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Abstract

There is general agreement that the MiSaTaQuWa equations should describe the
motion of a ‘small body’ in general relativity, taking into account the leading
order self-force effects. However, previous derivations of these equations
have made a number of ad hoc assumptions and/or contain a number of
unsatisfactory features. For example, all previous derivations have invoked,
without proper justification, the step of ‘Lorenz gauge relaxation’, wherein the
linearized Einstein equation is written in the form appropriate to the Lorenz
gauge, but the Lorenz gauge condition is then not imposed—thereby making
the resulting equations for the metric perturbation inequivalent to the linearized
Einstein equations. (Such a ‘relaxation’ of the linearized Einstein equations
is essential in order to avoid the conclusion that ‘point particles’ move on
geodesics.) In this paper, we analyze the issue of ‘particle motion’ in general
relativity in a systematic and rigorous way by considering a one-parameter
family of metrics, gab(λ), corresponding to having a body (or black hole) that
is ‘scaled down’ to zero size and mass in an appropriate manner. We prove that
the limiting worldline of such a one-parameter family must be a geodesic of the
background metric, gab(λ = 0). Gravitational self-force—as well as the force
due to coupling of the spin of the body to curvature—then arises as a first-order
perturbative correction in λ to this worldline. No assumptions are made in our
analysis apart from the smoothness and limit properties of the one-parameter
family of metrics, gab(λ). Our approach should provide a framework for
systematically calculating higher order corrections to gravitational self-force,
including higher multipole effects, although we do not attempt to go beyond
first-order calculations here. The status of the MiSaTaQuWa equations is
explained.
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1. Introduction

The physical content of general relativity is contained in Einstein’s equation, which has a well-
posed initial-value formulation (see, e.g., [1]). In principle, therefore, to determine the motion
of bodies in general relativity—such as binary neutron stars or black holes—one simply needs
to provide appropriate initial data (satisfying the constraint equations) on a spacelike slice and
then evolve these data via Einstein’s equation. However, in practice, it is generally impossible
to find exact solutions of physical interest describing the motion of bodies by analytic methods.
Although it is now possible to find solutions numerically in many cases of interest, it is difficult
and cumbersome to do so, and one may overlook subtle effects and/or remain unenlightened
about some basic general features of the solutions. Therefore, it is of considerable interest to
develop methods that yield approximate descriptions of motion in some cases of interest.

In general, the motion of a body of finite size will depend on the details of its composition
as well as the details of its internal states of motion. Therefore, one can expect to get a simple
description of motion only in some kind of ‘point particle limit’. However, Einstein’s equation
is nonlinear, and a straightforward analysis [2] shows that it does not make any mathematical
sense to consider solutions of Einstein’s equation with a distributional stress–energy tensor
supported on a worldline1. Physically, if one tried to shrink a body down to zero radius at fixed
mass, collapse to a black hole would occur before the point particle limit could be reached.

Distributional stress–energy tensors supported on a worldline do make mathematical sense
in the context of the linearized Einstein equation. Therefore, one might begin a treatment of
gravitational self-force by considering a metric perturbation, hab, in a background metric, gab,
sourced by the stress–energy tensor of a ‘point particle’ of mass M, given in coordinates (t, xi)

by

G
(1)
ab [h](t, xi) = 8πMua(t)ub(t)

δ(3)(xi − zi(t))√−g

dτ

dt
, (1)

where ua is the unit tangent (i.e., 4-velocity) of the worldline γ defined by xi(t) = zi(t)

and τ is the proper time along γ . (Here δ(3)(xi − zi(t)) is the ‘coordinate delta function’,
i.e.,

∫
δ(3)(xi − zi(t)) d3xi = 1. The right-hand side could also be written covariantly as

8πM
∫
γ

δ4(x, z(τ ))ua(τ )ub(τ ) dτ, where δ4 is the covariant four-dimensional delta function
and τ denotes the proper time along γ .) However, this approach presents two major difficulties.

First, the linearized Bianchi identity implies that the point particle stress energy must be
conserved. However, as we shall see explicitly in section 4, this requires that the worldline γ

of the particle be a geodesic of the background spacetime. Therefore, there are no solutions to
equation (1) for non-geodesic source curves, making it hopeless to use this equation to derive
corrections to geodesic motion. This difficulty has been circumvented in [5–8] and other
references by modifying (1) as follows. Choose the Lorenz gauge condition, so that equation
(1) takes the form

∇c∇ch̃ab − 2Rc
ab

d h̃cd = −16πMua(t)ub(t)
δ(3)(xi − zi(t))√−g

dτ

dt
, (2)

∇bh̃ab = 0, (3)

where h̃ab ≡ hab − 1
2hgab with h = habg

ab. Equation (2) by itself has solutions for any
source curve γ ; it is only when the Lorenz gauge condition (3) is adjoined that the equations
1 Nevertheless, action principles corresponding to general relativity with point particle sources are commonly written
(see, e.g., equations (12.1.6) and (12.4.1)–(12.4.2) of [3]). There are no solutions to the equations of motion resulting
from such action principles. By contrast, distributional solutions of Einstein’s equation with support on a timelike
hypersurface (i.e., ‘shells’) do make mathematical sense [2, 4].
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are equivalent to the linearized Einstein equation and geodesic motion is enforced. Therefore,
if one solves the Lorenz gauge form (2) of the linearized Einstein equation while simply
ignoring the Lorenz gauge condition2 that was used to derive (2), one allows for the possibility
non-geodesic motion. Of course, this ‘gauge relaxation’ of the linearized Einstein equation
produces an equation inequivalent to the original. However, because deviations from geodesic
motion are expected to be small, the Lorenz gauge violation should likewise be small, and it
thus has been argued [6] that solutions to the two systems should agree to sufficient accuracy.

The second difficulty is that the solutions to equation (2) are singular on the worldine of the
particle. Therefore, naive attempts to compute corrections to the motion due to hab—such as
demanding that the particle move on a geodesic of gab +hab—are virtually certain to encounter
severe mathematical difficulties, analogous to the difficulties encountered in treatments of the
electromagnetic self-force problem.

Despite these difficulties, there is a general consensus that in the approximation that spin
and higher multipole moments may be neglected, the motion of a sufficiently small body (with
no ‘incoming radiation’) should be described by self-consistently solving equation (2) via the
retarded solution together with

ub∇bu
a = − 1

2 (gab + uaub)
(
2∇dh

tail
bc − ∇bh

tail
cd

)∣∣
z(τ )

ucud, (4)

where

htail
ab (x) = M

∫ τ−
ret

−∞

(
G+

aba′b′ − 1

2
gabG

+c
ca′b′

) (
x, z(τ ′)

)
ua′

ub′
dτ ′, (5)

with G+
aba′b′ the retarded Green’s function for equation (2), normalized with a factor of −16π ,

following [6]. The symbol τ−
ret indicates that the range of the integral extends just short of

the retarded time τret, so that only the ‘tail’ (i.e., interior of the light cone) portion of Green’s
function is used (see, e.g., [8] for details). Equations (2) and (4) are known as the MiSaTaQuWa
equations, and have been derived by a variety of approaches. However, there are difficulties
with all of these approaches.

One approach [5] that has been taken is to parallel the analysis of [9, 10] in the
electromagnetic case and use conservation of effective gravitational stress energy to determine
the motion. However, this use of distributional sources at second order in perturbation theory
results in infinities that must be ‘regularized’. Although these regularization procedures are
relatively natural looking, the mathematical status of such a derivation is unclear.

Another approach [6] is to postulate certain properties that equations of gravitational self-
force should satisfy. This yields a mathematically clean derivation of the self-force corrected
equations of motion. However, as the authors of [6] emphasized, the motion of bodies in
general relativity is fully described by Einstein’s equation together with the field equations
of the matter sources, so no additional postulates should be needed to obtain an equation of
motion, beyond the ‘small-body’ assumption and other such approximations. The analysis
given by [6] shows that equation (4) follows from certain plausible assumptions. However,
their derivation is thus only a plausibility argument for equation (4). Similar remarks apply
to a later derivation by Poisson [8] that uses a Green’s function decomposition developed by
Detweiler and Whiting [7].

A third approach, taken by Mino, Sasaki and Tanaka [5] and later Poisson [8]—building
on previous work of Burke [11], d’Eath [12], Kates [13], Thorne and Hartle [14], and others—
involves the use of matched astymptotic expansions. Here one assumes a metric form in the
‘near zone’—where the metric is assumed to be that of the body, with a small correction due

2 In some references, the failure to satisfy equation (3) truly is ignored in the sense that it is not even pointed out that
one has modified the linearized Einstein equation, and no attempt is made to justify this modification.
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to the background spacetime—and in the ‘far zone’—where the metric is assumed to be that
of the background spacetime, with a small correction due to the body. One then assumes
that there is an overlap region of the body where both metric forms apply, and matches the
expressions. The equations of motion of the body then arise from the matching conditions.
However, as we shall indicate below, in addition to the ‘Lorenz gauge relaxation’, there are a
number of assumptions and steps in these derivations that have not been adequately justified.

A more rigorous approach to deriving gravitational self-force is suggested by the work of
Geroch and Jang [15] and later Geroch and Ehlers [16] on geodesic motion of small bodies
(see also [17]). In [15], one considers a fixed spacetime background metric gab and considers a
smooth one-parameter family of stress–energy smooth tensors Tab(λ) that satisfy the dominant
energy condition and have support on a world tube. As the parameter goes to zero, the world
tube shrinks to a timelike curve. It is then proven that this timelike curve must be a geodesic.
This result was generalized in [16] to allow gab to also vary with λ so that Einstein’s equation
is satisfied. Within the framework of [16], it therefore should be possible to derive perturbative
corrections to geodesic motion, including gravitational self-force. However, the conditions
imposed in [16] in effect require the mass of the body to go to zero faster than λ2. Consequently,
in this approach, a self-force correction like (4) to the motion of the body would arise at higher
order than finite size effects and possibly other effects that would depend on the composition
of the body. Thus, while the work of [16] provides a rigorous derivation of geodesic motion of
a ‘small body’ to lowest order, it is not a promising approach to derive gravitational self-force
corrections to geodesic motion.

In this paper, we shall take an approach similar in spirit to that of [16], but we will consider
a different smooth, one-parameter family of metrics gab(λ), wherein, in effect, we have a body
(or black hole) present that scales to zero size in a self-similar manner, with both the size and
the mass of the body being proportional to λ. In the limit as λ → 0, the body (or black hole)
shrinks down to a worldline, γ . As in [15, 16], we prove that γ must be a geodesic of the
‘background spacetime’ gab(λ = 0)—although our method of proving this differs significantly
from [15, 16]. To first order in λ, the correction to the motion is described by a vector field,
Zi , on γ , which gives the ‘infinitesimal displacement’ to the new worldline. We will show
that, for any such one-parameter family gab(λ), in the Lorenz gauge Zi(τ ) satisfies

d2Zi

dt2
= 1

2M
SklRkl0

i − R0j0
iZj −

(
htaili

0,0 − 1

2
htail

00
,i

)
. (6)

Here M and Sij are, respectively, the mass and spin of the body. The terms in parentheses
on the right-hand side of this equation correspond exactly to the gravitational self-force term
in equation (4); the first term is the Papapetrou spin force [18]; the second term is simply the
usual right-hand side of the geodesic deviation equation. Equation (6) is ‘universal’ in the
sense that it holds for any one-parameter family satisfying our assumptions, so it holds equally
well for a (sufficiently small) blob of ordinary matter or a (sufficiently small) black hole.

Our derivation of (6) is closely related to the matched asymptotic expansions analyses.
However, our derivation is a rigorous, perturbative result. In addition, we eliminate a number of
ad hoc, unjustified and/or unnecessary assumptions made in previous approaches, including
assumptions about the form of the ‘body metric’ and its perturbations, assumptions about
rate of change of these quantities with time, the imposition of certain gauge conditions, the
imposition of boundary conditions at the body and, most importantly, the step of Lorenz gauge
relaxation. Furthermore, in our approach, the notion of a ‘point particle’ is a concept that is
derived rather than assumed. It will also be manifest in our approach that the results hold for
all bodies (or black holes) and that the physical results do not depend on a choice of gauge
(although Zi(τ ) itself is a gauge-dependent quantity, i.e., the description of the corrections
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to particle motion depend on how the spacetimes at different λ are identified—see section 5
and the appendix). In particular, because the Lorenz gauge plays no preferred role in our
derivation (aside from being a computationally convenient choice), our gauge transformation
law is not, as in previous work [19], restricted to gauges continuously related to the Lorenz
gauge. Our approach also holds out the possibility of being extended so as to systematically
take higher order corrections into account. However, we shall not attempt to undertake such
an extension in this paper.

Although (6) holds rigorously as a first-order perturbative correction to geodesic motion,
this equation would not be expected to provide a good global-in-time approximation to motion,
since the small local corrections to the motion given by (6) may accumulate with time, and
equation (6) would not be expected to provide a good description of the perturbed motion when
Zi becomes large. We will argue in this paper that the MiSaTaQuWa equations, equations
(2) and (4), should provide a much better global-in-time approximation to motion than
equation (6), and they therefore should be used for self-consistent calculations of the motion
of a small body, such as for calculations of extreme-mass-ratio inspiral3.

We note in passing that, in contrast to Einstein’s equation, Maxwell’s equations are
linear, and it makes perfectly good mathematical sense to consider distributional solutions to
Maxwell’s equations with point particle sources. However, if the charge–current sources are
not specified in advance but rather are determined by solving the matter equations of motion—
which are assumed to be such that the total stress energy of the matter and electromagnetic field
is conserved—then the full, coupled system of Maxwell’s equations together with the equations
of motion of the sources becomes nonlinear in the electromagnetic field. Point particle sources
do not make mathematical sense in this context either. It is for this reason that—despite more
than a century of work on this problem—there is no mathematically legitimate derivation of
the electromagnetic self-force on a charged particle. The methods of this paper can be used
to rigorously derive a perturbative expression for electromagnetic self-force by considering
suitable one-parameter families of coupled electromagnetic-matter systems, and we shall carry
out this analysis elsewhere [20]. However, we shall restrict consideration in this paper to the
gravitational case.

This paper is organized as follows. In section 2, we motivate the kind of one-parameter
family of metrics, gab(λ), that we will consider by examining the one-parameter family of
Schwarzschild–de Sitter spacetimes with black hole mass equal to λ. One way of taking the
limit as λ → 0 yields de Sitter spacetime. We refer to this way of taking the limit as the
‘ordinary limit’. But we show that if we take the limit as λ → 0 in another way and also
rescale the metric by λ−2, we obtain Schwarzschild spacetime. We refer to this second way
of taking the limit as λ → 0 as the ‘scaled limit’. The scaled limit can be taken at any time
t0 on the worldline γ . The simultaneous existence of both types of limits defines the kind of
one-parameter family of metrics we seek, wherein a body (or black hole) is shrinking down
to a worldline γ in an asymptotically self-similar manner. The precise, general conditions we
impose on gab(λ) are formulated in section 2. Some basic properties of gab(λ) that follow
directly from our assumptions are given in section 3. In particular, we obtain general ‘far-
zone’ and ‘near-zone’ expansions and we show that, at any t0, the scaled limit always yields
a stationary, asymptotically flat spacetime at λ = 0. In section 4, we prove that γ must be
a geodesic of the ‘background spacetime’ (i.e., the spacetime at λ = 0 resulting from taking
the ordinary limit). In other words, to zeroth order in λ a small body or black hole always
moves on a geodesic. We also show that, to first order in λ, the metric perturbation associated

3 This viewpoint is in contrast to that of [8], where it is argued that second-order perturbations are needed for
self-consistent evolution.
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with such a body or black hole corresponds to that of a structureless ‘point particle’. In
section 5, we define the motion of the body (or black hole) to first order in λ by finding a
coordinate displacement that makes the mass dipole moment of the stationary, asymptotically
flat spacetime appearing in the scaled limit vanish. (This can be interpreted as a displacement
to the ‘center of mass’ of the body.) In section 6, we then derive equation (6) as the first
order in λ correction to γ in the Lorenz gauge. (An appendix provides the transformation to
other gauges.) Finally, in section 7 we explain the status of the MiSaTaQuWa equation (4).
Our spacetime conventions are those of Wald [1], and we work in units where G = c = 1.
Lower case Latin indices early in the alphabet (a, b, c, . . .) will denote abstract spacetime
indices; Greek indices will denote coordinate components of these tensors; Latin indices from
mid-alphabet (i, j, k, . . .) will denote spatial coordinate components.

2. Motivating example and assumptions

As discussed in the introduction, we seek a one-parameter family of metrics gab(λ) that
describes a material body or black hole that ‘shrinks down to zero size’ in an asymptotically
self-similar manner. In order to motivate the general conditions on gab(λ) that we shall impose,
we consider here an extremely simple example of the type of one-parameter family that we
seek. This example will provide an illustration of the two types of limits that we shall use to
characterize gab(λ).

Our example is built from Schwarzschild–de Sitter spacetime,

ds2 = −
(

1 − 2M0

r
− C0r

2

)
dt2 +

(
1 − 2M0

r
− C0r

2

)−1

dr2 + r2 d�2. (7)

(This metric, of course, is a solution to the vacuum Einstein’s equation with a cosmological
constant � = 2

3C0 rather than a solution with � = 0, but the field equations will not play
any role in the considerations of this section; we prefer to use this example because of its
simplicity and familiarity.) The desired one-parameter family is

ds2(λ) = −
(

1 − 2M0λ

r
− C0r

2

)
dt2 +

(
1 − 2M0λ

r
− C0r

2

)−1

dr2 + r2 d�2, (8)

where we consider only the portion of the spacetime with r > λR0 for some R0 > 2M0. For
each λ, this spacetime describes the exterior gravitational field of a spherical body or black
hole of mass λM0 in an asymptotically de Sitter spacetime. As λ → 0, the body/black hole
shrinks to zero size and mass. For λ = 0, the spacetime is de Sitter spacetime, which extends
smoothly to the worldline r = 0, corresponding to where the body/black hole was just before
it ‘disappeared’.

As explained clearly in [21], the limit of a one-parameter family of metrics gab(λ) depends
on how the spacetime manifolds at different values of λ are identified. This identification of
spacetime manifolds at different λ can be specified by choosing coordinates xμ for each
λ and identifying points labeled by the same value of the coordinates xμ. If we use the
coordinates (t, r, θ, φ) in which the one-parameter family of metrics (8) was presented to do
the identification, then it is obvious that the limit as λ → 0 of gab(λ) is the de Sitter metric,

ds2(λ = 0) = −(1 − C0r
2) dt2 + (1 − C0r

2)−1 dr2 + r2 d�2. (9)

This corresponds to the view that the body/black hole shrinks to zero size and mass and
‘disappears’ as λ → 0.

However, there is another way of taking the limit of gab(λ) as λ → 0; the existence of
this second limit is one of the key ideas in this paper. Choose an arbitrary time t0 and, for

6
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λ > 0, introduce new time and radial coordinates by t̄ ≡ (t − t0)/λ and r̄ ≡ r/λ. In the new
coordinates, the one-parameter family of metrics becomes

ds2(λ) = −λ2

(
1 − 2M0

r̄
− C0λ

2r̄2

)
dt̄2

+ λ2

(
1 − 2M0

r̄
− C0λ

2r̄2

)−1

dr̄2 + λ2r̄2 d�2, r̄ > R0. (10)

We now consider the limit as λ → 0 by identifying the spacetimes with different λ at the same
values of the barred coordinates. It is clear by inspection of equation (10) that the limit of
gab(λ) as λ → 0 at fixed x̄μ exists, but is zero. In essence, the spacetime interval between any
two events labeled by x̄

μ

1 and x̄
μ

2 goes to zero as λ → 0 because these events are converging
to the same point on γ . Thus, this limit of gab(λ) exists but is not very interesting. However,
an interesting limit can be taken by considering a new one-parameter family of metrics ḡab(λ)

by4

ḡμ̄ν̄ ≡ λ−2gμ̄ν̄ , (11)

so that

ds̄2(λ) =
(

1 − 2M0

r̄
− C0λ

2r̄2

)
dt̄2 +

(
1 − 2M0

r̄
− C0λ

2r̄2

)−1

dr̄2 + r̄2 d�2, r̄ > R0.

(12)

By inspection, the limit of this family of metrics is simply

ds̄2|λ=0 = −
(

1 − 2M0

r̄

)
dt̄2 +

(
1 − 2M0

r̄

)−1

dr̄2 + r̄2 d�2, r̄ > R0, (13)

which is just the Schwarzschild metric with mass M0.
The meaning of this second limit can be understood as follows. As already discussed

above, the one-parameter family of metrics (8) describes the exterior gravitational field of
a spherical body or black hole that shrinks to zero size and mass as λ → 0. The second
limit corresponds to how this family of spacetimes looks to the family of observers placed at
the events labeled by fixed values of x̄μ. In going from, say, the λ = 1 to the λ = 1/100
spacetime, each observer will see that the body/black hole has shrunk in size and mass by a
factor of 100 and each observer also will find himself ‘closer to the origin’ by this same factor
of 100. Suppose now that this family of observers also ‘changes units’ by this same factor of
100, i.e., they use centimeters rather than meters to measure distances. Then, except for small
effects due to the de Sitter background, the family of observers for the λ = 1/100 spacetime
will report the same results (expressed in centimeters) as the observers for the λ = 1 spacetime
had reported (in meters). In the limit as λ → 0, these observers simply see a Schwarzschild
black hole of mass M0, since the effects of the de Sitter background on what these observers
will report disappear entirely in this limit.

We will refer to the first type of limit (i.e., the limit as λ → 0 of gab(λ) taken at fixed xμ)
as the ordinary limit of gab(λ), and we will refer to the second limit (i.e., the limit as λ → 0 of
λ−2gab(λ) taken at fixed x̄μ) as the scaled limit of gab(λ). The simultaneous existence of both
types of the above limits contains a great deal of relevant information about the one-parameter
family of spacetimes (8). In essence, the existence of the first type of limit is telling us that the

4 A scaling of space (but not time) has previously been considered by Futamase [22] in the post-Newtonian context.
Scaled coordinates also appear in the work of D’Eath [12] and Kates [13].
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λ

γ

0

Figure 1. A spacetime diagram illustrating the type of one-parameter family we wish to consider,
as well as the two limits we define. As λ → 0, the body shrinks and finally disappears, leaving
behind a smooth background spacetime with a preferred worldline, γ , picked out. The solid lines
illustrate this ‘ordinary limit’ of λ → 0 at fixed r, which is taken along paths that terminate away
from γ (i.e., r > 0). By contrast, the ‘scaled limit’ as λ → 0, shown in dashed lines, is taken
along paths at fixed r̄ that converge to a point on γ .

body/black hole is shrinking down to a worldline γ , with its mass going to zero (at least) as
rapidly as its radius. The existence of the second type of limit is telling us that the body/black
hole is shrinking to zero size in an asymptotically self-similar manner: in particular, its mass is
proportional to its size, its shape is not changing and it is not undergoing any (high-frequency)
oscillations in time. Figure 1 illustrates the two limits we consider.

We wish now to abstract from the above example the general conditions to impose upon
one-parameter families that express in a simple and precise way the condition that we have an
arbitrary body (or black hole) that is shrinking to zero size—in an asymptotically self-similar
way—in an arbitrary background spacetime. Most of the remainder of this paper will be
devoted to obtaining ‘equations of motion’ for these bodies that are accurate enough to include
gravitational self-force effects. A first attempt at specifying the type of one-parameter families
gab(λ) that we seek is as follows:

• (i) Existence of the ‘ordinary limit’: gab(λ) is such that there exists coordinates xα such
that gμν(λ, xα) is jointly smooth in (λ, xα), at least for r > R̄λ for some constant R̄,
where r ≡ √∑

(xi)2 (i = 1, 2, 3). For all λ and for r > R̄λ, gab(λ) is a vacuum solution
of Einstein’s equation. Furthermore, gμν(λ = 0, xα) is smooth in xα , including at r = 0,
and, for λ = 0, the curve γ defined by r = 0 is timelike.

• (ii) Existence of the ‘scaled limit’: for each t0, we define t̄ ≡ (t − t0)/λ, x̄i ≡ xi/λ.
Then the metric ḡμ̄ν̄ (λ; t0; x̄α) ≡ λ−2gμ̄ν̄(λ; t0; x̄α) is jointly smooth in (λ, t0; x̄α) for
r̄ ≡ r/λ > R̄.

Here we have used the notation gμ̄ν̄ to denote the components of gab in the x̄α coordinates,
whereas ḡμ̄ν̄ denotes the components of ḡab in the x̄α coordinates. It should be noted that, since

8
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the barred coordinates differ only by scale (and shift of time origin) from the corresponding
unbarred coordinates, we have5

gμ̄ν̄ = λ2gμν. (14)

Consequently, we have

ḡμ̄ν̄ (λ; t0; t̄ , x̄i ) = gμν(λ; t0 + λt̄, λx̄i), (15)

since there is a cancelation of the factors of λ resulting from the definition of ḡab and the
coordinate rescalings. It should also be noted that there is a redundancy in our description of
the one-parameter family of metrics when taking the scaled limit: we define a scaled limit for
all values of t0, but these arise from a single one-parameter family of metrics gab(λ). Indeed,
it is not difficult to see that we have

ḡμ̄ν̄ (λ; t0; t̄ + s̄, x̄i ) = ḡμ̄ν̄ (λ; t0 + λs̄; t̄ , x̄i ). (16)

In fact, our requirements on gab of the existence of both an ‘ordinary limit’ and a ‘scaled
limit’ are not quite strong enough to properly specify the one-parameter families we seek. To
explain this and obtain the desired strengthened condition, it is convenient to define the new
variables

α ≡ r, β ≡ λ/r, (17)

where the range of β is 0 � β < 1/R̄. Let f denote a component of gab(λ) in the coordinates
xα . However, instead of viewing f as a function of (λ, xα), we view f as a function of
(α, β, t, θ, φ), where θ and φ are defined in terms of xi by the usual formula for spherical
polar angles. In terms of these new variables, taking the ‘ordinary limit’ corresponds to letting
β → 0 at any fixed α > 0, whereas taking the ‘scaled limit’ corresponds to letting α → 0 at
any fixed β > 0 (see figure 2(b)). Now, our assumptions concerning the ordinary limit imply
that, at fixed (t, θ, φ) and at fixed α > 0, f depends smoothly on β, including at β = 0. On
the other hand, our assumptions concerning the scaled limit imply that at fixed (t, θ, φ) and
at fixed β > 0, f is smooth in α. Furthermore, the last condition in the ordinary limit implies
that for β = 0 and fixed (t, θ, φ), f is smooth in α, including at α = 0.

Thus, at fixed (t, θ, φ), our previously stated assumptions imply that f is well defined at
the ‘origin’ (α, β) = (0, 0), and is smooth in α along the α-axis (i.e., β = 0). However, our
previously stated assumptions do not say anything about the continuity or smoothness of f

as (α, β) → (0, 0) from directions other than along the α-axis. Such limiting behavior would
correspond to letting r → 0 as λ → 0 but at a rate slower than λ, i.e., such that r/λ → ∞. To
see the meaning and relevance of this limiting behavior, let us return to our original motivating
example, equation (8) and take f to be the time–time component of this metric6. In terms of
our new variables (17), we have

f = −(1 − 2M0β − C0α
2), (18)

which is jointly smooth in (α, β) at (0, 0). By contrast, suppose we had a one-parameter
family of metrics g̃ab(λ) that satisfies our above assumptions about the ordinary and scaled
limits, but fails to be jointly smooth in (α, β) at (0, 0). For example, suppose the time–time
component of such a one-parameter family varied as

f̃ = −
(

1 − αβ

α2 + β2

)
. (19)

5 Note that in this equation and in other equations occurring later in this paper, we relate components of tensors in
the barred coordinates to the corresponding components of tensors in unbarred coordinates. Thus, a bar appears over
the indices on the left-hand side of this equation, but not over the indices appearing on the right-hand side of this
equation.
6 Note that if we wished to consider other components of this metric, we would have to transform back from the
coordinates (r, θ, φ) to ‘Cartesian-like’ coordinates xi that are well behaved at the origin xi = 0 when λ = 0.

9



Class. Quantum Grav. 25 (2008) 205009 S E Gralla and R M Wald

λ

r

β

α

(a) (b)

Figure 2. The two limits. (a) The two limits in terms of r and λ. A constant-λ spacetime is shown
as a thick line. The shaded region corresponds to the interior of the (shrinking) body, about which
we make no assumptions. The ordinary limit is represented by solid lines and the scaled limit is
represented by dashed lines. While the ordinary background metric is on the r-axis, the scaled
background metric is contained in the discontinuous behavior of the metric family at r = λ = 0.
(b) The two limits in terms of α and β. In the new variables, the two types of limit appear on a
more equal footing, with the ordinary and scaled background metrics placed on either axis. The
body is ‘pushed out’ to finite β, so that assumptions made in a neighborhood of α = β = 0 make
no reference to the body.

In terms of the original variables (λ, r), this corresponds to behavior of the form

f̃ = −
(

1 − λr2

λ2 + r4

)
. (20)

If we take the ‘ordinary limit’ (λ → 0 at fixed r > 0) of f̃ , we find that f̃ smoothly goes to
−1. Similarly, if we take the ‘scaled limit’ (λ → 0 at fixed r̄ = r/λ > 0), we also find that
f̃ smoothly goes to −1. However, suppose we let λ → 0 but let r go to zero as r = c

√
λ.

Then f̃ will approach a different limit, namely c2/(1 + c4). In essence, g̃ab(λ) corresponds
to a one-parameter family in which there is a ‘bump of curvature’ at r ∝ √

λ. Although this
‘bump of curvature’ does not register when one takes the ordinary or scaled limits, it is present
in the one-parameter family of spacetimes and represents unacceptable limiting behavior as
λ → 0 of this one-parameter family.

In order to eliminate this kind of non-uniform behavior in λ and r, we now impose the
following additional condition:

• (iii) Uniformity condition: each component of gab(λ) in the coordinates xμ is a jointly
smooth function of the variables (α, β) at (0, 0) (at fixed (t, θ, φ)), where α and β are
defined by equation (17).

Assumptions (i)–(iii) constitute all of the conditions that we shall impose on gab(λ). No
additional assumptions will be made in this paper.

We note that the coordinate freedom allowed by our conditions are precisely all coordinate
transformations

xμ → x ′μ(λ, xν), (21)

10



Class. Quantum Grav. 25 (2008) 205009 S E Gralla and R M Wald

such that x ′μ(λ, xν) is jointly smooth in (λ, xν) for all r > Cλ for some constant C, and such
that the Jacobian matrix ∂x ′μ/∂xν is jointly smooth in (α, β) at (0, 0) at fixed (t, θ, φ).

It should be emphasized that our assumptions place absolutely no restrictions on the
one-parameter family of spacetimes for r < λR̄, i.e., this portion of these spacetimes could
equally well be ‘filled in’ with ordinary matter or a black hole7. It should also be noted that
the ‘large r’ region of the spacetime will not be relevant to any of our considerations, so it is
only necessary that our conditions hold for r < K for some constant K.

Finally, although it may not be obvious upon first reading, we note that our assumptions
concerning gab(λ) are closely related to the assumptions made in matched asymptotic
expansion analyses. As we shall see in the following section, in essence, our assumption about
the existence of an ordinary limit of gab(λ) corresponds to assuming the existence of a ‘far-
zone’ expansion; our assumption about the existence of a scaled limit of gab(λ) corresponds to
assuming the existence of a ‘near-zone’ expansion; and our uniformity assumption corresponds
closely to the assumption of the existence of a ‘buffer zone’ where both expansions are valid.

3. Consequences of our assumptions

In this section, we derive some immediate consequences of the assumptions of the previous
section that will play a key role in our analysis. These results will follow directly from the
‘uniformity condition’ and the consistency relation (16).

Since, by the uniformity assumption, the coordinate components of the one-parameter
family of metrics gab(λ) are jointly smooth in the variables (α, β) at (0, 0), we may approximate
gμν by a joint Taylor series in α and β to any finite orders N and M by

gμν(λ; t, r, θ, φ) =
N∑

n=0

M∑
m=0

αnβm(aμν)nm(t, θ, φ) + O(αN+1) + O(βM+1). (22)

Substituting for α and β from equation (17), we have

gμν(λ; t, r, θ, φ) =
N∑

n=0

M∑
m=0

rn

(
λ

r

)m

(aμν)nm(t, θ, φ), (23)

where here and in the following, we drop the error term. We can rewrite this equation as a
perturbation expansion in λ,

gμν(λ; t, r, θ, φ) =
M∑

m=0

λm

N∑
n=0

rn−m(aμν)nm(t, θ, φ). (24)

We will refer to equation (24) as the far-zone expansion of gab(λ). It should be noted that
the mth-order term in λ in the far-zone perturbation expansion has leading order behavior
of 1/rm at small r. However, arbitrarily high positive powers of r may occur at each order
in λ. Finally, we note that the angular dependence of (aμν)n0(t, θ, φ) is further restricted
by the requirement that the metric components gμν(λ = 0) must be smooth at r = 0 when
re-expressed as functions of xi . In particular, this implies that (aμν)00 cannot have any angular
dependence.

7 Indeed, it could also be ‘filled in’ with ‘exotic matter’ (failing to satisfy, say, the dominant energy condition) or a
naked singularity (of positive or negative mass). However, in cases where there fails to be a well-posed initial-value
formulation (as would occur with certain types of exotic matter and with naked singularities) and/or there exist
instabilities (as would occur with other types of exotic matter), if is far from clear that one should expect there to exist
a one-parameter family of solutions gab(λ) satisfying our assumptions.

11
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Equivalently, in view of equation (15), we can expand ḡμ̄ν̄ as

ḡμ̄ν̄ (λ; t0; t̄ , r̄, θ, φ) =
N∑

n=0

M∑
m=0

(λr̄)n
(

1

r̄

)m

(aμν)nm(t0 + λt̄, θ, φ)

=
N∑

n=0

M∑
m=0

λn

(
1

r̄

)m−n

(aμν)nm(t0 + λt̄, θ, φ). (25)

By further expanding (aμν)nm in t̄ about t̄ = 0, we obtain

ḡμ̄ν̄ (λ; t0; t̄ , r̄, θ, φ) =
N∑

n=0

M∑
m=0

P∑
p=0

λn+pt̄p
(

1

r̄

)m−n

(bμν)nmp(t0, θ, φ), (26)

where

(bμν)nmp ≡ 1

p!

∂p

∂tp
(aμν)nm

∣∣∣
t=t0

. (27)

We can rewrite this as a perturbation series expansion in λ,

ḡμ̄ν̄ (λ; t0; t̄ , r̄, θ, φ) =
N+P∑
q=0

λq

min(q,P )∑
p=0

M∑
m=0

t̄ p
(

1

r̄

)m−q+p

(bμν)(q−p)mp(t0; θ, φ). (28)

We will refer to equation (28) as the near-zone expansion of gab(λ). We see from this formula
that the scaled metric, viewed as a perturbation series in λ, follows the rule that the combined
powers of t̄ and r̄ are allowed to be only as positive as the order in perturbation theory. By
contrast, inverse powers of r̄ of arbitrarily high order are always allowed. Of course, only
non-negative powers of t̄ can occur.

By inspection of equation (28), we see that the ‘background’ (λ = 0) scaled metric is
given by

ḡμ̄ν̄ (λ = 0; t0; t̄ , r̄, θ, φ) =
M∑

m=0

(
1

r̄

)m

(aμν)0m(t0; θ, φ), (29)

where we have used the fact that (bμν)0m0 = (aμν)0m. Thus, we see that there is no dependence
of ḡμ̄ν̄ (λ = 0; t0) on t̄ and only non-positive powers of r̄ occur. Thus, we see that ḡab(λ = 0) is
a stationary, asymptotically flat spacetime. However, the limiting, stationary, asymptotically
flat spacetime that we obtain may depend on the choice of the time, t0, on the worldline, γ ,
about which the scaling is done.

Our ‘far-zone expansion’, equation (24), appears to correspond closely to the far-zone
expansion used in matched asymptotic expansion analyses [5, 8]. However, our ‘near-zone
expansion’ differs in that we define a separate expansion for each time t0 rather than attempting
a uniform in time approximation with a single expansion. Such expansions require an
additional ‘quasi-static’ or slow-time variation assumption for the evolution of the metric
perturbations. A further difference is that the conclusion that the background (λ = 0) metric
is stationary and asymptotically flat has been derived here rather than assumed. Indeed, in
other analyses, a particular form of the background metric (such as the Schwarzschild metric)
is assumed, and the possibility that this metric form might change with time (i.e., depend
upon t0) is not considered. In addition, in other analyses boundary conditions at small r̄

(such as regularity on the Schwarzschild horizon) are imposed. In our analysis, we make no
assumptions other than the assumptions (i)–(iii) stated in the previous section. In particular,
since we make no assumptions about the form of the metric for r̄ < R̄, we do not impose any
boundary conditions at small r̄ .

12
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Finally, it is also useful to express the consistency relation (16) in a simple, differential
form. We define

(Kμν)npm(λ; t0; t̄ , x̄i ) ≡
(

∂

∂λ

)n (
∂

∂t0

)p (
∂

∂t̄

)m

ḡ(λ; t0; t̄ , x̄i )|λ=0,t0,t̄=0. (30)

Then, a short calculation shows that

K(n+1)p(m+1) = (n + 1)Kn(p+1)m (31)

as well as

Knpm = 0 if n < m. (32)

Setting n = 0, we see that the last relation implies that ḡ(λ = 0; t0; t̄ , x̄i ) is stationary, as we
have already noted.

4. Geodesic motion

In this section, we will prove that the worldline γ appearing in assumption (i) of section 2
must, in fact, be a geodesic of the background metric gab(λ = 0). This can be interpreted as
establishing that, to zeroth order in λ, any body (or black hole) moves on a geodesic of the
background spacetime. In fact, we will show considerably more than this: we will show that,
to first order in λ, the far-zone description of gab(λ) is that of a ‘point particle’. As previously
mentioned in the introduction, our derivation of geodesic motion is similar in spirit to that
of [16] in that we consider one-parameter families of solutions with a worldtube that shrinks
down to a curve γ , but the nature of the one-parameter families that we consider here are very
different from those considered by [16], and our proof of geodesic motion is very different
as well. Our derivation of geodesic motion also appears to differ significantly from previous
derivations using matched asymptotic expansions [5, 8, 12, 13].

We begin by writing the lowest order terms in the far-zone expansion, equation (24), as
follows:

gαβ(λ) = (aαβ)00(t) + (aαβ)10(t, θ, φ)r + O(r2)

+ λ

[
(aαβ)01(t, θ, φ)

1

r
+ (aαβ)11(t, θ, φ) + O(r)

]
+ O(λ2), r > 0, (33)

where we have used the fact that (aαβ)00 can depend only on t, as noted in the previous
section. Since the worldline γ , given by xi = 0, was assumed to be timelike8 in the
spacetime gab(λ = 0), without loss of generality, we may choose our coordinates xα so that
gαβ(λ = 0, xi = 0) = (aαβ)00(t) = ηαβ . (One such possible choice of coordinates would be
Fermi normal coordinates with respect to γ in the metric gab(λ = 0). We emphasize that we
make the coordinate choice (aαβ)00 = ηαβ purely for convenience—so that, e.g., coordinate
time coincides with proper time on γ —but it plays no essential role in our arguments.)
Choosing these coordinates, and letting hαβ denote the O(λ) piece of the metric, we see that
gαβ(λ) takes the form

gαβ = ηαβ + O(r) + λhαβ + O(λ2), (34)

where

hαβ = cαβ(t, θ, φ)

r
+ O(1), (35)

8 We made this assumption explicitly in condition (i) of section 2. However, if, instead, we had assumed that the
‘interior region’ r � λR̄ was ‘filled in’ with matter satisfying the dominant energy condition, then it should be
possible to prove that γ must be timelike.

13
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where in equation (35), the term ‘O(1)’ denotes a term that, when multiplied by rε for any
ε > 0, vanishes as r → 0.

Now, by assumption (i) of section 2, for each λ, gab(λ) is a vacuum solution of Einstein’s
equation for r > λR̄ and is jointly smooth in (λ, xα) in this coordinate range. It follows that
for all r > 0, hab is a solution to the linearized Einstein equation off of gab(λ = 0), i.e.,

G
(1)
ab [hcd ] = − 1

2∇a∇bh
c
c − 1

2∇c∇chab + ∇c∇(bha)c = 0, r > 0, (36)

where here and in the following, ∇a denotes the derivative operator associated with gab(λ = 0),
and indices are raised and lowered with gab(λ = 0). Equation (36) holds only for r > 0,
and, indeed, if cαβ 	= 0, hab is singular at r = 0. However, even if cαβ 	= 0, the singularity
of each component of hab is locally integrable with respect to the volume element associated
with gab(λ = 0), i.e., each component, hαβ , is a locally L1 function on the entire spacetime
manifold, including r = 0. Thus, hab is well defined as a distribution on all of spacetime. The
quantity Tab ≡ G

(1)
ab [hcd ]/8π is therefore automatically well defined as a distribution. This

quantity has the interpretation of being the ‘source’ for the metric perturbation (35)—even
though all of our spacetimes gab(λ) for λ > 0 have excluded the ‘source region’ r � λR̄. It
follows immediately from equation (36) that, as a distribution, Tab must have support on γ in
the sense that it must vanish when acting on any test tensor field f ab whose support does not
intersect γ . We now compute Tab.

By definition, Tab ≡ G
(1)
ab [hcd ]/8π is the distribution on spacetime whose action on an

arbitrary smooth, compact support, symmetric tensor field fcd = fdc is given by

8πT (f ) =
∫

M

G
(1)
ab [fcd ]hab

√−g d4x = 0, (37)

where
√−g d4x denotes the volume element associated with gab(λ = 0) and we have used

the fact that the operator G
(1)
ab is self-adjoint9. Note that the right-hand side of this equation is

well defined since G
(1)
ab [fcd ] is a smooth tensor field of compact support and hab is locally L1.

We can evaluate the right-hand side of equation (37) by integrating over the region r > ε > 0
and then taking the limit as ε → 0. In the region r > ε, hab is smooth, and a straightforward
‘integration by parts’ calculation shows that

G
(1)
ab [fcd ]hab − G

(1)
ab [hcd ]f ab = ∇cs

c, (38)

where

sc = hab∇cfab − ∇chabfab + hbc∇bf − ∇bh
bc + 2∇ahbcfab − 2hab∇af bc

+ ∇chf − h∇cf + h∇bf
bc − ∇bhf

bc, (39)

where f = fabg
ab(λ = 0). Since G

(1)
ab [hcd ] = 0 for r > 0, it follows immediately that

T (f ) = 1

8π
lim
ε→0

∫
r>ε

G
(1)
ab [fcd ]hab = 1

8π
lim
ε→0

∫
r=ε

sana dS. (40)

Using equations (35) and (39), we find that T (f ) takes the form

T (f ) =
∫

dt Nab(t)f
ab(t, r = 0), (41)

9 See [23] for the definition of adjoint being used here. If G
(1)
ab were not self-adjoint, then the adjoint of G

(1)
ab would

have appeared in equation (37).
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where Nab(t) is a smooth, symmetric (Nab = Nba) tensor field on γ whose components are
given in terms of suitable angular averages of cαβ and its first angular derivatives. In other
words, the distribution Tab is given by10

Tab = Nab(t)
δ(3)(xi)√−g

dτ

dt
, (42)

where δ(3)(xi) is the ‘coordinate delta function’ (i.e.,
∫

δ(3)(xi) d3xi = 1).
We now use the fact that, since the differential operator G

(1)
ab satisfies the linearized Bianchi

identity ∇aG
(1)
ab = 0, the distribution Tab must satisfy ∇aTab = 0 in the distributional sense.

This means that the action of Tab must vanish on any test tensor field of the form fab = ∇(afb)

where fa is smooth and of compact support. In other words, by equation (41), the tensor field
Nab on γ must be such that for an arbitrary smooth vector field f a on spacetime, we have∫

dt Nab(t)∇af b(t, r = 0) = 0. (43)

Now for any i = 1, 2, 3, choose f a to have components of the form f μ =
xiF (x1, x2, x3)cμ(t), where each cμ (μ = 0, 1, 2, 3) is an arbitrary smooth function of
compact support in t and F is a smooth function of compact spatial support, with F = 1 in a
neighborhood of γ . Then equation (43) yields∫

dt Niμ(t)cμ(t) = 0 (44)

for all cμ(t), which immediately implies that Niμ = Nμi = 0 for all i = 1, 2, 3 and all
μ = 0, 1, 2, 3. In other words, we have shown that Nab(t) must take the form

Nab = M(t)uaub, (45)

where ua denotes the unit tangent to γ , i.e., ua is the 4-velocity of γ . Now choose f a to be an
arbitrary smooth vector field of compact support. Then equations (43) and (45) yield

0 =
∫

dt M(t)ub(ua∇af b) = −
∫

dt ua∇a(M(t)ub)f
b, (46)

where we integrated by parts in t to obtain the last equality. Since f a is arbitrary, this
immediately implies that

ua∇a(M(t)ub) = 0. (47)

This, in turn, implies that

dM/dt = 0, (48)

i.e., M is a constant along γ , and, if M 	= 0,

ua∇au
b = 0, (49)

i.e., in the case where M 	= 0, γ is a geodesic of gab(λ = 0), as we desired to show11.
In summary, we have shown that for any one-parameter family of metrics gab(λ) satisfying

assumptions (i)–(iii) of section 2, to first order in λ, the far-zone metric perturbation hab

corresponds to a solution to the linearized Einstein equation with a point particle source

Tab = Muaub

δ(3)(xi)√−g

dτ

dt
, (50)

10 In fact, by our coordinate choice, we have
√−g = 1 on γ and dτ

dt
= 1, but we prefer to leave in these factors so

that this formula holds for an arbitrary choice of coordinates.
11 Some previous derivations [5, 8, 12] of geodesic motion do not appear to make explicit use of the fact that M 	= 0.
It is critical that this assumption be used in any valid derivation of geodesic motion, since a derivation that holds for
M = 0 effectively would show that all curves are geodesics.
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where M is a constant and ua is the 4-velocity of γ , which must be a geodesic if M 	= 0. We
refer to M as the mass of the particle. It is rather remarkable that the point particle source (50)
is an output of our analysis rather than an input. Indeed, we maintain that the result we have
just derived is what provides the justification for the notion of ‘point particles’—a notion that
has played a dominant role in classical physics for more than three centuries. In fact, the notion
of point particles makes no mathematical sense in the context of nonlinear field theories like
general relativity. Nevertheless, we have just shown that the notion of a (structureless) ‘point
particle’ arises naturally as an approximate description of sufficiently small bodies—namely, a
description that is valid to first order in λ in the far zone for arbitrary one-parameter families of
metrics gab(λ) satisfying the assumptions of section 2. This description is valid independently
of the nature of the ‘body’, e.g., it holds with equal validity for a small black hole as for a
small blob of ordinary matter.

5. Description of motion to first order in λ

In the previous section, we established that, to zeroth order in λ, any body (or black hole) of
nonvanishing mass moves on a geodesic of the background spacetime. Much of the remainder
of this paper will be devoted to finding the corrections to this motion, valid to first order in λ

in the far zone. In this section, we address the issue of what is meant by the ‘motion of the
body’ to first order in λ.

The first point that should be clearly recognized is that it is far from obvious how to
describe ‘motion’ in terms of a worldline for λ > 0. Indeed, the metric gab(λ) is defined only
for r > λR̄, so at finite λ the spacetime metric may not even be defined in a neighborhood
of γ . If we were to assume that R̄ 
 M and that the region r < λR̄ were ‘filled in’ with
sufficiently ‘weak field matter’—so that R̄R̄2 � 1, where R̄ denotes the supremum of the
components of the Riemann curvature tensor of ḡab(λ) in the ‘filled-in’ region—then it should
be possible to define a ‘center-of-mass’ worldline at finite λ, and we could use this worldline
to characterize the motion of the body [24]. However, we do not wish to make any ‘weak
field’ assumptions here, since we wish to describe to motion of small black holes and other
‘strong field’ objects. Since it is not clear how to associate a worldline to the body at finite
λ—and, indeed, the ‘body’ is excluded from the spacetime region we consider at finite λ—it
is not clear what one would mean by a ‘perturbative correction’ to γ to first or higher order
in λ.

A second point that should be understood is that if we have succeeded in defining the
worldlines describing the motion the body at finite λ,

xi(λ, t) = zi(λ, t) = λZi(t) + O(λ2), (51)

then the ‘first order in λ perturbative correction’, Zi , to the zeroth-order motion γ (given by
xi(t) = 0) is most properly viewed as the spatial components of a vector field, Za , defined
along γ . This vector field describes the ‘infinitesimal displacement’ to the corrected motion
to first order in λ. The time component, Z0, of Za depends on how we identify the time
parameter of the worldlines at different values of λ and is not physically relevant; we will set
Z0 = 0 so that Za is orthogonal to the tangent, ua , to γ in the background metric gab(λ = 0).
Thus, when we seek equations of motion describing the first-order perturbative corrections to
geodesic motion, we are seeking equations satisfied by the vector field Za(t) on γ .
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A third point that should be clearly recognized is that Za and any equations of motion
satisfied by Za will depend on our choice of gauge for hab. To see this explicitly, suppose that
we perform a smooth12 gauge transformation of the form

xμ → x̂μ = xμ − λAμ(xν) + O(λ2). (52)

Under this gauge transformation, we have

hμν → ĥμν = hμν − 2∇(μAν). (53)

However, clearly, the new description of motion will be of the form [19]

x̂i (λ, t) = ẑi (λ, t), (54)

where

ẑi (t) = zi(t) − λAi(t, xj = 0) + O(λ2). (55)

Thus, we see that Za transforms as

Zi(t) → Ẑi(t) = Zi(t) − Ai(t, xj = 0) (56)

in order that it describe the same perturbed motion. Thus, the first-order correction, Za(t), to
the background geodesic motion contains no meaningful information by itself and, indeed, it
can always be set to zero by a smooth gauge transformation. Only the pair (hab, Z

a(t)) has
gauge-invariant meaning.

We turn now to the definition of the first-order perturbed motion. Our definition relies on
the fact, proven in section 3, that for each t0, ḡμ̄ν̄ (λ = 0; t0; x̄α) is a stationary, asymptotically
flat spacetime. Therefore, ḡab(λ = 0) has well-defined sets of mass (‘electric parity’) and
angular momentum (‘magnetic parity’) multipole moments [25, 26] and, indeed, the spacetime
is characterized by the values of these two sets of multipole moments [27, 28]. The multipole
moments (other than the lowest nonvanishing multipoles of each type) depend upon a choice
of conformal factor [25, 26], which, roughly speaking, corresponds to a choice of ‘origin’.
We choose the conformal factor � = 1/r̄2 to define all of the multipoles, corresponding to
choosing the origin at r̄ = 0. For a metric of the form equation (29)—with (aμν)00 = ημν

by our coordinate choice imposed in the previous section that gμν(λ = 0) = ημν on γ —the
mass will be simply the l = 0 part of the coefficient of 1/r̄ in the large r̄ expansion of
1
2 ḡt̄ t̄ (λ = 0; t0). Similarly, the mass dipole moment will be the coefficient of the l = 1 part of
this quantity at order 1/r̄2.

It is well known that if the mass is nonzero, the mass dipole moment is ‘pure gauge’
and can be set to zero by choice of conformal factor/‘origin’. We now explicitly show that,
with our choice of conformal factor � = 1/r̄2, the mass dipole moment can be set to zero
by a smooth gauge transformation of the form (52). It follows from the linearized Einstein
equation (36) with source (50) applied to hab, equation (35), that the time–time component of
hab takes the form

htt = 2M

r
+ O(1), (57)

i.e., in the notation of equation (24), we have (att )01 = 2M . Comparing with equation (28)
(and also using the fact that (att )00 = −1), we see that at each t0

ḡt̄ t̄ (λ = 0; t0) = −
(

1 − 2M

r̄

)
+ O(1/r̄2). (58)

12 Gauge transformations where Aμ is not smooth at xi = 0 are also permitted under the coordinate freedom stated
at the end of section 2. However, it suffices to consider smooth Aν for our considerations here. The change in the
description of motion under non-smooth gauge transformations will be treated in the appendix.
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From this equation, we see that the ‘particle mass’, M, of the ‘source’ of the far-zone metric
perturbation (see equation (50)) is also the Komar/ADM mass of the stationary, asymptotically
flat spacetime ḡab(λ = 0; t0). We now calculate the effect of the coordinate transformation
(52) on ḡt̄ t̄ (λ = 0; t0). The transformation (52) corresponds to changing the barred coordinates
by

x̄μ → ˆ̄xμ = x̄μ − Aμ(t0, x
i = 0) + O(λ), (59)

i.e., to zeroth order in λ, it corresponds to a ‘constant displacement’ of coordinates. Since

1

r̄
= 1

| ˆ̄xi + Ai(t0, 0)|
= 1

ˆ̄r
− Aix

i

ˆ̄r3 + O(1/ ˆ̄r3
), (60)

it can be seen that this transformation has the effect of changing the mass dipole moment by
−MAi . In particular, we can always choose Ai so as to set the mass dipole moment to zero.

Now, the ‘near-zone’ coordinates ˆ̄xi for which the mass dipole moment vanishes have the
interpretation of being ‘body centered’ coordinates to zeroth order in λ. The origin x̂i = 0
of the corresponding ‘far-zone’ coordinates x̂i therefore has the interpretation of representing
the ‘position’ of the center of mass of the body to first order in λ. We shall use this to define
the correction to geodesic motion to first order in λ by proceeding as follows:

First, we shall choose our coordinates, xμ, to zeroth order in λ by choosing convenient
coordinates for the ‘background spacetime’ gab(λ = 0). (We will use Fermi normal
coordinates based on γ .) Next, we will define our coordinates, xμ, to first order in λ by
choosing a convenient gauge for hab, equation (35). (We will choose the Lorenz gauge
∇a(hab − 1

2hgab) = 0.) Then we will introduce the smooth coordinate transformation (52),
and impose the requirement that Aμ be such that the mass dipole moment of ḡab(λ = 0; t0)

vanish for all t0. Since the ‘location’ of the body in the new coordinates is ẑi (t) = 0, the
first-order perturbative correction Za(t) to the motion of the body in our original coordinates
xμ will be given by

Zi(t) = Ai(t, xj = 0). (61)

Of course, the particular Za(t) that we obtain in any given case will depend upon the particular
one-parameter family gab(λ) that we consider. What is of interest is any ‘universal relations’
satisfied by Za(t) that are independent of the choice of one-parameter family satisfying
assumptions (i)–(iii) of section 2. Such universal relations would provide us with ‘laws of
motion’ for point particles that take self-force effects into account. In the following section,
we will show (via a lengthy calculation) that such a universal relation exists for d2Zi/dt2, thus
providing us with general ‘equations of motion’ for all ‘point particles’, valid to first order
in λ.

Finally, we note that if we wish to describe motion beyond first order in λ, it will be
necessary to define a ‘representative world line’ in the far zone to at least second order in
λ. We shall not attempt to do so in this paper. The definition of a suitable representative
worldline is probably the greatest obstacle to extending the results of this paper to higher order
in perturbation theory.

6. Computation of perturbed motion

In the section 4, we found that first-order far-zone perturbations of the background spacetime
gab(λ = 0) are sourced by a point particle stress energy, equation (50). For the remainder of
this paper, we will assume that M 	= 0, so that, as shown in section 4, the lowest order motion
is described by a geodesic, γ , of the background spacetime. We will need expressions for the
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components of the far-zone metric, gμν |λ=0, its first-order perturbation, hμν ≡ ∂gμν/∂λ|λ=0,
and its second-order perturbation jμν ≡ 1

2∂2gμν/∂λ2|λ=0. It is convenient to choose our
coordinates xμ to zeroth order in λ to be Fermi normal coordinates with respect to the
background geodesic γ , and choose these coordinates to first order in λ so that hμν satisfies
the Lorenz gauge condition ∇bh̃ab = 0, where h̃ab ≡ hab − 1

2hgab|λ=0 with h ≡ habg
ab|λ=0.

Then the linearized Einstein equation reads

∇c∇ch̃ab − 2Rc
ab

d h̃cd = −16πM

∫
γ

δ4(x, z(τ ))ua(τ )ub(τ ) dτ, (62)

∇bh̃ab = 0. (63)

This system of equations can be solved using the Hadamard expansion techniques of
DeWitt and Brehme [5, 6, 9]. Since this technology has been used in all previous derivations
of gravitational self-force, we do not review it here but simply present results. Equation (2.27)
of [5] provides a covariant expression for the perturbations in terms of parallel propagators
and Synge’s world function on the background metric (see, e.g., [8] for definitions of these
quantities). The Fermi normal coordinate components of these tensors are easily calculated
with the aid of expressions from section 8 of Poisson [8]. Combining this with the form of the
background metric in Fermi normal coordinates, we obtain

gαβ(λ; t, xi) = ηαβ + Bαiβj (t)x
ixj + O(r3) + λ

(
2M

r
δαβ + htail

αβ (t, 0)

+ htail
αβi(t, 0)xi + MRαβ(t, xi) + O(r2)

)
+ O(λ2), (64)

where the quantities Bαβγ δ and Rαβ are defined by the following expressions in terms of the
Fermi normal coordinate components of the Riemann tensor of the background metric

B0k0l = −R0k0l R00 = 7R0k0l

xkxl

r
(65)

Bik0l = −2

3
Rik0l Ri0 = 2

3
Rik0l

xkxl

r
− 2Ri0k0x

k (66)

Bikjl = −1

3
Rikjl Rij = −13

3
Rikjl

xkxl

r
− 4rRi0j0, (67)

and htail
αβ and htail

αβγ are given by

htail
αβ (x) ≡ M

∫ τ−
ret

−∞

(
G+αβα′β ′ − 1

2
gαβG

γ

+ γα′β ′

)
(x, z(τ ′))uα′

uβ ′
dτ ′, (68)

htail
αβγ (x) ≡ M

∫ τ−
ret

−∞
∇γ

(
G+αβα′β ′ − 1

2
gαβG δ

+ δα′β ′

)
(x, z(τ ′))uα′

uβ ′
dτ ′. (69)

In these expressions, G+ is the Lorenz gauge retarded Green’s function, normalized with a
factor of −16π , following [6]. As previously mentioned, the symbol τ−

ret indicates that the
range of the integral extends just short of the retarded time τret, so that only the ‘tail’ (i.e.,
interior of the light cone) portion of Green’s function is used (see, e.g., [8] for details). We
define htail

αβγ , rather than working with derivatives of htail
αβ , because htail

αβ is not differentiable
on the worldline. (However, this non-differentiability is limited only to spatial derivatives
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of spatial components of htail
αβ ,13 so that expressions like (4) are well defined.) A choice

of retarded solution (corresponding to ‘no incoming radiation’) was made in writing these
equations. This choice is not necessary, and one could add an arbitrary smooth solution
hαβ of the linearized Einstein equation to the first order in λ term on the right-hand side of
equation (64), which could then be carried through all of our calculations straightforwardly.
However, for simplicity, we will not consider the addition of such a term.

Our derivation of gravitational self-force to first order in λ will require consideration of
second-order metric perturbations, so we will have to carry the expansion of gab(λ) somewhat
beyond equation (64). (This should not be surprising in view of fact that our above derivation
in section 4 of geodesic motion at zeroth order in λ required consideration of first-order metric
perturbations.) In particular, we will need an explicit expression for the quantity (aμν)02

appearing in the far-zone expansion equation (24), i.e., the term of order λ2 that has the most
singular behavior in 1/r (namely, 1/r2).

The second-order perturbation jab satisfies the second-order Einstein equation, which
takes the form

G
(1)
ab [j ] = −G

(2)
ab [h, h], (70)

where G
(2)
ab denotes the second-order Einstein tensor about the background metric gab|λ=0.

Since the O(1/r) part of hab corresponds to the linearized Schwarzschild metric in isotropic
coordinates (see equation (64)), it is clear that there is a particular solution to equation (70) of
the form

j I
αβ = M2

r2
(−2tαtβ + 3nαnβ) + O(r−1) (71)

as r → 0, where

ni ≡ xi/r (72)

and n0 = 0, whereas tα ≡ δα0. (The explicitly written term on the right-hand side of
equation (71) is just the O(M2) part of the Schwarzschild metric in isotropic coordinates.)
The general solution to equation (70) can then be written as

jab = j I
ab + jH

ab, (73)

where jH
ab is a homogeneous solution of the linearized Einstein equation. We wish to compute

the O(1/r2) part of jH
ab, i.e., writing

jH
ab = Cab(t, θ, φ)

r2
+ O(r−1), (74)

we wish to compute Cab. Now, although the equations of motion to first order in λ depend
upon a choice of gauge to first order in λ (see section 5), they cannot depend upon a choice
of gauge to second order in λ, since a second-order gauge transformation cannot affect the
mass dipole moment of the background-scaled metric ḡμ̄ν̄ (λ = 0). (We have also verified
by a direct, lengthy computation that second-order gauge transformations do not produce
changes in the equations of motion to first order in λ.) Therefore, we are free to impose any
(admissible) second-order gauge condition on jH

ab. It will be convenient to require that the
Lorenz gauge condition ∇a

(
jH
ab − 1

2jHgab

) = 0 be satisfied to order 1/r3. The O(1/r4)

part of the linearized Einstein equation together with the O(1/r3) part of the Lorenz gauge
condition then yields

13 This can be seen from the fact that differentiation of htail
αβ on the worldline γ yields htail

αβγ plus the coincidence limit
of the integrand of (68), which is proportional to Rα0β0 times the gradient of τret.
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∂i∂i

(
1

r2
C̃μν(t, θ, φ)

)
= 0 (75)

∂i

(
1

r2
C̃iμ(t, θ, φ)

)
= 0, (76)

where C̃ab = Cab − 1
2Cηab. This system of equations for 1

r2 Cμν is the same system of
equations as is satisfied by stationary solutions of the flat spacetime linearized Einstein
equation (but our Cμν may depend on time). The general solution of these equations is
C̃ij = 0, C̃i0 = F(t)ni+Sij (t)n

j , and C̃00 = 4Pi(t)n
i , where Sij is antisymmetric, Sij = −Sji ,

where F, Sij and Pi have no spatial dependence, and where ni was defined by equation (72).
By a further second-order gauge transformation (of the form ξμ = δμ0F(t)/r), we can set
F(t) = 0. We thus obtain

C00(t, θ, φ) = 2Pi(t)n
i(θ, φ) (77)

Ci0(t, θ, φ) = Sij (t)n
j (θ, φ) (78)

Cij (t, θ, φ) = 2δijPk(t)n
k(θ, φ), (79)

which is of the same form as the general stationary l = 1 perturbation of Minkowski spacetime
(see, e.g., [29]), except that time dependence is allowed for Sij and Pi . As we shall see shortly,
Sij and Pi correspond, respectively, to the spin and mass dipole moment of the body.

We now may write for the metric through O(λ2),

gαβ(λ; t, xi) = ηαβ + Bαiβj (t)x
ixj + O(r3)

+ λ

(
2M

r
δαβ + htail

αβ (t, 0) + htail
αβi(t, 0)xi + MRαβ(t) + O(r2)

)

+ λ2

(
M2

r2
(−2tαtβ + 3nαnβ) +

2

r2
Pi(t)n

iδαβ +
1

r2
t(αSβ)j (t)n

j

+
1

r
Kαβ(t, θ, φ) + Hαβ(t, θ, φ) + O(r)

)
+ O(λ3), (80)

where we have introduced the unknown tensors K and H, and Sαβ is the antisymmetric tensor
whose spatial components are Sij and whose time components vanish, i.e.,

S0i = 0. (81)

We now follow the strategy outlined in section 5. We consider a smooth coordinate shift
of the form (52),

x̂μ = xμ − λAμ(xν) + O(λ2), (82)

and choose Aμ so as to make the mass dipole moment of ḡ ˆ̄α ˆ̄β(λ, t0) vanish for all t0. A
straightforward application of the coordinate transformation (82) to the metric (80) yields

gα̂β̂ = ηαβ + Bαiβj (t̂)x̂
i x̂j + O(r3)

+ λ

(
2M

r̂
δαβ + htail

αβ (t̂ , 0) + htail
αβi(t̂ , 0)x̂i + MRαβ(t̂ , x̂i ) + 2Aα,β(t̂ , x̂i )

+ 2Bαiβj (t̂)x̂
iAj (t̂ , x̂i ) + O(r2)

)
+ λ2

(
M2

r̂2
(−2tαtβ + 3nαnβ)

+
2

r̂2
[Pi(t̂) − MAi(t̂, 0)]niδαβ +

1

r̂2
t(αSβ)j (t̂)n

j

+
1

r̂
Kαβ(t̂, θ, φ) + Hαβ(t̂, θ, φ) + O(r)

)
+ O(λ3), (83)
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where we have ‘absorbed’ the effects of the gauge transformation at orders λ2r−1 and
λ2r0 into the unknown tensors H,K . The corresponding ‘near-zone expansion’ (see
equations (24), (27) and (28)) is

ḡ ˆ̄α ˆ̄β(t̂0) = ηαβ +
2M

ˆ̄r
δαβ +

M2

ˆ̄r2 (−2tαtβ + 3nαnβ) +
1

ˆ̄r2 t(αSβ)jn
j +

2

ˆ̄r2 [Pi − MAi]n
iδαβ

+ O

(
1

ˆ̄r3

)
+ λ

[
htail

αβ + 2A(α,β) +
1
ˆ̄r
Kαβ +

ˆ̄t

ˆ̄r2 (t(αSβ)j,0n
j

+ 2[Pi,0 − MAi,0]niδαβ) + O

(
1

ˆ̄r2

)
+ ˆ̄tO

(
1

ˆ̄r3

) ]
+ λ2

[
Bαiβj ˆ̄xi ˆ̄xj + htail

αβγ
ˆ̄xγ

+ MRαβ( ˆ̄xi
) + 2BαiβjA

i ˆ̄xj + 2A(α,β)γ ˆ̄xγ + Hαβ +
ˆ̄t
ˆ̄r
Kαβ,0 +

ˆ̄t
2

ˆ̄r2 (t(αSβ)j,00n
j

+ 2[Pi,00 − MAi,00]niδαβ) + O

(
1
ˆ̄r

)
+ ˆ̄tO

(
1

ˆ̄r3

)
+ ˆ̄t

2
O

(
1

ˆ̄r3

)]
+ O(λ3).

(84)

Note that the indices on the left-hand side of this equation have both a ‘hat’ and ‘bar’ on them
to denote that they are components of ḡab in the scaled coordinates associated with our new
coordinates x̂μ. By contrast, the indices on the right-hand side have neither a ‘hat’ nor a ‘bar’,
since they denote the corresponding components in the unscaled, original coordinates xμ.
Thus, for example, Aα,β denotes the matrix of first partial derivatives of the xμ-components
of Aa with respect to the xμ coordinates14. It also should be understood that all tensor
components appearing on the right-hand side of equation (84) are evaluated at time t̂0, and
that Aα and its derivatives, as well as htail

αβ and htail
αβγ , are evaluated at x̂i = 0 (i.e., on the

worldline γ ). Finally, the ‘reversals’ in the roles of various terms in going from the far-zone
expansion of the metric equation (80) to the near-zone expansion equation (84) should be
noted. For example, the spin term 1

r2 t(αSβ)jn
j originated as a second-order perturbation in

the far zone, but it now appears as part of the background-scaled metric in the near-zone
expansion. By contrast, the term Bαiβjx

ixj originated as part of the background metric in the
far zone, but it now appears as a second-order perturbation in the near-zone expansion.

It is easy to see from equation (84) that P i − MAi is the mass dipole moment of ḡ ˆ̄α ˆ̄β at
time t0. We therefore set

Ai(t) = P i(t)/M (85)

for all t. Consequently, no mass dipole term will appear in our expressions below.
Although we have ‘solved’ for Ai in equation (85), we have not learned anything useful

about the motion15. All useful information about Ai will come from demanding that the
metrics gab(λ)—or, equivalently, ḡab(λ)—be solutions of Einstein’s equation. We may apply
Einstein’s equation perturbatively either via the far-zone expansion or the near-zone expansion.
The resulting systems of equations are entirely equivalent, but the terms are organized very

14 Note that the term A(α,β)γ arises from Taylor expanding A(α,β) with respect to the x̂μ coordinates, so, in principle,
the second partial derivative in this expression should be with respect to x̂γ rather than xγ . However, since x̂γ

coincides with xγ at zeroth order in λ and the A(α,β)γ appears at second order in λ, we may replace the partial
derivative with respect to x̂γ by the partial derivative with respect to xγ .
15 However, equation (85) indicates clearly that solving for the displacement to center-of-mass coordinates Ai is
equivalent to simply determining the mass dipole moment P i in the original coordinates. The computations of this
section may therefore be recast as simply solving enough of the second-order perturbation equations for the mass
dipole moment—and hence the motion—to be determined.
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differently. We find it more convenient to work with the near-zone expansion, and will
do so below. We emphasize, however, that we could equally well have used the far-zone
perturbation expansion. We also emphasize that no new information whatsoever can be
generated by matching the near- and far-zone expansions, since these expansions have already
been fully ‘matched’ via equations (24), (27) and (28).

In the following, in order to make the notation less cumbersome, we will drop the ‘hat’
on the near-zone coordinates ˆ̄xμ and on the components ḡ ˆ̄α ˆ̄β . No confusion should arise from
this, since we will not have occasion to use the original, scaled coordinates x̄μ below. On
the other hand, we will maintain the ‘hat’ on the coordinates x̂μ, since we will have occasion
to use both x̂μ and xμ below. Using this notation and setting the mass dipole terms to zero,
equation (84) becomes

ḡᾱβ̄ (t̂0) = ηαβ +
2M

r̄
δαβ +

M2

r̄2
(−2tαtβ + 3nαnβ) +

1

r̄2
t(αSβ)jn

j + O

(
1

r̄3

)

+ λ

[
htail

αβ + 2A(α,β) +
1

r̄
Kαβ +

t̄

r̄2
t(αṠβ)jn

j + O

(
1

r̄2

)
+ t̄O

(
1

r̄3

)]

+ λ2

[
Bαiβj x̄

i x̄j + htail
αβγ x̄γ + MRαβ(x̄i) + 2BαiβjA

ix̄j + 2A(α,β)γ x̄γ

+ Hαβ +
t̄

r̄
K̇αβ +

t̄2

r̄2
t(αS̈β)j n

j + O

(
1

r̄

)
+ t̄O

(
1

r̄2

)
+ t̄2O

(
1

r̄3

)]
+ O(λ3),

(86)

where the ‘dots’ denote derivatives with respect to t.
We now apply the vacuum linearized Einstein equation—up to leading order, 1/r̄3, in 1/r̄

as r̄ → ∞—to the first-order term in λ appearing in equation (86), namely

ḡ
(1)

ᾱβ̄
= htail

αβ + 2A(α,β) +
1

r̄
Kαβ(θ, φ) +

t̄

r̄2
t(αṠβ)jn

j + O

(
1

r̄2

)
+ t̄O

(
1

r̄3

)
. (87)

It is clear that the terms of order 1/r̄2 and t̄/r̄3 in ḡ
(1)

ᾱβ̄
cannot contribute to the linearized

Ricci tensor to order 1/r̄3. Similarly, it is clear that the terms of order 1/r̄2 and higher in the
background-scaled metric cannot contribute to the linearized Ricci tensor to order 1/r̄3, so, to
order 1/r̄3, we see that ḡ

(1)

ᾱβ̄
satisfies the linearized Einstein equation about the Schwarzschild

metric. It is therefore useful to expand ḡ
(1)

ᾱβ̄
in tensor spherical harmonics.

We obtain one very useful piece of information by extracting the � = 1, magnetic parity
part of the linearized Ricci tensor that is even under time reversal. On account of the symmetries
of the background Schwarzschild metric, only the � = 1, magnetic parity, even under time
reversal part of the metric perturbation can contribute. Now, a general � = 1, symmetric
(but not necessarily trace free) tensor field Qαβ(t, r, θ, φ) can be expanded in tensor spherical
harmonics as (see, e.g., [30] or [31] equations (A.16)–(A.18))

Q00 = QA
i ni

Qi0 = QB
j njni + QC

i + QM
k εij

knj

Qij = QD
k nkninj + QE

(inj) + QF
k δijn

k + QN
k εk

l(inj)n
l,

(88)

where the expansion coefficients QA
i ,QB

i ,QC
i ,QD

i ,QE
i ,QF

i ,QM
i ,QN

i are functions of (t, r).
The 3-vector index on these coefficients corresponds to the three different ‘m-values’ for each
� = 1 harmonic. Thus, we see that there are a grand total of eight types of � = 1 tensor
spherical harmonics. The six harmonics associated with labeling indices A−F are of electric
parity, whereas the two harmonics associated with M,N are of magnetic parity.

23



Class. Quantum Grav. 25 (2008) 205009 S E Gralla and R M Wald

For the metric perturbation (87), the ‘constant tensors’ htail
αβ and A(α,β) are purely electric

parity and cannot contribute. It turns out that 1
r̄
Kαβ(θ, φ) also does not contribute to the

� = 1, magnetic parity part of the linearized Ricci tensor that is even under time reversal:
since Kαβ is independent of t̄ the ‘M’ part of Kαβ is odd under time reversal, whereas the ‘N’
part of 1

r̄
Kαβ(θ, φ) is pure gauge. Thus, the only term that contributes to order 1/r̄3 to the

� = 1, magnetic parity part of the linearized Ricci tensor that is even under time reversal is
t̄
r̄2 t(αṠβ)j n

j . The satisfaction of the vacuum linearized Einstein equation at order 1/r̄3 requires
that this term vanish. We thereby learn that

dSij

dt
= 0, (89)

i.e., to lowest order, the spin is parallelly propagated with respect to the background metric
along the worldline γ .

Having set the spin term to zero in equation (87), we may now substitute the remaining
terms in equation (87) into the linearized Einstein equation and set the 1/r̄3 part equal to zero.
It is clear that we will thereby obtain relations between htail

αβ , A(α,β), and Kαβ . However, these
relations will not be of direct interest for obtaining ‘equations of motion’—i.e., equations
relating Ai and its time derivatives to known quantities—because the quantity of interest
Ai,0 always appears in combination with the quantity A0,i , which is unrelated to the motion.
Therefore, we shall not explicitly compute the relations arising from the linearized Einstein
equation here.

We now consider the information on Ai that can be obtained from the near-zone second-
order Einstein equation

G
(1)
ab [ḡ(2)] = −G

(2)
ab [ḡ(1), ḡ(1)], (90)

where, from equation (86), we see that

ḡ
(2)

ᾱβ̄
= Bαiβj x̄

i x̄j + Dαβγ x̄γ + MRαβ(x̄μ) + Hαβ(θ, φ) +
t̄

r̄
K̇αβ(θ, φ)

+ O

(
1

r̄

)
+ t̄O

(
1

r̄2

)
+ t̄2O

(
1

r̄3

)
, (91)

where we have defined

Dαβ0 ≡ htail
αβ0 + 2A(α,β)0 (92)

Dαβi ≡ htail
αβi + 2A(α,β)i + 2BαiβjA

j . (93)

We wish to impose the second-order Einstein equation to orders 1/r̄2 and t̄/r̄3, which, as
we shall see below, are the lowest nontrivial orders in 1/r̄ as r̄ → ∞ that occur. First, we
consider G

(2)
ab [ḡ(1), ḡ(1)]. The terms appearing in this quantity can be organized into terms of

the following general forms (i) ḡ(1)∂∂ḡ(1); (ii) ∂ḡ(1)∂ḡ(1); (iii) �ḡ(1)∂ḡ(1) where � denotes
a Christoffel symbol of the background-scaled metric; (iv) ��ḡ(1)ḡ(1) and (v) (∂�)ḡ(1)ḡ(1).
From the form of ḡ(1) together with the fact that � = O(1/r̄2) and ∂� = O(1/r̄3), it is clear
that none of these terms can contribute to G

(2)
ab [ḡ(1), ḡ(1)] to order 1/r̄2 or t̄/r̄3. Therefore, we

may treat ḡ(2) as satisfying the homogeneous, vacuum linearized Einstein equation.
We now consider the linearized Ricci tensor of the perturbation ḡ(2). By inspection of

equation (91), it might appear that terms that are O(1) (from two partial derivatives acting
on the ‘B’ term) and O(1/r̄) (from various terms) will arise. However, it is not difficult to
show that the total contribution to the O(1) and O(1/r̄) terms will vanish by virtue of the fact
that the metric gab(λ = 0) is a solution to Einstein’s equation and the term proportional to
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λ in equation (80) satisfies the far-zone linearized Einstein equation (which has already been
imposed). It also is clear that there is no contribution of ḡ(2) to the linearized Ricci tensor
that is of order t̄/r̄2. Thus, the lowest nontrivial orders that arise in the second-order Einstein
equation are indeed 1/r̄2 and t̄/r̄3, as claimed above.

The computation of the linearized Ricci tensor to orders 1/r̄2 and t̄/r̄3 for the metric
perturbation ḡ(2) is quite complicated, so we will save considerable labor by focusing on the
relevant part of the linearized Einstein equation to these orders. Our hope/expectation (which
will be borne out by our calculation) is to obtain an equation for Ai

,00. Since this quantity is of
� = 1, electric parity type and is even under time reversal, we shall focus on the � = 1, electric
parity, even under time reversal part of the linearized Ricci tensor of ḡ(2) at orders 1/r̄2 and
t̄/r̄3. From equation (88), we see that the � = 1 electric parity part of the Ricci tensor that is
O(1/r̄2) and even under time reversal can be written as

R
(1)
00

∣∣
�=1,+, 1

r̄2
= 1

r̄2
RA

i ni (94)

R
(1)
ij

∣∣
�=1,+, 1

r̄2
= 1

r̄2

(
RD

k nkninj + RE
(i nj) + RF

k nkδij

)
, (95)

whereas the � = 1 part of the Ricci tensor that is O(t̄/r̄3) and even under time reversal can be
written as

R
(1)
i0

∣∣
�=1,+, t̄

r̄3
= t̄

r̄3

(
RB

j njni + RC
i

)
. (96)

Here, in contrast to the usage of (88), RA
i , RB

i , RC
i , RD

i , RE
i , RF

i are ‘constants’, i.e., they have
no dependence on (t̄ , r̄).

We now consider the terms in ḡ(2) that can contribute to these Ricci terms. The term
Bαiβj x̄

i x̄j has no � = 1 part. Nevertheless, the � = 2 magnetic parity part of this term can,
in effect, combine with the � = 1 magnetic parity ‘spin term’ 1

r̄2 t(αSβ)jn
j in the background-

scaled metric to produce a contribution to the linearized Ricci tensor of the correct type. This
contribution will be proportional to

Fi ≡ SklRkl0i . (97)

For the remaining terms in ḡ(2), the ‘spin term’ 1
r̄2 t(αSβ)jn

j in the background-scaled
metric will not contribute to the relevant parts of the linearized Ricci tensor, so we may treat
the remaining terms in ḡ(2) as though they were perturbations of Schwarzschild. Thus, only
the � = 1, electric parity, even under time reversal part of these terms can contribute. The
remaining contributors to RA

i , RB
i , RC

i , RD
i , RE

i and RF
i are

D00kx̄
k = r̄DA

i ni

Di00 t̄ = t̄DC
i

Dijkx̄
k|�=1,+ = r̄

(
n(iD

E
j) + δijn

kDF
k

)
,

(98)

and

H00|�=1,+ = HA
i ni (99)

K̇i0|�=1,+ = K̇B
j njni + K̇C

i (100)

Hij |�=1,+ = HD
k nkninj + HE

(i nj) + HF
k nkδij , (101)
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where, in equation (98), we have

DA
i = D00i (102)

DC
i = Di00 (103)

DE
i = 1

5

(
3Dk

ik − Dk
ki

)
(104)

DF
i = 1

5

(−D k
i k + 2Dk

ki

)
. (105)

(The curvature term Rαβ has not appeared in the above equations because it has no � = 1 part.)
The DA

i ,DC
i ,DE

i ,DF
i ,HA

i ,HD
i ,HE

i ,HF
i , K̇B

i , K̇C
i are also ‘constants’ in these expressions.

A lengthy calculation now yields⎛
⎜⎜⎜⎜⎜⎜⎜⎝

RA
i

RB
i

RC
i

RD
i

RE
i

RF
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

−1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−16
5 −3M 0 −M −M −2 0 0 0 −2 2
0 0 −6M 0 0 0 0 0 0 −3 −3
0 0 2M 0 0 0 0 0 0 1 1
−6
5 −6M 0 0 −6M −3 3 0 3 −6 0

−16
5 0 4M 0 4M 2 −2 0 −2 2 −2
2 0 3M −3M 9M 1 −3 0 −3 2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fi

DA
i

DC
i

DE
i

DF
i

HA
i

HD
i

HE
i

HF
i

K̇B
i

K̇C
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(106)

Using the vacuum linearized Einstein equation R
(1)
ab = 0, we thus obtain six linear

equations for our 11 unknowns. However, in order to find ‘universal’ behavior, we are
interested in relations that do not involve Hαβ and K̇αβ . It can be shown that there are two
such relations16, namely

−4Fi − 3MDA
i + 2MDC

i − 2MDE
i + 4MDF

i = 0 (107)

and

−Fi − MDA
i + 2MDC

i = 0. (108)

The first equation involves A0 and spatial derivatives of Ai , and does not yield restrictions on
the motion. However, the second equation gives desired equations of motion. Plugging in the
definitions of the quantities appearing in equation (108), we obtain

−SklRkl0i − M
(
htail

00,i + 2R0j0iA
j + 2A0,0i

)
+ 2M

(
htail

i0,0 + Ai,00 + A0,i0
) = 0, (109)

16 There will be three such relations in total, because the vanishing of the mass dipole moment for all time implies
through O(λ2) in near-zone perturbation theory the vanishing of the value, time derivative and second time derivative
of the mass dipole at time t0. The third condition should follow from the first-order near-zone Einstein equation,
which we did not fully use. In fact, it should only be necessary to impose that the mass dipole have no second time
derivative in order to define the motion.
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where we have taken advantage of the fact (noted above) that for 00 and 0i components we
have htail

αβγ = htail
αβ,γ . Using the equality of mixed partials A0,i0 = A0,0i , we obtain

Ai,00 = 1

2M
SklRkl0i − R0j0iA

j −
(

htail
i0,0 − 1

2
htail

00,i

)
. (110)

Thus, according to the interpretation provided in section 5 above, the first-order perturbative
correction, Zi(t), to the geodesic γ of the background spacetime satisfies

d2Zi

dt2
= 1

2M
SklRkl0

i − R0j0
iZj −

(
htaili

0,0 − 1

2
htail

00
,i

)
. (111)

In addition, we have previously found that M and Sij are constant along γ . Taking account of
the fact that this equation is written in Fermi normal coordinates of γ and that Z0 = 0, we can
rewrite this equation in a more manifestly covariant looking form as

uc∇c(u
b∇bZ

a)= 1

2M
Rbcd

aSbcud − Rbcd
aubZcud − (gab + uaub)

(
∇dh

tail
bc − 1

2
∇bh

tail
cd

)
ucud,

(112)

where ua is the tangent to γ and uc∇cSab = 0. However, it should be emphasized that this
equation describes the perturbed motion only when the metric perturbation is in the Lorenz
gauge (see the appendix).

The first term in equation (111) (or, equivalently, in equation (112)) is the ‘spin force’ first
obtained by Papapetrou [18]. Contributions from higher multipole moments do not appear in
our equation because they scale to zero faster than the spin dipole moment, and thus would
arise at higher order in λ in our perturbation scheme. The second term corresponds to the right-
hand side of the geodesic deviation equation, and appears because the perturbed worldline is
not (except at special points) coincident with the background worldline17. The final term is
the ‘gravitational self-force’, which is seen to take the form of a (regularized) gravitational
force from the particle’s own field. Our derivation has thus provided a rigorous justification
of the regularization schemes that have been proposed elsewhere.

Finally, we note that, although our analysis has many points of contact with previous
analyses using matched asymptotic expansions, there are a number of significant differences.
We have already noted in section 4 that our derivation of geodesic motion at zeroth order in
λ appears to differ from some other derivations [5, 8, 12], which do not appear to impose the
requirement that M 	= 0. We also have already noted that in other approaches to self-force
[5, 8], what corresponds to our scaled metric at λ = 0 is assumed to be of Schwarzschild
form. In these other approaches, first-order perturbations in the near-zone expansion are
treated as time independent, and are required to be regular on the Schwarzschild horizon.
By contrast, we make no assumptions about the time dependence of the perturbations of the
scaled metric beyond those that follow from our fundamental assumptions (i)–(iii) of section 2.
Thus, our first-order perturbations are allowed to have linear dependence on t̄ , and our second-
order perturbations can depend quadratically on t̄ . We also make no assumptions about the
spacetime at r̄ < R̄ and therefore impose no boundary conditions at small r̄ . Finally, there is
a significant difference in the manner in which the gauge conditions used to define the motion
are imposed. In [5, 8], the entire � = 1 electric parity part of what corresponds to our second-
order near-zone perturbation is set to zero without proper justification18. By contrast, our ‘no
17 Consider a one-parameter family wherein the initial position for a body is ‘moved over’ smoothly with λ. In the
limit M → 0, the body then moves on a family of geodesics of the background metric parametrized by λ, and the
perturbative description of motion should indeed be the geodesic deviation equation.
18 Note that the part of the � = 1 electric parity perturbation that is relevant for obtaining equations of motion in
[5, 8] is of ‘acceleration type’ (with linear growth in r̄) and does not have an obvious interpretation in terms of a shift
in the center of mass.
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mass dipole’ condition applies to the background near-zone metric and has been justified as
providing ‘center-of-mass’ coordinates.

7. Beyond perturbation theory

As already mentioned near the beginning of section 5, the quantity Zi in equation (111) is
a ‘deviation vector’ defined on the background geodesic γ that describes the first order in
λ perturbation to the motion. For any one-parameter family of spacetimes gab(λ) satisfying
the assumptions stated in section 2, equation (111) is therefore guaranteed to give a good
approximation to the deviation from the background geodesic motion γ as λ → 0. In
other words, if γ is described by xi(t) = 0, then the new worldline obtained defined by
xi(t) = λZi(t) is the correct description of motion to first order in λ (when the metric
perturbation is in Lorenz gauge) and is therefore guaranteed to be accurate at small λ. However,
this guarantee is of the form that if one wants to describe the motion accurately up to time t,
then it always will be possible to choose λ sufficiently small that xi(t) = λZi(t) is a good
approximation up to time t. The guarantee is not of the form that if λ is chosen to be sufficiently
small, then xi(t) = λZi(t) will accurately describe the motion for all time. Indeed, for any
fixed λ > 0, it is to be expected that Zi(t) will grow large at sufficiently late times, and it is
clear that the approximate description of motion xi(t) = λZi(t) cannot be expected to be good
when Zi(t) is large, since by the time the motion has deviated significantly from the original
background geodesic γ , the motion clearly cannot be accurately described in the framework
of being a ‘small correction’ to γ . However, the main intended application of the first-order
corrected equations of motion is to compute motion in cases, such as inspiral, where the
deviations from the original geodesic motion become large at late times. It is therefore clear
that equation (111), as it stands, is useless for computing long-term effects, such as inspiral.

One possible response to the above difficulty would be to go to higher order in perturbation
theory. However, it seems clear that this will not help. Although the equations of
motion obtained from nth-order perturbation theory will be more accurate than the first-
order equations, they will not have a domain of validity that is significantly larger than the
first-order equations. The perturbative description at any finite order will continue to treat the
motion as a ‘small deviation’ from γ , and cannot be expected to describe motion accurately
when the deviations are, in fact, large. In essence, by the time that the deviation from γ

has become sufficiently large to invalidate first-order perturbation theory—so that, e.g., the
second-order corrections are comparable in magnitude to the first-order corrections—then one
would expect that the (n + 1)th-order corrections will also be comparable to the nth-order
corrections, so nth-order perturbation theory will not be accurate either. Only by going to all
orders in perturbation theory can one expect to get an accurate, global in time, description of
motion via perturbation theory. Of course, if one goes to all orders in perturbation theory, then
there is little point in having done perturbation theory at all.

Nevertheless, for a sufficiently small body of sufficiently small mass, it seems clear that
the corrections to geodesic motion should be locally small and should be locally described by
equation (111). By the time these small corrections have built up and the body has deviated
significantly from the original geodesic approximating its motion, it should then be close to
a new geodesic, perturbing off of which should give a better approximation to the motion for
that portion of time. One could then attempt to ‘patch together’ such solutions to construct a
world-line that accurately describes the motion of the particle for a longer time. In the limit
of many such patches with small times between them, one expects the resulting worldline
to be described by a single ‘self-consistent’ differential equation, which should then well
approximate the motion as long as it remains locally close to geodesic motion.
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A simple, familiar example will help illustrate all of the above points. Consider the
cooling of a ‘black body’. To choose a definite problem that can be put in a framework similar
to that considered in this paper, let us consider a body (such as a lump of hot coal) that is put
in a box with perfect reflecting walls, but a hole of area A is cut in this wall. We are interested
in determining how the energy, E, of the body changes with time. At finite A, this is a very
difficult problem, since the body will not remain in exact thermal equilibrium as it radiates
energy through the hole. However, let us consider a one-parameter family of cavities where
A(λ) smoothly goes to zero as λ → 0. When λ = 0, we find that the energy, E0 ≡ E(λ = 0),
does not change with time, and the body will remain in thermal equilibrium at temperature T0

for all time. When we do first-order perturbation theory in λ, we will find that the first order
in λ correction, E(1), to the energy satisfies19

dE(1)

dt
= −σA(1)T 4

0 , (113)

where σ is the Stefan–Boltzmann constant and A(1) ≡ dA/dλ|λ=0. Note that only the zeroth-
order temperature, T0, enters the right-hand side of this equation because the quantity A(1)

is already first order in λ, so the effect of any changes in temperature would appear only to
higher order in λ. Since T0 is a constant, it is easy to integrate equation (113) to obtain

E(1)(t) = −σA(1)T 4
0 t. (114)

Thus, first-order perturbation theory approximates the behavior of E(λ, t) as

E(λ, t) = E0 − λσA(1)T 4
0 t. (115)

Although this is a good approximation at early times, it is a horrible approximation at late
times, as it predicts that the energy will go negative. If one went to second order in perturbation
theory, one would obtain corrections to equation (113) that would take into account the first-
order energy loss as well as various non-equilibrium effects. However, one would still be
perturbing off of the non-radiating background, and the late time predictions using second (or
any finite higher order) perturbation theory would still be very poor.

However, there is an obvious major improvement that can be obtained by noting that if
A is sufficiently small, then the body should remain nearly in thermal equilibrium as it loses
energy. Therefore, although perturbation theory off of the zeroth-order solution may give poor
results at late times, first-order perturbation theory off of some thermal equilibrium solution
should give locally accurate results at all times. This suggests that if A is sufficiently small,
the cooling of the body should be described by

dE

dt
= −σAT 4(t). (116)

When supplemented with the formula, E = E(T ), that relates energy to temperature when
the body is in thermal equilibrium, this equation should provide an excellent description
of the cooling of the body that is valid at all times. In effect, equation (116) takes into
account the higher order perturbative effects (to all orders in λ) associated with the cooling
of the body, but it neglects various perturbative effects associated with the body failing to
remain in thermal equilibrium as it cools. Equation (116) is not an exact equation (since
it does not take various non-equilibrium effects into account) and it is not an equation that
arises directly from perturbation theory. Rather, it is an equation that corresponds to applying

19 Of course, when A becomes small compared to the typical wavelengths of the radiation (as it must as we let
A → 0), we enter a physical optics regime where our formulae are no longer valid. We ignore such effects here, just
as in our above analysis of the motion of bodies in general relativity we ignored quantum gravity effects even though
they should be important when the size of the body is smaller than the Planck scale.
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first-order perturbation theory to a background that itself undergoes changes resulting from
the perturbation. We will refer to such an equation as a ‘self-consistent perturbative equation’.
Such equations are commonly written for systems that can be described locally in time by a
small deviation from a simple solution.

How does one find a ‘self-consistent perturbative equation’ for a given system for which
one has derived first-order perturbative equations? We do not believe that there is any general
method for deriving a self-consistent perturbative equation. However, the following appear
to be appropriate criteria to impose on a self-consistent perturbative equation: (1) it should
have a well-posed initial-value formulation. (2) It should have the same number of degrees of
freedom as the first-order perturbative system, so that a correspondence can be made between
initial data for the self-consistent perturbative equation and the first-order perturbative system.
(3) For corresponding initial data, the solutions to the self-consistent perturbative equation
should be close to the corresponding solutions of the first-order perturbative system over
the time interval for which the first-order perturbative description should be accurate. We
do not know of any reason why, for any given system, there need exist a self-consistent
perturbative equation satisfying these criteria. In cases where a self-consistent perturbative
equation satisfying these criteria does exist, we would not expect it to be unique. For example,
we could modify equation (116) by adding suitable terms proportional to A2 to the right-hand
side of this equation.

The first-order perturbative equations for the motion of a small body are that the first-order
metric perturbation satisfies

∇c∇ch̃ab − 2Rc
ab

d h̃cd = −16πMuaub

δ(3)(xi)√−g

dτ

dt
, (117)

where xi = 0 corresponds to a geodesic, γ of the background spacetime and ua is the tangent
to γ . If we consider the retarded solution to this equation (which automatically satisfies the
Lorenz gauge condition), we have proven rigorously in this paper that the first order in λ

deviation of the motion from γ satisfies

uc∇c(u
b∇bZ

a) = −Rbcd
aubZcud − (gab + uaub)

(∇dh
tail
bc − 1

2∇bh
tail
cd

)
ucud, (118)

with

htail
ab (x) = M

∫ τ−
ret

−∞

(
G+

aba′b′ − 1

2
gabG

+ c
c a′b′

)
(x, z(τ ′))ua′

ub′
dτ ′, (119)

where, for simplicity, we have dropped the spin term. The MiSaTaQuWa equations

∇c∇ch̃ab − 2Rc
ab

d h̃cd = −16πMua(t)ub(t)
δ(3)(xi − zi(t))√−g

dτ

dt
, (120)

ub∇bu
a = −(gab + uaub)

(
∇dh

tail
bc − 1

2
∇bh

tail
cd

)
ucud, (121)

htail
ab (x) = M

∫ τ−
ret

−∞

(
G+

aba′b′ − 1

2
gabG

+ c
c a′b′

)
(x, z(τ ′))ua′

ub′
dτ ′, (122)

(where one chooses the retarded solution to equation (120)) are an excellent candidate for self-
consistent perturbative equations corresponding to the above first-order perturbative system20.
Here, ua(τ ) (normalized in the background metric) refers to the self-consistent motion z(τ ),

20 The Riemann tensor term does not appear on the right-hand side of equation (121), since in the self-consistent
perturbative equation, the deviation from the self-consistent worldline should vanish.
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rather than to a background geodesic as before. Although a proper mathematical analysis of
this integro-differential system has not been carried out, it appears plausible that our above
criteria (1)–(3) will be satisfied by the MiSaTaQuWa equations. If so, they should provide a
good, global in time, description of motion for problems like extreme mass ratio inspiral.
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Appendix. Self-force in an arbitrary allowed gauge

As discussed in section 5, the description of motion will change under first-order changes
of gauge. Indeed, in that section, we noted that under a smooth gauge transformation, the
description of motion changes by equation (56). However, as previously stated near the end
of section 2 (see equation (21)), the allowed coordinate freedom includes transformations that
are not smooth at r = 0. Since such gauges may arise in practice21, we provide here the
expression for the first-order perturbative equation of motion in an arbitrary gauge allowed by
our assumptions. We also present the corresponding self-consistent perturbative equations of
motion.

As previously noted in section 6 (see the remark below equation (74)), the equations of
motion to first order in λ depend only upon the first-order gauge transformation ξa . As we have
seen, the mass dipole moment appears at second order in (far-zone) perturbation theory, so we
must consider the effects of first-order gauge transformations on second-order perturbations.
This is given by g(2) → g(2) + δg(2), with

δg
(2)
ab = (Lξ g

(1))ab +
(
L2

ξ g
(0)

)
ab

, (A.1)

where L denotes the Lie derivative. Equivalently, we have

δg
(2)
ab = ξ c∇cg

(1)
ab + 2∇cξ(ag

(1)

b)c + ξ c∇c∇(aξb) + ∇cξ(a∇cξb) + ∇cξ(a∇b)ξ
c, (A.2)

where ∇a is the derivative operator associated with the background metric gab(λ = 0). In order
to satisfy the criteria on allowed gauge transformations (see equation (21)), the components
of ξa must be of the form

ξμ = Fμ(t, θ, φ) + O(r), (A.3)

i.e., ξa cannot ‘blow up’ at r = 0 but it can be singular in the sense that its components can
have direction-dependent limits.

The mass dipole moment, P i , is one-half of the coefficient of the � = 1 part of the leading
order, 1/r2, part of the second-order metric perturbation, g(2)

00 . Therefore, P i may be extracted
from the formula

P i = 3

8π
lim
R→0

∫
r=R

g
(2)
00 ni dS, (A.4)

21 For example, the Regge–Wheeler gauge (used for perturbations of the Schwarzschild metric) is not smoothly related
to the Lorenz gauge [19]. However, it is possible that the gauge vector is bounded [19], in which case perturbations
in the Regge–Wheeler gauge would satisfy our assumptions (see equation (A.3)), and equations of motion could be
defined. On the other hand, point particle perturbations expressed in radiation gauges (used for perturbations of the
Kerr metric) contain a log singularity along a string [19], and therefore do not satisfy our assumptions.
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where dS is the area element on the sphere of radius R. Under the gauge transformation
generated by ξa , we have

δg
(2)
00 = ξ c∇cg

(1)
00 + 2∇cξ0g

(1)
0c + ξ c∇c∇0ξ0 + ∇cξ0∇cξ0 + ∇cξ0∇0ξ

c. (A.5)

As previously noted, for an arbitrary first-order perturbation satisfying our assumptions, we
have

g
(1)
00 = −1 +

2M

r
+ O(1), (A.6)

where M is the mass of the body. From equations (A.3), (A.5) and (A.6), we see that the
change in g

(2)
00 induced by our gauge transformation is

δg
(2)
00 = −2M

r2
ξ ini + χ + O

(
1

r

)
, (A.7)

χ ≡ 2∂iξ0g
(1)
0i + ∂iξ0∂

iξ0. (A.8)

Therefore, by equation (A.4), the induced change in the mass dipole moment is

δP i = 3

8π
lim
r→0

∫
(−2Mξjnj + r2χ)ni d�, (A.9)

where d� is the area element on the unit sphere.
Equation (A.9) gives the change in the mass dipole moment induced by the possibly non-

smooth gauge transformation generated by ξa . The corresponding change in the first-order
perturbative equation of motion is determined by the change in the smooth vector field Aa

required to eliminate the mass dipole. Writing Aa → Aa + δAa , this change is given by

δAi = δP i/M (A.10)

(see equation (85)). Thus, the change Zi → Ẑi = Zi + δZi induced in the deviation vector
describing the perturbed worldline is

δZi = 3

8π
lim
r→0

∫
(−2ξ jnj + M−1r2χ)ni d�, (A.11)

with χ given by equation (A.8). In the case where our original gauge was the Lorenz gauge,
it follows immediately from equation (111) that the new equation of motion for Ẑi is

d2Ẑi

dt2
= −R0j0

iZj −
(

htaili
0,0 − 1

2
htail

00
,i

)
+ ¨δZ

i
, (A.12)

where δZi is given by equation (A.11), and where, for simplicity, we have dropped the spin
term. We may rewrite equation (A.12) as

d2Ẑi

dt2
= −R0j0

i Ẑj −
(

htaili
0,0 − 1

2
htail

00
,i

)
+ ¨δZ

i
+ R0j0

iδZj . (A.13)

Note that although equation (A.13) provides us with the desired equation of motion in an
arbitrary allowed gauge, the terms involving components of htail must still be computed in the
Lorenz gauge.

Now suppose one wishes to pass to a self-consistent perturbative equation associated
with the new choice of gauge. It is not obvious how one might wish to modify the evolution
equations for the metric perturbations in the new gauge. (One possibility would be to simply use
equation (120) and then modify the result by the addition of 2∇(aξb) but it might be preferable
to find a new equation based on a suitable ‘relaxed’ version of the linearized Einstein equation
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for the new gauge.) However, it appears that a natural choice of self-consistent perturbative
equation associated with equation (A.13) would be

ub∇bu
a = −(gab + uaub)

(∇dh
tail
bc − 1

2∇bh
tail
cd

)
ucud + ¨δZ

a
+ Rcbd

aucudδZb. (A.14)

In the case where ξa is smooth (so that, by equation (A.11), we have δZi = −ξ i) this agrees
with the proposal of Barack and Ori [19].
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