2. The soliton perturbation, or
pulse, in (4.79) is proportional to ln(σ1/σ2) and we may expand this to first order
in δw. The ratio σ1/σ2 differs from unity only on a small localized region and
we have

σ1/σ2 � 1 + δw ∂w ln σ. (4.95)

To find the properties of this function in the (t, z)-plane analytically we first
change to the new coordinates (T, Z) defined in (4.86) (taking the parameter
a = 1), in terms of which σ takes the very simple form σ = tanh2 T . Let
us now derive the trajectory of the maximum of ∂w ln σ along the z-direction:
∂z∂w ln σ = 0. This is easily done by computing ∂zT and ∂z Z from the
coordinate change. In terms of the (T, Z) coordinates this trajectory is

cosh4(2T ) − 3 cosh2(2Z) cosh2(2T ) + cosh2(2Z) − 1 = 0. (4.96)

It is not difficult to find the trajectory in the (t, z)-plane using cosh2(2T ) and
cosh2(2Z) as intermediate coordinates. The result is

(z2 − t2 +w2)
[
(z2 − t2 + w2) −

√
(z2 − t2 + w2)2 + 4w2t2

]
= 4w2(z2 +w2).

(4.97)
This trajectory has z = 0 at t = √

2w and approaches, for z positive, the asymp-
tote z = t − w/

√
3 as t → ∞ (we have a symmetrical situation for z negative).

Therefore the maximum of the soliton perturbation is space-like and approaches
the speed of light when t → ∞. Note that this would be the trajectory of
the maximum according to cosmological comoving observers. Thus we cannot
interpret the soliton perturbation (or more precisely its maximum) as a travelling
pulse.

On the other hand, one may also compute the trajectory of the maximum of
the perturbation along the t-direction, i.e. ∂t∂w ln σ = 0. In this case one needs
∂t T and ∂t Z and finds

3 sinh2(2Z) − cosh2(2T ) = 0, (4.98)

which in (t, z) coordinates are

t2 = z2 + 2w√
3

z − w2. (4.99)

This trajectory starts at t = 0 at the point z = w/
√

3 and approaches the same
asymptote z = t − w/

√
3 for z positive as t → ∞; it is thus a time-like

trajectory. The gravisoliton perturbation is localized around the two trajectories
(4.97) and (4.99); in particular at large t it approaches the speed of light.
This is in qualitative agreement with the previous numerical analysis. In the
cylindrically symmetric context, where an unambiguous definition of energy
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can be given (the C-energy), we saw in section 6.2.3 that the flux of energy just
vanishes along these two previous trajectories which have a different character in
such a context: namely the first one is time-like and the second one is space-like.
The maximum of the energy flux is found between these trajectories. This is also
compatible with our results on the velocity field introduced above based on the
superenergy flux and reinforces our interpretation that the soliton perturbations
can be understood as a superposition effect produced by the interference of
energy fluxes propagating in opposite directions.

To summarize, the above results suggest interpreting the gravitational solitons
(gravisolitons) as localized perturbations of the gravitational field on an expand-
ing Kasner background. They start with an important Coulomb component and
may be interpreted as the superposition effect produced by the interference of
(super)energy fluxes propagating in opposite directions. The Coulomb field they
create gives them some extended particle-like character. As they evolve the
Coulomb component of their gravitational fields becomes small and the radiative
components dominate, indicating the presence of gravitational radiation. The
speed of their maximum is greater than the speed of light indicating that they
should not be interpreted as travelling waves. Although we have considered
only vacuum solutions a similar conclusion can be reached for soliton solutions
for a stiff fluid [67].

Comparing with solitons in nonlinear physics. Some further comments relating
the gravitational solitons generated by the ISM and the classical solitons which
are often found in nonlinear physics seem in order. Note that classical solitons
appear only in a very special class of nonlinear equations, for instance, soliton
waves propagating in a nondissipative medium are the result of a balance
between nonlinear effects and wave dispersion [185]. Generally classical
solitons are characterized by their localizability and shape invariance, by a
peculiar behaviour under collisions and by carrying energy with some associated
velocity of propagation [259, 245]. As we have seen, gravitational solitons share
some properties with classical solitons, although in a strict sense they cannot
be considered true solitons. This is because, whereas all soliton solutions of
nonlinear physics can be obtained by the ISM (see, for instance, Scott et al. [259]
for a concise review), the ISM described in chapter 1 is not a standard ISM. As
remarked in chapter 1, the poles are not fixed numbers, but pole trajectories.

On more physical grounds, we have difficulties due to the curved nature of
the spacetime in identifying or defining some of the features of the gravitational
solitons such as amplitude, velocity of propagation, energy and even shape. For
instance, it is clear that the amplitude of the gravitational solitons decreases in
time as t−1/2, but this is a consequence of the background expansion and may not
imply dispersion. Also, it has not been possible to define a velocity or an energy
for the gravitational solitons that is clearly distinguished from the background,
but it is clear from our previous discussion that they carry energy in some sense,
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although not necessarily in a particle-like way. It is also clear that when two
gravitational solitons collide the shape of the solitons does not seem to change;
this is an important feature of classical solitons. An attempt to characterize the
soliton energy has been made by Feinstein [97], who using the Fourier Bessel
decomposition (4.94) and its asymptotic behaviour at large t , (4.46), has defined
an effective energy for the gravitational solitons in terms of the superposition
amplitudes Ak .

A point that deserves some attention is connected with the time shift in the
trajectories of colliding solitons. Some classical solitons, for instance the soliton
solutions of the Korteweg–de Vries equation, suffer such time shifts under
collisions. The shift is related to the soliton widths and it is interpreted as due
to the nonlinear interaction of the solitons during the collision. Boyd et al. [40]
have emphasized that the character of the gravitational solitons discussed in this
subsection is not classically solitonic on the basis of the linear equation (4.41)
satisfied by the field $, which is the main ingredient for the construction of the
metric coefficients. This is obviously true although nonlinear aspects of gravity
appear as a consequence of the nonlinear relation between $ and f given by
(4.42). In fact, we have seen that as a result of each collision f is ‘shifted’
by factors of w−2 and Dagotto et al. [71, 73, 121] have emphasized that the
gravitational solitons and other solutions related to the linear equation (4.41)
do suffer a time shift when the soliton peaks are compared with test null rays
propagating near the solitons. This effect is clearly nonlinear and a consequence
of the fact that the spacetime is described by both $ and f .

However, the closest analogue of the time shift in the collision of Korteweg–
de Vries, or sine-Gordon, solitons must be sought in nondiagonal metrics. In the
nondiagonal gravitational field there is a nonlinear coupling of the two modes
of polarization. This may imply conversion of one mode into the other and
vice versa. This is analysed in section 5.3 in the collision of a pulse wave and
a gravisoliton, where a small time shift is detected, and in section 6.3 where
this nonlinear interaction is interpreted as the analogue of the electromagnetic
Faraday rotation. This does not invalidate the use of diagonal metrics to see
some of the gravisoliton features. In fact, the main ingredients of $ are the pole
trajectories σk(t, z), which are also the main ingredients for the coefficients on a
nondiagonal soliton solution. Since the pole trajectories are the main ingredients
to describe the shape and the propagation of the solitons, the diagonal metrics
are very useful for studying this. Disentangling the soliton interaction from the
background geometry and looking for physically meaningful quantities is not,
however, a simple matter. We believe that the approach developed in section
2.3, see also ref. [14], also gives some insight into this problem.



5
Cosmology: nondiagonal metrics and

perturbed FLRW

In this chapter we continue describing soliton solutions in cosmological models
but now we concentrate on nondiagonal metrics and on backgrounds other than
Kasner.

In section 5.1 soliton solutions with two polarizations are discussed. Although
in this case explicit expressions for the metric coefficients cannot be displayed in
general, a fairly complete understanding of these metrics and their relevance as
cosmological models is possible. As in chapter 4, the metrics are also classified
in terms of real and complex poles. In section 5.2 soliton solutions obtained
from anisotropic Bianchi type II metrics are considered. In section 5.3 a solution
describing the nonlinear interaction between a gravitational pulse wave and
soliton-like waves is described. A polarization angle and wave amplitude are
defined and used to characterize the interaction. As a consequence of the
nonlinear interaction of the waves a time shift in the pulse-wave trajectory is
observed. Finally, in section 5.4 we discuss soliton solutions which describe
finite cylindrical perturbations on FLRW isotropic cosmological models. Mod-
els representing perturbations on the late time behaviour of low density open
FLRW are derived and studied. Soliton solutions when a massless scalar field is
coupled to the gravitational field, and their interpretation either as perfect fluids
of stiff matter or as anisotropic fluids are described, together with some solutions
representing perturbations on an FLRW model with stiff matter. Perturbations
on more realistic radiative FLRW are also discussed, as well as related solutions
of the Brans–Dicke theory. Some of these solutions are obtained by using soliton
solutions in five-dimensional gravity.

5.1 Nondiagonal metrics

We turn now to the nonlinear case, i.e. to the solutions obtained by the ISM when
(1.39), or (4.25), is truly nonlinear. Such solutions are simply obtained from a
diagonal background when the arbitrary parameters m(k)

0b of (1.80), or (4.34), are

133
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different from zero. The soliton metric now has two polarizations and following
Adams et al. [2] one may identify from its coefficients a wave amplitude and
the two independent wave polarizations. Unfortunately, one can no longer give
explicit expressions for the metric coefficients for an arbitrary number of pole
trajectories. This is largely due to the problem of inverting the n × n matrix �kl ,
defined in (1.83), which is required in finding the components (1.87), although
some convenient expressions can be obtained for diagonal backgrounds [191].
However, information can still be obtained from asymptotic expressions and
some limits in which the solutions lose one polarization, thus becoming diagonal
metrics. This will also provide a connection with the diagonal metrics discussed
in the previous chapter. The intrinsic properties of these metrics are more
difficult to study than for diagonal metrics because the Riemann components are
not so easily computed. Moreover, the nonlinear coupling between the modes of
polarization is difficult to characterize in a precise way. We shall first consider
the case of real-pole trajectories and then solutions with complex poles.

5.1.1 Solutions with real poles

From the point of view of exact cosmological models these solutions are not
always of interest because they are only defined in a limited region of the
canonical coordinate patch and the solution may be singular on the light cones
z2

k = t2. If they are not singular there one may try to match them to the
background metrics as we did for diagonal metrics. Sometimes it is useful to
think of those with fused double poles as the limiting case of complex-pole
solutions which are defined on the whole canonical coordinate patch (but see
the first paragraph of section 4.6.1). Note also that some of the most interesting
solutions with real poles in the diagonal case were generalized soliton solutions.
Such generalizations that were possible due to the essentially linear nature of
the solutions, see (4.41)–(4.42), are not possible here. This means that the
generalized soliton solutions generally have no counterpart in the nondiagonal
case. For these reasons nondiagonal real-pole solutions have not been much
studied in the cosmological context.

One-soliton solution. With real poles the nondiagonal solution on the Kasner
background for one pole, n = 1, was obtained in ref. [23]:

ds2 = Btd2/2 cosh(dr/2 + C)(z2 − t2)−1/2(dz2 − dt2) + [cosh(dr/2 + C)]−1

× {t1+d cosh[(1 + d)r/2 + C]dx2 + t1−d cosh[(1 − d)r/2 + C]dy2

− 2t sinh(r/2)dxdy}, (5.1)

where r = 2 ln(µ1/t) and B and C are arbitrary parameters. It is defined for
z2

1 ≥ t2. This solution follows from (2.18)–(2.19) when ρ1 is given by (2.27)
with C1 = C ; one also needs the identity (4.55).
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This solution has the cosmological singularity at t → 0 and is singular at
|z| → ∞ too. If one considers the metric component g11 and determines the
position of its extremum, with respect to the space-like variable z for various
fixed instants of time t , it can be seen that the world line of the extremum has
the equation z = t cosh(r0/2), z ≥ t , where r0 is a constant. So this maximum
cannot be considered to represent the propagation of a physical effect; this
solution simply describes the evolution of some initial condition. Taking the
limit C → ∞ (assuming B ∼ exp(−C)), the metric (5.1) becomes the diagonal
one-soliton solution (4.58)–(4.59) with h = 1 which is singular at |z| → ∞ but
not on the light cone z2

1 = t2.
When d = 1, i.e. the Minkowski background, this solution has been studied in

detail by Gleiser [118] for both B > 0 and B < 0. He showed that the solution
can be extended to the region z2

1 ≤ t2 by using appropriate new coordinates
(T, Z) related to the canonical ones by z1 = (T 2 + Z 2)/2, t = Z T . He also
considered the matching of (5.1) with flat spacetime (the background metric)
through the null hypersurfaces z2

1 = t2 and showed that there are three possible
ways in which this matching is possible. These correspond to the three different
ways in which the Minkowski spacetime may be written in the form (4.2). Two
such matched solutions are seen to contain a null fluid on the light cones, i.e.
they have distributional valued curvature tensors. One of these solutions is
interpreted as a cylindrically symmetric spacetime. The third solution represents
a pure gravitational shock front (no fluid) and can be thought of as describing
a singular straight line parallel in Minkowski space to the Z axis moving at
the speed of light along such axis. The shock front has the shape of an infinite
cylinder one of whose generatrices is the singular line. Therefore these solutions
with d = 1 in general have no cosmological interpretation as one might expect
from the fact that the background is not cosmological (Minkowski background).

Explicit expressions for the metric coefficients for two-pole trajectories (n =
2) are given by Economou and Tsoubelis [88], but are not discussed in the
cosmological context.

5.1.2 Solutions with complex poles

Two-soliton solution. For complex-pole trajectories the soliton solutions are
defined on the whole canonical coordinate patch. We have seen in section
1.4 that complex poles always go in pairs in the nondiagonal case, because the
metric must be real. Therefore the simplest nondiagonal metric with complex
poles from the Kasner background is obtained from (1.87), (1.100), (1.110) and
(1.111) with n = 2 and µ2 = µ̄1. This leads to the formulas (2.20)–(2.25),
adapted to the Kasner background: α = t , u0 = d ln t and ρ1 and ρ2 defined in
(2.27), with ρ2 = ρ̄1. The final exact form of the metric can be represented,
in slightly different notation [15, 51], as follows (note that now due to the
constraint w2 = w̄1 there is only one-soliton origin, see (4.73), z0

1 = z0
2 and



136 5 Cosmology: nondiagonal metrics and perturbed FLRW

c1 = −c2 = w):

g11 = t1+d

E

[
(σ + σ−1 − 2) sin2(γ + ψ)

+ (L2
0σ

−(1+d) + L−2
0 σ (1+d) + 2) sin2 γ

]
,

g22 = t1−d

E

[
(σ + σ−1 − 2) sin2(γ − ψ)

+ (L2
0σ

(1−d) + L−2
0 σ−(1−d) + 2) sin2 γ

]
,

g12 = 2w

E

{
L0σ

−(1+d)[sin(γ − ψ) + σ sin(γ + ψ)] + L−1
0 σ−(1+d)/2

× [sin(γ + ψ) + σ sin(γ − ψ)]
}
,

f = Ct (d
2−5)/2σ 2 E H−1(1 − σ)−2(sin γ )−2,



(5.2)

where we use the usual notation of section 4.6 (although we drop the index 1 in
σ1(t, z) and γ1(t, z)), and

E ≡ (σ +σ−1 −2) sin2 ψ + (L2
0σ

−d + L2
0σ

d +2) sin2 γ, ψ ≡ dγ +ψ0, (5.3)

C , L0 and ψ0 are arbitrary real constants, the last two are related to C1 of (2.27)
by Re C1 = − ln L0 and Im C1 = ψ0.

We can now determine the connection with the diagonal (one-polarization)
two-soliton solution. By taking the limits L0 → 0, C L2

0 → C (finite), the metric
(5.2) becomes g = gd[1 + O(L2

0)] and f = fd[1 + 0(L2
0)], where ( fd, gd) is

given by (4.84) with h = 2 and with the corresponding f coefficient of (4.80).
Thus the solution (5.2) can be regarded as a generalization of the diagonal metric
(4.84) and the parameter L0 can be interpreted as a ‘polarization’ parameter.

All the diagonal metrics, whatever the Kasner background, have the common
feature that they evolve towards the background at the asymptotic time-like and
null infinity regions. The same holds for the nondiagonal two-soliton solution.
Taking the limits (4.77), we have

g = g0[1 + O(t−1)], f = C
(L0 + L−1

0 )2

16w2
f0[1 + 0(t−1)], (5.4)

at time-like infinity, where (g0, f0) stands for the Kasner background, and

g = g0[1 + O(t−1/2)], f = C
[4 sin2 ψ0 + (L0 + L−1

0 )2]

32w2
f0[1 + O(t−1/2)],

(5.5)
at null infinity. One should not deduce from (5.5) that the Riemann tensor
behaves in the same way at null infinity as in the background solution, because
the z dependence in (5.5) has been hidden in the assumption |z| ∼ t .
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We can now study the asymptotic behaviour at space-like infinity. In that
limit the behaviour depends crucially on the background metric. For 1 > d ≥ 0
the metric becomes the background metric

1 > d ≥ 0, g → g0, space-like infinity. (5.6)

Thus, when the background is contracting in the z-direction the two-soliton
solution can be interpreted as two localized perturbations (gravisolitons) along
the z axis. Since the solitons have their maximum amplitude on the light cone
for large t , they ‘move’ in opposite directions with a speed asymptotically
approaching the speed of light. Again as in subsection 4.6.3 we do not need to
interpret them as travelling waves but rather as a resulting net flux of energy. The
main difference with the gravisolitons in diagonal metrics is that these waves
have two polarizations.

For d > 3 all metrics become the diagonal solution (4.84),

d > 3, g → gd, space-like infinity. (5.7)

This means in agreement with subsection 4.6.1 that these metrics have curvature
singularities at space-like infinity and therefore their interest as cosmological
models is doubtful.

For 3 ≥ d ≥ 1 the asymptotic behaviour at space-like infinity is more
complicated. See ref. [51] for details.

In fig. 5.1 the evolution of the transversal component gyy of metric (5.2) is
shown when the background metric is axisymmetric Kasner, d = 0. We take
the width of the soliton to be relatively small (w = 0.01) and the parameters in
(5.2)–(5.3) to be L0 = 1 and cosψ0 = (1.01)−1/2. In the representation in fig.
5.1, the x and y axes have been rotated through π/4. It is clear that the two-
soliton solution tends to Kasner in the causal and far regions if the propagation
axis is contracting. However, we should note that, if we take C ≡ w2/ sin2 ψ0,
the f coefficient in the far region becomes the corresponding f for the Kasner
background (4.3) whereas, in the causal and light-cone regions, it will include
a different constant (see (5.4)–(5.5)). Thus, in those asymptotic regions, the
existence of solitons modifies the ‘longitudinal expansion’ with respect to the
Kasner background. This behaviour was also seen in the diagonal metric. The
solution just described has only the cosmological singularity and it may have
cosmological interest as an inhomogeneous model.

n-soliton solution. Although in general explicit expressions cannot be given in
this case, we shall now discuss the general n-soliton solutions with complex
poles (n even) in the asymptotic regions. We will find that, for some back-
grounds they share many of the asymptotic properties of the two-soliton and
diagonal n-soliton solutions. In particular, as in all the solutions considered so
far (except the cosoliton solutions), the n-soliton solutions evolve towards the
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Fig. 5.1. This shows the time evolution of gyy(t, z) for the two-soliton solution (5.2)
generated from the axisymmetric Kasner background (d = 0). The Kasner background
has been subtracted and ‘normalized’ by the factor t ; we have also made a π/4 rotation
of the x and y axes. The soliton origin is z = 0 and its width is w = 0.01. The dotted
line is t = 0.1, the dashed line t = 0.3, the dot-dashed line t = 0.45 and the continuous
line t = 0.7.

Kasner background, with the perturbation decreasing as t−1 at time-like infinity.
This is a consequence of the value of σk in that region as given by (4.77) and
is also true for any other background, i.e. the n-soliton solutions approach the
background metric at time-like infinity.

This can be seen explicitly from the asymptotic values of matrix of (1.83),
�kl ; see ref. [51] for details. One gets

g = g0[1 + O(t−1)] time-like infinity, (5.8)

g = g0[1 + O(t−1/2)] null infinity, (5.9)

where g0 stands for the background metric.
Again the situation is different at space-like infinity. However, some features

can be deduced from the diagonal and nondiagonal two-soliton metrics. These
depend essentially on the background metric.

For 1 > d ≥ 0 (z axis contracting), the n-soliton solution will always
tend to the background metric at space-like infinity. This is because one can
find the n-soliton solution step by step, using the (n − 2)-soliton solution as
background, etc. It is clear from (5.6) that at each step we will recover the
background metric in this limit. Consequently, the general n-soliton solution can
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Fig. 5.2. This shows the time evolution of the gyy(t, z) component for the four-soliton
solution generated from the axisymmetric Kasner background (d = 0). The same
conventions as in fig. 5.1 apply. The soliton widths are c1 = c2 = 0.01 and the
separation of their origins is |z0

1 − z0
2| = 1. The dotted line corresponds to the time

t = 0.1 and the dashed line to the time t = 0.3, both before collision. The dot-dashed
line corresponds to the time t = 0.45 during the collision of the inner solitons. After the
collision these inner solitons move unperturbed, as seen by the continuous line which
corresponds to the time t = 0.7.

be considered as n gravisolitons on a Kasner background which is contracting
along the propagation axis. The speed of the solitons asymptotically approaches
the speed of light. Since (as in the diagonal case) the radiative part of their
gravitational field dominates at large times they may represent gravitational
radiation with two polarizations at null infinity. If we take |z0

k − z0
k−1| = s

for all k, so that the solitons are equally spaced, the wave ‘period’ will be s.
As an example we show in fig. 5.2 the gyy coefficient of the four-soliton

solution for the axisymmetric Kasner background (d = 0). The structure of
four solitons propagating on a background is clear. One can also observe the
collisions of the two inner solitons. The amplitude of the colliding pair is
much greater, implying larger curvature, than that of the other pair, but the two
solitons leave the collisions unmodified (as is typical of classical solitons). This
is similar to what we have seen in subsection 4.6.3. The difference here is that
these are solutions of a nonlinear system and one may expect some nonlinear
interaction effect such as a time shift [40] in the colliding perturbations. This
question, however, has not been investigated in this solution. Notice that there
is a ‘hierarchy’ effect, in that at large t the gross features of the four soliton
solution will resemble those of the two-soliton one.
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For background metrics with d > 3, the general n-soliton solution still tends
asymptotically to the diagonal n-soliton solution (4.79). We have already seen
that this is the case in the two-soliton solution, and one can prove the general
result by induction [51]. This can be interpreted as the loss of one of the
polarizations in the asymptotic regions. Thus the asymptotic results of section
4.6 for the diagonal metrics apply; some of those metrics, depending on d and
n, will become singular at |z| → ∞ and will have no clear cosmological
interpretation. Of course in the ‘near regions’ (i.e. small values of t) these
metrics are very different from the diagonal ones. They have a much richer
fine structure, with two polarizations and many extra parameters.

The solutions with 1 ≤ d ≤ 3, which include the Minkowski background,
have not been studied in detail. They are more complicated because they do not
tend towards diagonality or the background metric as |z| → ∞.

5.2 Bianchi II backgrounds

As we have remarked in chapter 1, the integration of (1.51) to find the
generating matrix ψ0(λ, t, z) once a background metric g0 (t, z) is given, may
not be an easy task when g0(t, z) is not a diagonal metric. Belinski and
Francaviglia [16] have given the general formalism for calculating generating
matrices for all Bianchi types from I to VII, which include several nondiagonal
metrics.

The first example of nondiagonal metrics to which the ISM was applied are
the Bianchi type II metrics. In ref. [16] the matrix ψ0(λ, t, z) was found for a
Bianchi II metric, and in ref. [17] the corresponding one-soliton solution was
given; see also Letelier [194]. However, as has been shown by Kitchingham
[172] such a solution is not truly nondiagonal from the viewpoint of the ISM
because the generating matrix can be found from a diagonal background,
Bianchi type I, followed by an Ehlers transformation. The Ehlers transformation
exploits the symmetries of the Ernst formulation of Einstein equations for spaces
with two commuting Killing vectors and transforms a given Ernst potential
into another Ernst potential, thus providing a different solution to Einstein
equations [179]. In particular when applied to the Kasner background, whose
Ernst potential is real, it leads to a new Ernst potential with an imaginary
part (twist potential). As shown by Kitchingham the generating matrix may
also be transformed by the Ehlers transformation and the generating matrix
of the transformed background is the same as the transformed generating
matrix of the background. When this is applied to the present problem the
generating matrix constructed in ref. [16] can be obtained by simply trans-
forming the corresponding generating matrix ψ0(λ, t, z) given in (4.35) for the
Kasner metric. Here we shall discuss the one-soliton solution found in ref.
[17].
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The homogeneous Bianchi type II background metric is given after an Ehlers
transformation of the Kasner metric as follows. The coefficient f0 is

f0(t) = C0

4a2
0

t (d
2−1)/2(1 + p), p = 4χ2a2

0(d + 1)−2t2(d+1), (5.10)

where C0, a0, d and χ are arbitrary real parameters. As always d is the Kasner
parameter and χ is related to the Ehlers transformation. When χ = 0 we recover
the Kasner metric. The matrix g0 is g0 = lTγ0l, where γ and l are 2×2 matrices
(lT is the transpose matrix) defined by

γ0 =
(

a2(t) 0
0 b2(t)

)
, l =

(
1 χ z
0 1

)
, (5.11)

where

a2(t) = 4a2
0(1 + p)−1td+1, b2(t) = t2a−2(t).

Note that here det g0 = t2 as in (1.38), so that we are dealing with canonical
coordinates.

To find the one-soliton solution we must choose a real-pole trajectory, µ1, as
in (4.49). Here, we have again the problem of discontinuities across the light
cone (z0

1 − z)2 = t2. Only in the region (z0
1 − z)2 ≥ t2 does the soliton solution

have meaning. Inside the light cone one may try to match the solution with the
homogeneous background metric (5.10)–(5.11).

The metric coefficient f for the one-soliton solution is

f = C1 f0
µ2 Q

(t2 − µ2)
√

t
, (5.12)

where C1 is an arbitrary parameter and

Q = a−2&2
1 + b−2&2

2, &1 = a2
(−χq1µ

(d+1)/2 + q2µ
−(d+1)/2

)
,

&2 = t2
(
χq1µ

(d−1)/2 p−1 + q2µ
−(d+3)/2 p

)
,

with q1, q2 arbitrary parameters, and µ ≡ µ1.
The matrix g of the one-soliton solution is

g = lTγ l, γab = |µ|
t

(γ0)ab + t2 − µ2

t |µ|
&a&b

Q
, a, b = 1, 2. (5.13)

When we take χ = 0 the soliton solution (5.12)–(5.13) reduces to the
nondiagonal one-soliton solution on a Kasner background with real poles (5.1).
This can be considered a generalization of (5.1).

This solution has the cosmological singularity at t = 0 and also an apparent
space singularity when |z| → ∞, which turns out to be a coordinate artefact
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[41]. The matching of the solitonic and the background regions has been studied
in refs [41, 25] and it is found that, as in the case of Kasner backgrounds, a null
fluid with negative energy density is needed along the matching hypersurfaces.
Its cosmological interest is not clear. Solutions with an increasing number of
real poles have been considered [68, 69, 42] by using algebraic computing and
numerical analysis. To obtain a solution that goes to the background at space
infinity one may take two opposite poles, say µ+

1 and µ−
2 , as in the Kasner

case. Such a solution could have a cosmological interpretation as pulse waves
on a Bianchi II background, as in subsection 4.5.2, provided the appropriate
matchings are performed. As in the case of the Kasner background, this
spacetime swept by two pulse waves travelling in opposite directions which
leave the region between the waves in the homogeneous background is also
called a ‘cosmic broom’. To avoid matching discontinuities one may take
complex-pole trajectories with two opposite poles. In this case the cosmological
interpretation as localized perturbations with two polarizations on a Bianchi II
background (5.10)–(5.11) is clear. These, however, generally cannot be seen as
travelling waves since they could travel at speeds faster than light, but they can
be understood as the result of the interference of energy fluxes propagating in
opposite directions.

5.3 Collision of pulse waves and soliton waves

Up to this point all soliton solutions of possible cosmological interest have been
deduced on homogeneous backgrounds, mainly Bianchi I but also Bianchi II, V
and VI0. Moreover, all background metrics have been diagonal or easily related
to diagonal metrics, although the resulting soliton solutions can be diagonal
or nondiagonal. In this section a nonhomogeneous and truly nondiagonal
background metric is considered.

This comes about when one tries to describe the collision between a soliton-
like wave and gravitational waves on cosmological backgrounds [54]. We
have seen in subsection 4.6.3 how we could generate soliton-like waves on
cosmological backgrounds and how we could describe the collision of two such
waves. It is clear that in order to describe the collision of a soliton wave and a
gravitational wave on a cosmological background we must take a background
metric already containing gravitational waves.

Some solutions with gravitational waves are found in spatially homogeneous
models: the Lukash Bianchi type VIIh [205] or Siklos plane waves of types
IV, VIh and VIIh [260, 261]. The Lukash solution is rather complicated and
Siklos plane waves can be integrated to find the generating functions, but they
are given in terms of a rather complicated combination of hypergeometric
functions [173]. Moreover, plane-wave solutions are a class of their own, as
we shall see in section 7.2. As a consequence, it is best to look directly for
inhomogeneous solutions. Wainwright and Marshman [298] found a family
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of inhomogeneous nondiagonal solutions that depend on an arbitrary function
of one null coordinate. Those solutions can be interpreted as cosmological
models with gravitational waves. Furthermore, Kitchingham [172] has found
the generating functions for such solutions. One solution of the Wainwright
and Marshman family has been interpreted as a gravitational wave pulse [298]
propagating on a Kasner background. It turns out that this is the simplest
solution with a gravitational wave that can be constructed with the Kasner
background; this has been proved by Stachel [262] in the cylindrical wave
context.

The background solution. This metric can be written [293] as

ds2 = t−3/8en(dz2 − dt2) + t1/2[dx2 + (t + w2)dy2 + 2w dx dy], (5.14)

where w(t + z) is an arbitrary function and the function n(t + z) satisfies the
differential equation n′ = (w′)2. The coordinate range is 0 ≤ t ≤ ∞, −∞ ≤
x, y, z,≤ ∞. When w = 0 (or constant) this metric reduces to a member of the
Kasner family. To define a pulse wave we choose w localized in a small region
of the spacetime in the following way:

w(u) = −A {1 − cos [2π(u − uF)/(uB − uF)]} , uF ≤ u ≤ uB, (5.15)

and w(u) = 0 otherwise, i.e. when u ≤ uF or uB ≤ u, where u ≡ t + z and
A, uF and uB are arbitrary constants; A may be interpreted as the amplitude of
the pulse wave and u B −uF as its width. This solution represents a gravitational
wave pulse propagating at the speed of light on a Kasner background (4.3) with
Kasner parameter d = 1/2.

The background metric and the new metric we generate can be seen as a
generalization of a Bianchi type I metric in which we break the homogeneity in
the z-direction. Following Adams et al. [2], they can be written generically as

ds2 = f (dz2 − dt2) + e2b

{[
cosh(2φ) + ψ

φ
sinh(2φ)

]
dx2

+
[

cosh(2φ) − ψ

φ
sinh(2φ)

]
dy2 + γ

φ
sinh(2φ)dxdy

}
, (5.16)

φ ≡ (ψ2 + γ 2)1/2, (5.17)

and all functions f, b, ψ , and γ depend on t and z. The two-dimensional
metric with dx and dy (∂x and ∂y are the two Killing vectors) has only
two independent components ψ and γ . These will be identified as the two
independent polarizations of the gravitational waves: ψ corresponding to the
+ mode and γ corresponding to the × mode, relative to the invariant basis ∂/∂x

and ∂/∂y .
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We can now define a phase angle θ ,

tan(2θ) = γ /ψ, (5.18)

and then we may use the functions φ, θ instead of ψ, γ , since γ = φ sin(2θ) and
ψ = φ cos(2θ). It is possible to give a physical meaning to the φ and θ functions
defined in (5.17) and (5.18). In fact, performing a rotation of the invariant basis
at any spacetime point with angle θ ,

ω1 = cos θ dx + sin θ dy, ω2 = − sin θ dx + cos θ dy, (5.19)

the two-dimensional metric becomes e2φ(ω1)2 + e−2φ(ω2)2, which has the form
of a pure + wave of amplitude φ. It is therefore clear that φ in (5.18) represents
the total amplitude of the gravitational wave, while θ in (5.18) is the physical
angle between dx and the direction of polarization of the wave.

For the pulse-wave solution (5.14) the polarization angle θ and the wave
amplitude are given by

tan(2θ) = 2w/(1 − w2 − t), φ = cosh−1
[
(1 + w2 + t)/2t1/2

]
. (5.20)

For the value of w taken in (5.15) the polarization angle is null except along
the null rays u ∈ (uB, uF). It is interesting to see how θ changes along the null
ray u = 0, say, from t = 0, where it takes a finite value, to t → ∞, where
it goes like tan(2θ) → −2w/t . This indicates that the metric approaches the
Kasner background when t → ∞; i.e. it becomes diagonal. The wave amplitude
φ decreases like t−1/2 as is typical of gravitational waves in homogeneous
backgrounds.

Four-soliton solution. The generating matrix ψ(λ) of (1.51) for metric (5.14)
has been given by Kitchingham [172]; but see ref. [54] for corrected misprints.
Now since coordinates (t, z) in (5.14) are canonical coordinates we need to
use complex-pole trajectories to avoid discontinuous first derivatives on the
light cones. Moreover, to get localized solutions we need to use opposite pole
trajectories (i.e. with modulus less and greater than t). This means that, since
complex poles come in pairs, our solution will have four poles and thus the
matrix �kl in (1.83) is a 4 × 4 complex matrix. Therefore it is not practical to
give the explicit form of the four-soliton solution from the background (5.14).
We take µ3 = µ̄1, µ4 = µ̄2 and the metric takes the form (4.2), with

f = f0

(
µ1µ2

w1w2

)3/2
(µ2 − µ1)

−2

(µ2
1 − t2)(µ2

2 − t2)

×
{

t (µ1 − µ2)
2

(µ1µ2 − t2)2
[tc1c2 + (µ1µ2)

1/2s1s2]2 + [µ1/2
2 c1s2 − µ

1/2
1 s1c2]2

}
,

(5.21)
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gab = (|µ1||µ2|)2t−4

[
(g0)ab −

4∑
k,l=1

(�−1)klφ
(k)
a φ

(l)
b (µkµl)

−1

]
, (5.22)

where f0 is the corresponding coefficient of the background metric and

φ
(k)
1 (t, z) ≡ t1/2(2wkµk)

−3/4µ
1/2
k sk,

φ
(k)
2 (t, z) ≡ t1/2(2wkµk)

−3/4(wµ
1/2
k sk + tdk),

sk(t, z) ≡ sin[Y (µk, t, z) + φk], dk(t, z) ≡ cos[Y (µk, t, z) + φk],

Y (µk, t, z) = (1/2wk)
1/2
∫

w′(t − u/wk)
−1/2du.

The complex parameters φk have been introduced instead of m(k)
0c of (1.80):

(2wk)
1/2m(k)

01 ≡ εk sinφk , m(k)
02 ≡ εk cosφk , and wk are the arbitrary constants

in the pole trajectories (1.67). The parameters εk are absorbed into the
arbitrary constant that multiplies the coefficient (5.21). The metric (5.21)–(5.22)
represents two perturbations that are soliton-like propagating on the background
of (5.14), i.e. a Kasner background with a pulse gravitational wave. One of
the solitons collides with the pulse wave. This can be seen in fig. 5.3, where
the different transversal metric components (5.22) have been represented. The
two-soliton waves start at the same origin. In fig. 5.3(c) both the soliton waves
and the pulse wave are seen with the same amplitudes, whereas in fig. 5.3(a) the
soliton wave dominates.

An analytic study of this solution may be performed in the asymptotic regions
and it is useful for this purpose to use the wave amplitude φ and polarization
angle θ defined in (5.17) and (5.18). At space-like and time-like infinities the
amplitude and polarization angle of the background metric are recovered as
expected. However, at null infinity one finds,

tan 2θ → 4
√

2C(χ12)

1 − 2
√

2C(χ12)
t−1/2[1 + O(t−1/2)], (5.23)

where C(χ12) takes different values if the light cone is z = −t + b or
z = t + a (a, b are real parameters) which represent the asymptotic trajectories
of the soliton waves [54]. The first one just propagates on the homogeneous
background, but the second one collides with the pulse wave. The change of
polarization angle can be understood in terms of the nonlinear interaction of the
two polarization modes which is typical of the nondiagonal metrics, and may
be compared with a similar phenomenon in the cylindrical waves described in
section 6.3, where an analogy with the electromagnetic Faraday rotation is noted
[243].

Comparison with the background value indicates that along the pulse wave the
polarization angle is greater in the solution (5.22). Calculating the polarization
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Fig. 5.3. Metric coefficients gab of (5.22) in the (t, z)-plane with the parameters A =
8 × 10−5, uF = 1.8, u B = 2.4, Re(w1) = Re(w2) = −0.8, Im(w1) = 0.043,
Im(w2) = 0.045, φ1 = φ2 = 0: (a) g11/t1/2, (b) g12/t and (c) g22/t3/2. The pulse
wave travels along z = −t + constant, at t = 0 it is located between z = 1.8 and
z = 2.4. The two solitons start at z = −0.8. Note that in (a) and (c) the z axis indicates
only the z-direction and the origin of the t axis is not z = 0, whereas in (b) a change of
z to −z is assumed.



5.3 Collision of pulse waves and soliton waves 147

t

z

(c)

Fig. 5.3. Continued.

angle along the soliton waves indicates that they give an angle of polarization
comparable to that of the pulse wave. Recall that in the background solution this
angle is zero along the light cones |z|2 ∼ t2. The wave amplitude of the metric
(5.22) goes like

φ → cosh−1

[
1 − 2

√
2C(χ12)

2
t1/2

]
[1 + O(t−1/2)], (5.24)

which grows like the background metric but with different parameters along
each null line, similar to the behaviour of the diagonal coefficients.

The effect of the collision of the soliton wave with the pulse wave is seen
in the different values that C(χ12) takes along the different light cones; see ref.
[54] for details. This is clearly seen in fig. 5.3(b) where the two-soliton waves
have different amplitudes, reflecting the fact that one of them interacts strongly
with the pulse wave. Another effect of such (nonlinear) interactions is seen in
the small time shift suffered by the peak of the pulse wave after colliding with
the soliton wave. This may be relevant in connection with the discussion at the
end of subsection 4.6.3.

To summarize, the soliton solution (5.21)–(5.22) can be interpreted as giving
the propagation and interaction of a gravitational wave pulse and two-soliton-
like waves on the same Kasner background. This metric, which is of Petrov
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type I, has the cosmological singularity only (t = 0) like the corresponding
Kasner metric. Thus it may be used as a cosmological model which starts highly
inhomogeneous and evolves to a Kasner background with small localized waves
of decreasing amplitudes propagating on it.

5.4 Solitons on FLRW backgrounds

So far we have seen that the ISM can be used to derive solutions that repre-
sent finite perturbations on some homogeneous but anisotropic cosmological
backgrounds, and that such perturbations in some cases become cosmological
waves as the background expands. However, the physically most relevant
cosmological models are the homogeneous and isotropic FLRW models. It is
of obvious interest to be able to describe finite soliton-like perturbations on such
backgrounds.

The study of small perturbations on FLRW, which was initiated by the
pioneering work of Lifshitz [204], has played an important role in cosmology
in problems of galaxy formation, cosmological stability and the propagation of
gravitational waves [301, 238]. Those studies have also triggered investigations
of more general, anisotropic, and inhomogeneous cosmological models. These
investigations have been carried out mainly by the search for and interpretation
of exact solutions; see the reviews by Carmeli et al. [48], MacCallum [210],
and Krasiński [180]. Of course, the snag with exact solutions is that only a
few of them can be viewed as realistic cosmological models since they are
obtained after imposing strong restrictions on the symmetry of the spacetime.
On the other hand, exact solutions can partially illustrate important physical
features of the real Universe. For instance, some exact solutions illustrate the
generation of gravitational waves of cosmological origin [2, 1] or the models we
have considered in the previous sections. Other models illustrate the evolution
of primordial density fluctuations on different backgrounds [202, 47]. In this
context it is of great interest to find exact cosmological solutions, anisotropic and
inhomogeneous, which evolve towards FLRW models. Although these models
admit two commuting Killing vectors the ISM cannot be applied directly to the
most relevant ones, namely the radiative and matter dominated models.

In this section we examine three classes of solutions that in one way or
another describe finite perturbations on FLRW backgrounds and which have
been obtained by the ISM. In the first class the background is a vacuum FLRW,
in the second class the backgrounds are FLRW spacetimes with stiff fluid, and
in the third class the backgrounds are FLRW spacetimes with radiation, or a
mixture of radiation and stiff matter. Some of these spacetimes also describe
solutions of Brans–Dicke theory. The necessary modifications to deal with fluid
or scalar fields will be given here.
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5.4.1 Solitons on vacuum FLRW backgrounds

In this subsection we describe finite soliton-like perturbations on a Milne
universe background which evolve towards gravitational radiation. The Milne
model, which is the region of flat space defined by the forward light cone from
the origin, can be interpreted as a vacuum open FLRW universe, since all open
FLRW models evolve towards it when the influence of matter can be neglected.
It is thus used to approximate low density open cosmological models at late
times. The Milne model has a space-like hypersurface of constant negative
curvature and is of Bianchi type V or VIIh [261]. We may note that soliton-like
perturbations on the Milne universe can again be directly related to perturbations
of the Kasner solutions since the Milne metric itself can be considered as
the diagonal one-soliton solution from a locally rotationally symmetric Kasner
background [174].

Milne’s model is described by the metric [219]

ds2 = −dτ 2 + τ 2dl2, dl2 = dχ2 + sinh2 χ (sin2 θ dϕ2 + dθ2), (5.25)

where 0 ≤ τ ≤ ∞, 0 ≤ χ ≤ ∞, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π . This is
obtained from flat space in spherical coordinates T, R, θ, ϕ by the coordinate
transformation T = τ coshχ , R = τ sinhχ . The meaning of these coordinates
is the following. Let us assume a set of particles propagating isotropically
and with arbitrary constant velocities from the origin T = R = 0. The lines
χ = constant, emanating from the origin, represent the world lines of these
particles and τ measures their proper times. These particles define a set of
inertial observers who see a ‘universe’ expanding from the origin at τ = 0,
where χ are the comoving coordinates. The hypersurfaces τ = constant are
space-like homogeneous hypersurfaces of constant negative curvature as the
line element dl2 in (5.25) shows; thus τ corresponds to the ‘cosmological’
time. These hypersurfaces are hyperboloids in the (T, R)-plane asymptotic to
the forward light cone from the origin T 2 = R2 (T ≥ 0).

The spherical coordinates in which the Milne model is written are not suitable
for the application of the ISM and we have to adapt the metric to the two
commuting Killing vectors. This can be done by the coordinate change [20]

sinh ρ = sinhχ sin θ, cosh ρ sinh z = sinhχ cos θ, (5.26)

where 0 ≤ ρ ≤ ∞ and −∞ ≤ z ≤ ∞. Then the line element dl2 is written as

dl2 = dρ2 + sinh2ρ dϕ2 + cosh2ρ dz2. (5.27)

Instead of Milne’s time τ we shall often use t defined as t = ln τ , −∞ ≤ t ≤ ∞.
Then the Milne metric (5.25) reads:

ds2 = e2t(dρ2 − dt2) + e2t(sinh2ρ dϕ2 + cosh2ρ dz2). (5.28)
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Although it is now written in the form (1.36), (t, ρ) are not canonical
coordinates since

det gab = e4t sinh2 ρ cosh2 ρ (5.29)

is not equal to t2. Canonical coordinates (t ′, z′) can be defined by a coordinate
transformation t ′ = f1(ρ + t) − f2(ρ − t), z′ = f1(ρ + t) + f2(ρ − t).
When one evaluates the real-pole trajectories in terms of (t, ρ) one sees that
the poles are well defined in the whole range of (t, ρ), which corresponds to
the region z′2 ≥ t ′2 in canonical coordinates. In order to describe localized
waves propagating on the Milne universe we take two opposite (real) poles. The
two-soliton metric is given by ref. [154]:

ds2 = f (τ 2dρ2 − dτ 2) + τ 2dl2, (5.30)

f (τ, ρ) = Cs3
1 s3

2τ
−8(sinh ρ)−2(cosh ρ)−6(s1 + tanh ρ)−2(s2 + tanh ρ)−2

×(s2
1 − 1)−1(1 − s2

2)
−1(s1s2 − 1)−2,

dl2 = [sinh2 ρ/(s1s2)]dϕ
2 + s1s2 cosh2ρ dz2 ;

s1 = β1/α − [(β1/α)
2 − 1]1/2, s2 = β2/α + [(β2/α)

2 − 1]1/2,

βk = wk − 1

2
τ 2 cosh 2ρ, k = 1, 2, w1 = w2; α = 1

2
τ 2 sinh 2ρ.

To avoid light-cone discontinuities we must take wk < 0 (wk = −τ 2
k ). In (5.30)

we use Milne’s time τ ; C and τk are arbitrary real constants, but we take

C = 16τ 4
2 (τ

2
1 − τ 2

2 )
2, (5.31)

because now metric (5.30) is regular on the symmetry axis: ρ = 0. That is,
it satisfies the regularity condition limρ→0 X,µ X ,µ/(4X) = 1, where X is the
modulus of the Killing vector ∂ϕ [179]. This means that (ρ, ϕ) are cylindrical
coordinates.

Metric (5.30) becomes the Milne metric in the asymptotic regions. It turns
out that the maximum deviations from the Milne background are concentrated
around the future light cone ρ = ln τ , for large τ , and the past light cone
ρ = − ln τ , for small τ . The asymptotic analysis can be made in terms
of the Riemann components (4.12) with the tetrad �n = (2 f )−1/2τ−1∂u, �l =
(2 f )−1/2τ−1∂v, �m = (2)−1/2((gϕϕ)

−1/2∂ϕ + i(gzz)
−1/2∂z) and �m∗, where u =

ln τ + ρ, v = ln τ − ρ are null coordinates. It is found that at future time-like
infinity (ρ finite, τ → ∞),)0 ∼ )2 ∼ )4 ∼ 0(τ−2), and so the metric
approaches Milne (flat space). Similarly at space-like infinity (τ finite, ρ → ∞),
)0 ∼ )2 ∼ )4 ∼ 0(e−ρ).

On the other hand, at past time-like infinity (ρ finite, τ → 0) all Riemann
components become constant, for instance the Coulomb field is )2 = [2τ 4

2 (τ
2
1 −

τ 2
2 )]

−1[1 + 0(τ 2)] so that the metric does not approach flat space in this region,
although it has no ‘cosmological’ curvature singularity. At future null infinity
(v = a = constant, u → ∞) we find )4 ∼ 0(e−2u), )0 ∼ )2 ∼ 0(e−3u)
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so that the radiative component )4 dominates. To draw conclusions we must
approach this limit in a frame parallel propagated along a null geodesic. The
vector �n is tangent to the geodesic congruence defined by v = a but it does
not give an affine parametrization. The boost (4.14) with A = f −1/2τ−1

gives an affine parametrization to the geodesic defined by d/dλ = A�n (λ=
affine parameter) and the new tetrad is parallel propagated. The new Riemann
components (4.15) now give (0(e−4u), 0(e−3u), 0(e−u)) which means that the
spacetime becomes flat at future null infinity (λ → ∞ in this region)

At the initial null hypersurface (u = a, v → −∞) if we approach the null
congruence u = 0 with the parallel propagated boosted tetrad one finds that the
new Riemann components (4.15) are: (0(1), 0(1), 0(1)), i.e. they are bounded.
The affine parameter µ : d/dµ = A�l vanishes on such a hypersurface. This
indicates that it may be possible to extend the spacetime through such a regular
null hypersurface. Note that there is a similar situation with the Milne model
itself (a region of flat space) which may naturally be extended through the same
hypersurface. However, the cosmological region is that described above.

The conformal diagram of metric (5.30), together with that of the Milne
background diagram, is given in fig. 5.4. The full curve represents the trajectory
of the soliton perturbation. It starts as gravitational radiation and propagates as
a cylindrical wave towards the axis ρ = 0, where it behaves in a particle-like
fashion propagating at a velocity less than the velocity of light. Finally the
perturbation propagates away from the axis and becomes gravitational radiation
of decreasing amplitude on an expanding Milne background. At this stage the
universe is an open FLRW with cylindrical gravitational waves.

The extension of metric (5.30) through the initial null hypersurface can be
done by introducing new null coordinates U = eu , V = ev and allowing them
to take the values −∞ < U, V < ∞. Then the affine parameter µ of the null
geodesic has the range (−∞,∞). The Riemann tensor of the extended metric
goes to zero at past null and future null infinities. At past null infinity the )4

component dominates over )0 and )2 and this means that we have incoming
gravitational radiation. These waves collide at finite values of U and V and
then radiate at future null infinity in the way described above for the perturbated
Milne universe. Note that such spacetime has no curvature singularities.

5.4.2 Solitons with a stiff perfect fluid on FLRW

Under the appropriate symmetry restrictions, the ISM can also be applied to
solve Einstein equations coupled to a massless scalar field σ (a massless Klein–
Gordon field). These equations read

Rµν = σ,µσ,ν, (5.32)

σ ;µ
,µ = 0. (5.33)
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Fig. 5.4. Structure of the soliton solution on the conformal diagram for the Milne
universe. It is drawn for the plane z = 0, ϕ = constant.

It is well known that a solution of this system may have a fluid interpretation
[267, 297, 188, 12]. Given σ this is done in the following way. If σ,µ is a
time-like vector σ,µσ

,µ < 0, σ may be considered as the potential of a perfect
fluid with a stiff equation of state p = ε (p = pressure, ε = energy density).
This is achieved defining the density, pressure and four-velocity of the fluid as

ε = p = −1

2
σ,µσ

,µ, uµ = σ,µ/
√−σ,µσ ,µ. (5.34)

The stress-energy tensor of the fluid is identified from the right hand side of
(5.32) as Tµν − 1

2 gµνT , where

Tµν = ε(2uµuν + gµν), (5.35)
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which is a perfect fluid, i.e. Tµν = (ε + p)uµuν + pgµν , with a stiff equation
of state (ε = p). Such an equation of state implies that the velocity of sound
equals the velocity of light and was proposed by Zeldovich [313] to describe the
matter content of the Universe in its earlier stages [9].

If σ,µ is a space-like vector, σ,µσ
,µ > 0, the above identification is still for-

mally valid but now uµ is a space-like vector and the perfect fluid interpretation
does not hold. Following Tabensky and Taub [267] we can see that the right
hand side of (5.32) can be identified with an anisotropic fluid. For this we define
an orthonormal tetrad (τ̂µ,σ̂,µ, x̂µ, ŷµ), where τ̂µ is a time-like vector, σ̂,µ ≡ uµ,,
and x̂µ, ŷµ are space-like vectors. Now gµν = −τ̂µτ̂ν + σ̂,µσ̂,ν + x̂µ x̂ν + ŷµ ŷν
and the right hand side of (5.32) can be written as Tµν − 1

2 gµνT , with

Tµν = 1

2
σ,λσ

,λ(τµτν + σ,µσ,ν − xµxν − yµyν), (5.36)

which corresponds to the stress-energy tensor of an anisotropic fluid with energy
density ε = 1

2σ,λσ
,λ and vanishing heat-flow vector. The weak and strong

energy conditions [143] are satisfied and the fluid interpretation is reasonable.
We assume as usual that the spacetime admits an orthogonally transitive two-

parameter group of isometries. We have seen in section 1.2 that the ISM is
aimed, basically, at the solution of the field equations Rab = 0, i.e. (1.39). This
is the case for vacuum, for instance. When we assume the presence of matter,
i.e. a given stress-energy tensor Tµν , the above equations will not be true in
general. However, when a massless scalar field is coupled to the gravitational
field, as in (5.32), the Ricci components R0a and R3a vanish (R0a = R3a = 0),
due to the block diagonal form of the metric (1.36) and, from (5.32) it follows
that σ,a = 0 and, consequently, Rab = 0. Therefore the ISM for (1.39) still
applies.

The remaining equation (1.40)–(1.41) will be modified now but only the
metric coefficient f of (1.36) will be different from the vacuum case [12]. If
we write f as the product f = fv F , (5.32)–(5.33) can be divided into four
groups. The first and second of these exactly repeat the Einstein equations in
vacuum, (1.39) and (1.40)–(1.41), where f is changed by fv. The third group
is just a wave equation for the scalar field σ , which in canonical coordinates
(α = t) is

σ,t t + 1

t
σ,t − σ,zz = 0, (5.37)

and the fourth group determines the factor F :

(ln F),t = t (σ 2
,z + σ 2

,t), (ln F),z = 2tσ,tσ,z. (5.38)

Hence, to solve the problem we must first construct a vacuum soliton solution
( fv, g) as we explained in chapter 1. After this we must determine the scalar
field σ from (5.37) and then use (5.38) to determine the function F . The
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final result will be a metric ( f, g) with f = fv F . If we want a fluid
interpretation we must identify the fluid properties according to (5.35) or (5.36)
from the scalar field. Equations (5.37)–(5.38) are identical to (4.41)–(4.42)
for a vacuum diagonal metric: the field σ

√
2 can be thought of as describing

the transversal metric components and t−1/2 F as the longitudinal component.
Therefore the ISM and its generalizations can be applied to the field σ . One
can take different numbers of pole trajectories for the pair ( fv, g) say n,
and the pair (t−1/2 F, σ

√
2) say m. Such solutions are called (n,m)-soliton

solutions.
Letelier [190] generalized (5.37)–(5.38) to the case of an anisotropic fluid

described by two or more perfect fluids. The pressure on the direction of
propagation of the wave equals the energy density. He found the (0, 1)-, (1, 0)-
and (1, 1)-soliton solutions with real poles on a Kasner background. In the last
case both the gravitational field and the matter have a soliton-like behaviour.
A soliton solution that has an FLRW with stiff fluid limit was obtained in
ref. [198] with a source formed by three scalar fields. In the limit of one
scalar field it produces some known nonsolitonic stiff fluid inhomogeneous
metrics, which generalize the flat and open FLRW models [197, 187, 188, 297].
We should add here that Einstein equations generalizing (5.32)–(5.33) and
representing the coupling of gravity with selfdual SU(2) gauge fields [305] have
also been considered and adapted, under the appropriate symmetry restrictions,
to the ISM. The corresponding stress-energy tensors in some cases admit
fluid interpretations, generally as anisotropic fluids with different perfect fluid
components [190, 195, 196]. Soliton solutions with cylindrical symmetry [199],
as well as axial symmetry [194, 200], have been obtained and interpreted in
different ways.

Note that, for solitonic behaviour, the existence of a unique velocity defined
on the system in the direction of propagation of the wave seems essential. In
vacuum we have only the gravitational field (speed of light). With stiff matter,
the matter and the gravitational field have a coherent coupling: speed of sound
= speed of light. One might expect that for a perfect fluid with a different speed
of sound the solitonic behaviour will not persist and the soliton perturbation will
be dispersed. We shall see this in the next subsection.

Soliton solutions with a stiff fluid. In ref. [12] the (1, 0)-soliton solutions were
found (the scalar field remains unperturbed) with nondiagonal metrics for the
flat, open and closed FLRW models. Although there is only one pole and
therefore it must be real, there is no problem of discontinuities because the
physically meaningful range of variables is reduced to the region (z0

1 − z)2 ≥
t2; see the details in ref. [12]. As an explicit example we consider such a
(1, 0)-soliton solution in the flat FLRW background with stiff matter. Instead of
canonical coordinates it is more convenient to use for this solution coordinates
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τ , ρ, θ , z in which the background metric has the form

ds2 = τ(dρ2 − dτ 2)+ τ(ρ2dθ2 + dz2), σ =
√

3/2 ln τ, ε = p = (3/4)τ−3,

(5.39)
with 0 ≤ ρ ≤ ∞, 0 ≤ θ ≤ 2π , −∞ < z < ∞ and τ ≥ 0. In these coordinates
α and β defined in (1.45) and (1.46) are α = τρ and β = (τ 2 +ρ2)/2. Choosing
the arbitrary constant w1 in (1.67) to be negative, i.e. w1 = −l2/2, where l is
an arbitrary real parameter, we get for the pole trajectory µ (which we take for
definiteness to be µin

1 ):

µ = −1

2
(l2 + τ 2 + ρ2) + 1

2
[(l2 + τ 2 + ρ2)2 − 4τ 2ρ2]1/2, (5.40)

which is well defined in the whole (τ, ρ) region. The (1, 0)-soliton solution is
then

f = l2τ [s2τ 2 + (τ 2 + µ)2]

s2[l2τ 2 + (τ 2 + µ)2]
,

g = τ [s2τ 2 + (τ 2 + µ)2]−1

×
(

s2τ 2ρ2 + ρ2(τ 2 +µ)2 + qρ2(τ 2 +µ)− q2µ qsµ
qsµ s2τ 2 + (τ 2 +µ)2 − q(τ 2 +µ)

)
,


(5.41)

with s an arbitrary parameter and q ≡ s2 − l2. The matter content is given by

σ =
√

3/2 ln τ, ε = p = 3s2[l2τ 2 + (τ 2 + µ)2]

4l2τ 3[s2τ 2 + (τ 2 + µ)2]
. (5.42)

This model has the cosmological singularity only. For small τ a soliton-like
perturbation is concentrated near the symmetry axis ρ = 0. After a critical
time τ ∼ s (for simplicity we consider the parameters l and s to be of the
same order of magnitude) this cylindrical perturbation leaves the horizon and
propagates outward, with decreasing amplitude and, at large τ , it propagates at
the speed of light. This is another example of the production of gravitational
waves. The qualitative behaviour of this solution is very similar to that of the
late stages of the soliton solutions on a Milne universe discussed in subsection
5.4.1. This solution was further discussed by Gleiser et al. [119], who also
showed that it could be analytically continued to values of l2 negative. The
(1, 0)-soliton solutions on the open FLRW models are qualitatively similar to
(5.41)–(5.42) and in the closed model the soliton perturbations start decreasing
but then increase again in the final stages [12].

Generalized soliton solutions with stiff fluid. The generalized soliton solutions
discussed in section 4.4.1 can easily be used to find diagonal solutions with
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a stiff fluid. As we have emphasized earlier, these diagonal metrics are not
the limit of truly nondiagonal soliton solutions in general. The construction
of these solutions is obvious if one compares (5.37)–(5.38) with (4.41)–(4.42).
One example of a generalized soliton solution which has the FLRW limit is
a cosmological solution for a stiff fluid by Wainwright et al. [297]. It is the
stiff fluid version of the vacuum solution (4.58)–(4.59). The potential $ and
fv are given by (4.58)–(4.59), and from this we can write the generalized
soliton solution for σ and F , recalling the correspondence $ → σ

√
2 and

fv → t−1/2 F . Then the new metric coefficient f is f = fv F . Introducing
two new parameters α and β we can finally write,

σ = α ln t + β cosh−1
( z1

t

)
, |z1| ≥ t, (5.43)

$ = d ln t + h cosh−1
( z1

t

)
, |z1| ≥ t, (5.44)

f = t [(d−h)2+2(α−β)2−1]/2µ
hd+2αβ
1 (z2

1 − t2)−(h2+2β2)/2. (5.45)

Defining new coordinates (T, Z) by (4.61) we have that µ1/t = [tanh(aT )]−1

and the metric can be written as

ds2 = [sinh(2aT )](d
2+h2+2α2+2β2−1)/2[tanh(aT )]−(dh+2αβ)

×e(h2−d2+2β2−2α2−3)aZ (d Z2 − dT 2)

+ [sinh(2aT )]1+d[tanh(aT )]−he−2a(1+d)Z dx2

+ [sinh(2aT )]1−d[tanh(aT )]he−2a(1−d)Z dy2, (5.46)

which is in the form given in ref. [297]. This solution is the open FLRW
model when d = h = α = 0 and β2 = 3/2, and it is the flat FLRW when
α = −β2 = √

3/8 and d = h = ±1/2, see ref. [180]. When α = β = 0
it reduces to a vacuum solution and in this case it becomes the Ellis and
MacCallum homogeneous and anisotropic solution (4.62) when h2 = d2 + 3.
When h2 = 0, h2 = 1 and 3/2 ≤ h2 < 2 the spacetime can be extended
beyond a coordinate boundary that exists when h2 < 2; see ref. [76]. These
metrics can be generalized using the solutions (4.48), where gi (λ) are arbitrary
bounded functions, With such solutions new metrics representing gravitational
and density pulses propagating on the spacetime (5.46) can be constructed [48].

Generalized cosoliton solutions with stiff fluid. Analogously one may construct
cosoliton solutions as in section 4.5.3. As an example we consider a stiff fluid
solution which has an FLRW limit. Following steps similar to those used in the
previous case we may construct from (4.70)–(4.71) the following solution [234]:

σ = α ln t + β cos−1
( z1

t

)
, |z1| ≤ t, (5.47)

$ = d ln t + h cos−1
( z1

t

)
, |z1| ≤ t, (5.48)
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f = t (d
2−h2+2α2−2β2−1)/2(t2 − z2

1)
(h2+2β2)/2 exp

[
(dh + 2αβ) cos−1

( z1

t

)]
.

(5.49)

This is a solution of Einstein’s equations coupled to a massless scalar field,
(5.32)–(5.33). It reduces to the Tabensky and Taub plane-wave symmetric
metric when d = h = 0 [267]. For large t the metric approaches a spatially
homogeneous metric.

The spacetime regions where σ,µ is, respectively, time-like and space-like are
divided by the straight line t = −(α2 + β2)(α2 − β2)−1z1. According to the
previous discussion, see (5.35) and (5.36), we have a perfect stiff fluid in the
spacetime region between that straight line and t = z1 > 0 and an anisotropic
fluid in the complementary region. The presence of a fluid makes this metric
easy to study and interpret because one may adapt the coordinate system to the
fluid and introduce comoving coordinates [266]. In the region where σ,µ is time-
like we may use σ(t, z) as the time coordinate and define a space coordinate
Z(t, z) by d Z = α−1t (σ,zdt +σ,t dz); this ensures that Z,µσ

,µ = 0 and that Z,µ

is space-like. When this equation is integrated we have the new space coordinate

Z = z1 − α−1β(t2 − z2
1)

1/2. (5.50)

The fluid lines are the hyperbolas defined by Z = constant, which approach
straight lines when t → ∞. Then the time coordinate may be defined as

T = exp
[
α−1σ(t, z) − α−1β cos−1

(
b/
√
α2 + β2

)]
, (5.51)

where the parameters have been introduced for convenience. In the region where
σ,µ is space-like, T and Z are space and time coordinates, respectively, and the
fluid lines are defined by σ = constant. The coordinate change (5.50)–(5.51) is
not explicitly invertible. However, for large t it is

t � T + Zβ/
√
α2 + β2, z � Z + Tβ/

√
α2 + β2. (5.52)

In this case the metric (5.48)–(5.49) can be approximately written in comoving
coordinates as

ds2 � T d2+h2+2α2+2β2−1

×
[

1 + Z

T
√
α2 + β2

[
β

2
(d2 − h2 − 2α2 − 2β2 − 1) − αhd

]]

×
[(

1 − 2
βZ

T
√
α2 + β2

)
d Z2 − dT 2

]

+ T

[
1 + βZ

T
√
α2 + β2

(T d Adx2 + T −d A−1dy2)

]
, (5.53)
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where A = 1+ (Z/T
√
α2 + β2)(βd −αh) exp[h cos−1(β/

√
α2 + β2)]. For the

set of values [d = h = 0, 2(α2 + β2) = 3] and for the set [d = 0, 2(α2 + β2) =
3 − h2] this metric approaches the flat FLRW metric with a stiff perfect fluid as
T → ∞:

ds2 = T (dx2 + dy2 + d Z 2 − dT 2).

For all other values of the parameters the metric approaches a spatially homo-
geneous but anisotropic model. To finite values of time the metric is spatially
inhomogeneous and may be interpreted as representing inhomogeneous finite
perturbations on homogeneous backgrounds. Therefore this solution is another
example of inhomogeneous cosmologies that become spatially homogeneous,
and even isotropic (FLRW) for some values of the parameters, as a result
of cosmological evolution. Since metric (5.48)–(5.49) can be seen as the
analytical continuation of (5.44)–(5.45) it has also been interpreted [180] as
being determined on another region of the manifold that underlies the solution
(5.46).

5.4.3 The Kaluza–Klein ansatz and theories with scalar fields

It would be of interest to extend the ISM to FLRW backgrounds with more
realistic equations of state. To some extent this is possible for radiation perfect
fluids if we accept anisotropic perturbations on the fluid. As we have remarked
in the previous subsection soliton-like perturbations are maintained when there
is only one characteristic speed in the problem. For vacuum and for a stiff fluid
the speed of propagation of the gravitational field and that of the sound equal
the speed of light. For a radiative perfect fluid, however, the speed of sound is
1/

√
3 of the speed of light and one expects that an initially localized perturbation

will be dispersed by the gravitational field. In fact, it is known that when an
equation of state different from that of a stiff fluid is imposed, the dynamical
equations lead to very complicated behaviour and the formation of shock waves
[202]. But as we shall see a soliton structure may be maintained with a spatially
anisotropic stress-energy tensor, such that the pressure in the direction of the
solitons propagation equals the energy density.

We use the fact that the FLRW cosmological models with a radiative perfect
fluid are equivalent to vacuum solutions of Einstein’s equations in five dimen-
sions, see for instance ref. [152]. Then by evaluating soliton solutions in five
dimensions, which can be interpreted as finite perturbations propagating on
a five-dimensional vacuum, one may find perturbations on a radiative FLRW
background. This leads us to consider Einstein’s equations in more than four
dimensions and in particular to discuss the different effective four-dimensional
theories that they induce. It is thus useful to comment upon such aspects and the
connection with Kaluza–Klein theories [162, 175]. In modern Kaluza–Klein
theories the extra space is considered a compact space of the size of the
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Planck length whose isometries are the gauge symmetries of some gauge theory
[86]. Fourier expanding the N -dimensional metric tensor in terms of the extra
coordinates one finds, at the zero mode or the low energy limit, an effective
four-dimensional theory for the coupling of gravity with N − 4 vector fields
(Yang–Mills gauge bosons) and (N − 4)(N − 3)/2 scalar fields (presumably
Higgs bosons). As described in section 1.5 the vector fields are associated with
the mixed metric components of the N -dimensional metric, and the scalar fields
are associated with the metric components of the extra space [132, 86].

In order to obtain realistic effective low energy theories the scalar fields play
an essential role in these theories. Thus, for instance, in five dimensions the
low energy theory is the Jordan–Thiry four-dimensional theory [159, 270, 271]
of coupled gravity and electromagnetism with a massless scalar field as in
the Brans–Dicke theory. But unlike the Brans–Dicke theory, which contains
an arbitrary constant [43, 301], here the constant is fixed, as it should be in
a truly unified theory, by the general five-dimensional covariance. However,
the theory may be transformed into the source-free Brans–Dicke theory by
means of a conformal transformation which involves an arbitrary parameter
of the four-dimensional metric or, also, it may be transformed into Einstein’s
equations coupled to a massless scalar field, [19, 267] which as we have
seen in the previous subsection may be equivalent to a stiff perfect fluid. As
another example, in six dimensions if one restricts to the scalar sector [198]
the Kaluza–Klein ansatz leads to an effective four-dimensional theory which
describes the coupling of the Brans–Dicke field with an anisotropic fluid formed
by two perfect fluid components [189]. Therefore one may use extra dimensions
as a useful auxiliary tool to obtain meaningful four-dimensional theories.

We shall now write down the effective four-dimensional theory from arbitrary
dimensions, as in section 1.5, and then we will restrict it to five dimensions. An
N -dimensional Kaluza–Klein theory is based on an N -dimensional metric γAB

ds2
(N ) = γABdx Adx B = γµνdxµdxν + 2γµbdxµdxb + γabdxadxb, (5.54)

which we split into the usual four coordinates and N − 4 extra coordinates with
A, B,= 0, 1, . . . , N − 1, µ, ν = 0, 1, 2, 3, and, here, a, b,= 4, . . . , N − 1.
The general N -dimensional covariance leads to the N -dimensional Einstein field
equations in vacuum; in the simplest Kaluza–Klein theories no extra fields are
assumed; i.e., RAB = 0. Assuming that the extra space is compact and of
small size, the zero mode or low energy limit is obtained by the assumption that
γAB has no dependence on the extra coordinates: γAB,a = 0. This implements
the Kaluza–Klein ansatz. The theory can be written in terms of an effective
four-dimensional metric:

gµν = γµν − γab Aa
µ Ab

ν, (5.55)

Aa
µ ≡ γbµγ̂

ba, γ̂ abγbc ≡ δa
c . (5.56)
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One can verify that gµν = γ µν , γ aµ = −Aaµ, γ ab = γ̂ ab + Aaµ Ab
µ. The

coefficients Aa
µ represent N − 4 vector fields on the space of metric gµν and the

coefficients γab are (N − 4) × (N − 3)/2 scalar fields. Related to the volume
of the extra space there is the scalar field σ defined by det(γab) = σ 2. Note that
here our notation differs slightly from that of section 1.5, and also the election of
the four-dimensional metric is different since we do not use the Einstein frame.

We wish to consider the scalar sector of the theory only; i.e. we now assume
that Aa

µ = 0 (γaµ = 0), which is compatible with the field equations. Now the
field equations RAB = 0 in terms of the four-dimensional metric gµν can be
written as, see (1.121)–(1.123),

R̄µν = σ−1σ,µ;ν − σ−2σ,µσ,ν − (1/4)γ̂ ab
,µ γab,ν, (5.57)

(σγab,µγ̂
ac);µ = 0, (5.58)

σ ;µ
,µ = 0, (5.59)

where R̄µν denotes the Ricci tensor for the metric gµν and all covariant
derivatives are taken in terms of such a four-dimensional metric. Equation (5.57)
is a consequence of Rµν = 0, (5.58) follows from Rab = 0 and (5.59) is just the
trace of (5.58). The equations Rµa = 0 are identically verified in view of the
assumption γµa = 0. We now restrict these field equations to the case N = 5,
then (5.57), (5.58) and (5.59) read

R̄µν = σ−1σ,µ;ν, σ ;µ
,µ = 0, (5.60)

which are Brans–Dicke equations in vacuum with coupling parameter ω = 0
and σ(xµ) is the massless Brans–Dicke field; see (5.61). Notice that when N =
6 (see ref. [198]) one obtains Brans–Dicke equations with coupling parameter
ω = 1/2.

Related scalar theories. Let us now discuss related scalar theories, namely
Brans–Dicke theory with arbitrary coupling parameter and Einstein equations
coupled to a massless scalar field. The Brans–Dicke equations in vacuum are
[43, 301]

R̂µν − 1

2
ĝµν R̂ = 1

σ̂
σ̂,µ;ν + ω

σ̂ 2

(
σ̂,µσ̂,ν − 1

2
gµνσ̂,ρσ̂

,ρ

)
, σ̂ ;µ

,µ = 0, (5.61)

with metric tensor ĝµν , scalar field σ̂ , and coupling parameter ω. For large
ω (i.e. ω > 500) such a theory is compatible with observation [222]. These
equations can be obtained from the vacuum equations for the five-dimensional
metric (5.54), which we write using (5.55) as

ds2
(5) = gµν(x

ρ)dxµdxν + σ 2(xρ)(dx5)2, (5.62)
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by defining [19]

ĝµν = σ 1−%gµν, σ̂ = σ%, % ≡ (1 + 2ω/3)−1/2. (5.63)

That is, (5.61) are equivalent to (5.60). Consequently a solution of (5.60) can be
transformed into a solution of (5.61).

The Einstein equations for a massless scalar field (and stiff fluid, eventually)
can be written (see (5.32)–(5.33)) in terms of a four-dimensional metric tensor
ĝµν as

R̂µν = σ̂,µσ̂,ν, σ̂ ;µ
,µ = 0. (5.64)

These equation are equivalent to (5.60), if we define the four-dimensional metric
ĝµν and scalar field σ̂ in terms of the five-dimensional metric (5.62) by

ĝµν = σgµν, σ̂ = (3/2)1/2 ln |σ |, (5.65)

which corresponds to the Einstein frame. Therefore, a solution of (5.60) can be
transformed into a solution of (5.64) by means of the transformation (5.65).

5.4.4 Solitons on radiative, and other, FLRW backgrounds

We shall now consider a few examples of solutions constructed using the
Kaluza–Klein ansatz explained in the previous section. This allows us to
generate some solutions that can be interpreted as solitons on a radiative
FLRW background. From these solutions we can generate other solutions of
some scalar field theories like Brans–Dicke, or others representing cosmologies
with a perfect fluid source of stiff matter with FLRW limits. We also find
some solutions representing solitons on a mixture of stiff and radiative FLRW
backgrounds.

Solitons on radiative FLRW backgrounds. Now, let us go back to the cosmo-
logical problem of attempting to derive soliton solutions in FLRW backgrounds.
The flat radiative FLRW metric, which for convenience we write in cylindrical
coordinates

ds2 = t2(−dt2 + dρ2) + t2(ρ2dϕ2 + dz2), (5.66)

with fluid energy density ε = 3t−4, pressure p = ε/3, four velocity uµ =
(t−1, 0, 0, 0), is equivalent to the vacuum five-dimensional metric (5.62) with
scalar field σ = t−1,

ds2
(5) = ds2 + t−2(dx5)2. (5.67)

This equivalence is also true for the open and closed FLRW models [152].
The connection between the Kaluza–Klein ansatz and anisotropic cosmological
evolution has been considered for vacuum in five dimensions [63], and also
for classical dust in more than four dimensions [26]. Now, as was explained
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in section 1.5, we can use (5.67) as the background metric to obtain soliton
solutions on such a five-dimensional background and, consequently, soliton
solutions on radiative FLRW. To obtain localized waves we take two real
opposite pole trajectories (4.49), µ−

1 and µ+
2 . In the coordinates of (5.66), which

are not canonical, these pole trajectories are defined by

µ±
k = 1

2ρ
{−(l2

k + ρ2 + t2) ± [(l2
k + t2 + ρ2)2 − 4t2ρ2]1/2}, (5.68)

where lk (k = 1, 2) are arbitrary real parameters. As an example we shall
consider a diagonal five-dimensional metric with a four-dimensional sector
given by,

ds2 = C1

[
(ρs1 + t)(ρs2 + t)

ρ(s1s2 − 1)

]2 [
(s1s2)

4(s1 − s2)

(s2
1 − 1)2(s2

2 − 1)2

]2/3

(−dt2 + dρ2)

+ t2(s1s2)
2/3(ρ2dϕ2 + dz2), (5.69)

and with the scalar field

σ = t−1(s1s2)
−2/3 ; s1 = µ−

1 /t, s2 = µ+
2 /t. (5.70)

The regularity condition on the symmetry axis, defined in the lines that follow
(5.31), implies that C1 = (l2

2 − l2
1)

2/ l4
1 .

This metric depends essentially on the factor s1s2 and one can see that s1s2 ≈
1 − (l2

1 − l2
2)/t2 at time-like infinity (ρ � t → ∞), s1s2 ≈ 1 + l1l2/t at future

null infinity (ρ ≈ t → ∞) and s1s2 � 1+(l2
1 −l2

2)/ρ
2 at space-like infinity (t �

ρ → ∞). This indicates that this metric represents cylindrical perturbations on
the radiative FLRW background. This is confirmed by analysing the curvature
tensor. Choosing the null tetrad: �n = (2 f )−1(∂t + ∂ρ), �l = (2 f )−1(∂t − ∂ρ),
�m = (2gϕϕ)

−1/2∂ϕ + i(2gzz)
−1/2∂z we obtain, from (4.12), )0 ∼ )2 ∼ 0(t−4),

)4 = [(l2 − l1)/ l1l2]t−3, at null infinity. Thus the radiative component of the
field dominates in this asymptotic region, as usual. The fluid content of the
spacetime may now be deduced by identifying the stress-energy tensor Tµν from
the right hand side of (5.60). After such an identification one writes the algebraic
canonical form [143] of this tensor on an orthonormal basis as

Tab = diag(µ, pρ, pϕ, pz), (5.71)

and it can be proved that these eigenvalues are real and satisfy the strong energy
conditions: µ + pi > 0 (i = ρ, ϕ, z) and µ + pρ + pϕ + pz > 0 when l1 > l2

[153]. Note, however, that the hydrodynamical interpretation of this tensor is
not known. The asymptotic values at time-like infinity are

µ ∼ 3/t4, pρ ∼ pϕ ∼ pz = 1/t4, (5.72)
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so that the stress-energy tensor becomes that of a radiative perfect fluid; i.e. it
gives the background fluid. Similarly, at space-like infinity,

µ ∼ 3(l4
1/ l4

2)/t4, pρ ∼ pϕ ∼ pz ∼ (l4
1/ l4

2)/t4, (5.73)

so that the stress-energy tensor becomes the background fluid, but with different
absolute values. This is because the longitudinal expansion f (t, ρ) at space-like
infinity differs from that of the background by a constant. However, at null
infinity,

µ ∼ pρ ∼
(

5|l1 − l2|
3l1l2

)1/2 ( 16l5
1

(l1 + l2)4l2

)2/3

t−7/2+O(t−4), pϕ ∼ pz ∼ O(t−4),

(5.74)
so that it behaves like a null fluid or a directed flux of massless collisionless
relativistic particles [314]. Note that although the local energy density decreases
in time as the spacetime expands, the ratio of it to the energy density of
the background (density contrast), µ/εF L RW ∼ t1/2 grows in time along the
direction of propagation of the solitons. This illustrates for an exact metric the
growing density modes of the linearized theory of the FLRW perturbations.

The results of (5.72), (5.73) and (5.74) can be understood as the formation
of a cylindrical hole (if l1 > l2) or a halo (if l1 < l2) with a cylindrical shell
whose density grows in time. It shows qualitative agreement with the formation
of spherical holes (or halos) in expanding universes [235, 239, 142]. Near the
singularity the density contrast is

µ

εF L RW
∼ l4

1

l4
2

(
l2
2 + ρ2

l2
1 + ρ2

)8/3

+ O(t2) ; (5.75)

thus, the energy density becomes singular as t → 0 in the same way as the
energy density of the radiative background. In fig. 5.5 the functions (5.71) are
shown for several values of t over the background functions of the radiative
perfect fluid.

It is interesting to perform a perturbative analysis about the parameter l2
1 − l2

2
of the solution (5.69). This is reasonable when l2 is very close to l1. In this
case the perturbations can be analysed using the background coordinates as
physical coordinates. One can see that whereas for a metric of type (5.69)
the horizon of a particle at ρ0 grows in time like ρ − ρ0 = ±t , the pulse
width for t < l1 grows like 2

√
2t , so that for a particle located at ρ = 0

the pulse is, initially, larger that the particle horizon. However, for t > l1

the pulse width grows like 4
√

3l1t , so that for l1 > 1
2

√
3 it is always larger

than or equal to the horizon size, but for l1 < 1
2

√
3 it becomes smaller than

the horizon. In this last case an observer at a certain radius ρ0 will see a
localized inhomogeneity entering and leaving its horizon on an isotropic and
homogeneous background. Thus the parameter l1 characterizes the time in
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Fig. 5.5. Time evolution of the eigenvalues (5.71) corresponding to metric (5.69)
compared with the background values. At space-like infinity the ratios shown approach
a constant value different from unity, l4

1l−4
2 = 16, due to the fact that the longitudinal

expansion differs from the background by a constant factor. The density contrast and
the principal pressure in the radial direction grow in time. This can be interpreted as the
formation of a hole with a growing density shell.

which the inhomogeneity becomes smaller than the horizon size. One may also
analytically compute the velocities of the metric and of the density perturbations.
It is found that such velocities are greater than the speed of light but approach
it at null infinity; for instance, the velocity of the maximum of the metric

perturbation is t/
√

t2 − l2
1 > 1, which approaches 1 when t → ∞. This

superluminal effect can be understood as the result of the interference produced
by the superposition of the two solitons represented by s1 and s2. Similarly, the
density perturbations cannot be interpreted as lumps of fluid that propagate over
the background; instead, different parts of the fluid are perturbed at different
points of the spacetime following the metric perturbations. This is similar to
the results we found in section 4.6.3 for the general behaviour of gravitational
solitons.
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Another metric, which is qualitatively similar to (5.69), obtained by the same
method is

ds2 = C2
1

ρ2(s1s2 − 1)2

[
s1s2(s1 − s2)

(s2
1 − 1)2(s2

2 − 1)2

]2/3

(−dt2 + dρ2)

+ t2(s1s2)
−1/3[(s1s2)

−1ρ2dϕ2 + s1s2dz2], (5.76)

with the scalar field
σ = t−1(s1s2)

1/3. (5.77)

The regularity condition on the symmetry axis requires in this case that C2 =
(l2

2 − l2
1)

2. The physical properties of this metric are similar to those described
for the metric (5.69) but it presents two important differences. In fact, using
the conventions at the end of section 4.4.1 this metric has a transverse scale
expansion given by (s1s2)

−1/3, qualitatively similar to metric (5.69), but it
also shows a ‘+’ wave polarization with a wave amplitude given by ln(s1s2)

that is absent in the previous metric. Furthermore, the asymptotic value of
the longitudinal expansion f (t, ρ) at space-like infinity is exactly that of the
background, as it is at time-like infinity. Thus, there is no hole formation and
the perturbation is only localized on the cylindrical shell. On the other hand the
density contrast grows in time like it does for the metric (5.69).

Related solitons in Brans–Dicke theory. Let us now comment on the application
of the solutions such as (5.69)–(5.70) or (5.76)–(5.77) to the related scalar
theories discussed above. As we have seen in section 5.4.3 the above solutions
can also be considered as solutions of the Brans–Dicke theory with ω = 0 and,
by the conformal transformation (5.63), they are related to Brans–Dicke theory
with ω arbitrary. The background spacetime and the background scalar field are,
respectively,

ds2 = t1+%(−dt2 + dρ2) + t1+%(ρ2dϕ2 + dz2), σ̂ = t−%, (5.78)

with % given by (5.63). With the appropriate transformation (5.63), solutions
(5.69)–(5.70) and (5.76)–(5.77) may be interpreted as representing cylindrical
soliton-like perturbations on the background (5.78).

Related soliton solutions with a stiff perfect fluid. In a similar way to trans-
formation (5.65), the above soliton solution may be transformed to a soliton
solution on the background,

ds2 = t (−dt2 + dρ2) + t (ρ2dϕ2 + dz2), σ̂ =
√

3/2 ln t, (5.79)

which describes, see (5.39), a stiff fluid on a flat FLRW spacetime with energy
density ε = p = (3/4)/t3. The transformed solution may thus be compared
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to (5.41)–(5.42) but unlike it, here the density of the fluid is also perturbed. A
solution of (5.64) can be transformed into a solution of (5.32)–(5.33) by means
of (5.66). In particular the soliton solution (5.69)–(5.70) becomes the solution

ds2 = C1
[s1s2(ρs1 + t)(ρs2 + t)]2

t [ρ(s1s2 − 1)]2

[
s1 − s2

(s2
1 − 1)2(s2

2 − 1)2

]2/3

(−dt2 + dρ2)

+ t (ρ2dϕ2 + dz2), (5.80)

with the scalar field
σ̂ =

√
3/2 ln

[
t (s1s2)

2/3
]
. (5.81)

Unlike the previous metrics, this metric has no radiative modes; it approaches
the flat FLRW background containing stiff fluid (5.79). The source of this
solution is a perfect fluid of stiff matter with the fluid four-velocity defined as
in (5.34). This solution has no transverse scale expansion or wave polarization
because the coefficients gϕϕ and gzz take just the background values. It has been
used [153] to illustrate, by means of a finite soliton-like perturbation, the density
modes of the linear perturbations of FLRW models; these are the modes relevant
for galaxy formation. The density contrast at null infinity on the cylindrical
shells, where the soliton wave has a maximum, does not grow in time. In this
sense this metric is complementary to (5.41) which contains radiative modes but
no independent density modes.

Another solution for stiff matter containing both radiative and density modes
can be obtained by transforming the soliton solution (5.69)–(5.70) by means of
(5.65). It is

ds2 = C2
s1s2

tρ2(s1s2 − 1)2

[
s1 − s2

(s2
1 − 1)2(s2

2 − 1)2

]2/3

(−dt2 + dρ2)

+ t
[
(s1s2)

−1ρ2dϕ2 + s1s2dz2
]
, (5.82)

with the scalar field
σ̂ =

√
3/2 ln

[
t (s1s2)

−1/3
]
. (5.83)

As for metric (5.76) the longitudinal expansion of this metric exactly approaches
the background values at space-like and time-like infinities. Thus, the cylindrical
perturbations are located on a cylindrical shell only. Unlike metric (5.80) the
spacetime has a ‘+’ wave polarization. On the other hand, like for metric (5.80)
the density contrast does not grow in time.

Solitons on FLRW with radiation and stiff fluids. Although we have restricted
ourselves to considering perturbations on radiative FLRW backgrounds, it is also
possible to extend the above technique to FLRW backgrounds with the equation
of state p = γ ε, where γ is an arbitrary parameter, see Diaz et al. [77]. The key
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to this extension is to consider Einstein’s equation in a five-dimensional theory
with a massless scalar field χ , instead of vacuum,

RAB = χ,Aχ,B, (5.84)

and we recall from subsection 5.4.2, that the ISM can also be applied in this
case. The effective equations in four dimensions are now

R̄µν = σ−1σ,µ;ν + χ,µχ,ν. (5.85)

This corresponds to a formal stress-energy tensor Tµν = σ−1σ,µ;ν + χ,µχ,ν −
1
2χ

αχαgµν , where we have used that the massless scalar field σ satisfies σ
,α
;α =

0. Now let us consider the stress-energy tensor for a perfect fluid Tµν = (ε +
p)uµuν + pgµν . This tensor may be decomposed formally as the sum of the
stress-energy tensor of a radiative fluid plus the stress-energy tensor of a stiff
fluid as follows:

Tµν = (εr/3)(4uµuν + gµν) + εs(2uµuν + gµν), (5.86)

where εr = 3(ε− p)/2 is the energy density for radiation and εr = (3p−ε)/2 is
the energy density for a stiff fluid, see (5.35). The corresponding fluid pressures
are pr = εr/3 and ps = εs , respectively. Of course such an identification,
although formally valid, is not always physically reasonable. The scalar field χ

can be interpreted as the velocity potential for a (irrotational) stiff fluid as was
done in (5.34)–(5.35). The identification of the traceless part of the tensor, i.e.
σ−1σ,µ;ν , as the stress-energy tensor of radiation is possible when the spacetime
possesses certain symmetries. In particular, this is possible for all isotropic and
homogeneous FLRW metrics. In ref. [79] a family of two-soliton metrics that
represent cylindrical soliton-like perturbations propagating on the flat FLRW
background with a mixture of stiff fluid and radiative fluid was obtained (see
ref. [180] for corrected misprints) as

ds2 = C
tn−2(s1s2)

2−p [(ρs1 + t)(ρs2 + t)]Q (s1 − s2)
u−2

ρ2(s1s2 − 1)2
[
(1 − s2

1)(1 − s2
2)
]u/2 (−dt2 + dρ2)

+ tn[(s1s2)
−pρ2dϕ2 + (s1s2)

−qdz2], (5.87)

with the two scalar fields

σ = t1−n(s1s2)
(p+q)/2, χ =

√
3n(2 − n)/2 ln t, (5.88)

and where the constant C imposed by the regularity condition on the symmetry
axis is C = (l2

2 − l2
1)

2/ l2Q
1 . Here the parameters p, q and n are arbitrary

constants and u ≡ 2(q2 + p2 + pq), Q ≡ −(q/2)(3n − 2) − (p/2)(3n − 4).
When n = 2 there is only one scalar field and the solution is of the type given
before: p = q = −2/3 corresponds to (5.69)–(5.70) and p = 4/3, q = −2/3
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corresponds to (5.76)–(5.77). The source of this spacetime is of course an
anisotropic fluid, except for some values of the parameters, p = q = 0 or
s2

1 = s2
2 , when it is a perfect fluid. Note that this family of solutions is of

the generalized soliton solutions type, consequently they are not the limit of
truly nondiagonal soliton solutions, except for some particular values of the
parameters which include the solutions previously studied. Other solutions of
this type were deduced in ref. [78] which also generalize (5.69)–(5.70). The
properties of the soliton perturbations discussed in detail in ref. [80].

Gravitational waves on FLRW backgrounds. To end this section let us now
comment on some solutions which, although not solitonic in general, are closely
related to those discussed here and in previous sections, in the sense that
they represent gravitational waves (rather than soliton-like waves) propagating
on FLRW backgrounds. Griffiths [128] considered a solution which may be
interpreted as a gravitational wave propagating on a flat FLRW background
of stiff fluid. This solution was then generalized to the case in which two
gravitational waves in opposite directions propagate and collide in the same
background [129]. These solutions were then extended to open [30] and closed
[101] FLRW backgrounds of stiff fluid. The complete metrics for the solutions
were not given in these references; a method for obtaining complete solutions
was described in ref. [7]. The complete derivation of these metrics as well as a
study of the different propagating wavefronts was given in ref. [31].



6
Cylindrical symmetry

Cylindrically symmetric spacetimes also have the symmetries required to gener-
ate solutions by the ISM. In this chapter we review, briefly, the soliton solutions
in the cylindrical context. The analytic expressions for such solutions can
be obtained from the cosmological solutions of chapters 4 and 5 by a simple
reinterpretation of the relevant coordinates. For this reason the sections in
this chapter are considerably shorter. One of the main interesting features of
these spacetimes is that a definition of energy, the so-called C-energy, can be
given and, consequently, cylindrically symmetric waves can be understood as
waves that carry energy. The study of the C-energy in the soliton solutions
will play an important role in the interpretation of the cylindrically symmetric
soliton waves. Some general properties are discussed in section 6.1. Diagonal
metrics, i.e. one polarization waves, are described in section 6.2; these include
all generalized soliton solutions of sections 4.4.1, 4.5 and 4.6 after appropriate
transformations. Some attention is paid to solutions which have been used to
describe the interaction of a straight cosmic string with gravitational radiation.
In section 6.3 solutions with two polarizations are considered and the conversion
of one of the modes of polarization into the other is described. This conversion
is an effect of the nonlinear interaction between the two modes and is interpreted
as the gravitational analogue of the Faraday rotation of electromagnetic waves
by a magnetic field and plasma.

6.1 Cylindrically symmetric spacetimes

The main reason for the interest in cylindrically symmetric exact solutions
of Einstein’s equations is that they are the simplest metrics for which exact
gravitational wave solutions are known [90, 179, 213, 214, 272]. For a long
time these solutions were the best evidence that general relativity predicts the
existence of gravitational waves. Although the asymptotic nonflatness of these
spacetimes makes them of little use for the study of any realistic compact source,

169
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it is believed that the study of the properties of exact cylindrical gravitational
waves will be of help in understanding strong gravitational radiation from some
realistic sources.

We have seen that most soliton solutions are obtained by the ISM from a
diagonal background solution. This is also the case in the cylindrical context
and, in particular, the most extensively used background metric is the static
cylindrically symmetric Levi-Cività [201] family,

ds2 = b2ρ(d2−1)/2(dρ2 − dt2) + ρ1+ddϕ2 + ρ1−ddz2, (6.1)

where b and d are arbitrary parameters. This is none other than the Kasner
metric adapted to cylindrical symmetry. Here ρ is the radial coordinate and ϕ

the polar angle: 0 ≤ ϕ ≤ 2π . It includes flat spacetime (d = 1). In some sense
this solution plays, within the context of cylindrical symmetry, the same role that
the Schwarzschild solution plays in the spherically symmetry case, although it
has a naked singularity on the symmetry axis ρ = 0 (except for d2 = 1), and no
event horizon hides it. Nevertheless this type of singularity may be understood
in most cases by the presence of a source on the axis.

In fact, the following physical interpretation has been suggested for metric
(6.1). Levi-Cività [201] was the first to study this solution. In the Newtonian
limit he found

d � 1 + 2λ

1 − 2λ
, (6.2)

where λ is the (dimensionless) relativistic mass per unit length of a cylin-
der; reintroducing the physical constants λ becomes λc2/G, where c2/G ∼
1028 g/cm. Thus for d > 1 metric (6.1) can be interpreted as the exterior field
of an infinite cylinder along the z axis with a uniform mass per unit length, λ.
For d < 1, Newtonian test particles far from the cylinder suffer a repulsive
force [262] and the cylinder cannot be of ordinary matter but of matter with
negative mass. For d = 1 the metric has a naked curvature singularity and we
may follow Israel [155] to infer a stress tensor on the axis compatible with the
above interpretation. For λ = 0 (d = 1) the space is flat, and d grows without
bound when 2λ → 1. When d = 1 one must take b2 = 1 to recover the flat
space metric. However, it is convenient to take b arbitrary because in this case
we have flat space minus a wedge (if b2 > 1), i.e. a deficit angle which may be
interpreted as due to the gravitational field created by a straight gauge cosmic
string [291]. Moreover, Marder [213, 214] when studying the matching problem
of (6.1) with the interior solution of a physical cylinder, assuming a specific
equation of state, concluded that in this case b does depend on d (therefore on
the mass density) and cannot be put equal to 1. Thus, in what follows we shall
assume that d and b are arbitrary parameters. In section 8.5 we will come back
to the interpretation of the Levi-Cività metric in terms of a massive line source
along the z axis with a constant linear mass density, i.e. an ILM (infinite line
source), using the notation of refs [33, 36].
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There is another important difference with the Schwarzschild solution that
must be pointed out. The Levi-Cività solution is not the most general exterior
solution for a cylinder. From Einstein’s equations with (total) cylindrical
symmetry one can easily see that gravitational waves can be superimposed on
the exterior field of a static cylinder, in contrast with the spherical symmetric
case. The most general metric for gravitational waves in a vacuum, with
cylindrical symmetry, was written by Kompaneets [176, 160],

ds2 = e2(γ−ψ)(dρ2 − dt2) + ρ2e−2ψdϕ2 + e2ψ(dz + ωdϕ)2, (6.3)

with the functions γ,ψ and ω depending on t and ρ only. Note that (ρ, t) are
canonical coordinates in the sense of section 1.3. The canonical coordinates
(α, β) in (1.45) and (1.46) are now α = ρ, β = t; whereas in the cosmological
context they were α = t, β = z. Thus we see that exact vacuum cosmological
solutions can be interpreted as solutions in the cylindrical context by simply
applying the following transformations (together with a change of sign in front
of ds2):

t → ρ, z → t, x → iϕ, y → i z, (6.4)

where now 0 ≤ ϕ ≤ 2π . Gravitational waves with two polarizations are de-
scribed by the time-dependent functions ψ(t, ρ) and ω(t, ρ) which describe the
transversal modes. The physical interpretation of the cylindrically symmetric
solutions is discussed in ref. [39].

When ω(t, ρ) = 0 the metric reduces to the Einstein–Rosen [90] diagonal
form; then when comparing with the expressions g11 = te$, g22 = te−$ of
(4.40), we see from (4.41)–(4.42) that ψ(t, ρ) satisfies a linear wave equation,
after the substitution

$(t, z) → ln ρ − 2ψ(t, ρ), ln f (t, z) → 2γ (t, ρ) − 2ψ(t, ρ). (6.5)

C-energy. As we stressed in section 4.3.3 an important property of a cylindrical
spacetime is that gravitational energy may be defined on it. In fact, Thorne [272]
was able to introduce a total (cylindrical) energy called C-energy, and a covariant
C-energy flux vector Pµ obeying a conservation law Pµ

;µ = 0. The energy
density is localizable and locally measurable. An observer with four-velocity
uµ measures an energy density Pµuµ and if Xµ is a space-like vector such that
Xµuµ = 0, the C-energy flux is PµXµ. The four-vector Pµ is derived from a
C-energy potential C(ρ, t) defined as

C(t, ρ) = γ (t, ρ), (6.6)

which is proportional to the total C-energy contained inside a cylinder of radius
ρ per unit coordinate length z. It is given by

(Pt , Pρ) = (8πρ)−1e−2(γ−ψ)(C,ρ,−C,t), (6.7)
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and its components represent the local energy density measured by a local
observer with four-velocity uµ = (1, 0, 0, 0) and the local flux measured by
that observer along the ρ-direction (we take G = c = 1). The definition of
C-energy was extended by Chandrasekhar [55] in the general nondiagonal case
(6.3). Also in analogy with the definition of the three-velocity field defined in
section 4.3.3 we may define a C-velocity field associated with the C-energy flux
as follows. Since the flux vector Pµ is time-like we may define the four-velocity
uµ = Pµ/(−Pα Pα), and it is clear that an observer with such a four-velocity
will measure no flux of C-energy. The three-velocity of such an observer
vi

C = ui/u0 (i = 1, 2, 3) will be called the C-velocity. In our coordinate system
it may be written as,

v
ρ

C = −2ψ,ρψ,t
[
(ψ,ρ)

2 + (ψ,t)
2
]−1

. (6.8)

The C-energy plays an important role in the study of the physical properties
of cylindrical solutions. Thus Marder [214] has calculated the effect of pulse
waves on particles moving on geodesics and the change in proper mass per unit
length of a particular solid cylinder due to the radiation of such pulses from the
cylinder. Thorne [272] found that the decrease of proper mass was equal to the
C-energy carried by the waves. It has also been used to characterize the energy
properties of soliton solutions [109, 113, 276].

We shall divide the soliton solutions for total cylindrical spacetimes into two
classes: those with one mode of polarization (Einstein–Rosen diagonal case) and
those with two independent polarizations (nondiagonal metrics). Our emphasis
will be on describing solutions which have been shown to have some potential
physical relevance.

6.2 Einstein–Rosen soliton metrics

Here we discuss the case of one-polarization waves, i.e. when the two Killing
vectors are hypersurface orthogonal. As we know from the cosmological case,
these metrics are more easily studied in detail than two-polarization metrics
because the computation of the Riemann tensor is relatively simple, see section
4.3. Here the null tetrad (4.11) is replaced by

�n = (1/
√

2 f )(∂ρ + ∂t), �l = (1/
√

2 f )(∂ρ − ∂t),

�m = (1/
√

2gzz)∂z − (i/
√

2gϕϕ)∂ϕ,

}
(6.9)

and the metric is now

ds2 = f (t, ρ)(dρ2 − dt2) + ρ(e$(t,ρ)dϕ2 + e−$(t,ρ)dz2), (6.10)

the coefficients of which obey Einstein’s equations in vacuum (4.41)–(4.42) after
the transformation (6.4). Therefore all generalized vacuum soliton solutions of
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section 4.4.1 can be reproduced here with the appropriate transformation. These
solutions have been considered mainly in connection with cosmic strings [113].
Thus it is useful to recall here the characterization of a cosmic string, its deficit
angle and also its connection with the C-energy.

Straight cosmic string. A straight-line cosmic string is characterized by a
conical singularity along the axis. As we know, the condition for regularity
in the coordinate system (6.10) is that [179] limρ→0 X ,µX ,µ/4X → 1, where
X ≡ |∂ϕ|2. When a metric has no curvature singularity along the axis and it
fails to be regular, i.e. the above limit differs from unity, the axis may contain a
cosmic string. Equivalently, a cosmic string may also be identified by the deficit
angle near the axis which measures the deviation from local flatness around the
axis [291]. The deficit angle is defined by

�ϕ(ρ) ≡ 2π −
[∫ ρ

0
(gρρ)

1/2dρ

]−1 ∫ 2π

0
(gϕϕ)

1/2dϕ. (6.11)

In the limit ρ → 0,�ϕ(0) is directly related to the energy density per unit
length of the string (string tension) and it is often used in the literature because
it has a direct observational manifestation in terms of a light-deflection angle
[291, 283]. Moreover, using the field equations (4.41)–(4.42) and (6.6), this last
equation reduces to 2C = ln f + ln ρ − $, and it is easily shown that

�ϕ = 2π [1 − exp(−C)], (6.12)

on the axis. Thus, for Einstein–Rosen metrics the deficit angle on the axis
is related to the C-energy. It turns out that, for the metrics which approach
Minkowski space far from the axis, the relation (6.12) between the deficit angle
and the C-energy is also valid for large ρ.

As in the cosmological case we distinguish four asymptotic regions: near
the symmetry axis (ρ → 0), null infinity (ρ ∼ |t | → ∞), space-like infinity
(t � ρ → ∞) and time-like infinity (ρ � t → ∞). We shall restrict ourselves
to soliton solutions with complex poles. In this way we avoid the problems of
discontinuous first derivatives across the light cones. The light cones are defined
by:

t2
k = ρ2, tk = t0

k − t, (6.13)

where t0
k is the time origin of the k-pole trajectory and the pole trajectories

are described by (4.74) after the coordinate change (6.4), so that z0
k − ick

becomes t0
k − ick . Thus we shall consider the generalized soliton solutions

(4.79)–(4.82) in the cylindrical context. Besides the coordinate transformation
the only difference with the cylindrical case is that the coefficient f is now
multiplied by the parameter b2 of the background (6.1). To study these solutions
we thus follow the scheme of section 4.6.
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6.2.1 Solutions with one pole

These are the cylindrical versions of (4.84) for composite universes. Also,
these solutions can be seen to describe qualitatively, at space-like infinity, the
behaviour of the generalized soliton solutions with any number of poles of
the same type. The curvature tensor becomes singular on the axis unless
(d + h)2 = 1, in which case the axis is quasiregular and the deficit angle is

�ϕ(0) = 2π(1 − b−1), (6.14)

like that of the background metric (6.1). The analysis of this solution and its
associated C-energy in the remaining asymptotic regions indicates that these
solutions have radiation at null infinity but such radiation cannot be interpreted
as being localized and propagating on the static background. Near the axis the
metric on t = constant hypersurfaces behaves like a Levi-Cività metric with a
parameter d ′ = d + h, instead of d. However, at space-like infinity it behaves
like a Levi-Cività metric with a parameter d. In some sense this metric can be
seen as connecting two Levi-Cività metrics with different parameters through
the light cones which contain gravitational radiation.

Now, from the viewpoint of cosmic strings, only the metrics with the
parameter d ′ = 1 (consider the relation (d + h)2 = 1 above) have a string on
the axis and its deficit angle is given by (6.14). At space-like infinity, however,
the spacetime approaches that of Levi-Cività with d = 1 − h (h = 0) and it
is not asymptotically Minkowskian. This may be seen as a consequence of the
presence of C-energy surrounding the string. Note the remarkable fact that if
we take 0 < h < 1 the gravitational effect produced by the gravitational energy
far from the axis is similar to that of a massive rod with negative energy density.
Moreover, we have asymptotically flat solutions (d = 1) which have a massive
line source with d ′ = 1 + h.

Not all of those solutions admit a physical interpretation because some of
them develop singularities at |t | → ∞. Only those satisfying

h/|h| = d/|d|, |d| ≥ |h| or (d + h)2 = 1, h(h + d) ≤ 2, (6.15)

are free from singularities.

6.2.2 Cosolitons with one pole

These are the cylindrical versions of those of subsection 4.6.2. The Riemann
components in the different asymptotic regions are given by (4.92)–(4.93) after
using (6.9), (4.12) and the coordinate transformation (6.4). Near the axis the
curvature tensor becomes singular, unless d2 = 1, in which case the axis is
quasiregular with a deficit angle

�ϕ(0) = 2π(1 − 2h(h−1)/2b−1). (6.16)
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At null infinity the metric is radiative and has a finite value of C-energy radiation.
At space-like infinity the metric becomes flat when d2 + h2 = 1, therefore it is
not possible to impose that the axis be quasiregular, d2 = 1, together with the
requirement that the metric becomes flat far from the axis, unless h = 0, i.e. the
static case. As for the case of solitons with one pole, this metric has radiation
at null infinity but it cannot be interpreted as representing localized radiation
propagating on a static background.

6.2.3 Solitons with two opposite poles

These metrics are the cylindrical versions of those of section 4.6.3, i.e. (4.79)–
(4.80) with h1 = −h2 = h, s = 2, and the field $ can be written in terms of the
Fourier Bessel integral (4.94), after the coordinate change (6.4). Thus they may
be interpreted as representing localized cylindrical gravitational (soliton-like)
perturbations ‘propagating’ on the static Levi-Cività background, coming from
past infinity and reflecting off the axis. They have only a curvature singularity
on the axis unless d2 = 1 in which case the axis is quasiregular with a deficit
angle given by (6.14), like the background metric. At null infinity the radiative
Riemann components dominate. The rate of C-energy radiation,

C,v = −2h2(8c1c2)
−1(c1/2

2 − c1/2
1 )2[1 + 0(ρ−1/2)], v = (t − ρ)/2, (6.17)

reaches a finite value.

Perturbative analysis. The localized character of the gravitational perturbation,
or pulse wave, is clearly seen by performing a perturbative analysis (as in section
4.6.3) in which one can study analytically how the perturbation propagates on
the static background. For this we take t0

1 = t0
2 , define δw ≡ c2 − c1 and call

w ≡ c1, σ ≡ σ2. Since the nonstatic term in (4.79) is now proportional to
ln(σ1/σ2) we may expand this to first order in δw. The function σ1/σ2 differs
from unity only on a small localized region. Following section 4.6.3 we can
write

σ1/σ2 � 1 + δw ∂w ln σ. (6.18)

The perturbation on the right hand side is too complicated in terms of (ρ, t)
to find analytic expressions for its shape and motion directly. Instead we shall
introduce new coordinates (R, T ) that depends on the parameter w defined, in
analogy to (4.86), by

ρ = w cosh(2T ) sinh(2R), t = w sinh(2T ) cosh(2R),

0 ≤ R < ∞, −∞ < T < ∞.

}
(6.19)

In terms of these coordinates σ = tanh2 R. One can now find the maximum in
the ρ-direction of the perturbation in (6.18) solving the equation ∂ρ∂w ln σ = 0.
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This can easily be done after finding ∂ρ R and ∂ρT from the coordinate change
(6.19). The solution in (R, T ) coordinates is the trajectory

3 sinh2(2T ) − cosh2(2R) = 0, (6.20)

which is the analogue of (4.98). It can now be transformed to (ρ, t) coordinates.
The final result, which gives the trajectory of the maximum ρm in terms of t , is

ρ2
m = (w + t/

√
3)(

√
3t − w), t ≥ w/

√
3;

ρ2
m = (t/

√
3 − w)(

√
3t + w), t ≤ −w/

√
3,

}
(6.21)

and for −w/
√

3 ≤ t ≤ w/
√

3 we have ρm = 0. Thus the pulse has a
maximum on the symmetry axis for −w/

√
3 ≤ t ≤ w/

√
3 and at time

|t | > w/
√

3 this maximum propagates on the (ρ, t)-plane. Thus the parameter
w/

√
3 characterizes the time of formation of the pulse.

The speed of this pulse in terms of (ρ, t) is now found to be

dρm/dt = (w +
√

3t)(3w +
√

3t)−1/2(
√

3t − w)−1/2 t ≥ w/
√

3. (6.22)

For t < 0 the expressions can be trivially obtained from those for t > 0 so
we shall not discuss them further. From (6.22) we see that the speed of the
pulse is infinite at the beginning, t = w/

√
3, and that it tends to the speed of

light when t → ∞. The trajectory of the maximum approaches the asymptotes
ρ = t + w/

√
3 for the outgoing pulse and ρ = −t + w/

√
3 for the incoming

pulse.
The shape of the pulse, its height and width, can now be given analytically. It

is found [109] that the height defined as h p = |δw∂w ln σ(ρm)| is given in the
(ρ, t) coordinates by

h p = 1

2
δw
(√

3w−1t−1 + 3
√

3t−2
)1/2

, (6.23)

so that it decreases as t−1/2 when t → ∞ . As t → ∞ the pulse width goes to a
constant independent of w [109]. It is also interesting to compute the C-energy
flux, from (6.7), or equivalently the C-velocity defined in (6.8) which in this case
takes the form [113] (when d = 1 which is the case relevant for a cosmic string)

v
ρ

C = − 4 sinh(4R) coth(2T ) V1V2

4V 2
2 + sinh2(4R) coth2(2T )V 2

1

, (6.24)

where V1 = cosh2(2R) − 3 sinh2(2T ) and V2 = 3 cosh2(2R) cosh2(2T ) −
cosh4(2R) − cosh2(2T ) + 1. Depending on the sign of this function there are
two competing fluxes of C-energy: one of them ingoing (towards the axis) and
the other outgoing (from the axis); the two fluxes cancel when v

ρ

C = 0. This
happens on the world lines V1 = 0 and V2 = 0. The first is the trajectory
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(6.20), i.e. the maximum of the perturbation, and the second is the maximum
of the perturbation along the t-direction, which is the analogue of (4.96) in the
cosmological case.

All this leads to the following interpretation for these solutions. From (6.22) it
seems clear that the localized pulse cannot be interpreted as describing the prop-
agation of a causal effect, i.e. a travelling wave. Such a pulse may be understood
as a superposition effect produced by the interference of incoming and outgoing
fluxes of C-energy. This is similar to what is found in the cosmological case
with two opposite poles in section 4.6.3, where the Bel–Robinson superenergy
tensor was used, and the solitons could also be understood as a consequence of
the interference of two (super)energy fluxes propagating in opposite directions.

To see the effect of the pulse on the axis we can follow Marder [213] who
estimated the change in proper mass per unit proper length that a cylinder around
the axis suffers when it emits a gravitational wave pulse as Ewave = Eafter −
Ebefore, where E is given simply in terms of the C-energy potential (6.6) by
E = C/4. We can evaluate E in our solution for some fixed large radius ρ at
t = 0, before the passage of the wave, and after at t → ∞. In both cases the
metric tends to the static background (6.1) but with a different coefficient b. The
explicit result is

Ewave ∼ 1

2
ln

[
4|c1c2|

(c1 − c2)2

]
. (6.25)

Thus the passage of the wave has permanently affected the gravitational field:
energy has been radiated away.

6.2.4 Cosolitons with two opposite poles

These solutions are the cylindrical version of (4.81)–(4.82) with s = 2 and
h1 = −h2 = h. The Riemann components at null infinity are given by (4.93),
where one sees that the radiative component dominates. The metric becomes
singular on the axis unless d2 = 1, in which case the deficit angle is

�ϕ(0) = 2π(1 − 2h(h−1)b−1) + O(ρ2). (6.26)

The rate of C-energy radiation approaches a constant value at null infinity:

C,v = −2h2(8c1c2)
−1(c1/2

2 − c1/2
1 )2[1 + 0(ρ−1/2)], (6.27)

as in the previous soliton case. A perturbative analysis such as the one performed
in the previous case can be carried out. It is found [113] that the maximum of
the perturbation is located on the world line

sinh2(2T ) − 3 cosh2(2R) = 0, (6.28)

where (T, R) are defined in (6.19). In terms of the coordinates (ρ, t) such
a trajectory is the same as that of (6.20) but for a shift, 2w/

√
3, along the
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t axis (w ≡ c1). Again for d = 1, the C-energy flux vanishes along the
trajectory (6.28). The interpretation of these metrics is very similar to that of
the previous two-soliton solutions. The localized perturbation is the result of the
superposition of two competing C-energy fluxes, one incoming towards the axis
and the other outgoing.

For d = 1, both of these solutions represent the interaction of a static string
with incoming and outgoing gravitational radiation localized basically along the
light cones. This may be taken as an idealization of gravitational radiation, not
necessarily with cylindrical symmetry, surrounding the cosmic string. For d > 1
the wave interpretation is similar but now they are on the background of massive
line sources.

6.3 Two polarization waves and Faraday rotation

An interesting phenomenon in two polarization cylindrical waves has been
described by Piran and Safier [243], who proved that the propagation of these
waves displays a reflection of ingoing to outgoing waves and vice versa, com-
bined with a rotation of the polarization vector between the + and × modes. The
rotation of the polarization vector has been interpreted as a consequence of the
nonlinear gravitational interaction between the two independent polarizations.
This has been described as the gravitational analogue of the electromagnetic
Faraday rotation. In fact, although in the electromagnetic theory there is
no such interaction, the polarization vector of an incident linearly polarized
electromagnetic wave rotates as it propagates through a medium containing
a magnetic field and plasma. Tomimatsu [276] has studied this phenomenon
in some soliton solutions. Let us introduce the ingoing and outgoing null
coordinates v ≡ (t − ρ)/2, u = (t + ρ)/2, and define, from (6.3),

A+ ≡ 2ψ,u, B+ ≡ 2ψ,v, A× ≡ 1

ρ
e2ψω,u, B× ≡ 1

ρ
e2ψω,v. (6.29)

Then the metric coefficient γ (t, ρ) is determined by these new functions. In fact,
from the vacuum Einstein equations for the metric coefficient f (1.40)–(1.41),
we have that

γ,ρ = ρ

8
(A2

+ + B2
+ + A2

× + B2
×), γ,t = ρ

8
(A2

+ − B2
+ + A2

× − B2
×). (6.30)

Now one can define the quantities,

A ≡ (A2
+ + A2

×)
1/2, B ≡ (B2

+ + B2
×)

1/2, (6.31)

which may be interpreted as the ingoing and outgoing wave amplitudes, re-
spectively. The indices + and × denote the different polarizations and the
polarization angles are defined by

tan(2θA) ≡ A×/A+, tan(2θB) ≡ B×/B+. (6.32)
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Note that this may be compared to related definitions in the cosmological context
by Adams et al. [2], see (5.17)–(5.18).

The rotation of the polarization vector between the + and × modes can be
understood [243, 242] from an analysis of the equations for A+, A×, B+ and B×
that follow from the vacuum Einstein equations for the matrix g (1.39):

A+,u = 1

2ρ
(A+ − B+) + A× B×, (6.33)

B+,v = 1

2ρ
(A+ − B+) + A× B×, (6.34)

A×,u = 1

2ρ
(A× + B×) − A+ B×, (6.35)

B×,v = − 1

2ρ
(A× + B×) − A× B+, (6.36)

with the boundary conditions that A+ = B+ and A× = −B× at ρ = 0.
The first terms on the right hand sides of (6.33)–(6.36) couple the ingoing
and outgoing waves with the same polarization and this produces the usual
cylindrical reflection. The other terms describe a nonlinear interaction between
the two polarizations. To understand the nature of this interaction we follow ref.
[243] and consider a large value of ρ, so that we can neglect the first terms on
the right hand sides of these equations. In this approximation

A×(u, v) + i A+(u, v) � [A0
×(v) + i A0

+(v)
]

exp

[
i
∫ u

u0

B×(u′, v)du′
]
, (6.37)

B×(u, v) + i B+(u, v) � [B0
×(u) + i B0

+(u)
]

exp

[
i
∫ v

v0

A×(u, v′)dv′
]
, (6.38)

where A0
+(v), A0

×(v), B0
+(u) and B0

×(u) are the initial conditions given on
an outgoing, u = u0, and ingoing, v = v0, null hypersurface respectively.
When A× is present, B+ and B× will oscillate according to (6.38) with a phase
difference of π/2. This means that if the initial outgoing wave is linearly
polarized its polarization vector will rotate as it propagates through the A× = 0
region, and the same is true for the incoming waves, see (6.37). For instance,
consider the case B0

× = A0
× = 0 and |B0

+| � |A0
+|. Then A× remains almost

constant, A× � A0
×, B+ and B× oscillate when the B+ wave crosses the A× = 0

region, B+ � B0
+ cos

[∫ v A×(v′)dv′] and B× � −B0
+ sin

[∫ v A×(v′)dv′]. The
appearance of B× causes the conversion of a small part of A× to A+ and if
|B0

+| � 1 we have

A+(u, v) � −A0
×

∫ u

u0

B0
+du′ sin

∫ v

v0

A0
×(v

′)dv′. (6.39)

In general, when both B0
× and A0

× are large each wave will cause a rotation of
the polarization vector of the other. Thus the rotation of the polarization vector
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can be understood as a consequence of the nonlinear nature of the gravitational
interaction. Using the electromagnetic analogy, here the ingoing (for instance)
cylindrical waves play the role of both the magnetic field and the plasma as
they rotate the polarization vector of the outgoing cylindrical waves propagating
through them.

Let us now consider the combined effect of all terms in (6.33)–(6.36). If
the initial data contain only the + mode the only effect will be the cylindrical
reflection of A+ to B+, which is typical of the Einstein–Rosen waves. When the
× mode is present in the initial data there is both conversion of A+ to B+ and
A× to B×, via the first term in (6.33)–(6.36), and rotations between A+ and A×
and B+ and B×, which take place simultaneously. For example, an initial A×
pulse will reflect some B× wave. This B× wave will, in turn, cause a rotation of
some of the initial A× pulse into an A+ pulse and by itself will rotate, due to the
presence of A×, into B+. This analysis is confirmed by the numerical results of
refs [243, 242]. In the latter reference the collision of two cylindrical waves was
also numerically analysed and the results are qualitatively analogous to those of
the collision between a pulse wave and a soliton wave studied in section 5.3 in
the cosmological context where a time shift in the peaks of the waves is also
detected after the collision.

6.3.1 One real pole

The first soliton solution by Tomimatsu [276] in the present context is that of
one single real pole with the Minkowski background, i.e. (6.1) with d = 1.
Real poles in the cylindrical case have the same problem as in the cosmological
context. Since the pole trajectories are only defined on a region of the canonical
coordinate patch and the cylindrical coordinates are defined for all canonical
coordinate patches, the soliton solutions with real poles are not defined on the
whole relevant spacetime. Thus one may match the soliton metric with the
background metric or other metric along some null hypersurface, but this leads
to discontinuities and possible shock waves. The pole trajectories for real poles
are, from (4.49) and (6.4), defined by

µ±
k = tk ± (t2

k − ρ2)1/2, tk ≡ t0
k − t, (6.40)

where t0
k is the soliton time origin, and now the relevant region is inside the light

cone t2
k ≥ ρ2. Outside this light cone one may match to the background metric.

For one single pole, say k = 1, there is only one relevant light cone t2
1 = ρ2,

but for several poles one has an intersection similar to that of fig. 4.2 in the
cosmological context, with the appropriate coordinate changes. Tomimatsu’s
solution corresponds to the Belinski and Zakahrov [23] solution (5.1), and has
similar problems for a reasonable physical interpretation.

It is perhaps pertinent to recall here an interesting one-pole cylindrically
symmetric solution from the Levi-Cività metric derived by Gleiser and Tiglio
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in the Einstein–Maxwell context [123]. This solution has been interpreted as
representing the electrogravitational field interacting with a straight supercon-
ducting string.

6.3.2 Two complex poles

The second solution studied by Tomimatsu is the soliton solution with two
complex conjugate poles obtained from the Minkowski background. That is,
we take

µ1 = w1 − t + [(w1 − t)2 − ρ2]1/2, w1 ≡ t0
1 − ic1 , µ2 = µ̄1. (6.41)

If we now define s ≡ −µ1/ρ, choose t0
1 = 0 and w ≡ c1, the transversal metric

coefficients are given by [276]

e2ψ = |s|2 F/G, ω = −ρH/F, (6.42)

where

F =
∣∣∣∣a2 + 1

s2 − 1

∣∣∣∣2 −
( |a|2 + 1

|s|2 − 1

)2

, G =
∣∣∣∣a2 + s2

s2 − 1

∣∣∣∣2 −
( |a|2 + |s|2

|s|2 − 1

)2

,

H = 2 Re

[
ā

s̄

(
a2 + 1

s2 − 1
− |a|2 + 1

|s|2 − 1

)]
,

where a is an arbitrary complex parameter, related to the vector (m0)
(1)
c in (1.80).

Both ψ and ω approach zero at space-like infinity (t ≤ ρ → ∞), where
|s| → 1. Here |s| is the same as

√
σ1 in (4.74) and we can see the asymptotic

behaviour in (4.77), where one must transform coordinates according to (6.4).
This solution is now defined in the whole coordinate patch (ρ, t).

A particularly simple case is when a = ā. Then the wave amplitudes (6.31)
and the polarization angles (6.32) are

A = 2(1 − |s|2)
ρ|1 + s|2 , B = 2(1 − |s|2)

ρ|1 − s|2 , tan θA = − tan θB = |s|2/a. (6.43)

The function |s|2 runs from zero to unity along an outgoing null ray v = v0 > 0.
Therefore if |a| < 1, the + mode is completely converted to the × mode on the
time-like world line |s|2 = a, i.e.

ρ = 2|a|1/2

|a| + 1

[
t2 +

( |a| + 1

|a| − 1

)2

w2

]1/2

. (6.44)

Thus, this solution provides an explicit example of the gravitational analogue of
the electromagnetic Faraday rotation described above. By analysing the wave
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amplitudes at the initial time t = 0 and at late times (t � |w|) in the three
asymptotic regions: time-like, space-like and null infinities, one can see [276]
that the solution has a local maximum, which corresponds to a gravitational
soliton-like pulse propagating at the speed of light. Its polarization angle θB is
fixed at tan θB = −1/a, although the + mode is dominant when it leaves the
axis. The C-energy flux vector (6.7) for this solution shows that the pulse wave
transports energy from the axis to null infinity. This solution illustrates a process
of generation of gravitational waves from an initial disturbance localized near
the axis as well as a full rotation of the polarization vector.

In the context of axisymmetric stationary gravitational fields this solution
corresponds to the Kerr–NUT metric, see (8.48), with a2 > m2, where a and m
are the angular momentum and mass, respectively, of the axisymmetric metric,
and as such it is of Petrov type D. If we take the background (6.1) with b > 1
then the solution represents [87] a soliton-like pulse interacting with a cosmic
string on the symmetry axis. It generalizes the Xanthopoulos [303, 304] solution
which describes the interaction of gravitational radiation with a cosmic string.

6.3.3 Two double complex poles

This solution and the solution with two real poles are obtained by pole fusion
as the limit of four complex or real poles when two of them converge [88].
They correspond in the context of the axisymmetric stationary field to the
Kinnersley and Chitre [168, 169] generalization of the δ = 2 Tomimatsu–Sato
[277] solution, where δ is the Tomimatsu–Sato distortion parameter, see section
8.6. Real-pole solutions do not have a very clear physical interpretation in
the cylindrical context, as we have seen, due to the discontinuities in the first
derivatives of the metric across the matching light cones.



7
Plane waves and colliding plane waves

The ISM can also be applied to plane-wave spacetimes as well as to spacetimes
describing the collision of two plane waves. In this chapter we shall describe
those spacetimes from the point of view of the ISM. In section 7.2 exact
gravitational plane waves are defined and the plane-wave soliton solutions are
characterized. We illustrate some of the physically more interesting properties
of the plane waves with the detailed study of an impulsive plane wave. The more
interesting case of solutions describing the head-on collision of plane waves is
described in section 7.3. Soliton solutions are seen to describe the interaction
region of such a collision since it can be described by a metric in which the
transverse coordinates of the incoming plane waves can be ignored. Here again
to illustrate the geometry of the colliding waves spacetimes we analyse in some
detail a solution representing the head-on collision of two plane waves with
collinear polarizations. Soliton solutions are described which include several of
the most well known solutions representing the collision of waves with collinear
and noncollinear polarizations.

7.1 Overview

Plane waves emerge as a subclass of a larger class of spacetimes: the pp-waves.
Plane-fronted gravitational waves with parallel rays (pp-waves) are spacetimes
that admit a covariantly constant null Killing vector field lµ, i.e. lµ;ν = 0, and
were classified by Ehlers and Kundt [89]. They admit a group of isometries
G1 on a null orbit generated by the Killing vector lµ, all their curvature scalars
vanish and therefore are type N in the Petrov classification. Gravitational plane
waves are a subclass of pp-waves that admit a group G5 of isometries with
an Abelian subgroup G3 acting on null hypersurfaces; they were first studied
by Baldwin and Jeffrey [8]. Plane waves are homogeneous in their wave
surfaces and are of infinite extent in all directions in these surfaces, therefore the
energy of these waves is infinite. However, they may be considered as realistic

183
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approximations to real gravitational waves within finite regions, and they may
describe the gravitational field near strong radiating sources [8, 39]. These
waves can be purely gravitational, purely electromagnetic or both, depending
on the source.

As is well known [184, 241, 32] gravitational plane waves have interesting
geometrical properties. One of them is the absence of a space-like Cauchy
hypersurface as a consequence of the focusing effect they exert on null rays.
The focusing properties of the plane waves are a nonlinear effect of gravity;
they are not found in the weak field approximation, which is the relevant
approximation for the gravitational field far from isolated sources. The time
of focusing is typically inversely proportional to the energy density per unit
surface of the waves. These effects, however, may be physically relevant when
strong time-dependent gravitational fields are involved such as after the collision
of black holes [75], in the decay of a cosmological inhomogenous singularity
[308, 309] or when waves are travelling on strongly gravitating cosmic strings
[112].

An interesting situation is produced when two of such waves collide. It
was soon realized that due to mutual focusing, spacetime singularities could be
produced at the focusing points [264, 161]. This type of singularity is a purely
gravitational effect, unlike other well known singularities that are produced as
the result of the collapse of matter sources. Typically it is found that stronger
incoming plane waves have a shorter time between the collision and the focusing
singularities. A general study of colliding plane waves was made by Szekeres
[265]. It was found that the initial value problem for the construction of colliding
wave spacetimes is well posed in the sense that given arbitrary incoming plane
waves a unique solution exists in the interaction region. Hauser and Ernst
[139, 140, 141] have developed methods for constructing solutions for arbitrary
initial data, however, the solutions cannot generally be expressed in closed form.
Thus, the standard way [265, 127] to construct colliding wave spacetimes is to
obtain a solution in the interaction region and match it to plane-wave solutions:
then one interprets the resulting spacetime as describing the collision of the two
plane waves.

Khan and Penrose [161] found a solution which describes the collision of
two impulsive gravitational plane waves with parallel polarizations, i.e. with
collinear polarizations, and later Nutku and Halil [232] were able to describe
the collision of two impulsive plane waves which were not parallel polarized,
i.e. with noncollinear polarizations. A few years later Chandrasekhar and Ferrari
[56] adapted the Ernst formulation of the stationary axisymmetric spacetimes to
the colliding wave problem and, as a consequence, many axisymmetric solutions
can be used to describe the collision of plane waves [57, 58, 59, 60, 61, 62].
This is so because the interaction region of two colliding plane waves admits
two commuting Killing fields, like the axisymmetric spacetimes; although the
boundary conditions in the two problems are quite different.
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The ISM is a powerful method for obtaining solutions on the interaction
region and it has been extensively applied for that purpose [104, 105, 106, 102],
together, of course, with other solution-generating techniques such as the
Neugebauer and Kramer method [226]. A great deal of attention has been
devoted to the nature of the curvature singularities which appear at the focusing
hypersurfaces of the colliding plane waves, and new types of singular structures
such as the ‘fold singularities’ have been identified [218]. Some solutions are
known in which the singular hypersurfaces are replaced by regular caustics
[60, 104, 309, 145, 102, 98]. Such regular caustics, however, are not generic:
they are classically unstable against plane-symmetric perturbations [306] or in
the presence of an arbitrarily small amount of dust [62]; they are also unstable
to quantum effects, in the sense that when a quantum field is coupled to the
spacetime the field develops a divergent stress-energy tensor on the caustics
[310, 83].

It is not our purpose to give a complete review of colliding plane-wave
solutions. An excellent book on colliding plane-wave metrics is now available
[127], and for a shorter introduction see ref. [39]. Our main interest will be
to review the connection of such solutions with the soliton solutions we have
already studied in chapters 4 and 5. We also want to illustrate the physics of the
plane waves and of the colliding plane-wave spacetimes with some examples.
First, in the next section, we shall concentrate on the plane-wave spacetimes.

7.2 Plane waves

7.2.1 The plane-wave spacetime

Let us begin with the most general gravitational pp-wave. In the standard form,
[179] its spacetime metric is given by

ds2 = −du dV + F(u, Xa)du2 +
∑

a

d Xad Xa, (7.1)

where V is a null coordinate, Xa are space-like transverse coordinates (the Latin
indices take only two values, 1 and 2, as usual), and F(u, Xa) is an arbitrary
function. The set of coordinates (u, V, Xa), which range over all real values,
are called harmonic coordinates [117, 114]. From (7.1) it is clear that �l = 2∂V

is a covariantly constant null Killing field and that the metric can be written in
the form

gµν = ηµν + Flµlν, lµ = −δµu, (7.2)

where the Greek indices run over all four values of the coordinates (u, V, Xa)

and ηµν is the Minkowski metric tensor which corresponds here to the case when
both coordinates, u and V , are null (i.e. to the metric (7.1) when F = 0). Then
gµν = ηµν − Flµlν and the Riemann and Ricci tensors take the form

Rµνρσ = 2l[µ∂ν]∂[ρ Flσ ], Rµν = (1/2)(ηρσ ∂ρ∂σ F)lµlν. (7.3)
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From this it is clear that all curvature scalar invariants vanish and the metric is
Petrov type N. The Ricci tensor is then proportional to the stress-energy tensor,
and from (7.3) we see that the source is in general a null fluid or, if F satisfies
ηρσ ∂ρ∂σ F = 0, vacuum.

Gravitational plane waves are the particular case when F is quadratic in Xa ,
F(u, Xa) = Hab(u)Xa Xb, i.e.

ds2 = −du dV + Hab(u)Xa Xbdu2 +
∑

a

d Xad Xa, (7.4)

where Hab(u) is, without loss of generality, a symmetric matrix. From (7.2) and
(7.3) the only nonvanishing component of the Ricci tensor is Ruu = ∑

a Haa .
This Ricci component (R00 = Ruu) implies the following energy density (ρ =
T00):

ρ = − 1

8πG

∑
a

Haa. (7.5)

Positivity of the energy density, also known as the weak energy condition [143],
implies that

∑
a Haa ≤ 0. Two special cases of interest are pure gravitational

waves which correspond to
∑

a Haa = 0, i.e. a Ricci flat metric, in which the
Weyl and Riemann tensors coincide, and pure null electromagnetic waves which
correspond to Hab(u) = H(u)δab, H < 0, in which the Weyl tensor vanishes.

Harmonic coordinates are a convenient set of coordinates because they
cover the whole plane-wave spacetime with a single chart and also because
direct information on the curvature is contained in a unique metric component.
However, they do not display some of the symmetries of the spacetime. It is
convenient to introduce the so-called group coordinates (u, v, xa) which range
over all real values: u and v are, respectively, retarded and advanced times and
xa are the transverse coordinates adapted to the Killing vectors of the plane
symmetry of the wavefronts. In these coordinates the metric (7.4) takes the
form

ds2 = −du dv + gab(u)dxadxb . (7.6)

The relationship between the two sets of coordinates is given by

V = v + 1

2
ġab(u)x

a xb, Xa = Pa
b (u)x

b, (7.7)

where the dot means the derivative with respect to u and the 2 × 2 matrix Pa
b

is determined by substitution of (7.7) into (7.4) and imposing (7.6) as follows.
From the coefficient of dxadxb we see that gab(u) is related to the matrix Pa

b by

gab(u) =
∑

c

Pc
a (u)Pc

b (u). (7.8)

Imposing that the coefficients of dudxa vanish and using (7.8) we obtain∑
c

(
Ṗc

a (u)Pc
b (u) − Ṗc

b (u)Pc
a (u)

) = 0, (7.9)
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whereas imposing that the coefficient of du2 vanishes and using the two previous
equations we obtain

P̈a
b (u) =

∑
c

H a
c (u)Pc

b (u), (7.10)

where we have also used that the determinant of the matrix Pa
b should not

vanish. Note that the equations of system (7.9)–(7.10) are evolution equations
which determine the matrix Pa

b (u). Equations (7.9) are constraint equations for
this matrix and are stable against evolution: i.e. once imposed on the initial
conditions they hold for all values of u, as can be seen using (7.10) and the fact
that Hab(u) is symmetric. Conversely, given a plane wave in group coordinates
(7.6), one can find its form in harmonic coordinates (7.4) by solving (7.8) and
(7.9) to find the matrix Pa

b (u) and then using (7.10) in order to obtain Hab(u).
The nonzero Christoffel symbols and nonzero components of the Riemann and
Ricci tensors in the coordinates of (7.6) are

�a
bu = 1

2
gacġcb, �v

ab = ġab,

Ra
ubu = −∂u�

a
bu − �a

cu�
c
bu, Ruu = −1

2
gabg̈ab − 1

4
ġabġab.

 (7.11)

The group coordinates do not cover the whole spacetime with a single chart,
because they become singular for some value of the null coordinate u. It is
easy to prove that there is some value of the retarded time u = u f for which
the determinant of the metric (7.6) must vanish. This is the so-called Landau–
Raychaudhuri theorem and its proof may be found in ref. [184]. The proof is
based on the fact that if we define γ (u) = |det gab(u)|1/4, positivity of the energy
density implies that γ̈ /γ ≤ 0, which means that γ (u) is a convex function (the
equality γ̈ /γ = 0 can only hold for flat space), and since γ is positive for
some value of u, then it must vanish for at least some other value of u = u f ,
γ (u f ) = 0. Note that the explicit use of (7.11) is of help in this proof, see also
ref. [114]. Thus at u = u f we have a coordinate singularity of (7.6). At this null
hypersurface geodesics are focused and when two such waves collide curvature
singularities usually appear as a result of mutual focusing.

7.2.2 Focusing of geodesics

To understand the geometry and the global properties of the plane-wave space-
times it is convenient to study the behaviour of geodesics. We begin with
the geodesic equations in harmonic coordinates which as we know cover the
whole spacetime. Furthermore, when one considers sandwich plane waves, i.e.
when Hab(u) is only different from zero on a finite interval of u, the harmonic
coordinates are the ordinary Minkowski coordinates outside this range. The
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geodesic equations can be derived from the Lagrangian

L = −du

dλ

dV

dλ
+ Hab(u)Xa Xb

(
du

dλ

)2

+
∑

a

d Xa

dλ

d Xb

dλ
, (7.12)

where we have introduced the affine parameter λ = τ/m, τ being the proper
time of the particle and m its rest mass. This also includes null geodesics, taking
the limit in which both τ and m tend to zero. The Euler–Lagrange equations
imply that

p− ≡ −pV ≡ 1

2

du

dλ
= constant, (7.13)

so u is proportional to the affine parameter, and

Ẍ a = H a
b(u)Xb, V̇ = Hab Xa Xb +

∑
c

Ẋ c Ẋ c + m2

4p2−
. (7.14)

The first equation of (7.14) indicates that the geodesics suffer a transverse force
in these coordinates and the second equation is a constraint equation. As in
the previous section overdots indicate derivatives with respect to u. Let �Xa

be the transverse coordinate separation between two nearby parallel geodesics
and then the geodesic deviation equation is simply �Ẍ a = H a

b�Xb, which
gives the local tidal forces between the geodesics. Note that when the wave is
a pure gravitational wave (H a

a = 0) these geodesics suffer the same pattern of
tidal forces as geodesics in a weak gravitational field in the transverse-traceless
gauge [222]. On the other hand for a pure null electromagnetic wave, i.e. when
Hab = H(u)δab, H < 0, the geodesics suffer symmetric attractive forces. Only
if Hab diverges rapidly near some value of u do the tidal forces become infinite
and the geodesics end at a spacetime singularity.

Impulsive plane wave. To illustrate the focusing effects on geodesics we will
consider instead of a sandwich wave an impulsive plane wave, which is defined
by

Hab(u) = Aabδ(u), (7.15)

where Aab is a 2 × 2 symmetric constant matrix. The main advantage of
this spacetime is that the calculations become simpler and the results can be
qualitatively extrapolated to the more general sandwich plane waves [114]. The
spacetime described by (7.15) may be understood as the matching of two pieces
of flat space through the hyperplane u = 0, which has an energy density per
unit transverse surface, see (7.5), given by ρ = −(8πG)−1 Aa

a . Without loss of
generality one can choose Aab to be diagonal by an appropriate rotation of the
transverse plane. So let

Aab ≡ − 1

λa
δab. (7.16)
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Let us now rewrite this metric in group coordinates. For this we solve (7.10)
taking as initial conditions Pa

b (u0) = δa
b and Ṗa

b (u0) = 0 for some u0 < 0. Then
Pa

b (u) = δa
b + uθ(u)Aa

b, where θ(u) is the step function and

gab(u) = δab

(
1 − u

λa
θ(u)

)2

. (7.17)

In these coordinates the interpretation of the spacetime as the matching of two
flat regions at u = 0 is also clear. In one of the regions (u < 0) the metric
has the Minkowski form, but in the other (u > 0) the transverse coefficients are
proportional to (1 − u/λa)

2, which is also flat space but in non-Minkowskian
coordinates, as the coordinate transformation (7.7) with Pa

b (u) = (1 − u/λa)δ
a
b

proves. In these coordinates the metric is continuous but it has discontinuous
first derivatives across the null hypersurface u = 0. Since the weak energy
condition implies that H a

a ≤ 0, it is clear from (7.16) that at least one of the
λa must be positive. Let λ1 be the minimum positive value of (λ1, λ2), then for
u = λ1 we see that det gab(λ1) = 0, which is a coordinate singularity of the
group coordinates and, as we shall see, u = λ1 defines the focusing retarded
time. Note that the time of focusing is roughly proportional to the inverse of the
energy density per unit surface of the wave ρ ∼ λ−1

a . For a pure gravitational
plane wave ρ = 0 but then one may use the inverse of the focusing time to define
a kind of energy density or ‘strength’ of the plane wave.

The geodesic equations (7.14) are easily integrated for the impulsive plane
wave (7.15)–(7.16). One may easily check that the geodesic trajectories are

Xa(u) = ba + pa

2p−
u − ba

λa
uθ(u), (7.18)

V (u) = c0 + pa pa + m2

4p2−
u −

∑
a

b2
a

λa
θ(u) +

∑
a

(
b2

a

λ2
a

− ba pa

λa p−

)
uθ(u), (7.19)

where ba ≡ Xa(0), c0 = V (0) are impact parameters and the transverse
momenta pa are the constants of motion associated with the Killing vectors
∂xa in group coordinates which coincide with ∂Xa in the region u < 0. A
very important feature of this solution is the shift in V (u) at u = 0: �V =
−∑a(b

2
a/λa). This is a typical feature of the impulsive nature of the waves

[108] (when one considers sandwich plane waves the shift also occurs between
the front and the back of the wave but the change in V is continuous). The
transverse coordinates, on the other hand, simply change direction as the wave
is crossed.

Let us now consider the degenerate case when λ1 = λ2 (this is the case of
pure electromagnetic plane waves) and assume perpendicular incidence pa = 0.
We may introduce polar coordinates r ≡ (Xa Xa)

−1/2 and b ≡ (baba)
−1/2, then
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(7.18)–(7.19) read

r = b

(
1 − u

λ1

)
θ(u), (7.20)

V (u) = c0 + m2

2p−
u + b2

λ1

(
u

λ1
− 1

)
θ(u). (7.21)

All the geodesics focus at the same r(u f ) = 0, V (u f ) = c0 + m2u f (2p−)−1/2,
where u f = λ1, independently of the impact parameter b. In an analogous way
we may consider the case of oblique incidence (pa = 0). In this case geodesics
with the same values of ba pa also focus at one point in the degenerate case. In
the nondegenerate case when λ1 = λ2 (for instance, pure gravitational plane
waves correspond to λ1 = −λ2) and for perpendicular incidence, i.e. pa = 0,
all geodesics with the same b2 meet when u = u f = λ1 at the same point:

X1(u f ) = 0, X2(u f ) = b2

(
1 − λ1

λ2

)
, (7.22)

V = c0 + m2

2p−
λ1 − b2

2

λ2

(
1 − λ1

λ2

)
. (7.23)

Subfamilies labelled by different values of b2 meet at different points and the
focusing points span a parabola in the (X2, V − u)-plane.

Using this impulsive plane-wave spacetime we may illustrate the focusing of
the future null cones of points in front of the wave, a feature which is typical of
the plane-wave spacetimes as first shown by Penrose [241]. This is represented
in fig. 7.1. Let Xa(u), V (u) be the null geodesics that at some u0 (u0 < 0) are
at the point P:

Xa(u0) = 0, V (u0) = 0. (7.24)

The trajectories of these null geodesics are obtained from (7.18)–(7.19) by
taking m = 0. Choosing ba = −(2p−)−1u0 pa and c0 = −(2p−)−2u0 pa pa

so that the geodesics satisfy the initial conditions (7.24) these trajectories are, in
the region u < 0, given by

Xa(u) = pa

2p−
(u − u0), V (u) = pa pa

4p2−
(u − u0). (7.25)

Note that there are two rays with pa = 0: one is the ray with perpendicular
incidence to the plane wave and the other the ray that moves in the wave
direction which has p− = 0 and never crosses the wave. Apart from this
single ray any other null ray of (7.25) will cross the plane wave. The family
of geodesics (7.25) defines the future null cone of P in front of the wave:
Xa(u)Xa(u) = V (u)(u − u0) (u0 ≤ u < 0). Let us now see how this null
cone will be focused again behind the plane wave where u > 0. For simplicity,
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u V

Q

P

X1

Fig. 7.1. The future null cone of the point P in front of the impulsive plane wave is
focused again at the point Q behind the wave. The null geodesics that form the light
cone of P suffer a shift in the coordinate V as they cross the plane wave at u = 0:
they enter into the upper parabola, which is the intersection of the null cone with the
plane u = 0 in the figure, and leave from the lower parabola (the intersection of the
past null cone of Q with the plane u = 0) with the same component of the transverse
coordinate X1. There is no global Cauchy hypersurface in that spacetime: a space-like
hypersurface that contains P cannot be extended to space-like infinity behind the wave
and be a Cauchy hypersurface.

let us again take the degenerate case, λ1 = λ2, then the trajectories of these
geodesics in the region u > 0 are given by

Xa(u) = pa

2p−

(
1 + u0

λ1

)
(u − u f ), V (u) = pa pa

4p2−

(
1 + u0

λ1

)2

(u − u f ),

(7.26)
where u f = λ1(1 + λ1/u0)

−1. Thus, provided u f > 0 (i.e. when −∞ ≤ u0 <

−λ1) the future null cone of P focuses again at the point Q: Xa(u f ) = 0,
V (u f ) = 0. This set of geodesics also form the past null cone of the point Q
behind the wave: Xa(u)Xa(u) = V (u)(u − u f ) (0 < u ≤ u f ). When u f < 0
(i.e. when −λ1 < u0 < 0) there is no refocusing since u > 0 behind the wave.
The focusing retarded time u f satisfies that u f ≥ λ1 > 0 (recall that u0 < 0)
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and it tends to λ1 when u0 → −∞. Thus only the future light cones of points
which lie in the range u0 ∈ (−∞,−λ1) will focus again at u f ∈ (λ1,∞), with
the rule that u0 → −∞ corresponds to u f → λ1 and u0 → −λ1 corresponds
to u f → ∞. At the hypersurface u = λ1 we have that det gab(λ1) = 0 which
corresponds to the coordinate singularity of the group coordinates.

We can now follow Penrose’s argument to show that such a spacetime does
not admit a global Cauchy hypersurface. Note, first, that every null or time-like
geodesic should intersect a Cauchy hypersurface exactly once. Thus a (space-
like) Cauchy hypersurface must lie entirely in the past of the future null cone of
P . Now assume that one such space-like hypersurface contains the point P in
front of the wave, since the future null cone of P focuses at the point Q, this
hypersurface must lie entirely below the past null cone of Q and therefore cannot
be extended to spatial infinity behind the wave (note that we can always take
points on that hypersurface with arbitrary large values of |u0|). This means that
no Cauchy data on an unbound space-like hypersurface in the region u < 0 can
give information to specify, for instance, a parallel wave that might lie beyond
the hypersurface u = λ1.

7.2.3 Plane-wave soliton solutions

Let us now go back to the spacetime metric (1.36) and introduce null coordinates
u = t − z and v = t + z, which are retarded and advanced times, respectively.
These are related to the null coordinates (ζ, η) introduced earlier in (1.14) by
u = −2η, v = 2ζ . In this chapter the coordinates (u, v) are used in order to
keep close to the more standard conventions in the literature on this subject. The
metric (1.36) can now be written as

ds2 = − exp[γ (u, v)]du dv + gab(u, v)dxa dxb, (7.27)

where exp[γ ] = f . Clearly the plane-wave metric (7.6) represents a special
case of (7.27). Moreover, we will see that with this general form (7.27) one can
also describe the interaction region of two colliding plane waves, one of which
is coming from z = −∞, t = −∞ and in this asymptotic region has metric
coefficients γ (u), gab(u) and the other of which is coming from z = +∞,
t = −∞ with metric coefficients γ (v), gab(v).

In the coordinate system of (7.27), plane-wave solutions are the solutions
which have dependence on one null coordinate only, say u, in the matrix g:
gab(u). It is obvious from (1.39)–(1.41) that any arbitrary matrix gab(u) is a
solution of (1.39) and that given gab(u) the function γ (u, v) is determined up to
an arbitrary function of v, i.e.

γ (u, v) = γ1(u) + γ2(v), (7.28)

where γ1(u) is a solution of (1.40) and γ2(v) is an arbitrary function. That is,

ds2 = − exp[γ1(u) + γ2(v)] du dv + gab(u)dxadxb, (7.29)
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which a simple relabelling of u and v puts in the form (7.6) of the group
coordinates.

From our discussion of the ISM it should be clear that a plane-wave metric
is transformed into another plane wave by the ISM. It is now obvious that
canonical coordinates are not appropriate to describe plane-wave spacetimes.
In fact, from (1.45) we have that a(v) = constant, and (1.46) implies that α and
β are linearly dependent,

α = −β + constant. (7.30)

This provides a simple way of obtaining plane-wave solutions from the
cosmological solutions of chapter 4 (which are described in terms of canonical
coordinates): they are the limit in which α = −β + constant. Note that when
this limit is taken, the arbitrary function γ2(v) in (7.28) is also determined in
this way. Some of the interest of the plane-wave solutions is that they can be
seen as the limit of some spatially inhomogeneous and homogeneous solutions.
Thus Siklos [261] has derived some plane-wave solutions that are the growing
modes of some homogenous Bianchi types. Also the Ellis and MacCallum
Bianchi solutions (4.62) and their inhomogenous generalizations (4.58)–(4.59)
evolve to plane-wave solutions. In fact, the Ellis and MacCallum solutions
can be written in the form (4.58)–(4.59) using canonical coordinates (α ≡ t ,
β ≡ z) and then changing to coordinates adapted to spatial homogeneity (T, Z )
by (4.61). After a change in the time direction (T → −T ), in the limit T → ∞
(α → −β + constant) the solutions become plane-wave metrics.

Viewed as background metrics for the ISM, Siklos plane-wave metrics are
interesting because they are cosmological solutions with horizons and because
they are the final evolution stages of several Bianchi types. For such back-
grounds the generating matrices ψ0(u, v) have been obtained by Kitchingham
[173]. However, all but the diagonal cases are given in terms of compli-
cated hypergeometric functions, so that explicit calculations soon become
cumbersome.

A particularly simple background metric is

g0(u) = diag(α1+d, α1−d); γ1(u) = −(1 + d2)au, γ2(v) = −(1 + d2)av,
(7.31)

where α = exp[−2au], and a, d are arbitrary parameters (a > 0). This
solution is the Siklos plane-wave Bianchi type VIh(κ = 0) solution. All
Bianchi VIh approach this solution at late times. It is the limit of the Ellis and
MacCallum solutions at late times and the limit of the Bianchi fVIh Wainwright
and Marshman solutions of class III. It may also be useful as a cosmological
model at early times. It describes, for instance, some of Wainwright’s spatially
homogeneous perfect fluid solutions near the initial singularity [296]. Note
that this solution is not the Kasner solution, in spite of the similarity of the
transversal coefficients. This solution admits a G6 group of isometries with V4
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orbits. A G5 subgroup acts on the wave surfaces u = constant and there is a G3

subgroup which acts on space-like hypersurfaces of Bianchi type VIh [260, 261].
The generating matrix ψ0 for the background (7.31) can easily be calculated by
integration of (1.51):

ψ0 = diag
(
(λ2 + 2αλ + α2)(1+d)/2, (λ2 + 2αλ + α2)(1−d)/2

)
.

We remark that in this case the function a(v) in (1.45)–(1.46) is zero and
functions α and −β coincide. The generalized (diagonal) soliton solutions with
this background have been studied [287]. It is found that, generally, the new
plane-wave solutions admit a G5 group of isometries with N3 orbits. For some
values of the parameters they include the background solution which admits a
G6 group and, for some other values, flat spacetime. The soliton components
do not introduce new singularities besides the nonscalar curvature singularity
of the background; the Weyl scalar )4 becomes unbounded at a certain null
hypersurface u = constant.

7.3 Colliding plane waves

We turn now to the more interesting problem of describing the collision of
gravitational plane waves. As first shown by Khan and Penrose [161] the
interaction region after the collision of two plane waves propagating in opposite
directions is described by a spacetime with two commuting Killing vectors.
The usual way to construct these solutions is to consider a particular exact
solution to Einstein’s equations in the appropriate region and to try to match
it to plane-wave solutions and flat spacetime. This must be performed with a
suitable matching: the O’Brien and Synge matching conditions [233, 265]. The
resulting spacetime is interpreted as describing the collision of the gravitational
plane waves.

7.3.1 The matching conditions

The first assumption one makes when trying to construct a spacetime describing
the head-on collision of two plane waves propagating in flat spacetime is that the
collision does not affect the plane symmetry of the waves. Thus one assumes an
Abelian two-parameter group of isometries with Killing vectors ∂xa (a = 1, 2)
along the transverse plane of the wave propagation. One also assumes that at
each spacetime point there exist two orthogonal null directions to the above
planes, so that we may define two null vectors �l and �n along such directions
which are proportional to gradients: lµ ∝ u,µ and nµ ∝ v,µ. We may choose
u and v as null coordinates and the spacetime will then be described by the
coordinates (u, v, x1, x2). This spacetime thus admits an orthogonally transitive
group of isometries and, consequently, the ISM can be applied to find vacuum
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solutions. The colliding wave spacetime will be divided in four regions: I, II, III
and IV. Region I is the flat region, regions II and III are the incoming plane-wave
regions and region IV is the interaction region. The spacetime metric used will
be in the form (7.27) which is useful for describing the interaction region (region
IV) because, as we saw in section 7.2.3, it can be extended naturally to the
initial regions by requiring that the metric coefficients are functions of u only to
describe the plane wave that comes from z → −∞ (2z = v − u) (region II), or
functions of v only to describe the plane wave that comes from z → ∞ (region
III), or constants to describe the flat region between the wavefronts before the
collision (region I). We have from (1.44) that α,uv = 0 (recall that now we are
using (u, v) which are related to (ζ, η) by u = −2η and v = 2ζ ). From this
equation we have the solution (1.45) which we now write as

α = F(u) + G(v), (7.32)

where F and G are arbitrary functions. As we have just remarked, α should be
a function of u only in region II, of v only in region III, and constant in region
I. The wavefronts of the incoming waves will be taken as u = 0 and v = 0,
respectively, and we will impose continuity of α across such null hypersurfaces.
Thus we will choose

F = 1

2
(u ≤ 0), G = 1

2
(v ≤ 0), (7.33)

so that in the flat region α = 1.
To match the different regions suitable matching conditions must be given.

All the matching hypersurfaces are null, the appropriate matching conditions
in this case were proposed by O’Brien and Synge [233]. Their conditions
require that the metric be continuous across the boundaries but discontinuities
on certain first derivatives are allowed if they do not produce extra source terms
in Einstein’s equations. Following ref. [127] we will denote by x0 = constant
a null hypersurface (this corresponds to either u = 0 or v = 0 in our case),
then g00 = 0 and we will assume that the metric is written in coordinates
(x0, x1, x2, x3), then the O’Brien and Synge conditions reduce to impose that
the following functions:

gµν, gi j gi j,0, gi0gi j,0 (i, j = 1, 2, 3), (7.34)

are continuous across x0 = constant. This allows for the impulsive wave defined
in (7.15) which has in group coordinates the metric components (7.17).

These conditions imply that the functions F and G should be continuous
across u = 0 and v = 0, respectively, and also that their derivatives should
vanish on these hypersurfaces:

F(u) = 1

2
, u ≤ 0, Ḟ(0) = 0, (7.35)
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G(v) = 1

2
, u ≤ 0, Ġ(0) = 0, (7.36)

so that we have α = 1 in region I, α = 1/2+ F(u) in region II, α = 1/2+ G(v)

in region III, and α = F(u) + G(v) in region IV with Ḟ(0) = 0 and Ġ(0) = 0.
We have taken F and G in the interaction region IV to be the same functions as
in the plane-wave regions II and III, respectively.

Let us now consider in more detail the boundaries between regions I and II,
and between I and III. By a coordinate relabelling of u and v it is always possible
to take γ = 0 in (7.27) in these three regions. Equations (1.40)–(1.41) in
these regions together with (7.35)–(7.36) imply that F and G are monotonically
decreasing functions for positive arguments in regions II and III. Thus since
α = F + G eventually α → 0 in the interaction region; this indicates a
coordinate singularity of metric (7.27) or, as we shall see, a curvature singularity
in most cases. One may then use a relabelling of the coordinates u and v to
express F and G in the Szekeres [265] form:

F(u) = 1

2
− (c1u)n1θ(u), G(v) = 1

2
− (c2v)

n2θ(v), (7.37)

in the four regions, where c1, c2, n1 and n2 are some real parameters. Here
u is a function of the previous u and the same for v (we could use different
names, for instance u′ and v′ instead, but using the same names, as is common
practice, should not cause confusion). This parametrization is not always the
most convenient, but it may be so in some cases. More generally the leading
terms of F and G near the boundaries will be of the form

F(u) = 1

2
− (c1u)n1 + · · · (u ≥ 0); G(v) = 1

2
− (c2v)

n2 + · · · (v ≥ 0).

(7.38)

In order to satisfy conditions (7.35)–(7.36), i.e. that Ḟ(0) = 0 and Ġ(0) = 0,
the parameters na (a = 1, 2) are restricted to take na ≥ 2. When na = 2 the
approaching waves usually have impulsive components (an example of this is
the metric (7.17) for pure gravity (λ1 = −λ2)), when na = 4 the waves have a
step component and when na > 6 the wavefront is always continuous.

It may be convenient to adopt F(u) and G(v) as coordinates instead of u and
v in the interaction region; in fact, many solutions have been given in that form
[127]. Then one may write metric (7.27) in the form

ds2 = − 2eS

√
F + G

d F dG + (F + G)[χ(dx2)2 + χ−1(dx1 − ωdx2)2], (7.39)

where S, χ and ω are functions of F and G. The Einstein equations in vacuum
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(1.39)–(1.41) can be written as

2χ,FG = − 1

F + G
(χ,F + χ,G) + 2

χ
(χ,Fχ,G − ω,Fω,G), (7.40)

2ω,FG = − 1

F + G
(ω,F + ω,G) + 2

χ
(χ,Fω,G − χ,Fω,G), (7.41)

and the function S satisfies

S,F = − F + G

2χ2
(χ2

,F + ω2
,F), S,G = − F + G

2χ2
(χ2

,G + ω2
,G). (7.42)

The relationship of S with the function γ of (7.27) is obviously

eγ = 2Ḟ Ġ√
F + G

eS. (7.43)

The continuity of γ across the boundaries where Ḟ = 0 or Ġ = 0 implies that
S should diverge on these boundaries like

S = −k1 ln(1/2 − F) − k2 ln(1/2 − G) + · · · , (7.44)

where ka = 1 − 1/na (a = 1, 2), as one can easily check by substituting
the values of (7.38) into (7.44). Naturally this imposes some restrictions on
χ and ω via equations (7.42), in the same way that the smoothness of γ imposes
restrictions on gab via equations (1.40)–(1.41).

7.3.2 Collinear polarization waves: generalized soliton solutions

As remarked previously solutions in the interaction region can be found by
the ISM. This means, in particular, that we have at our disposal the soliton
solutions described in the cosmological context in chapters 4 and 5. There most
spacetimes are described in terms of canonical coordinates (α = t , β = z).
Here, as we have just seen, such coordinates are not the most appropriate to
describe the matching of the interaction region with the plane-wave regions.
They are nevertheless useful in the interaction region particularly near α = 0, i.e.
near the ‘cosmological’ singularity or ‘focusing’ hypersurface in the colliding
wave problem. Let us now introduce Szekeres prescription (7.37) to write
the canonical coordinates (α, β) (see (1.45)–(1.46)) in the interaction region in
terms of (u, v) as

α = F+G = 1−(c1u)n1 −(c2v)
n2, β = −F+G = (c1u)n1 −(c2v)

n2, (7.45)

where the arbitrary parameters ca (a = 1, 2) are used for rescaling coordinates.
As we have seen in subsection 7.3.1 this prescription gives a suitable matching
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provided the na are restricted to na ≥ 2. The interaction region in the canonical
coordinates (α, β) is now compact and is reduced to the triangular region
bounded by α = 0, α ± β = 1. The line element is changed to

dβ2 − dα2 = −4n1n2cn1
1 cn2

2 un1−1vn2−1du dv. (7.46)

The spacetime regions defined in terms of the canonical coordinates (α, β)
and in terms of the null coordinates (u, v) are shown in fig. 7.2. The triangular
region in (a) corresponds to the entire colliding wave spacetime. The interior of
the triangle corresponds to the interaction region IV, the point (α, β) = (1, 0) to
the flat region I. The line α+β = 1 for α ∈ [0, 1) corresponds to the plane-wave
region III and the line α − β = 1 for α ∈ [0, 1) to the plane-wave region II.
The α = 0 (i.e. F + G = 0) for β ∈ (−1, 1) corresponds to the ‘focusing’
region in IV for 1 = (c1u)n1 + (c2v)

n2 and the singular points (0, 1), (0,−1)
to the ‘focusing’ hypersurfaces in the plane-wave regions II and III defined by
(c1u)n1 = 1 and (c2v)

n2 = 1, respectively.
Notice that because of the compact nature of the interaction region in terms

of canonical coordinates we can use either real- or complex-pole trajectories
(1.68)–(1.69) with wk = z0

k − ick to construct soliton solutions, provided we
take two-soliton origins at β = z0

k = ±1 to satisfy the boundary conditions.
Also, now there is no special need to take opposite pole trajectories in order to
avoid space-like singularities (since there is no |β| → ∞ limit). Nondiagonal
solutions in terms of (7.27) correspond to the collision of plane waves with
two polarizations, i.e. noncollinear polarizations, whereas diagonal solutions
correspond to aligned one-polarization waves, i.e. collinear polarizations. This
second case is easier to study and many such solutions have been found and
studied in the literature.

Generalized soliton solutions. Here we shall restrict ourselves to diagonal
metrics and will consider the generalized soliton solution with real poles in the
Kasner background. The diagonal metric (4.6), which we rewrite here in terms
of α ≡ t and β ≡ z as

ds2 = f (dβ2 − dα2) + α(e$dx2 + e−$dy2), (7.47)

where x = x1, y = x2, admits the generalized soliton solution (4.51)–(4.52),
which can be rewritten as

$ = d lnα +
s∑

k=1

hk ln
(µk

α

)
, (7.48)

f = α[(d−g)2−1]/2
s∏

k=1

[
µ

hk (hk+d−g)
k (β2

k − α2)−h2
k/2
] s∏

k,l=1;k>l

(µk − µl)
2hk hl ,

(7.49)
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Fig. 7.2. The different relevant regions in the colliding plane-wave problem in terms
of (a) canonical coordinates (α, β) and (b) null coordinates (u, v) according to (7.45).
Region IV is the interaction region, regions II and III are the plane-wave regions and
region I is a portion of flat spacetime.
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where βk ≡ z0
k − β, s is the number of pole trajectories, g ≡ ∑s

k=1 hk and
z0

k , d and hk are arbitrary real parameters. The pole trajectories are (see (4.49)):
µ±

k = z0
k −β±[(z0

k −β)2−α2]1/2. The function $ can be written in an alternative
form using

ln

(
µ+

k

α

)
= cosh−1

(
z0

k − β

α

)
. (7.50)

As an example we will consider the solutions with two real-pole trajectories,
s = 2, with g = h1 +h2 and z0

1 = −z0
2 = −1. As usual the boundary conditions

on the null hypersurface u = 0 and v = 0 are imposed by working with null
coordinates (u, v). From (7.48) and (7.50) it should be clear that there is no
problem in matching the transversal metric coefficients. The problem lies in the
longitudinal coefficient f (α, β). The metric thus has to be written as (7.27).
This means that

f (dβ2 − dα2) = eγ (u,v)du dv, (7.51)

and using (7.46) to write the left hand side in terms of (u, v) we see that f
must diverge as u1−n1 and v1−n2 on these boundaries to ensure a smooth γ . As
shown by Feinstein and Ibáñez [102] this divergence in f (see (7.49)) comes
precisely from the soliton terms. In fact, consider for instance the first soliton
term in (7.48): h1 ln(µ+

1 /α). Its possible divergent contribution in f is in the
term (β2

1 − α2)−h2
1/2, which when z0

1 = −1 and using (7.45) for small values of
u and v gives

[(1 + β)2 − α2]−h2
1/2 ∼ u−n1h2

1/2. (7.52)

The same analysis for the second soliton with z0
2 = 1 leads to

[(1 − β)2 − α2]−h2
1/2 ∼ v−n2h2

2/2. (7.53)

Imposing that f should go like u1−n1 and v1−n2 , respectively, we obtain that

h2
1 = 2(1 − 1/n1), h2

2 = 2(1 − 1/n2). (7.54)

This together with (7.45) means that for a proper matching on the hypersurfaces
u = 0 and v = 0 each pole trajectory is relevant to a different null boundary.
Let us consider some examples.

Khan and Penrose solution. The solution found by Khan and Penrose [161] is
(7.48)–(7.49) with s = 2, h1 = −h2 = 1, d = 0 and z0

1 = −z0
2 = −1, i.e. it

corresponds to the two pole trajectories, with opposite poles and axisymmetric
Kasner background. This means that it develops a curvature singularity (related
to the cosmological one at α = 0), and that according to (7.54) the coordinate
transformation (7.45) has n1 = n2 = 2, which means that the incoming waves
have impulsive components.
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Szekeres solution. The solution given by Szekeres [264] is (7.48)–(7.49) with
s = 2, h1 = −h2 = √

3/2, d = 0, and z0
1 = −z0

2 = −1, i.e. it corresponds
to the generalized soliton solutions with two opposite poles and axisymmetric
Kasner background. Thus it also develops a curvature singularity and, according
to (7.54), the transformation (7.45) has n1 = n2 = 4, which means that the
incoming waves have a step component.

We know that not all solutions develop curvature singularities at α = 0.
For instance, if we take two opposite poles we may choose the flat Kasner
background d = ±1 and α = 0 is then a regular hypersurface. More generally,
as shown by Feinstein and Ibáñez [102], generalized soliton solutions do not
develop curvature singularities at α = 0 when d + g = ±1; this corresponds to
the case in which there is no cosmological singularity in the solutions of section
4.5, where several examples have been given. In those cases the interaction
region can be extended beyond the focusing hypersurface: α = 0. This regular
focusing hypersurface is then interpreted as the caustic of the colliding wave
spacetime. One example of this type of solution is the generalized soliton
solution with two opposite poles, h1 = −h2, d = ±1 (z0

1 = −z0
2 = −1), i.e.

with the Minkowski background. This solution, which was first described in the
soliton context by Ferrari and Ibáñez [104], is locally isometric to a region inside
the horizon of the Schwarzschild metric [60, 307, 309]. A detailed analysis of
the geometry of this solution can be found in refs [145, 82]; its main features,
however, will be discussed in section 7.3.3 to illustrate the geometry of the
colliding wave spacetimes. Another example of this type is a solution with two,
not opposite, pole trajectories g = h1 + h2 = ±1 and d = 0 [102], i.e. with the
axisymmetric Kasner background.

Instead of canonical coordinates (α, β), or the previous null coordinates
(u, v), the collision wave problem has often been discussed in another conve-
nient set of compact nonnull coordinates: φ, θ . These are defined by

α = sinφ sin θ, β = − cosφ cos θ; 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π, (7.55)

which for the corresponding line element imply

dβ2 − dα2 = (cos2 φ − cos2 θ)(dθ2 − dφ2). (7.56)

In the new coordinates φ is the time and θ is a space-like variable. We choose
the region in which φ and θ change to be the triangle in the (φ, θ )-plane with
the vertices (φ = 0, θ = 0), (φ = 0, θ = π ) and (φ = π/2, θ = π/2).
In this region the Jacobian of the transformation (7.55) is positive and there is
a one-to-one mapping between the points of this region and the points of the
triangle in the (α, β)-plane with vertices (α = 0, β = −1), (α = 0, β = 1)
and (α = 1, β = 0). Inside the (φ, θ ) triangle we have cosφ ± cos θ ≥ 0. We
choose z0

1 = −z0
2 = 1, in which case we have β1 > 0, β2 < 0 and prescription

(4.49) gives for the real-pole trajectories the following simple form:

µ−
1 = (1 − cosφ)(1 − cos θ), µ−

2 = −(1 − cosφ)(1 + cos θ); (7.57)
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note that µ+
k (k = 1, 2) follows from the relations µ−

1 µ
+
1 = µ−

2 µ
+
2 =

sin2 φ sin2 θ . Then, for instance, the generalized soliton solution with two
opposite real poles (s = 2), i.e. (7.48)–(7.49) with µ1 = µ−

1 , µ2 = µ−
2 but

with h1 = −h2 ≡ h, takes the simple form

ds2 = (sinφ sin θ)(d
2−1)/2 (1 + cos θ)h2−hd(1 − cos θ)h2+hd

×(cos2 φ − cos2 θ)1−h2
(dθ2 − dφ2)

+ (sinφ sin θ)1+d

(
1 − cos θ

1 + cos θ

)h

dx2

+ (sinφ sin θ)1−d

(
1 + cos θ

1 − cos θ

)h

dy2, (7.58)

which includes most of the solutions just described.

7.3.3 Geometry of the colliding waves spacetime

In this subsection we will use a particular solution to describe the geometry
of the head-on collision of two aligned one-polarization waves [82] (collinear
polarizations). The general properties are found in this example, the main
difference with other solutions is that the focusing hypersurface is a nonsingular
caustic here, whereas most of the solutions develop curvature singularities. As
we have mentioned, regular caustics are not generic. We will consider the
solution (7.58) when d = h = 1 (i.e. one soliton with Minkowski background).
This case is thus a truly solitonic solution in the sense that it may be considered
as the limit of a nondiagonal soliton solution.

For convenience, instead of the coordinates of (7.58) we will use some
dimensionless null coordinates, which we also denote as u and v, defined by

u = π + 1

2
(θ − φ), v = π

2
+ 1

2
(θ + φ). (7.59)

In this case the metric in the interaction region can be written as,

ds2
I V = −4L1L2[1 + sin(u + v)]2du dv + 1 − sin(u + v)

1 + sin(u + v)
dx2

+ [1 + sin(u + v)]2 cos2(u − v)dy2, (7.60)

where L1 and L2 are positive arbitrary parameters that we have introduced for
convenience (this can always be done) and we have interchanged x and y. Given
(7.60), we can always restrict the range of (u, v) to between 0 and π/2, thus we
will define the interaction region IV (0 ≤ u < π/2, 0 ≤ v < π/2) with
boundaries u = 0, v = 0 and u + v = π/2. Note that these coordinates do not
satisfy Szekeres prescription (7.37), although conditions (7.38) are obviously
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satisfied for n1 = n2 = 2. The hypersurface u + v = π/2, as we shall see,
is a Cauchy horizon (a Killing–Cauchy horizon) and these coordinates become
singular there. The extension of this metric to regions II (0 ≤ u < π/2, v ≤ 0)
and III (0 ≤ v < π/2, u ≤ 0) through the boundaries (v = 0, 0 ≤ u < π/2)
and (u = 0, 0 ≤ v < π/2), respectively, consists of substituting u → uθ(u)
and v → vθ(v) in (7.60). The resulting metrics in the different regions are

ds2
I I = −4L1L2(1 + sin u)2du dv + 1 − sin u

1 + sin u
dx2 + (1 + sin u)2 cos2 u dy2,

(7.61)

ds2
I I I = −4L1L2(1 + sin v)2du dv + 1 − sin v

1 + sin v
dx2 + (1 + sin v)2 cos2 v dy2,

(7.62)

ds2
I = −4L1L2du dv + dx2 + dy2. (7.63)

The parameters L1 and L2 have dimensions of length; in the flat region I
(u < 0, v < 0) the physical retarded and advanced times are uphys = 2L1u
and vphys = 2L2v, respectively. Naturally by construction (see section 7.3.1) the
O’Brien and Synge matching conditions (7.34) are satisfied. It is interesting
to see this explicitly, for instance at v = 0: gI V

µν,v = gI I
µν,v but gI V

µν,u =
gI I
µν,u . From this it follows that the Ricci tensor is zero at the boundaries (it

is a vacuum solution everywhere), however, the Weyl tensor has δ-function
components at the boundaries, otherwise it is regular and nonzero (except in
region I where it is zero) [104]. This is interpreted as wavefronts of impulsive
(shock) pure gravitational waves. The resulting spacetime is then interpreted
as representing the collision of two pure gravitational shock waves followed
by trailing gravitational radiation. From our discussion of the meaning of the
focusing retarded time u f , see the discussion following (7.17) for example, the
parameters L1 and L2 represent the inverse of the strength of the waves. To
see this consider the solution in region II and use vphys = 2L2v and duphys =
2L1(1 + sin u)2du, then the focusing retarded time u f = π/2 corresponds to
uphys = 2L1(2 + 3π/4) and the inverse of this physical retarded time represents
the strength (energy density) of the u-plane wave.

The interaction region. This is the region bounded by the hypersurfaces u = 0,
v = 0 and u + v = π/2. Let us now see that this region is locally isometric to a
part of the interior Schwarzschild metric. Just consider the coordinate change:

t = x, r = M[1 + sin(u + v)],

ϕ = 1 + y/M, θ = π/2 − (u − v),

}
(7.64)
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where we have defined M = √
L1L2. Metric (7.60) then becomes

ds2
I V = −

(
2M

r
− 1

)−1

dr2 +
(

2M

r
− 1

)
dt2 +r2(dθ2 + sin2 θ dϕ2), (7.65)

which is the interior of the Schwarzschild metric (r < 2M) where the Killing
field ∂t is space-like. The hypersurface u + v = π/2 (the caustic) corresponds
to the black hole event horizon r = 2M . The boundary v = 0 corresponds to
r = M(1 + cos θ) and u = 0 corresponds to r = M(1 − cos θ), these are the
boundaries of the plane waves. These boundaries meet at r = M (spacetime
point of the collision) and they meet the caustic at θ = 0 and θ = π . This
region of the Schwarzschild interior does not contain the singularity r = 0 and
thus the interaction region has no curvature singularity. Moreover, the caustic
u + v = π/2, which corresponds to the event horizon, is a Cauchy horizon.
The above local isometry is not global, however: the coordinates θ and ϕ are
cyclic in the black hole case but in the plane-wave case −∞ < y < ∞ and
−∞ < v − u < ∞. Note, however, that a possible extension of the interaction
region through the Cauchy horizon is achieved by making y cyclic and matching
to the past event horizon of the Schwarzschild metric in the Kruskal–Szekeres
coordinates [105, 145, 82]. But since regular horizons do not seem generic in
the physics of colliding waves we shall not insist on this point.

From this discussion we may note that since the Schwarzschild coordinates
are not adapted to describe the event horizon, the group coordinates are also
not adapted to describe the caustic. For this reason it is convenient to introduce
a set of Kruskal–Szekeres-like coordinates to describe the interaction region.
First we introduce dimensionless time and space coordinates (ξ, η); ξ = u + v,
η = v − u, with ranges 0 ≤ ξ < π/2 and −π/2 ≤ η < π/2. Then we define a
new time coordinate

ξ ∗ = 2M ln

(
1 + sin ξ

2 cos2 ξ

)
− M(sin ξ − 1), (7.66)

and a new set of null coordinates Ũ = ξ ∗ − x , Ṽ = ξ ∗ + x . Finally we introduce

U ′ = −2M exp

(
−Ũ

4M

)
≤ 0, V ′ = −2M exp

(
−Ṽ

4M

)
≤ 0, (7.67)

and the metric in the interaction region then reads:

ds2
I V = −2 exp[(1 − sin ξ)/2]

1 + sin ξ
dU ′dV ′ + M2(1 + sin ξ)2dη2

+ (1 + sin ξ)2 cos2 η dy2, (7.68)

where ξ and η are functions of U ′ and V ′. From the previous coordinate changes
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we have that

U ′V ′ = 8M2 cos2 ξ

1 + sin ξ
exp

(
sin ξ − 1

2

)
,

U ′

V ′ = exp
( x

2M

)
. (7.69)

These last equations show that the curves ξ = constant and x = constant
are, respectively, hyperbolas and straight lines through the origin of coordinates
U ′ = V ′ = 0. The Cauchy horizon (the caustic) corresponds to the limit of the
hyperbolas when ξ → π/2, which are the lines U ′ = 0 or V ′ = 0. Note that
the transverse coordinate x is involved in the above coordinate change: it is not
a good coordinate at the caustic because the whole range of x collapses into the
point U ′ = V ′ = 0; whereas the lines U ′ = 0 and V ′ = 0 represent x → −∞
and x → ∞, respectively.

To see the structures of the different regions it is illustrative to represent the
boundaries between the plane waves and the interaction region as in fig. 7.3.
The boundary of region IV with regions II and III, S3 {(v = 0, 0 ≤ u < π/2) ∪
(u = 0, 0 ≤ v < π/2)} is shown on the Kruskal–Szekeres-like coordinates.
On the other hand the boundary of region II with the interaction region, S2

(v = 0, 0 ≤ u < π/2) and the boundary of region III with the interaction
region, S ′

2 (v = 0, u = 0, 0 ≤ v < π/2) are shown in the harmonic coordinates
(7.7). Boundaries S2 and S ′

2 must be properly identified with S3. We can see
that L (u = π/2), in region II, is a line rather than a surface contrary to what
fig. 7.2 seems to indicate, and represents the focusing effect of the u-plane wave.
This line splits into two lines, M1 and M2, on the boundary of region IV. In the
same way the line L′ (v = π/2) in region III splits into two lines, M′

1 and M′
2,

on the boundary region IV. To clarify further the global topology of the colliding
wave spacetime it is useful to analyse the spacetime null geodesics.

Analysis of null geodesics. We have just seen that in the interaction region the
caustic at u+v = π/2 is not singular and we have introduced a convenient set of
coordinates to describe it. In the plane-wave regions II and III, the focusing lines
u = π/2 and v = π/2, respectively, present coordinate singularities (the metric
coefficients of dx2 and dy2 vanish). For a single plane wave we have seen in
subsection 7.2.1 that this is only due to a bad choice of coordinate patch in this
region. In fact, using harmonic coordinates the single plane-wave spacetimes
can be continued beyond u f (u f = π/2 for the u-plane wave (7.61)). However,
such an extension is not possible in the colliding wave spacetime as we shall
see in what follows. Also the colliding wave spacetimes admit global Cauchy
hypersurfaces, unlike the single plane-wave spacetimes.

Thus let us now concentrate on the plane-wave region II ( a similar analysis
can be carried out in region III). Let us introduce harmonic coordinates,
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Fig. 7.3. This is the three-dimensional plot of the colliding plane-wave spacetime in
which the boundaries of the four regions I, II, III and IV are shown. The surface S1
is the boundary between the flat region I and the plane-wave regions II and III. The
surface S2 and the line L are the boundaries of the plane-wave region II with region
IV and the surface S ′

2 and the line L′ the boundaries of the plane-wave region III with
region IV. The surface S3 and the lines M1, M2, M′

1 and M′
2, are the boundaries of

region IV and the two plane-wave regions II and III. The lines M1 and M2 of region
IV have to be identified with the line L of region II and lines M′

1 and M′
2 of region

IV have to be identified with line L′ of region III. The Cauchy horizon is the ‘roof’
{U ′ = 0, V ′ < 0} ∪ {V ′ = 0,U ′ < 0}. Causality is globally preserved in this figure:
region I stays below the surface S1, region II stays between the surfaces S2 and S1,
region III stays between S ′

2 and S1 and region IV stays between the surface S3 and the
roof {U ′ = 0, V ′ < 0} ∪ {V ′ = 0,U ′ < 0}.
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(U, V, X ≡ X1, Y ≡ X2), according to (7.7):

U = u′, V = v′ + −X2 + (1 − 2 sin u)Y 2

2L1(1 + sin u)2 cos u
,

X = cos u

1 + sin u
x, Y = [(1 + sin u) cos u]y,

 (7.70)

where u′ is found from du′ = 2L1(1 + sin u)2du, v′ = 2L2v and (7.61) can be
written as

ds2
I I = −dU dV + 3

4L2
1(1 + sin u)5

(X2 − Y 2)dU 2 + d X2 + dY 2, (7.71)

which is of the form (7.4). The null geodesics are easily found in the coordinates
(u, v, x, y): there are three conserved momenta px , py and pv associated with
the Killing fields ∂x , ∂y and ∂v, respectively, in region II. Moreover pµ pµ = 0,
where pµ is the four-momentum of a massless particle. Thus, after a simple
integration we have:

y(u) = y(0)− L1
py

pv

tan u,

x(u) = x(0)− L1
px

pv

[
(1 + sin u)2

2 cos u
(9 − sin u)+ 15

2
cos u − 15

2
u − 12

]
,

v(u) = v(0)+ L1 p2
x

4L2 p2
v

[
(1 + sin u)2

2 cos u
(9 − sin u)+ 15

2
cos u − 15

2
u − 12

]
+ L1 p2

y

4L2 p2
v

tan u.



(7.72)

We now see that almost all geodesics entering region II cross the surface
(v = 0, 0 ≤ u < π/2) to enter the interaction region IV. The geodesics
with pv = 0 travel in the same sense as the wave and do not collide with it,
thus they are not of interest here. Geodesics with px = 0 or py = 0 always
cross (v = 0, 0 ≤ u < π/2) because given any finite value of negative v(0)
(v(0) < 0), there will always be a value of u < π/2 for which the terms
with either p2

x/ cos u or p2
y tan u will make v(u) = 0. Null geodesics with

a perpendicular incidence, i.e. px = py = 0 (x and y are constants) have
v(u) = v(0) and intersect L (u = π/2). Note that any family of null geodesics
with px = 0 or py = 0 will enter region IV but if the parameters px and py are
small they will enter region IV close to π/2. This is true for any values of px

and py close to zero, but in the limit (px , py) = (0, 0), the geodesics reach the
line L; see fig. 7.4. This behaviour suggests that we can identify the line L with
the point P , i.e. when a geodesic reaches L it is immediately sent to the point P .
This is called a ‘fold singularity’ [218]. The line L concentrates null geodesics
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with perpendicular incidence and sends them to P . This means that we cannot
extend the spacetime through L, since beyond L lies the interaction region. The
point P (u = π/2, v = 0) of fig. 7.3 is an accumulation point of all geodesics.
The possible confusion regarding such points that may arise from figs 7.2(b) or
7.4 is due to the fact that the projection of the spacetime into the (u, v)-plane
does not preserve the causality globally. The accumulation of geodesics near
points P and P ′ in fig. 7.4 is related to the infinite blueshift produced at massless
modes propagating on this spacetime [82], as one can easily see by noting that
the geometrical optics approximation is exact in the plane-wave regions.

All this may be further clarified by writing the boundaries S1 (u = 0, v < 0),
S2 (v = 0, u < 0) and L (u = π/2) of region II in harmonic coordinates: S1:
{U = 0, V = v′ + (Y 2 − X2)(2L1)

−1}; S2: {0 ≤ U < 2L1(2 + 3π/4), V =
(−X2+(1−2 sin u)Y 2)[2L1(+ sin u)2 cos u]−1}; L: {U = 2L1(2+3π/4), V =
v ≤ 0, if X = Y = 0, V = −∞ otherwise}. Note that the surface S2 is formed
by all null geodesics with px = py = v(0) = 0. In fact, these geodesics in
harmonic coordinates are

X = x(0)
cos u

1 + sin u
, Y = y(0)(1 + sin u) cos u,

V = cos u

L1(1 + sin u)2

[ −x2(0)

(1 + sin u)2
+ y2(0)(1 − 2 sin u)(1 + sin u)2

]
.

(7.73)

The null geodesics x = constant and y = constant, which form S2, all end at the
focal point P: U = 2L1(2+3π/4), V = X = Y = 0 and the line L corresponds
to a limit curve of these geodesics as x2 + y2 → 0; L does not belong to S2, it is
in the closure of S2. However, L does not belong to region II. To show this it is
convenient to consider the family of hypersurfaces v = constant < 0. Each of
these surfaces is formed by the family of hypersurfaces with px = py = 0 and
v < 0, and all of these geodesics end at X = Y = 0, V = v, which is one point
of L. Thus, L and P are topological singularities and must be excluded from
the spacetime. Note that only a null measure geodesics set reaches these points
since all time-like and almost all null geodesics avoid L and P .

7.3.4 Noncollinear polarization waves: nondiagonal metrics

In this subsection we consider soliton solutions that have been used to describe
the head-on collision of two gravitational plane waves with noncollinear po-
larizations propagating on a Minkowski spacetime. The most general solution
of this type is the two-parameter solution obtained by Ferrari et al. [106, 107]
as a two-soliton solution with two real-pole trajectories on a Kasner back-
ground. The solution includes the Nutku and Halil solution [232] representing
the collision of pure impulsive gravitational plane waves with noncollinear
polarizations, which generalizes the Khan and Penrose solution for impulsive
waves with collinear polarizations. The Ferrari et al. solution also includes the
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Fig. 7.4. Some null geodesics are projected onto the (u, v)-plane. Only null geodesics
with perpendicular incidence, px = py = 0 reach the lines L or L′, but if either px = 0
or py = 0 the geodesics reach region IV. In the limit px → 0 and py → 0, the
geodesics reach region IV at points closer and closer to P or P ′. One can interpret
the null geodesic with px = py = 0 as being sent to the lines L and L′ and then
immediately sent to the points P and P ′, respectively. On the left hand side of the
figure null geodesics, which cross the boundary between regions I and II at the same
point v0, with several values of the parameter px and with py = 0 are represented (the
parameter px changes from one geodesic to the next by a factor of 10). After entering
region II, as the impact parameter v0 grows the geodesics reach the horizon at points
closer and closer to P . On the right hand side of the figure we represent null geodesics
which cross the boundary between regions I and III at regularly spaced points on the u
axis and with the same values for the parameters px and py . This figure suggests that
the points P and P ′ are accumulation points of null geodesics.

generalization by Ernst et al. [93] of the Nutku and Halil solution which was
obtained by means of an Ehlers transformation applied to the Ernst potential
of the Nutku and Halil metric. The solution depends on two parameters: one
represents the angle between the direction of polarization of the two waves and
the other is the Kasner parameter. This solution has been further generalized by
a three-parameter solution obtained by Ernst et al. [94].

Following ref. [106] we take two real-pole trajectories (4.49) µ−
1 and µ+

2 , with
origins z0

1 = 1 and z0
2 = −1. In canonical coordinates (α = t, β = z) these are:

µ−
1 = 1−β−

√
(1 − β)2 − α2 and µ+

1 = −1−β+
√
(1 + β)2 − α2. As shown

in subsection 7.3.2 the interaction region in the colliding wave problem is the
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triangle formed by the intersection of the exterior light cones (1 − β)2 = α2

and (1 + β)2 = α2, see fig. 7.2. As in subsection 7.3.2 we also use the Kasner
metric as the background solution. In the conventions of ref. [106], the solution
is given by (1.87), (1.100) and (1.110) with n = 2, where the vectors m(k)

a which
make the matrix �kl (k, l = 1, 2) are defined in (4.36), with the real constant
vectors m(k)

0a restricted by

m(1)
02 m(2)

02 + m(1)
01 m(2)

01 = p, m(1)
02 m(2)

02 − m(1)
01 m(2)

01 = 1,

m(1)
02 m(2)

01 − m(1)
01 m(2)

02 = q, m(1)
02 m(2)

01 + m(1)
01 m(2)

02 = 0,

 (7.74)

where p and q are real parameters. From (7.74) it follows that these parameters
are related by

p2 + q2 = 1. (7.75)

Note that this should be compared with analogous expressions (8.44)–(8.45) or
(8.51), in the axisymmetric context. In such a context one introduces the three
parameters of the Kerr–NUT solution: the mass parameter m, the parameter a,
and the Taub–NUT parameter b. In the Ferrari et al. solution the counterpart
of the Kerr parameter is zero; it corresponds to the zero in the last equation
of (7.74). Thus a three-parameter solution, which is related to the solution of
ref. [94], can easily be obtained; see also ref. [127]. We may use the two-soliton
solution derived in section 2.2 to write the Ferrari et al. solution in the interaction
region in canonical coordinates. In fact, the explicit form of this solution is
given by (2.20)–(2.25) with u0 = d lnα and ρk = d ln(µk/α) + Ck , according
to (2.27). The parameters Ck can be determined from (7.74) via (4.37): it is easy
to see that C1 and C2 are both linear in ln

√
(p + 1)/(p − 1).

Ferrari et al. chose to give the explicit form of the metric in the dimensionless
coordinates (φ, θ ) defined by

α = sinφ sin θ, β = cosφ cos θ; 0 ≤ π, θ ≤ π. (7.76)

The solution in the interaction region is then defined inside the circle cos2 φ +
cos2 θ = 1 and the pole trajectories are given by µ−

1 = (1 − cosφ)(1 + cos θ)
and µ+

2 = −(1 − cosφ)(1 − cos θ). We refer the reader to ref. [106] for
the complete expression. The resulting metric reduces to the Nutku and Halil
solution [232] when d = 0 and to the Khan and Penrose solution when d = 0
and q = 0. Ferrari et al. computed the Weyl scalar )2 for this metric and
found that this function is always singular on the focusing hypersurface with
the exception of the degenerate solutions d = ±1, which correspond to the
Minkowski background.

After a solution in the interaction region has been identified, the next step is
to extend it to the plane-wave regions. For this we need to write the solution
in terms of the null coordinates (u, v) and, as in fig. 7.2, define region I as
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the points {u < 0, v < 0}, region II as {u > 0, v < 0}, and region III as
{u < 0, v > 0}. Writing the metric in the form (7.27) the extension to these
regions across the null boundaries u = 0 and v = 0 is made, as usual, by the
substitutions u → uθ(u) and v → vθ(v). These coordinates may be defined
from the canonical ones using Szekeres prescription (7.45) with c1 = c2 = 1
and n1 = n2 = 2 so that

α = 1 − u2 − v2, β = u2 − v2. (7.77)

In these coordinates the focusing hypersurface α = 0 is defined by u2 + v2 = 1.
The relationship between the null coordinates (u, v) and the previous (φ, θ ) is

cosφ = u
√

1 − v2 + v
√

1 − u2, cos θ = u
√

1 − v2 − v
√

1 − u2. (7.78)

Ferrari [103] has given a physical interpretation of the parameters of the
complete solution. First, we should note that we have taken the soliton origins
z0

1 = −z0
2 equal to unity. This is mathematically convenient and common

practice, but it makes the coordinates (α, β) dimensionless. Thus for a physical
interpretation we should restore z0

1 as an arbitrary length parameter (this is
similar to the introduction of the length parameters L1 and L2 in subsection
7.3.3). We have also the two parameters p and q which are related by (7.75)
and, finally, there is the Kasner parameter d. By analysing the Weyl scalar )0

in the plane-wave region II, Ferrari found that (z0
1)

−2 gives the amplitude of the
impulsive component of the wave, i.e. the term proportional to δ(u). It is also
seen that z0

1 determines the time of focusing of the waves, and its inverse is
proportional to the strength of the waves. This is consistent with our analysis in
section 7.3.3 and also with a result on the focusing of colliding graviton beams
[289], where the scattering gravitons converge to a focus in a time which is
proportional to the energy density per unit area of the beam. Our discussion in
subsection 7.2.2 suggests that the energy density of a pure gravitational plane
wave should in fact be proportional to the inverse of the focusing time. The
parameter q measures the angle between the polarization directions of the two
waves: q = 0 corresponds to collinear polarizations. The only effect of the
polarization parameter q in the focusing time is to delay the time by a factor√

1 + q2. The Kasner parameter, on the other hand, determines the power in the
power law divergence of the Weyl scalars on the focusing singularity.

The degenerate solution. This corresponds to the solution with the Minkowski
background d = ±1. This case is interesting in its own right and was studied in
some detail in ref. [105]. It may be written in the coordinates of (7.76) as

ds2 = −C(1 + cos2 φ + 2p cosφ)(dφ2 − dθ2)

+
(

1 − cos2 φ

1 + cos2 φ + 2p cosφ

)
(dx − 2q cos θ dy)2

+ sin2 θ(1 + cos2 φ + 2p cosφ)dy2, (7.79)
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where p and q are related by (7.75) and C is an arbitrary constant. Let us now
see that this solution is isometric to a region of the Taub–NUT metric. For
this we introduce new parameters (σ,m, n) by p = m/σ and q = −b/σ , thus
σ = √

m2 + b2; then define new coordinates (t, r, ϕ) by

cosφ = r − m

σ
, x = t, y = σϕ, (7.80)

and take C = σ 2. Metric (7.79) then becomes

ds2 = r2 + b2

r2 − 2mr − b2
dr2 − r2 − 2mr − b2

r2 + b2
(dt + 2b cos θ dϕ)2

+ (r2 + b2)(dθ2 + sin2 θ dϕ2). (7.81)

This is the Taub–NUT solution [268, 230]; it is given by (8.48) when C f = −1
and a = 0, and is of Petrov type D. Since under the previous change 1−cos2 φ =
(−r2 + 2mr + b2)(m2 + b2)−1, the interaction region described by (7.79) is
isometric to the Taub region r2 − 2mr + b2 < 0, where the two Killing fields
∂t and ∂ϕ are both space-like. Note the similarity with (7.65). The focusing
hypersurface u2 + v2 = 1 corresponds to the hypersurface r+ = m + σ which
makes the nonsingular event horizon r2 − 2mr + b2 = 0. Also, it is easy to
see using (7.78) that the null hypersurfaces u = 0, 0 < v < 1 and v = 0,
0 < u < 1, which match to the two plane-wave regions, correspond to r =
m − σ cos θ and r = m + σ cos θ , respectively. Thus, as happened for the case
of the solution considered in subsection 7.3.3, this solution is not singular at the
focusing hypersurface u2 +v2 = 1, which can now be seen as the colliding wave
caustic. If the caustic is regular, the metric can be extended across this surface
by matching to the horizon of the Taub–NUT metric [105]. This is very similar
to the analysis carried out in subsection 7.3.3.



8
Axial symmetry

In the previous four chapters we discussed metrics which admit two commut-
ing space-like Killing vector fields. In this chapter we deal with stationary
axisymmetric spacetimes where one of the two Killing fields is time-like. These
spacetimes have been investigated for a long time due to the possibility of
describing the gravitational fields of compact astrophysical sources. The field
equations for the relevant metric tensor components are now elliptic rather than
hyperbolic as in the nonstationary case but the solutions can be formally related
via complex coordinate transformations. In section 8.1 we again formulate the
ISM, but in this case, because of the different ranges of the coordinates, some
of the previous expressions become much simpler. In section 8.2 the general
n-soliton solution is explicitly constructed in this axisymmetric context. In
section 8.3 the Kerr, Schwarzschild and Kerr–NUT solutions are constructed
as simple two-soliton solutions on the Minkowski background. The asymptotic
flatness of the general n-soliton solution is discussed in section 8.4 and we show
that asymptotic flatness can always be imposed by certain restrictions on the
soliton parameters; the resulting spacetimes can be interpreted as a superposition
of Kerr black holes on the symmetry axis. In section 8.5 we discuss the
diagonal metrics (static Weyl class). In this case the soliton metrics contain
many well known static solutions and some generalized soliton solutions can be
constructed as in the previous chapters; a few particularly interesting solutions
are considered in some detail. Finally, in section 8.6 we show how the well
known Tomimatsu–Sato solution can be obtained from an n-soliton solution by
pole fusion, and by the same procedure we obtain the Neugebauer superposition
of Kerr–NUT metrics.

213



214 8 Axial symmetry

8.1 The integration scheme

Let us write the metric for a stationary and axisymmetric gravitational field in
the form:

ds2 = f (dρ2 + dz2) + gabdxadxb, (8.1)

where the metric coefficients f and gab are functions of ρ and z only. For
the stationary case throughout this book we use the notation (x0, x1, x2, x3) =
(t, ϕ, ρ, z), and the Latin indices a, b, c, . . . take the values 0 and 1, which
correspond to the coordinates t and ϕ. The metric coefficient f in (8.1) is
nonnegative. This block diagonal form is guaranteed in vacuum by Papapetrou’s
theorem [236], assuming a regular symmetry axis and the presence of the two
commuting Killing vector fields, one of them time-like (in our coordinates ∂t )
and the other space-like (in our coordinates ∂ϕ). The latter defines closed orbits
around the symmetry axis and vanishes on it. The nonvacuum version of this
theorem that guarantees that the orbits of the isometry group admit orthogonally
transitive surfaces in the stationary axisymmetric spacetimes can be found in
refs [182, 179].

Using the remaining freedom in the choice of the coordinates ρ and z we can,
without loss of generality, impose on the 2 × 2 matrix g (with components gab)
the following supplementary condition

det g = −ρ2. (8.2)

Note that we did not use a choice analogous to (8.2) in chapter 1 because
for nonstationary metrics det g can be both time-like and space-like. Thus to
cover both possibilities in the calculations simultaneously it was better to keep
det g = α2 without specifying the function α(ζ, η). In the stationary case
for the spacetime metric (8.1) the det g can have space-like character only.
Consequently, it is better to use the simplification (8.2) from the beginning,
which means that we are using canonical coordinates. This is analogous to what
we did in section 4.4 in the cosmological context.

It is now easy to show that the full system of Einstein equations in vacuum for
the metric (8.1)–(8.2) separates into two groups. The first determines the matrix
g and has the form (

ρg,ρg−1
)
,ρ

+ (ρg,zg−1
)
,z

= 0. (8.3)

The second group of equations determines the metric coefficient f for a given
solution of (8.3) and can be written in the form

(ln f ),ρ = − 1

ρ
+ 1

4ρ
Tr(U 2 − V 2), (ln f ),z = 1

2ρ
Tr(U V ), (8.4)

where the 2 × 2 matrices U and V are defined as

U = ρg,ρg−1, V = ρg,zg−1. (8.5)
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It is easy to see that after the formal transformations z = ζ + η, ρ = −i(ζ − η),
ρ = −iα, z = β, U = −(A+B)/2, V = i(A−B)/2 from the variables ρ, z and
the matrices U, V to the variables and matrices used in chapter 1, metric (8.1)
and (8.2)–(8.5) will be formally reduced to the equations we studied previously;
see also section 4.4. For this reason all the formal aspects of the integration
scheme can be obtained from the results of chapter 1. We shall discuss here
only the basic points that are necessary for a complete exposition and we shall
not go into the details of the proofs. For more details see refs [23, 24].

Using the results of section 1.3 we can easily find the ‘L–A pair’, or spectral
equations, for the matrix equation (8.3) in the variables ρ and z:

D1ψ = ρV − λU

λ2 + ρ2
ψ, D2ψ = ρU + λV

λ2 + ρ2
ψ, (8.6)

where the commuting differential operators D1 and D2 are given by

D1 = ∂z − 2λ2

λ2 + ρ2
∂λ, D2 = ∂ρ + 2λρ

λ2 + ρ2
∂λ, (8.7)

and where λ is a complex spectral parameter independent of the coordinates
ρ and z. It is not hard to verify that the conditions of compatibility of (8.6)
for the generating matrix function ψ(λ, ρ, z) are identical to the original (8.3)
and (8.4), if we rewrite them, and also the conditions for their compatibility, in
terms of the matrices U and V in the same way as was done in section 1.3. The
required matrix g is the value of the matrix ψ(λ, ρ, z) at λ = 0:

g(ρ, z) = ψ(0, ρ, z). (8.8)

The procedure for the integration of (8.6) assumes knowledge of some
particular solution. Let the matrices g0, U0 and V0 be some particular solution
of (8.3) and (8.5), and let ψ0(λ, ρ, z) be the solution of (8.6) with such matrices.
We then seek the solution for ψ of the form

ψ = χψ0, (8.9)

and we get, from (8.6), the following equations for the dressing matrix
χ(λ, ρ, z):

D1χ = ρV − λU

λ2 + ρ2
χ − χ

ρV0 − λU0

λ2 + ρ2
, D2χ = ρU + λV

λ2 + ρ2
χ − χ

ρU0 + λV0

λ2 + ρ2
.

(8.10)
Now, as before, it can be shown that to ensure that the matrix g is real and

symmetric, supplementary conditions have to be imposed on the solutions of
(8.10). For the reality of g we need that

χ̄(λ̄) = χ(λ), ψ̄(λ̄) = ψ(λ), (8.11)
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where a bar denotes complex conjugation, and for g to be symmetric we need
that

g = χ(λ)g0χ̃(−ρ2/λ), (8.12)

where a tilde indicates transposition. Besides this, compatibility of (8.12) with
(8.9) requires that

χ(∞) = I, (8.13)

where I is the unit matrix; here and often in this chapter we omit the arguments
ρ and z of some functions for simplicity. We can now turn to the construction
of the n-soliton solution for the axisymmetric gravitational field.

We should remark that the relationship between the ISM and other
solution-generating techniques in the stationary axisymmetric context such as
Kinnersley–Chitre transformations [167, 168, 169], the Hauser–Ernst formalism
[137, 138], Harrison’s Bäcklund transformation [135, 136] or Neugebauer’s
Bäcklund transformation [224] were given and studied by Cosgrove [64, 65, 66].
These relationships were adapted to the hyperbolic time-dependent context by
Kitchingham [172, 173, 174].

8.2 General n-soliton solution

The soliton solutions for the matrix g correspond to the presence of pole
singularities of the dressing matrix χ(λ, ρ, z) in the complex plane of the
spectral parameter λ. Let us consider the general case in which the matrix χ has
n such poles, which we assume to be simple. The dressing matrix χ(λ, ρ, z)
can then be represented in the form

χ = I +
n∑

k=1

Rk

λ − µk
, (8.14)

where the matrices Rk and the numerical functions µk now depend on the
variables ρ and z only.

Substitution of (8.14) into (8.10), using the supplementary condition (8.12),
completely determines the pole trajectories µk(ρ, z) and the matrices Rk(ρ, z).
The functions µk are determined from the requirement that on the left hand sides
of (8.10) there are no poles of second order at the points λ = µk . The result is
that each function µk(ρ, z) (with each index k = 1, 2, . . . , n) satisfies a pair of
differential equations:

µk,z = −2µ2
k

µ2
k + ρ2

, µk,ρ = 2ρµk

µ2
k + ρ2

, (8.15)
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whose solutions are the roots of the quadratic algebraic equation,

µ2
k + 2(z − wk)µk − ρ2 = 0, (8.16)

where wk are arbitrary, generally complex, constants.
Accordingly, for each index k (i.e. for each pole) we have an arbitrary constant

wk that determines two possible solutions for the pole trajectory µk(ρ, z):

µk = wk − z ± [(wk − z)2 + ρ2]1/2, (8.17)

with the appropriate definition of the square root. This formula shows the es-
sential difference between stationary solitons and solitonic gravitational waves.
Here the solutions with real poles (i.e. with wk real) will have no discontinuities
and unperturbed regions because the quantity under the square root will be
nonnegative through the whole spacetime.

The matrices Rk are degenerate and have the form

(Rk)ab = n(k)
a m(k)

b ; (8.18)

the two-component vectors m(k)
a are found directly from (8.10) by requiring that

these equations be satisfied at the poles λ = µk , and the vectors n(k)
a are then

determined from condition (8.12). The vectors m(k)
a can be expressed in terms

of the given partial solution for the background generating matrix ψ0(λ, ρ, z)
taken at the value µk of the argument λ. These vectors are of the following
form:

m(k)
a = m(k)

0b [ψ−1
0 (µk, ρ, z)]ba, (8.19)

where here, and from now on, summation is understood to be over repeated
indices a, b, c, d, f , which take the values 0 and 1; whereas summation
over other indices occurs only when explicitly indicated. In (8.19) the m(k)

0b are
arbitrary constants.

The vectors n(k)
a can then be determined from the following nth order system

of algebraic equations:

n∑
l=1

�kln
(l)
a = µ−1

k m(k)
c (g0)ca, k, l = 1, 2, . . . , n, (8.20)

where the matrix �kl is symmetric with matrix elements

�kl = m(k)
c (g0)cbm(l)

b (ρ2 + µkµl)
−1. (8.21)

If we introduce the symmetric matrix Dkl , inverse to the �kl ,

n∑
p=1

Dkp�pl = δkl, (8.22)



218 8 Axial symmetry

then we get from (8.20) for the vectors n(k)
a

n(k)
a =

n∑
l=1

Dlkµ
−1
l L (l)

a , (8.23)

where
L (k)

a = m(k)
c (g0)ca. (8.24)

According to (8.8)–(8.9), and (8.14), the required matrix g is

g = ψ(0) = χ(0)ψ0(0) = χ(0)g0 =
(

I −
n∑

k=1

Rkµ
−1
k

)
g0. (8.25)

Now, using (8.18), (8.23) and (8.24), we get the metric components gab:

gab = (g0)ab −
n∑

k,l=1

Dklµ
−1
k µ−1

l L (k)
a L (l)

b . (8.26)

This expression shows that the matrix g is symmetric. The question of it being
real can be treated in the same way as in section 1.4 for the nonstationary case.
The result is the same, namely, to ensure the reality of g it is necessary to
choose the arbitrary constants wk in (8.16) and m(k)

0b in (8.19) to be real for each
real-pole trajectory µk (the vectors m(k)

a are real) or, alternatively, to choose
these constants to be complex-conjugate for each pair of complex conjugate
trajectories µk and µk+1 = µk , i.e. wk+1 = wk and m(k+1)

0b = m(k)
0b (in this case

the vectors m(k+1)
a and m(k)

a are also complex conjugate to each other).
Now we need to make sure that condition (8.2) for the matrix g is satisfied.

Using an approach analogous to that of section 1.4, we can calculate the
determinant of the matrix g with components (8.26). The result is

det g = (−1)nρ2n

(
n∏

k=1

µ−2
k

)
det g0. (8.27)

If we take the particular solution g0, which by definition satisfies det g0 = −ρ2,
it follows from (8.27) that the number of solitons, n, must always be even,
since an odd number would change the sign of det g and lead to an unphysical
metric signature. Therefore, in contrast to the nonstationary case, on a physical
background all stationary axisymmetric solitons (even those which correspond
to real poles λ = µk) can only appear in pairs forming bound two-soliton states.
Nevertheless, we can obtain physical solutions with an odd number of solitons,
but for this it is necessary to take a background solution with a nonphysical
signature, det g0 = ρ2. The first examples of solutions of this kind were obtained
and investigated in ref. [284].
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In order to obtain a physical n-soliton solution g(ph) that satisfies not only
equation (8.3) but also the supplementary condition (8.2) we remark that for any
solution g of equation (8.3) det g satisfies the equation

ρ−1[ρ(ln det g),ρ],ρ + (ln det g),zz = 0. (8.28)

Then it is easy to verify that the matrix

g(ph) = ±ρ(− det g)−1/2g, (8.29)

(with any sign on the right hand side of this formula) also satisfies (8.3) and
the condition det g(ph) = −ρ2. Thus we get from (8.27) and (8.29) the final
expression for the metric tensor,

g(ph) = ±ρ−n

(
n∏

k=1

µk

)
g, det g(ph) = −ρ2, (8.30)

where the sign in the expression for g(ph) should be appropriately chosen in each
individual case to ensure the correct metric signature.

The computation of the metric coefficient f can be made in direct analogy
with the computation in the nonstationary case described in section 1.4 (see ref.
[24] for details). Substituting the nonphysical solution g given by (8.26) into
(8.4) we get for the nonphysical value of f

f = Cn f0ρ
n

(
n∏

k=1

µ2
k

)(
n∏

k=1

(µ2
k + ρ2)

)−1

det�kl, (8.31)

where Cn are arbitrary constants, f0 is the background value of the coefficient
f corresponding to the background solution g0 and the matrix �kl is given by
(8.21).

From the definition (8.5) of the matrices U and V and the definition (8.29)
we get the obvious expressions

U (ph) = ρg(ph)
,ρ (g(ph))−1 = U +

[
1 − 1

2
ρ(ln det g),ρ

]
I,

V (ph) = ρg(ph)
,z (g(ph))−1 = V − 1

2
ρ(ln det g),z I. (8.32)

When we now substitute the matrices U (ph) and V (ph) instead of U and V into
(8.4), we find that the physical coefficient f (ph) is given by the formula

f (ph) = 16C f f0ρ
−n2/2

(
n∏

k=1

µk

)n+1 [ n∏
k>l=1

(µk − µl)
−2

]
det�kl, (8.33)
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where C f is an arbitrary constant (but with a sign that ensures the condition
f (ph) ≥ 0), and the structure of the product

∏
(µk − µl)

−2 was explained
in section 1.4 after the analogous formula (1.110). The factor 16 in (8.33) is
introduced just for future convenience.

Consequently, the final form of the vacuum stationary n-soliton solution is

ds2 = f (ph)(dρ2 + dz2) + g(ph)
ab dxadxb, (8.34)

where f (ph) is given by (8.33) and the matrix elements g(ph)
ab are determined by

(8.30) and (8.26).
If the background metric (g0, f0) is flat and given (in cylindrical coordinates)

by the interval
ds2 = −dt2 + ρ2dϕ2 + dρ2 + dz2, (8.35)

then we have f0 = 1 and g0 = diag(−1, ρ2) with the obvious property that
det g0 = −ρ2. The matrix V0 is equal to zero, and the matrix U0 is: U0 =
diag(0, 2). From (8.6) we get the corresponding solution for the generating
matrix ψ0(λ, ρ, z):

ψ0 = diag(−1, ρ2 − 2zλ − λ2), (8.36)

which satisfies the requirement that ψ(λ = 0) = g0. From this and (8.19), using
(8.16) we find the components of the vectors m(k)

a :

m(k)
0 = C (k)

0 , m(k)
1 = C (k)

1 µ−1
k , (8.37)

where C (k)
0 and C (k)

1 are arbitrary constants. Then from (8.21) we get the
elements of the matrix �kl :

�kl = (−C (k)
0 C (l)

0 + C (k)
1 C (l)

1 µ−1
k µ−1

l ρ2)(ρ2 + µkµl)
−1, (8.38)

and from (8.24) we get the components of the vectors L(k)
a :

L (k)
0 = −C (k)

0 , L (k)
1 = C (k)

1 µ−1
k ρ2. (8.39)

Formulas (8.37)–(8.39) together with (8.17) for the functions µk give all we
need for the construction of the n-soliton solution on a flat space background.

8.3 The Kerr and Schwarzschild metrics

As has already been stated in the previous section, stationary solutions on a
physical background (with either complex or real poles) can appear only in pairs.
Consequently, the simplest case will be a two-soliton solution, i.e. two poles
λ = µ1 and λ = µ2 on the flat space background (8.35). In this section we show
that a double stationary soliton on a flat background, corresponding to a pair of
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complex conjugate poles µ2 = µ̄1, gives a Kerr–NUT [230] solution with an
‘anomalous large’ angular momentum (i.e. a solution without horizons and with
a naked singularity). On the other hand, if both functions µ1 and µ2 are real, the
solutions correspond to the ‘normal’ situation, with the singularity hidden from
an outside observer by event horizons [23, 24].

These assertions can be verified by direct calculation of the metric for the
two-soliton case. Let us represent the constants w1 and w2 that appear in (8.16)–
(8.17) for k = 1, 2 in the forms

w1 = z̃1 + σ, w2 = z̃1 − σ, (8.40)

where z̃1 and σ are new arbitrary constants. The constant z̃1 is always real,
and σ is either real (for real-pole trajectories µ1 and µ2) or pure imaginary (for
complex conjugate trajectories µ2 = µ̄1). We now introduce instead of ρ and z
the new coordinates r and θ :

ρ = [(r − m)2 − σ 2]1/2 sin θ, z = z̃1 + (r − m) cos θ, (8.41)

where m is an arbitrary constant whose value will be specified later. The
square root in (8.41) is defined in such a way that the leading terms of these
expressions in the asymptotic region r → ∞ (for r real and positive) give
the usual transformation between cylindrical and spherical coordinates. From
(8.40)–(8.41) it follows that we can define the quantities [(z −wk)

2 +ρ2]1/2, for
k = 1, 2, in (8.17) by the formulas

[(z −w1)
2 +ρ2]1/2 = r −m −σ cos θ, [(z −w2)

2 +ρ2]1/2 = r −m +σ cos θ.
(8.42)

In order to get the expressions for the function µ1 and µ2 we need to choose in
(8.17) either the same sign for µ1 and µ2, or opposite signs. Both cases lead
to the same metric (within a choice of sign for the arbitrary constant C f in the
metric component f (ph)).

Let us consider first the case in which the signs are the same. If we choose
the plus sign in (8.17) for both µ1 and µ2, then substituting (8.40)–(8.42) we get

µ1 = 2(r − m + σ) sin2(θ/2), µ2 = 2(r − m − σ) sin2(θ/2). (8.43)

Now, without loss of generality we can impose the following two conditions on
the arbitrary constants C (k)

0 and C (k)
1 , for k = 1, 2, that appear in (8.37) for the

vectors m(k)
a :

C (1)
1 C (2)

0 − C (1)
0 C (2)

1 = σ, C (1)
1 C (2)

0 + C (1)
0 C (2)

1 = −m. (8.44)

The first equation is possible because the constants C (k)
0 and C (k)

1 contain some
nonphysical arbitrariness due to the normalization freedom: C (k)

a → ζ (k)C (k)
a .

In fact, after such a transformation the metric components gab will not change,
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i.e. all constants ζ (k) will disappear from the final result of the matrix g. The
first relation of (8.44) just fixes, partially, such nonphysical arbitrariness. The
second equation, on the other hand, is simply the definition of the constant m.
We then introduce two new arbitrary constants a and b, defined by

C (1)
1 C (2)

1 − C (1)
0 C (2)

0 = −b, C (1)
1 C (2)

1 + C (1)
0 C (2)

0 = a. (8.45)

From (8.44)–(8.45) it follows that

σ 2 = m2 − a2 + b2. (8.46)

Now, using (8.41) and (8.43) to express ρ, µ1 and µ2 in terms of the
variables r , θ , we can calculate from (8.26), (8.30), (8.33), (8.38) and (8.39)
for k, l = 1, 2 the metric coefficients g(ph)

ab and f (ph). The resulting expressions
for the metric contain only those combinations of the constants C (k)

0 , C (k)
1 which

are expressible through the three independent arbitrary parameters m, a and b
according to (8.44)–(8.46). If we substitute these results into the interval (8.34)
with the simultaneous transformation of the line element dρ2 + dz2 to the r , θ
variables according to (8.41), namely,

dρ2 + dz2 = [(r − m)2 − σ 2 cos2 θ ]
{
[(r − m)2 − σ 2]−1dr2 + dθ2

}
, (8.47)

we get the following final form for the physical metric:

ds2 = −C f ω(�−1dr2 + dθ2) − ω−1(� − a2 sin2 θ)(dt + 2adϕ)2

+ω−1[4�b cos θ − 4a sin2 θ(mr + b2)](dt + 2adϕ)dϕ

−ω−1[�(a sin2 θ + 2b cos θ)2 − sin2 θ(r2 + b2 + a2)2]dϕ2, (8.48)

where ω and � are defined as

ω = r2 + (b − a cos θ)2, � = r2 − 2mr + a2 − b2. (8.49)

These formulas are the standard expression for the Kerr–NUT solution in the
Boyer–Lindquist coordinates if we take C f = −1 for the arbitrary constant C f ,
and adopt t + 2aϕ as the time variable.

It can be seen from this that the Kerr–NUT solution with horizons corresponds
to real poles λ = µ1 and λ = µ2, since in this case the constant σ is real
(m2 +b2 > a2), and the constants w1 and w2 and the pole trajectories µ1 and µ2

are real along with σ . If σ is pure imaginary (m2 + b2 < a2), then the constants
w1 and w2 and the pole trajectories µ1 and µ2 are complex and conjugate to
each other. This case corresponds to a solution without horizons. Furthermore,
metric (8.48) and the constants m, a, b are, of course, still real, but the original
constants C (k)

a , as (8.44)–(8.45) show, must be taken complex and related by

C (2)
a = C

(1)
a which, as we see from (8.37), means that m(2)

a = m(1)
a . This agrees
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with the rule for choosing real solutions with a complex conjugate pair of poles
that was formulated in section 8.2.

Let us now look at the second possibility we have for the solutions µ1 and µ2

of (8.16), namely, the possibility of using different signs in (8.17). Choosing the
plus sign for µ1 and the minus sign for µ2, we get

µ1 = 2(r − m + σ) sin2(θ/2), µ2 = −2(r − m + σ) cos2(θ/2). (8.50)

Direct calculation shows that in this case we have the same expression (8.48)
for the metric but with a plus sign in front of the constant C f . Thus to get
the standard expression of the Kerr–NUT metric we should take C f = 1. In
addition, the expressions for the parameters m, a and b through the original
arbitrary constants C (k)

a are essentially different:

C (1)
0 C (2)

0 + C (1)
1 C (2)

1 = σ, C (1)
0 C (2)

0 − C (1)
1 C (2)

1 = m,

C (1)
0 C (2)

1 − C (1)
1 C (2)

0 = −a, C (1)
0 C (2)

1 + C (1)
1 C (2)

0 = −b,

}
(8.51)

but relation (8.46) between σ and the parameters m, a, b is still valid.
In conclusion we point out that the only actual physical solution is that of

Kerr [165] , which corresponds to b = 0, since the presence of the NUT
parameter b makes the metric no longer asymptotically flat and produces a
number of nonphysical properties of the solution. A first physical analysis of
the Kerr–NUT metric was given by Misner [220]. For a more recent review
of possible physical interpretations of this metric, as well as of other stationary
axisymmetric solutions, see ref. [35]. It is remarkable that such well known
solutions as the Kerr metric (b = 0), the Taub–NUT metric (a = 0) [268, 230]
and the Schwarzschild metric [258] (b = 0, a = 0) are, in fact, solutions
representing double soliton states on the flat Minkowski background. We hope
that future developments in gravitational theory will clarify the real significance
of this fact.

The rotating disc solution. An important related solution was obtained by
Neugebauer and Meinel [227, 228, 229] who formulated the problem of a
uniformly rotating stationary and axisymmetric disc of dust particles as a
boundary value problem of the Ernst equation and solved it by the ISM. The
solution is given in terms of two linear integral equations and depends on two
parameters, namely, the angular velocity of the disc and the relative redshift
from the centre of the disc. The analytic solution of one of the equations leads
to explicit expressions of the Ernst potential on the symmetry axis, the disc
metric, and the surface mass density. It turns out that the complete solution
of the problem may be represented, up to quadratures, in terms of ultraelliptic
functions. A remarkable feature of the exterior solution is that in the limit of
infinite redshift it approaches exactly the extreme Kerr solution.
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8.4 Asymptotic flatness of the solution

In this section we consider some general properties of the n-soliton solutions,
confining ourselves to one of their possible types. We shall assume that on the
background of a flat space with the metric (8.35) an even number n of solitons
are introduced, corresponding to the poles λ = µ1, λ = µ2, . . . , λ = µn . We
divide the functions µk (k = 1, . . . , n) into pairs and introduce the Greek index
γ , which will take only the odd values γ = 1, 3, . . . , n − 1, to enumerate such
pairs. We thus have n/2 pairs of pole trajectories (µγ , µγ+1).

To understand the physical meaning of the solution it is helpful to examine
first a special case which corresponds to a diagonal matrix g, i.e. to the static
field remaining after the rotation has been turned off (metrics of the Weyl class).
As in subsection 4.4.1, to obtain such a special case we set all the arbitrary
constants C (k)

0 in (8.37) equal to zero and all the m(k)
0 also equal to zero. It then

follows from (8.20) that all the n(k)
0 = 0 and the matrices Rk take the form

Rk =
(

0 0
0 n(k)

1 m(k)
1

)
. (8.52)

The nonphysical matrix g, in (8.25), can be represented (see details in ref. [24])
in the form

g =
(

n∏
k=1

[I − µ−2
k (µ2

k + ρ2)P ′
k]

)
g0, (8.53)

which is the stationary analogue of (1.97), where the matrices P ′
k satisfy (1.98).

Then (8.52) implies that the matrices P ′
k in (8.53) take the form

P ′
k =

(
0 0
0 1

)
, (8.54)

and from (8.53) and (8.30) we get the following solution for the diagonal case
under consideration:

g(ph)
00 = ρ−n

n∏
k=1

µk, g(ph)
01 = 0, g(ph)

11 = −ρ2/g(ph)
00 . (8.55)

The metric coefficient f (ph)
n can be found from (8.33), by computing the

determinant of the matrix �kl with C (k)
0 = 0. It is simpler, however, to determine

f (ph)
n directly from (8.4), since for the solution (8.55) such equations are simple

and easy to integrate. The result is

f (ph)
n = constant ρ(n2+2n)/2

(
n∏

k=1

µk

)1−n [ n∏
k=1

(µ2
k + ρ2)

]−1 [ n∏
k>l=1

(µk − µl)
2

]
.

(8.56)
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We now determine from (8.16) and (8.17) the function µk , which we have
arranged in the pairs (µγ , µγ+1). Confining our treatment to the case in which
the signs in (8.17) are chosen differently for the functions of each pair, we have

µγ = wγ − z + [(wγ − z)2 +ρ2]1/2, µγ+1 = wγ+1 − z − [(wγ+1 − z)2 +ρ2]1/2.

(8.57)
Instead of the pairs of arbitrary constants wγ and wγ+1, it is convenient to
introduce new constants z̃γ and mγ :

wγ = z̃γ − mγ , wγ+1 = z̃γ + mγ . (8.58)

If we now introduce n/2 pairs of functions rγ (ρ, z) and θγ (ρ, z), giving to each
pair of poles their own ‘radial’ and coordinates, through the relations

ρ = [rγ (rγ − 2mγ )]
1/2 sin θγ , z − z̃γ = (rγ − mγ ) cos θγ , (8.59)

we get from (8.57)

µγ = 2(rγ − 2mγ ) sin2(θγ /2), µγ+1 = −2(rγ − 2mγ ) cos2(θγ /2). (8.60)

Using these expressions for ρ and µk we get from (8.55) the component g(ph)
00

in terms of a product of n/2 factors

g(ph)
00 = −

(
1 − 2m1

r1

)(
1 − 2m3

r3

)
· · ·
(

1 − 2mn−1

rn−1

)
. (8.61)

For the case of the two-soliton solution (8.61) will have only one factor which is
the Schwarzschild expression for the coefficient g(ph)

00 . Computing from (8.56)
the coefficient f (ph)

2 for this case and writing out the interval, we indeed get the
standard expression for the Schwarzschild metric with radial coordinate r1 and
polar angle θ1. Of course, this result also follows from the general form of the
two-soliton Kerr–NUT solution, given in the preceding section, i.e. (8.50) and
(8.51) with C (1)

0 = C (2)
0 = 0.

To interpret the static solution with the ‘potential’ (8.61) we must choose a
suitable radial variable. Any one of the functions rγ (ρ, z) could now be used as
a radial coordinate, but it is more natural to define the radial variable in such a
way that the dipole moment relative to it vanishes in the expansion at infinity of
the Newtonian potential, $N , of the system in question. As is well known, the
Newtonian potential here is 2$N = 1 + g(ph)

00 , and from (8.61) we have

2$N = 1 −
(

1 − 2m1

r1

)(
1 − 2m3

r3

)
· · ·
(

1 − 2mn−1

rn−1

)
. (8.62)

Let us try to define the ‘true’ radial coordinate r and polar angle θ by relations
of the same form as (8.59):

ρ = [r(r − 2m)]1/2 sin θ, z − z0 = (r − m) cos θ, (8.63)
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but with new constants m and z0, to be defined. From (8.63) and (8.59) we can
find functions rγ (r, θ) and θγ (r, θ) and obtain their asymptotic expansions for
r → ∞ (in the first approximation we simply have for r → ∞: rγ = r and
θγ = θ ). Substituting these expansions into (8.62) we find the expansion of the
potential $N , and from the condition that it must contain no dipole term we can
determine the constants m and z0. We get

m =
n−1∑
γ=1

mγ , z0 =
(

n−1∑
γ=1

mγ z̃γ

)(
n−1∑
γ=1

mγ

)−1

, (8.64)

and then the expansion for $N takes the form

2$N = 2m

r
+ q

3 cos2 θ − 1

r3
+ · · · , (8.65)

where q is the quadrupole moment of the system. For instance, in the case of
the four-soliton solution, where the index γ takes only the values 1 and 3, we
have

q = m1m3[(z̃1 − z̃3)
2 − m2](m1 + m3)

−1. (8.66)

These results show that the static solution is a localized perturbation in an
asymptotically flat space. For a sufficiently remote observer such a field can
be regarded as the external gravitational field produced by n/2 localized axially
symmetric structures, each of which has its own mass mγ and its centre of mass
lying on the axis of symmetry at the point with coordinate z̃γ . Equations (8.64)
show that the total mass of these n/2 objects equals the sum of their masses,
and the coordinate z0 of their centre of mass is given by the usual expression in
particle mechanics. All the multipole moments of the field can also be expressed
in definite ways in terms of the constants mγ and z̃γ .

If we now suppose that rotational motion around the axis of symmetry
appears in this system the resulting case will correspond to a nondiagonal metric
with g(ph)

01 = 0. In the special case of the two-soliton system considered
in the preceding section, this change corresponds to the change from the
Schwarzschild solution to that of Kerr. Just as in that special case we must
also make sure that the solution with n solitons is asymptotically flat. In the
two-soliton case it was necessary to set the NUT parameter to zero. This means
that the off-diagonal component g(ph)

01 of the metric must decrease like r−1 as
r → ∞; note that in the Kerr–NUT solution, g(ph)

01 ∼ b cos θ + O(r−1) for
r → ∞. Then the coefficient of r−1 in g(ph)

01 gives the total angular momentum
of the system.

It is not hard to find the behaviour of the components g(ph)
ab for r → ∞ in

the general case of the n-soliton metric. As in the two-soliton case, we must
introduce the notation (8.40) for each pair of constants wγ , wγ+1 and for each
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pair of functions µγ , µγ+1 we must introduce the new pairs of ‘coordinates’ rγ ,
θγ by the formulas (8.41). After this we get from (8.57) expressions for µγ and
µγ+1 of the form (8.50). At infinity all the variables rγ , θγ coincide, so that if
we are concerned only with the first terms in the expansion for r → ∞ it is
irrelevant which pair we take as spherical coordinates r and θ .

Now from (8.37) we get the asymptotic form of the vectors m(k)
a , and from

(8.38) and (8.20) that of the vectors n(k)
a . From these it is easy to find the

behaviour of the components g(ph)
ab . The results show that the asymptotic

behaviour of the metric coefficients g(ph)
ab for r → ∞ is exactly the same as

in the two-soliton case:

g(ph)
00 → −1, g(ph)

11 → r2 sin2 θ, g(ph)
01 → b1 cos θ + b2 + O(r−1), (8.67)

where b1 and b2 are constants which can be expressed in terms of C (k)
0 and C (k)

1 .
For the metric to be asymptotically flat at r → ∞ the parameter b1 must be
zero, and this gives a supplementary condition to the constants C (k)

a :

b1(C
(k)
0 ,C (k)

1 ) = 0. (8.68)

The constant b2 can then be eliminated from the asymptotic form of the metric
coefficient g(ph)

01 with a linear transformation of the form t = t ′ + b2ϕ.
This analysis shows that the technique developed in the previous sections

ensures asymptotic flatness to the n-soliton solution almost automatically. For
this we have to impose only condition (8.68) to the arbitrary constants.

8.5 Generalized soliton solutions of the Weyl class

Up to this point we have considered only the Minkowski background when
generating soliton solutions in the axisymmetric context, as we have seen this
background produces physically interesting solutions. Here we will consider
the Levi-Cività metric as the background metric; this is the analogue of the
Kasner solution in the cosmological context that we considered in chapter 4.
We saw in sections 4.4–4.6 that when we restrict ourselves to diagonal metrics
we may use the linearity of the field equations together with the ISM to derive
a set of generalized solitons solutions, which describe physically interesting
cosmological models in a unified way.

In the axisymmetric context when the two Killing vectors are hypersurface
orthogonal the spacetime is static (because it admits a hypersurface orthogonal
time-like Killing vector) and the metric expressed in appropriate coordinates
(e.g. Weyl coordinates) becomes diagonal. The solutions in this case are
classified as Weyl class. In this section we classify all the generalized soliton
solutions in the Weyl class obtained from the Levi-Cività background. Axisym-
metric soliton solutions obtained from an arbitrary Weyl class background were
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considered by Letelier [193], who also paid special attention to the Levi-Cività
background and the diagonal solutions.

To facilitate the interpretation and identification of the solutions we give the
Ernst potentials explicitly, since these potentials have been used traditionally
to characterize stationary and axisymmetric solutions. Furthermore, the Ernst
potential may be regarded as a complexified nonlinear generalization of the
Newtonian potential [170], thus helping us to understand the physical meaning
of the solutions. A review on the physical interpretation of solutions of the Weyl
class can be found in refs [36, 35].

In the case of real-pole trajectories, the generalized soliton solutions as-
sociated with a number of such poles gives rise to well known solutions.
Among these there are uniformly accelerated metrics, SILM (semi-infinite
line mass) metrics, the C-metric, the Curzon–Chazy metrics, the γ -metrics or
Voorhees–Zipoy metrics [292] and their superpositions [64, 278, 193], which
include the superpositions of Schwarzschild black holes as discussed in section
8.4. The generalized soliton solutions arising from the real and imaginary parts
were studied in ref. [49] and are dealt with in a similar way to the generalized
solutions in the cosmological context, which we studied in section 4.6, or in the
cylindrical context, as studied in section 6.2.

Using Weyl coordinates the general static metric with axial symmetry may be
written as (8.1), where

gφφ = ρ2 exp[−2U (ρ, z)], gtt = − exp[2U (ρ, z)], gtφ = 0. (8.69)

The Ernst potential for such solutions is real and is given by

E = exp(2U ). (8.70)

The generalized soliton solutions can be read off from the solutions in sections
4.4.1, 4.5 and 4.6, after the appropriate coordinate changes discussed after (8.5).
As we did in subsection 4.4.1 the potential U will be written as

U = U0 + Us, U0 = 1

2
(d + 1) ln ρ, (8.71)

where U0 is the potential of the background solution (d is the Levi-Cività
parameter) and Us corresponds to the generalized soliton part. Note that here,
in order to follow the traditional Weyl form of the metric, U differs slightly
from $ in (4.41) (apart from the change t → iρ), the exact correspondence is:
$ → 2U − ln ρ.

Levi-Cività background. The background metric in Weyl coordinates coordi-
nates is

ds2 = ρ(d2−1)/2(dρ2 + dz2) + ρ1−ddφ2 − ρ1+ddt2, (8.72)
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which is equivalent to metric (6.1) (with b = 1). Although we will use the
same symbol, the Levi-Cività parameter d here should not be confused with the
Kasner parameter d of (6.1): the new parameter d in terms of the old one is
(d2 − 3)/2. Let us now return to the interpretation of these metrics [36]. The
first observation is that the Newtonian potential UN created by a massive line
source along the z axis with a linear mass density λ, in units where G = c = 1,
is

UN = 2λ ln ρ. (8.73)

Thus comparing with U0 in (8.71) the first naive interpretation is that such a
metric could represent the gravitational field of an ILM (infinite line mass)
with a linear mass density λ = (d + 1)/4. Replacing the physical constants,
λ is changed to λc2/G and λ = 1 corresponds to 1028 g/cm. Of course,
this interpretation does not always hold. When d = −1 (λ = 0) metric
(8.72) is obviously a flat spacetime in polar coordinates. Also for d = 1,
which corresponds to λ = 1/2, the metric is flat but it can be interpreted
as an accelerated metric. In fact, with the coordinate change T = ρ sinh t ,
X = ρ cosh t , Y = φ and Z = z, this metric becomes

ds2 = d X2 + dY 2 + d Z 2 − dT 2,

for X2 ≥ T 2 (X ≥ 0). Thus the Levi-Cività metric for d = 1 corresponds
to the Rindler wedge of Minkowski spacetime. The congruences of ∂ρ define
trajectories of particles with a constant proper acceleration, they correspond to a
family of observers with hyperbolic motion. For this reason this metric is some
times known as a uniformly accelerated metric [250, 251].

Metrics with d = 0 and d = ±3 are Petrov type D and admit four Killing
vectors, otherwise they are Petrov type I, with the obvious exceptions of d =
±1, which are flat. The ILM metric interpretation seems to hold for the values
−1 < d ≤ 0 (0 < λ ≤ 1/4) and also for the values −3 < d < −1 (−1/2 <

λ < 0), which correspond to a negative mass source. The case d = 0 is one
of Kinnersley’s type D metrics [166]. In all other cases the ILM interpretation
does not hold. The case d = 3 (λ = 1) has been interpreted as the metric of
a cosmic string [246], and d = −3 is one of Taub’s plane-symmetric metrics
[268]. This last metric can also be obtained as an infinite mass limit of the
Schwarzschild solution [252, 116] and can be seen to describe the interaction
region of the head-on collision of two impulsive gravitational plane waves of
null matter [85].

The generalized soliton solutions obtained from the Levi-Cività background
will be classified as follows. Generalized one-soliton solutions (one-soliton
solutions and their superposition): (a1) real-pole trajectories, and (a2) complex-
pole trajectories. Generalized two-soliton solutions (soliton–antisoliton solu-
tions and their superpositions): (b1) real-pole trajectories, and (b2) complex-
pole trajectories.
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8.5.1 Generalized one-soliton solutions

(a1) Real-pole trajectories: We start with case (a1), i.e. real-pole trajectories.
Then the parameters wi are real and, following (4.51), we can write

Us = 1

2

s∑
k=1

hk ln

(
µ+

k

ρ

)
= 1

2

s∑
k=1

hk sinh−1

(
wk − z

ρ

)
, (8.74)

where the real parameters hk play the role of the degeneracy of the k-pole when
they are integers. The explicit form of the coefficient f (ρ, z) can be read off
from (4.52), where again one defines g =∑s

k=1 hk .
The Ernst potential is given by

E = ρd+1
s∏

k=1

(
µk

ρ

)hk

. (8.75)

Some insight into these solutions is gained if we consider just the one-pole
case, namely s = 1. This solution is singular along the symmetry axis ρ = 0
unless d = ±1 (Minkowski background) and at z → ±∞ [284]; however, the
singularity at z → ±∞ is not present in the case h2

1 = d2 + 3, thus for d = ±1
and h2

1 = 4 the metric is asymptotically flat.

Newtonian potential of SILM. To help the interpretation of these metrics it is
useful to note that lnµk has a simple Newtonian interpretation [36]. Let us
consider an SILM with a uniform linear mass density λ along the z axis that goes
from z = wk to z → ∞. The Newtonian potential dUN created by a line element
dz′ at a certain point (ρ, z) may be written as dUN (ρ, z) = −λ[(z − z′)2 +
ρ2]−1/2dz′. With this prescription the potential vanishes at infinity, but since
the line mass goes to infinity this is not a convenient choice for the potential
origin and leads to divergences. To deal with this problem we may subtract,
for instance, dUN (ρ1, z1), i.e. the same potential at an arbitrary point (ρ1, z1).
Integration of this difference along the z axis leads to the difference between the
Newtonian potentials created by the SILM at the point of interest (ρ, z) and at
the point (ρ1, z1). This difference is free of divergences and if we then fix the
arbitrary potential origin in a convenient way we can write

UN (ρ, z) = λ lnµ+
k (ρ, z). (8.76)

Analogously if the line source goes from z = wk to z → −∞ the Newtonian
potential is given by UN (ρ, z) = λ ln(−µ−

k (ρ, z)), which taking into account
that µ+

k µ
−
k = −ρ2 may be written as

UN (ρ, z) = 2λ ln ρ − λ lnµ+
k (ρ, z). (8.77)

Superposing these two potentials we get the Newtonian potential of an ILM.
The potential of a finite rod with the same linear mass of length w2 −w1, whose
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ends are at z = w1 and z = w2 (w2 > w1), is given by

UN = λ ln

(
µ+

1

µ+
2

)
. (8.78)

Thus the presence of the real-pole trajectories µk in the potential U suggests
the interpretation of some of these metrics in terms of an SILM with a uniform
linear mass density λ = hk/2. Of course this interpretation does not always
hold. Let us now consider some particular solutions of (8.75), and recall that
U = 1

2 ln E ; in the following we will also assume that µk stands for µ+
k .

Uniformly accelerated metric. This corresponds to s = 1, d = 0 and h1 = 1 in
(8.75). If we define new coordinates (Z , r ) by

ρ = Zr, 2(w1 − z) = Z2 − ρ2, (8.79)

then µ1 = Z2 and the metric becomes

ds2 = d Z2 + dr2 + r2dφ2 − Z 2dt2, (8.80)

which is the Rindler metric [250] in polar coordinates. In fact, the further
coordinate change T = Z sinh t , Z̃ = Z cosh t , transforms this metric into
the Rindler wedge of Minkowski spacetime: ds2 = d Z̃2 + dr2 + r2dφ2 − dT 2,
for Z̃ 2 ≥ T 2 (Z̃ ≥ 0). Here the congruence of ∂Z defines trajectories of particles
with uniform proper acceleration in the Rindler wedge. Note that the two flat
metrics interpreted as accelerated metrics correspond to the Ernst potential being
E = ln ρ and E = 1

2 lnµ1, respectively.

The SILM metric. This corresponds to s = 1 and d = h1 − 1 in (8.75). In this
case the metric can be written as

ds2 = µ
−h1
1

[
µ1

2
√
(w1 − z)2 + ρ2

]h2
1

(dz2 + dρ2) + µ
−h1
1 ρ2dφ2 − µ

h1
1 dt2.

(8.81)
When h1 ≤ 2 it can be interpreted [36] as the spacetime created by an SILM
which lies on the z axis from z = w1 to z → ∞, and has a uniform linear mass
density λ = h1/2. For λ = −1/2 (h1 = −1) the coordinate change (8.79)
followed by a change from polar coordinates (r, φ) to Cartesian coordinates
(x, y), together with a redefinition Z̃ = Z4 puts the metric in the form

ds2 = Z̃(dx2 + dy2) + Z̃−1/2(d Z̃2 − dt2), (8.82)

which is one of Taub’s plane-symmetric vacuum solutions [268, 179]. Thus
there is also an alternative interpretation in this case. It can be shown that for
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λ > 1, at t = constant a radial line that goes from some point z0 (z0 < w1) on
the z axis to infinity has a finite proper length, and that also the proper length of
the semi-infinite axis from z0 to z → −∞ is finite; thus the SILM interpretation
does not hold. For the limiting case λ = 1 the metric admits four Killing vectors,
instead of the two that these SILM metrics generally have. Metric (8.81) has
only a (naked) curvature singularity at the position of the SILM.

The C-metric. This corresponds to s = 3, d = −1 and h1 = h2 = h3 = 1 in
(8.75), where the parameters w1, w2 and w3 are three roots of the cubic equation
[158, 193]

2a4w3 − a2w2 + m2 = 0. (8.83)

This metric is supposed to describe the field of accelerated particles [124, 34];
see also refs [171, 96] for more details on the C-metric. The parameters m and
a are identified as the particle mass and acceleration, respectively.

(a2) Complex-pole trajectories: We turn now to the case (a2) of complex-pole
trajectories. In this case we follow section 4.6, and the parameters wk are
complex, according to (4.73): wk = zk−ick , where z0

k and ck are real parameters.
In analogy with (4.74) we can write the pole trajectories in the form

µk/ρ = √
σkeiγk , (8.84)

where
√
σk is understood as a positive quantity and the explicit forms of the

functions σk(ρ, z) and γk(ρ, z) are

σ±
k = Lk ± (L2

k − 1)1/2,

Lk ≡ (z2
k + c2

k)ρ
−2 + [1 + 2(z2

k − c2
k)ρ

−2 + (z2
k + c2

k)
2ρ−4]1/2,

}
(8.85)

γk = cos−1

(
2zk

√
σk

ρ(1 + σk)

)
, (8.86)

where, as usual, zk ≡ z0
k −z and the minus and plus signs stand for the in and out

pole labels, respectively; also, σ+ = (σ−)−1 and 0 < σ−
k < 1. The asymptotic

values of σ− can also be read off in (4.77) by simply changing t → iρ.
Now, as in section 4.6, we get two classes of solution corresponding to the

real and imaginary parts of ln(µk/ρ), which is the main ingredient of the linear
potential U . These will be called class I and class II, respectively.

Class I. These solutions correspond to (4.79):

Us = 1

2

s∑
k=1

hk ln
√
σk . (8.87)
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The explicit form of the metric coefficient f (ρ, z) can be read from (4.80) after
the change t → iρ and recalling that an arbitrary parameter can always multiply
f .

In the limit ck → 0 this family of solutions behaves like the previous real-pole
solutions (a1). For a single pole and when ck = 0, it is possible to define a set of
new coordinates such that σk takes a simpler form than in the Weyl coordinates.
In fact, define

ρ = ck cosh(2ak R̂k) sin θ̂k, zk = ck sinh(2ak R̂k) cos θ̂k, (8.88)

where ak are arbitrary real parameters, then the functions σ−
k read

σ−
k = 1 − cos θ̂k

1 + cos θ̂k

. (8.89)

In these new coordinates the line element dρ2 + dz2 still keeps its diagonal
structure and transforms into

dρ2 + dz2 = c2
k [sinh2(2ak R̂k) + cos2 θ̂k](4a2

k d R̂2
k + d θ̂2

k ). (8.90)

The geometrical meaning of these coordinates can be seen if we consider their
asymptotic behaviour: assuming (at large distances) a relationship between
Weyl and spherical coordinates of the type,

ρ ∼ r sin θ, zk ∼ r cos θ (8.91)

the new coordinates then behave as

tan θ̂k ∼ ρ

zk
, exp(4ak R̂k) ∼ ρ2 + z2

k

ck
, (8.92)

i.e. θ̂k behaves as a spherical angular coordinate and R̂k ∼ ln r .

Class II. These solutions correspond to (4.81):

Us = 1

2

s∑
k=1

hkγk, (8.93)

and the explicit form of the f (ρ, z) coefficient can be read from (4.82) after the
change t → iρ. The behaviour of these solutions is quite different from that of
the class I solutions. In the limit ck → 0 (real limit) we get γk → 0, which does
not produce any new solution.

In the case of a single pole and ck = 0 we can again use the coordinates
defined in (8.88) to simplify the expression of function γk :

γ±
k = cos−1[± tanh(2ak R̂k)], γ−

k = π ± γ+
k . (8.94)
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To see the physical meaning of these solutions we again take the single-pole
case and expand its associated Ernst potential (8.70) asymptotically in a power
series of r−1 [170]. Then at large distances we have

E = −1 − (1 + 4c2
k cos2 θ)1/2

√
2 cos θ

1

r
+ O

(
1

r2

)
, (8.95)

where we have assumed the same relationship between Weyl and spherical
coordinates as in (8.91)–(8.92). This last expression shows that these solutions
are asymptotically flat, provided the background is flat. However, no classical
interpretation is possible here, since even at the first order in r−1 an angular
dependence is present. For this reason the real parameters ck are not simply
related to the mass or momenta of the source of the gravitational field, in spite
of their occurrence at first order.

8.5.2 Generalized two-soliton solutions

An interesting family of solutions is obtained by the superposition of soliton–
antisoliton pairs, since the divergences which appear in some of the previous
solutions will no longer be present. Some of the solutions obtained by such
superpositions will be asymptotically flat and their parameters can be given a
physical interpretation after an asymptotic expansion is made.

(b1) Real-pole trajectories: Thus, we start with case (b1), i.e. real-pole trajec-
tories (wγ real). From (4.51) the potential U made by the superposition of pairs
of opposite poles is

Us = 1

2

n−1∑
γ=1

hγ [ln(µγ+1/ρ) − ln(µγ /ρ)], (8.96)

where for definiteness we will assume that µγ here means µ+
γ , see (4.49), and

we use the convention introduced in section 8.4 of assuming that the Greek index
γ takes only odd values: γ = 1, 3, . . . , 2n − 1. The Ernst potential (8.70) for
these solutions is given by

E = ρd+1
n−1∏
γ=1

(
µγ+1

µγ

)hγ

. (8.97)

Note that this potential may be seen as a particular case of (8.75), where hk =
−hk+1 and s = n/2. Comparing U = 1

2 ln E with the Newtonian potential (8.78)
for a rod on the symmetry axis, it seems that metrics with d = −1 corresponding
to the Minkowski background could be interpreted as the field of a superposition
of finite rods along the axis with linear mass densities hγ /2 and with ends at
(wγ ,wγ+1), where wγ > wγ+1. Let us now consider some interesting particular
cases.
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The γ -metric. This corresponds to n = 2, d = −1, h1 = −m/a and w1 =
−w2 = −a, where m is the mass of the rod and 2a its length. Since µ+

k µ
−
k =

−ρ2 we have that µ+
1 /µ

+
2 = (µ+

1 − µ−
2 )/(µ

+
2 − µ−

1 ) and the potential U can be
written in the form

U = m

2a
ln

[
R1 + R2 − 2a

R1 + R2 + 2a

]
, (8.98)

where R1 =
√
(a + z)2 + ρ2 and R2 =

√
(a − z)2 + ρ2 are the distances from

the ends of the rod to the point (ρ, z). This metric was discovered by Darmois
and is also known as the Voorhees–Zipoy metric [316, 292], see ref. [179]. It
has a directional singularity if m > 2a but not for m < 2a [115, 35]. At infinity
the metric represents an isolated body with higher mass moments. For m = a
it is the Schwarzschild solution, i.e. a rod of mass λ = 1/2 and length 2m, in
Weyl coordinates. However, while the Voorhees–Zipoy metrics generally have
an Abelian symmetry group G2, the Schwarzschild metric has a larger symmetry
group G4 (four Killing vectors); in particular, it has spherical symmetry and the
rod interpretation does not hold.

The Curzon–Chazy metric. This metric [179] can be obtained as a limit of the
previous one. In fact, taking the limit of vanishing rod length, a → 0, but
keeping m finite in (8.98) we get

U = − m√
z2 + ρ2

, (8.99)

which is the Newtonian potential for a spherical particle. Of course, it is
different from Schwarzschild because this metric has no spherical symmetry.
Its far field is that of a mass at the origin with multipoles, it has no horizon
and it has a directional naked curvature singularity at the origin. For instance,
the scalar invariant I defined in (4.13) vanishes if we approach the origin along
the symmetry axis, otherwise it diverges [115, 35]. One may superpose two
Curzon–Chazy particles at different points on the symmetry axis. In this case
there is a singularity along the z axis between the particles. This singularity
represents a stress which holds the particles apart; this stress has zero active
gravitational mass and does not exert a gravitational field [156, 155]. This is
how one gets a static solution with two massive particles.

Accelerated particles metric. Another interesting solution which may be in-
terpreted as the gravitational field of two uniformly accelerated particles was
constructed by Bonnor and Swaminarayan [38]. It is obtained by superposing
two Curzon–Chazy particles on the accelerating metric (8.80), i.e. (8.75) with
s = 1, d = 0 and h1 = 1. The potential U for this metric is thus

U = lnµ1 − m2√
(a − z)2 + ρ2

− m4√
(b − z)2 + ρ2

. (8.100)
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This metric may be obtained from (8.75) with s = 5, d = −1, h2 = −h3 =
m2/ε, h4 = −h5 = m4/ε, w2 = a −ε, w3 = a +ε, w4 = b−ε, w5 = b+ε, and
then taking the limit ε → 0. We recall that the coordinate change (8.79) makes
µ1 = Z2 and the congruences of ∂Z define the hyperbolic motion in the Rindler
wedge. In Weyl coordinates the particles are located on the symmetry axis at
(ρ = 0, z = a) and (ρ = 0, z = b). In the new coordinates (r, φ, Z , t) defined
by (8.79) the location of these two particles is at (r = 0, Z = √

2(w1 − a)) and
(r = 0, Z = √

2(w1 − b)), respectively. But these are hyperbolic trajectories in
the Rindler wedge plane (T, Z̃) defined by T = Z sinh t , Z̃ = Z cosh t . For that
reason this solution is interpreted as the gravitational field of two Curzon–Chazy
particles moving with uniform acceleration along the symmetry axis. See refs
[179, 158, 193] for more details and generalizations of this metric.

The Ernst potential (8.70) for the generalized two-soliton solutions can be
written in another form, familiar in the literature on axisymmetric solutions, by
changing to prolate spheroidal coordinates or to Boyer–Lindquist coordinates.
Prolate spheroidal coordinates xγ , yγ are defined by

ρ2 = m2
γ (x

2
γ − 1)(1 − yγ ), z − z̃γ = −mγ xγ yγ , (8.101)

where mγ and z̃γ , are defined in (8.58). Then the Ernst potential can be written
as

E = −ρd+1
n−1∏
γ=1

(
xγ − 1

xγ + 1

)hγ

. (8.102)

As remarked before this family of solutions includes the γ -metric or the
Voorhees–Zipoy metric (n = 2, d = −1) with the Voorhees–Zipoy parameter
δ = h1 [179]. In these coordinates an interpretation of the γ -metric as the field
of a circular disc in 3-space with Euclidean topology is also possible [37].

Using the Boyer–Lindquist coordinates (rγ , θγ ) defined in (8.59) with the
parameters mγ and z̃γ defined in (8.58), i.e. mγ = (wγ+1 − wγ )/2, z̃γ =
(wγ+1 + wγ )/2, the Ernst potential takes the form

E = −ρd+1
n−1∏
γ=1

(
1 − 2mγ

rγ

)hγ

, (8.103)

which represents a generalization of (8.62). For n > 2 and hγ = 1 we get a
superposition of static Schwarzschild black holes along the z axis to the Levi-
Cività source, which is generally an ILM when −3 < d ≤ 0. If d = −1 the
solution is, of course, asymptotically flat. Like in the superposition of Curzon–
Chazy particles there is a singularity along the z axis between the particles.

(b2) Complex-pole trajectories: We turn now to case (b2) which corresponds
to the superposition of pairs of complex opposite poles. Again we classify the
solutions as class I, if they come from the real part of ln(µγ /ρ), and as class
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II if they come from the imaginary part. Class I solutions are obtained from
(4.79)–(4.80) and class II ones from (4.81)–(4.82), after the change t → iρ.

To study the asymptotic behaviour of these solutions it is useful to again use
the Boyer–Lindquist coordinates for each pair of poles defined in (8.59). At
large distances, these coordinates become simply ρ ∼ rγ sin θγ and z − z̃γ ∼
rγ cos θγ , and thus zγ ∼ mγ − rγ cos θγ and zγ+1 ∼ −(mγ + rγ cos θγ ).

Class I. The Ernst potential for this class takes the form

E = ρd+1
n−1∏
γ=1

(
σγ+1

σγ

)hγ

, (8.104)

where for definiteness we take σγ as σ+
γ . This expression reduces to (8.103)

when cγ → 0 (wγ = z0
γ − icγ ). To see the physical meaning of the parameters

mγ and cγ that appear in these solutions, let us restrict ourselves to the case of a
single pair of poles and expand σγ+1/σγ at large distances in a power series of
r−1
γ . We get

σγ+1

σγ

= 1 − 4mγ

rγ
+ 8m2

γ + (c2
γ+1 − c2

γ ) cos θγ

r2
γ

+ · · · , (8.105)

which shows the asymptotic flatness of the solution (if the background is flat).
We also see that to first order in r−1

γ , it reproduces the Newtonian potential of a
mass 2mγ . The second order contains the parameters cγ in a way that suggests
that these parameters are related to the dipolar moment of the source. In fact, if
we shift the origin of distances by an amount 2mγ (i.e. rγ = r ′

γ − 2mγ ) then
the term 8m2

γ in (8.105) cancels out in an expansion in r ′−1
γ , and we get,

σγ+1

σγ

= 1 − 4mγ

r ′
γ

+ (c2
γ+1 − c2

γ ) cos θγ

r ′2
γ

+ · · · . (8.106)

Therefore c2
γ+1 − c2

γ is exactly the dipolar moment. For references about higher
degree multipoles see, for instance, refs [64, 149].

Class II. The Ernst potential for this class of solutions can be written as

E = ρd+1 exp

[
n−1∑
γ=1

(γγ − γγ+1)

]
. (8.107)

Again we note that when cγ → 0, the γγ → 0 and no new solution is obtained,
apart from the background solution.
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The asymptotic flatness of solutions (8.107) follows immediately from the
asymptotic behaviour of (8.94). As in the previous case we consider a single
pair of poles and expand the Ernst potential in powers of r−1

γ to obtain

E = −1 − (1 + 4c2
γ cos2 θγ )

1/2

√
2 cos θγ

+ 1 − (1 + 4c2
γ+1 cos2 θγ )

1/2

rγ
+ · · · . (8.108)

These solutions do not reproduce the Newtonian potential of localized sources
and they are clearly different from those of class I. The same remarks as in the
case of a single pole apply here, in the sense that no classical interpretation
is possible because of the angular dependence at first order. Therefore, no
interpretation of the parameters cγ in terms of the mass and momenta of the
source of the gravitational field is possible either, despite the fact that they
appear at first order.

8.6 Tomimatsu–Sato solution

In subsection 2.1.1 we outlined the pole fusion procedure that corresponds to
the multiple pole structure of the dressing matrix χ . One interesting example of
the solution which can be constructed in this way is the well known Tomimatso–
Sato metric [277]. In the stationary case, as we know, the number of solitons
that one can introduce on a given background is even. Let us assume that it is
2N , where N is a positive integer, then we can divide the poles into two equal
sets and fuse them into two poles only, each with multiplicity N . When we use
for this procedure the flat background metric (8.35) the resulting solution will
be the so-called extended version of the Tomimatso–Sato solution. The original
Tomimatso–Sato solution can be obtained from this last one by adding some
constraints on the arbitrary constants of the extended version of the Tomimatso–
Sato metric. This was discovered by Tomimatsu and Sato [275, 278], see also
ref. [6]; we will follow these references closely.

The scheme to derive the Tomimatso–Sato solution is the following. One
starts from the background metric (8.35) and constructs the 2N -soliton solution
as explained at the end of section 8.2; see (8.36)–(8.39). It is convenient to
parametrize the arbitrary constants C (k)

0 and C (k)
1 as

C (k)
0 = ck sin ηk, C (k)

1 = ck cos ηk, (8.109)

where the new constants ck and ηk are assumed to be real. The pole trajectories
µk are also assumed to be real: they are solutions of the quadratic equation
(8.16) with real constant parameters wk . As in section 8.4, the sets ηk , wk and
µk may be divided into the pairs

(ηγ , ηγ+1), (wγ ,wγ+1), (µγ , µγ+1), (8.110)
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where γ runs over odd values only: γ = 1, 3, 5, . . . , 2N − 1. Each pair of the
constants wk is represented in a way analogous to (8.58), i.e.

wγ = z̃γ − σγ , wγ+1 = z̃γ + σγ , (8.111)

where z̃γ and σγ are some new arbitrary constants. Instead of the ‘polar
coordinates’ rγ , θγ for each pair of poles that we used in section 8.4, Tomimatsu
and Sato used the prolate spheroidal coordinates xγ , yγ which were defined in
(8.101):

ρ2 = σ 2
γ (x

2
γ − 1)(1 − y2

γ ), z − z̃γ = σγ xγ yγ . (8.112)

For the pole trajectories µγ , µγ+1 they chose the following roots of the quadratic
equation (8.16):

µγ = σγ (xγ − 1)(1 − yγ ), µγ+1 = −σγ (xγ − 1)(1 + yγ ). (8.113)

As we have shown in section 8.3 the simplest case, N = 1, gives just the
Kerr–NUT metric. A simple examination of the relation between coordinates
x1, y1 and r , θ , which was used in section 8.3, shows that the choice (8.113)
for µ1 and µ2 corresponds to the choice (8.50) (with σ1 = −σ ). Consequently,
from (8.51) and (8.109) we have for the NUT parameter b,

b = −C (1)
0 C (2)

1 − C (1)
1 C (2)

0 = −c1c2 sin(η1 + η2). (8.114)

To ensure asymptotic flatness we should adopt the constraint

η1 + η2 = 0, (8.115)

and we arrive at the Kerr metric.
When N = 2 we have a four-soliton solution (double Kerr solution). The

index γ now takes the values 1 and 3 and there are two pairs of pole trajectories
(µγ , µγ+1) and two pairs of constants (wγ ,wγ+1) and (ηγ , ηγ+1). We can now
fuse pole µ3 with µ1 and pole µ4 with µ2 to get a two-pole solution with
multiplicity 2 at each pole. For this we perform the following limiting procedure
(see subsection 2.1.1):

w3 → w1, µ3 → µ1, η3 → η1; w4 → w2, µ4 → µ2, η4 → η2, (8.116)

keeping the ratios ξ3 and ξ4:

ξ3 = η3 − η1

w3 − w1
, ξ4 = η4 − η2

w4 − w2
, (8.117)

finite and arbitrary. In this limit we get the extended Tomimatso–Sato metric
with five arbitrary parameters, namely σ1, η1, η2, ξ3 and ξ4, which was obtained
by Kinnersley and Chitre [167, 168, 169]. In addition, if we adopt the constraints

ξ3 = ξ4 = 0, (8.118)
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and the asymptotic flatness condition (8.115), we get a solution with two
arbitrary parameters σ1, η1 which is just the original Tomimatso–Sato solution
with the distortion parameter δ = 2. This limiting case corresponds to the
fusion of two Kerr black holes in such a way that together with the vanishing
of the distance between the centres of the two Kerr metrics (z̃3 − z̃1 → 0), all
other differences between these two objects disappear. In this limit we have an
overlap of two identical Kerr black holes centred at the same point.

The same limiting procedure can be used for any number N in the Kerr–NUT
solutions. When N is arbitrary the 2N -soliton solution describes the nonlinear
Neugebauer superposition of the Kerr–NUT metrics [225]. Each such metric
(for each value of γ ) can be characterized by the essential quantities (8.110).
First we take the limits

wγ → w1, µγ → µ1, ηγ → η1; wγ+1 → w2, µγ+1 → µ2, ηγ+1 → η2,

(8.119)
and get the metric with 2N + 1 parameters σ1, η1, η2, ξ3, ξ4, . . ., ξ2N , where the
2N − 2 parameters ξ3, . . ., ξ2N are

ξγ = ηγ − η1

wγ − w1
, ξγ+1 = ηγ+1 − η2

wγ+1 − w2
, γ = 3, 5, . . . , 2N − 1, (8.120)

which are kept finite under the limiting procedure. If we adopt the additional
condition (8.115), then the solution will be the asymptotically flat extended
Tomimatso–Sato solution. Finally, if we choose the particular case

ξγ = ξγ+1 = 0, γ = 3, 5, . . . , 2N − 1, (8.121)

we recover the original Tomimatso–Sato solution with the distortion parameter
δ = N . Such a solution describes an overlap of N identical Kerr black holes
centred at the same point. This solitonic interpretation of the Tomimatso–Sato
solution gives a natural explanation of the fact (which was rather mysterious in
the beginning) that the distortion parameter δ can take positive integer values
only, since it just represents the number of soliton pairs of the solution. Note
that in the diagonal limit (static limit) this restriction does not apply to the
generalized soliton solutions.
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[151] J. Ibáñez and E. Verdaguer, Phys. Rev. D31, 251 (1985). See §4.6.3.
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Bäcklund transformation, 14, 53
Bel–Robinson tensor, 100, 126
Belinski and Zakharov inverse scattering

method, 13
Bessel functions, 105
Bianchi classification, 93
Bianchi identities, 63
Bianchi models, 94
Bianchi types

type I, 94, 110, 124, 140, 142
type II, 133, 140–142
type III, 110, 120
type IV, 142
type IX, 94
type V, 110, 142, 149
type VI, 58, 84, 91, 110, 142, 193
type VII, 94, 142, 149
type VIII, 94

black hole
collision, 184
five-dimensional, 32
fusion, 240
horizon, 204

interior, 204
Kerr, 223, 240
mass, 204, 210
N -dimensional, 32
overlap, 240
Schwarzschild, 204, 223
superposition, 213, 228, 236, 240

blueshift of modes, 208
Bonnor and Swaminarayan solution, 235
boosted tetrad, 98, 109
Boyer–Lindquist coordinates, 222, 236
Brans–Dicke equations, 160
Brans–Dicke field, 159, 160
Brans–Dicke theory, 133, 148, 159, 160, 165
breather solution, 49, 56
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C-energy, 100, 128, 171, 175, 177
flux, 171, 176, 182

C-metric, 228, 232
C-velocity, 172, 176
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197, 209, 214
canonical form, 14
Cartesian coordinates, 231
Cauchy data, 3, 5
Cauchy horizon, 203–205
Cauchy hypersurface, 184, 192, 205
Cauchy problem, 3, 9
causality globally, 208
caustic, 185, 201, 204, 205
chaotic cosmology, 93
chaotic solutions, 105
chiral fields, 8, 13, 17
Christoffel symbols, 187
colliding graviton beams, 211
colliding plane waves, 183, 194, 208, 229
collinear polarizations, 184, 197, 211
collision velocity, 55, 58
complete integrability, 13
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conformal factor, 31
conical singularity, 173
conserved integrals, 72
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continuity conditions, 195
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focal point, 208
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focusing time, 184, 189, 203, 211
fold singularity, 185, 207
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(FLRW) cosmological models, 11

fusion of black holes, 240
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gamma-metric, 235
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attraction, 49, 55
repulsion, 49, 55
scattering, 56
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Hauser–Ernst formalism, 61, 216
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hierarchy effect, 139
Higgs bosons, 30, 159
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isotropic background, 94
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isotropic distribution of particles, 149

Jordan–Thiry theory, 159

Kaluza–Klein ansatz, 30, 158
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zero mode, 159

Kaluza–Klein theory, 30, 158
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Kerr parameter, 210
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five-dimensional, 32
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Khan and Penrose solution, 200
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Klein–Gordon equation, 151
Klein–Gordon fields, 30, 151
Korteweg–de Vries equation, 4, 6, 132
Korteweg–de Vries solitons, 6, 132
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Landau–Raychaudhuri theorem, 187
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Levi-Cività parameter, 229
light deflection angle, 173
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Neugebauer’s Bäcklund transformation, 14, 216
Neuman functions, 105
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parallel-polarized plane waves, 95, 184
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physical metric components, 17, 23, 26, 102,
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in-pole, 19, 50, 102, 232
minus pole, 102, 232
out-pole, 19, 50, 102, 232
plus pole, 102, 232

Poynting flux, 100
Poynting vector, 100
pp-waves, 185
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primordial waves, 94
principal chiral field equation, 8
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quantum chiral field, 8
quantum cosmology, 94
quantum effects, 185
quantum field, 185
quantum fluctuations of gravitational modes, 94
quantum instability, 185
quantum mechanics, 3

radiation dominated universe, 148
radiative fluid, 161
radiative part of the gravitational field, 98, 125,
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Raychaudhuri equation, 126
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Riemann tensor, 97, 109, 172
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ring singularity, 35
Robinson–Bondi solutions, 11
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scalar field theories, 160, 165
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scalar sector, 31, 159, 160
scattering data, 3, 8
Schrödinger equation, 3
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Schwarzschild solution, 11, 170, 220, 229
second order poles, 18, 43, 71
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selfdual SU(2) gauge fields, 154
semi-infinite line mass (SILM), 230
shear, 99, 126
Siklos plane waves, 142, 193
SILM metric, 228, 231
sine-Gordon breather, 49, 60
sine-Gordon equation, 7, 54
sine-Gordon kinks, 48, 54
sine-Gordon solitons, 54, 132
sine-Gordon theory, 49, 52, 55
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quantization, 48
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static solutions, 225, 235
static spacetime, 227
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stationary poles, 13, 54
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statistical fluctuations in FLRW, 93
stiff equation of state, 152
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stiff perfect fluid, 151, 153, 158, 161, 166, 167
stochastic gravitational wave background, 94
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canonical form, 162
eigenvalues, 162
for a null fluid, 186
for a perfect fluid, 153, 167
for a radiative fluid, 163, 167
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strong energy condition, 153, 162
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superenergy tensor, 100
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surface orthogonal, 11, 95
symmetry condition, 16, 73, 215
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timing noise in pulsars, 94
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topological singularity, 208
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N -dimensional, 159
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velocity field, 100, 126, 172, 176
velocity flux, 127, 172
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velocity of fluid, 121, 152, 161, 166
velocity of light, 153
velocity of observer, 100, 101, 127, 171, 172
velocity of perturbation, 151, 164, 177
velocity of sine-Gordon soliton, 54
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velocity of sound, 153
velocity potential, 167
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Voorhees–Zipoy parameter, 236

Wahlquist and Estabrook prolongation scheme,
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Wainwright and Marshman solutions, 193
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Wainwright, Ince and Marshman stiff fluid

solution, 156
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weak energy condition, 153, 186
weak field approximation, 184, 188
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Weyl coordinates, 227, 233
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Yang–Mills fields, 30, 159
Yang–Mills gauge bosons, 159

Zakharov and Shabat method, 9
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