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Eleven years ago several theorists proposed a re-
markable correspondence between two seemingly different
kinds of theories.1 It is often called a duality because it is an
equivalence between two different, “dual” descriptions of the
same physics. On one side of the duality are certain quantum
field theories (QFTs)—for example, Yang–Mills gauge theo-
ries similar to those in the standard model of particle physics.
Such theories describe interacting particles moving in a flat
d-dimensional spacetime. On the other side are theories that
include gravity, like Albert Einstein’s general relativity or its
string-theoretic generalizations. The gravitational theories
are defined in a higher-dimensional spacetime containing at
least the d dimensions of the particle theory plus one extra
dimension of infinite extent. They often include a number of
finite dimensions—in the form of a sphere, for example. De-
pending on the context, the correspondence is known as a
gauge/gravity duality, gauge/string duality, or AdS/CFT
(anti–de Sitter/conformal field theory) correspondence. Do
not despair if the terminology is unclear. In this article 
we will attempt to describe in simple terms what the duality
is and how and why it is useful for studying a variety of
 problems.

The gravitational theory involves a dynamic spacetime
fluctuating around a special curved background: The gravi-
tational potential energy rises sharply as the coordinate y of
the extra dimension approaches infinity. To motivate the cor-
respondence, we consider a class of curved spacetimes for
which the gravitational potential energy has an absolute min-
imum at y = 0, as in figure 1. The correspondence asserts that
the dynamics of the d + 1–dimensional gravitational theory is
encoded in a d-dimensional QFT. That should not be too sur-
prising: In the presence of a potential energy rising sharply
along a particular spatial direction, one expects the low-
 energy dynamics of a theory to become effectively confined
to the remaining dimensions. The gauge/string duality, how-
ever, goes beyond that simple intuition because even motion
along the extra dimension is reproduced by the corre -
sponding d-dimensional QFT. 

The duality is particularly useful for studying certain
QFTs that are very strongly coupled because then the corre-
sponding gravitational theory is defined in a weakly curved
spacetime and readily analyzed using the methods of general
relativity. On the other hand, the fact that weak curvature cor-

responds to strong coupling makes the duality hard to prove
because it is difficult to do reliable computations in a strongly
coupled field theory. Nonetheless, theorists have accumu-
lated a great deal of evidence in its favor.

If one simply assumes that the duality is true, then it pro-
vides a wealth of new information about strongly coupled
field theory. The collection of theories that can be solved
using the duality is still rather limited; it does not contain any
theory that describes a known physical system. Yet the theo-
ries that can be solved capture some essential features of the-
ories realized in nature. One of the best-studied examples is
a cousin of quantum chromodynamics, the field theory de-
scribing strong nuclear forces. The cousin, though, includes
supersymmetry, a symmetry that pairs up bosons and fermi-
ons. Although superficially the cousin is rather different from
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Strongly interacting quantum field theories are notoriously difficult to work with, but new 
information about some of them is emerging from their surprising correspondence with  
gravitational theories.

Figure 1. Particle in a potential energy well of a d + 1–
dimensional gravitational theory. If the potential energy has 
a deep minimum as a function of the “extra” dimension with
coordinate y, then a low-energy quantum particle behaves 
as if it were moving in the remaining d dimensions. The
gauge/gravity duality makes a more far-reaching statement:
Even motion along the extra dimension can be described by 
a d-dimensional particle theory.
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QCD, it has been useful for studying new phenomena in the
physics of quarks and gluons at high temperatures, such as
those that were observed not long ago at RHIC, the Rela-
tivistic Heavy Ion Collider, at Brookhaven National Labora-
tory.2 Similar theories have provided model-building tools
for physics beyond the standard model and have served as
toy models for systems with quantum critical points that ap-
pear in condensed-matter physics. 

Thus theories that are solvable via the duality provide
approximations to physical systems that are useful for de-
veloping intuition about strongly coupled theories. The
AdS/CFT correspondence has also been valuable for eluci-
dating some theoretical paradoxes involving the quantum
behavior of black holes. In fact, it was originally discovered
in investigations of such questions. The duality also gives the-
orists new ways to study the quantization of gravity, which
is one of the important issues at the frontier of theoretical
physics.

QFT is ubiquitous and difficult
Quantum field theory, which considers quantized field fluc-
tuations, was the result of merging special relativity with
quantum mechanics. It has many physical applications. In
particle physics, it underlies the famous standard model,
which provides a precise description of the electromagnetic,
weak, and strong interactions. In statistical mechanics, QFT
successfully describes second-order phase transitions that
occur, for example, in the vicinity of the critical point in a
water–vapor phase diagram. In that application, the quan-
tum field fluctuations are identified with the long-range sta-
tistical fluctuations in the 3D system under study; thus the
field theory is defined in three spatial dimensions without
time. Generally, many-body systems are well described by
QFT when the typical length scales of fluctuations are much
larger than the size of the system’s atomic constituents. In-
stead of varying temperature or pressure, one can achieve

long-wavelength fluctuations at zero tem-
perature by varying properties of materials

such as the doping concentration. The result-
ing behavior is called quantum criticality.

A QFT is often hard to analyze. If the inter-
action strength is weak, one can calculate the first

few terms of a perturbative expansion using Feynman
diagrams that provide a visualization of interactions in

terms of particles locally splitting or joining with other par-
ticles. Yet in many interesting physical problems, the cou-
pling is so strong that such an expansion is not feasible.

To further complicate matters, the coupling typically de-
pends on the characteristic energy of a process. In QCD, per-
turbative computations are possible at high energies—much
higher than the proton rest energy of about 1 GeV—because
the coupling weakens. They become useless, however, at en-
ergies comparable to the proton rest energy. Calculations in
that strongly coupled regime are difficult. One solid path to-
ward calculating masses of hadrons such as protons or heavy
mesons is to approximate continuous spacetime by a discrete
lattice of points. But that approach, called lattice QCD, re-
quires a great deal of computing power (see the article by
Carleton DeTar and Steven Gottlieb in PHYSICS TODAY, Feb-
ruary 2004, page 45). Moreover, important quantities such as
transport coefficients in high-temperature QCD cannot be
 accessed using standard numerical approaches. Many
 condensed-matter problems, too, involve strongly coupled
QFT. Analytic techniques that deal with strongly coupled
problems are few and valuable, even if they apply to only a
narrow class of theories. The gauge/gravity duality offers
such a technique.

The AdS/CFT correspondence
The QFTs relevant to many applications are approximately
invariant under a scaling of all d spacetime coordinates:
xμ O λxμ. (The subscript μ, which runs from 0 to d − 1, indexes
the particular coordinate.) For example, QCD becomes nearly
scale invariant at energies high enough that the coupling con-
stant depends only logarithmically on energy. Condensed-
matter systems close to second-order phase transitions or
quantum critical points are also nearly scale invariant. Theo-
ries that are invariant under scaling typically also have other
symmetries, including the spacetime inversion xμ O xμ/x2

that maps the origin to infinity. Combined with the Lorentz
transformations and translations of special relativity, those
transformations form the so-called conformal group. A 

Figure 2. Hyperbolic space. Shown here is a map of the
simplest negatively curved space. Each of the images

has the same  coordinate-invariant “proper” size;
they appear to get smaller near the boundary be-

cause of their projection onto the flat surface of
this page. A related phenomenon happens in

standard Mercator-projection maps of Earth:
Objects of a fixed proper size appear
broader at high latitudes. The map of hy-
perbolic space is reminiscent of M. C. Es-
cher’s Circle Limit woodcuts, but we have
replaced Escher’s interlocking fish with
cows to remind readers of the physics
joke about the spherical cow as an ideal-
ization of a real one. In the anti–de Sit-
ter/conformal field theory correspon-
dence, theorists have really found a

hyperbolic cow.
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QFT invariant under that group is called a conformal 
field theory.

The conformal invariance is of great help in formulating
an exact gauge/gravity duality because it translates into 
a geometrical symmetry of the dual space. If, in the QFT, all
d dimensions are spatial, the dual space is the familiar 
d + 1–dimensional hyperbolic, or Lobachevsky, space with
constant negative curvature. Figure 2 is a map of that space.
If the CFT is formulated in d − 1 space dimensions and one
time dimension, the unique d + 1–dimensional spacetime
with the appropriate symmetry is anti–de Sitter space. For an
introduction to that constant-negative-curvature spacetime,
see box 1.

The intrinsic metric, or line element, of d + 1–dimensional
AdS space is

(1)

where in the infinite extra dimension y ranges over all 
real numbers, and R is the curvature radius. The CFT corre-
sponding to the AdS geometry is formulated in a flat 
d-dimensional spacetime parameterized by the coordinates
x0 , . . ., xd−1. That d-dimensional spacetime may be viewed as
the boundary, at y = ∞, of the d + 1–dimensional AdS space.
The scale invariance of the QFT translates into a symmetry of
the AdS metric under xμ O λxμ, yO y − ln λ.

What is the origin of the extra dimension in the gravita-
tional theory? Imagine a localized state in the CFT with a
given size and a position specified by the d − 1 spatial coor-
dinates. By performing scale transformations, one can obtain
states with all possible sizes, each with energy inversely pro-
portional to the size. The extra coordinate y in the gravity the-
ory labels the size of the state in the CFT, as shown in fig-
ure 3. More precisely, the size is proportional to e−y.

In Einstein’s gravity, the metric’s time–time component
g00 (that is, the piece that multiplies dx0

2 in the line element)
defines the gravitational potential energy V of a stationary
object of mass m: V = mc2√−g00, where c denotes the speed of
light. For weak fields, g00 ≈ −(1 + 2φ/c2), with mφ the familiar
Newtonian potential energy. In AdS space, V is proportional
to e y, so objects are pushed to smaller y. In the dual scale-
 invariant field theory, localized field configurations will thus
expand to lower their energy.

Correlation functions
In a CFT, the most important physical observables are corre-
lation functions of local operators. A two-point correlation
function, for example, is a suitable average over all field con-
figurations of a product of operators at two separated points.
In a theory of phase transitions, correlation functions encode
the critical exponents and other useful information. 

A universal operator, present in any field theory, is the
symmetric stress–energy tensor Tμν. As in electrodynamics,
its time–time component T00 gives the energy density of a
field, the time–space components T0i give the momentum
density, and the space–space components Tij encode the pres-
sure and shear forces.

Remarkably, to calculate correlation functions of Tμν in
the dual description, one needs to consider propagation of
gravitons in AdS space. The graviton carries the gravitational
force, and so the d + 1–dimensional dual theory must be 
gravitational. Inserting Tμν(x) in a correlation function corre-
sponds to a graviton emitted from point x on the boundary
of the AdS space. Gravitons corresponding to insertions of
stress–energy tensors meet in the interior and interact ac-
cording to the rules of general relativity. Thus computation
of the correlations of stress–energy components at different
points in a field theory is translated into a problem of scat-
tering gravitons in the interior of a curved spacetime. Other
operators in the QFT correspond to other fields in the gravi-
tational theory, and there is a one-to-one map between the
two—a kind of dictionary relating the field-theory and grav-
ity languages. The most precise correspondences found to
date map CFT to string theory formulated in AdS space.
String theories are described by general relativity only at low
energies; at high energies, they contain a large additional set
of string excitations.

In a CFT the conformal symmetry fixes the functional
form of the two-point correlation function of the stress–
energy tensor. But the function’s normalization, Neff, is an ef-
fective measure of the number of degrees of freedom in the
CFT. In the gravity theory, the normalization is proportional
to Rd−1/ħGN, where GN is Newton’s constant in d + 1 dimen-
sions and ħ is Planck’s constant. The inverse of the normal-
ization controls the effective gravitational coupling in the
dual gravitational theory; if that theory is to be weakly cou-
pled, the QFT must contain many degrees of freedom.

Such QFTs arise naturally in generalizations of QCD
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Anti–de Sitter space is a spacetime with one time coordinate
and, in general, d space coordinates. As a warm-up to looking 
at AdS space, however, we first present some curved two-
 dimensional surfaces. 

The 2D unit sphere, which is positively curved, is defined as
the set of points in 3D Euclidean space that are equidistant from
the origin: X 2 + Y 2 + Z 2 = R 2, where R is the radius of the sphere.
(For simplicity, in the remainder of this box we consider a unit-
radius sphere and its analogues.) The metric, or line element,
expresses an infinitesimal distance in terms of infinitesimal coor-
dinate changes. It is simply obtained for the sphere from the
metric of Euclidean space ds2 = (dX)2 + (dY)2 + (dZ)2 by restricting
the coordinates to the sphere. Expressing the coordinates in
terms of the standard polar and azimuthal angles, θ and φ—that
is, setting X = sin θ cos φ, Y = sin θ sin φ, and Z = cos θ, one obtains
the intrinsic metric of the sphere, ds 2 = (dθ)2 + sin2 θ (dφ)2. 

To describe a negatively curved surface, or 2D hyperbolic

space, one needs to change only some signs: X 2 + Y 2 − Z 2 = −1,
and ds 2 = (dX)2 + (dY)2 − (dZ)2. One can define coordinates ρ and
φ, through X = sinh ρ cos φ, Y = sinh ρ sin φ, and Z = cosh ρ, and
obtain the intrinsic metric ds2 = (dρ)2 + sinh2 ρ (dφ)2. Note that
despite the negative signs in the above definition, the metric of
the 2D hyperbolic space has only positive signs. The hyperbolic
space is a 2D space, not a spacetime. 

Analogously, one can define a 2D AdS space by −X 2 − Y 2 + Z 2

= −1, and ds2 = −(dX)2 − (dY)2 + (dZ)2. Introducing the coordi-
nates x0 and y defined through X = ey x0, 2Y = e−y + e y(1 − x0

2), and 
2Z = e −y − e y(1 + x0

2), one finds the metric ds2 = −e 2y(dx0)2 + dy 2.
The negative sign of the first term signifies that x0 is a time vari-
able. Equation 1 in the main text displays the metric for a d + 1–
dimensional AdS space with constant curvature radius R. 

In the gravity theories associated with the AdS/CFT corre-
spondence, the important object is the AdS space itself; the flat
space in which it is embedded plays no role.

Box 1. Anti–de Sitter space
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from three colors to a larger number of colors, N. The gluons
that mediate color forces in those theories are analogues of
photons, which mediate electromagnetic interactions. In con-
trast to uncharged photons, however, the gluons are them-
selves colored, and their number is N 2 − 1. Thus Neff is com-
parable to N 2. 

But large Neff alone is not enough to guarantee a simple
gravity description. Gravity theories do not include light par-
ticles with large spin. On the other hand, in a weakly coupled
QFT, one often has operators with large spin. The mismatch
may be removed by turning up the interaction strength g, the
QFT analogue of the electric charge e in electrodynamics. To
see that a stronger interaction simplifies the dual gravita-
tional theory, note that the curvature radius of AdS space is
proportional to (g2N)1/4 multiplied by the fundamental string-
theory length scale. Thus the spacetime in a gravitational the-
ory that is dual to a field theory with g2N� 1 is weakly
curved and one can reliably study the gravitational theory
with the methods of general relativity. Conversely, if the field
theory coupling is weak—that is, g2N� 1—then the radius
of curvature is smaller than the string length. In that regime,
general relativity is not a good approximation.

The most tractable correspondences therefore involve
strongly coupled CFTs with many color states. Luckily, the-
orists have constructed many such theories. The simplest and
most studied of them is the gauge theory in four spacetime
dimensions with the greatest possible number of supersym-
metries that pair up bosonic and fermionic fields. Although
supersymmetry is not fundamental to gauge/gravity duality,
it is a technical tool that simplifies its analysis.

Black holes and thermal field theories
A fascinating aspect of general relativity is the existence of
black holes, which are surrounded by event horizons. Any
classical object that falls through such a horizon cannot re-
turn, but Stephen Hawking demonstrated that the horizon it-
self radiates with a characteristic temperature T. Now sup-

pose that far away from the black hole—in higher dimensions
it would be a black membrane—the d + 1–dimensional space-
time looks like AdS space. One can then consider a black
membrane with a horizon located at a fixed position y0 and
extended in the d − 1 spatial dimensions, as illustrated in fig-
ure 4. The gravitational theory in the black membrane space-
time is again described by a d-dimensional QFT, but now the
QFT has been heated up—to the same temperature T as the
horizon!

The duality connecting black holes with strongly inter-
acting QFTs has many interesting implications. As shown by
Jacob Bekenstein and Hawking, a black hole has an entropy
proportional to the area of its event horizon. Computing the
finite-temperature entropy for a strongly interacting QFT is
generally difficult, since particle interactions make important
contributions to the free energy and therefore to the entropy.
Yet when the QFT has a dual gravity theory, its entropy can
be found simply through calculating the area of the horizon.

What does the “blackness” of the horizon correspond to
in the QFT? Black holes are excellent particle absorbers. Any
fluctuation of the black hole geometry decays exponentially,
since waves near the horizon are swallowed by the black hole.
In the finite-temperature QFT, that phenomenon corresponds
to the rapid thermalization of fluctuations. 

Thermodynamic and transport properties of a strongly
coupled QFT are related to properties of the black hole geom-
etry. Thus the computation of a transport coefficient, such as
the shear viscosity, becomes tractable in the gravitational for-
mulation—one has to solve a certain wave equation in the
black hole geometry. Calculations along those lines have been
used to gain intuition about complicated finite-temperature
QCD problems that can be realized experimentally. RHIC is
believed to have produced a new state of matter, which was
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Figure 3. The extra dimension in the dual gravitational
description of a conformal field theory. An object in a CFT
may be pictured as being confined to the boundary of a
higher-dimensional gravity theory. The blue and red disks
depict two objects in the CFT that differ by only a scale
transformation—that is, a uniform multiplication of all the
coordinates. In the gravity theory, the two objects are de-
scribed by the same particle at two different positions in
the extra dimension with coordinate y. The red dot, corre-
sponding to the bigger object on the boundary, is located
at smaller y.
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Figure 4. The black hole duality. A strongly interacting
quantum field theory at a finite temperature is related to a
black membrane—the higher-dimensional analogue of a
black hole—in the dual gravity system. Thermodynamic
properties of the strongly coupled QFT are related to geo-
metric properties of the horizon. For example, a long-range
fluctuation in the density of the thermal system corresponds
to a ripple on the event horizon surrounding the black
membrane. This ripple is absorbed by the black membrane;
the corresponding phenomenon in the thermal QFT is 
thermalization.
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originally dubbed the quark–gluon plasma. Experiments at
RHIC established that the matter behaves more like a liquid
than a plasma because its viscosity is much smaller than had
been expected.2 Interestingly, when the gauge/gravity dual-
ity is applicable, it also predicts a low value for the viscosity
(see reference 3 and PHYSICS TODAY, May 2005, page 23). One
can compute other quantities, such as the energy loss that a
very energetic quark will suffer as it propagates through the
medium. In some cases the finite-temperature gauge/gravity
duality has motivated the study of new strong-coupling phe-
nomena that may be experimentally observable.

A confining potential-energy well
Gauge/string duality also gives new insights into color con-
finement, a deep and mysterious aspect of QCD. Even though
QCD is formulated in terms of the fundamental colored par-
ticles—quarks and gluons—nobody has observed a free one;
they are always confined inside color-neutral particles such
as protons, neutrons, and pions. The way in which hadrons
are made of quarks and gluons is quite different from the way
in which nuclei are made of neutrons and protons. Those nu-
clear constituents are often bound together tightly, but hit-
ting the nucleus hard enough will liberate them. No matter

how hard one hits a hadron, though, it will decay only into
other hadrons, not into free quarks and gluons. That phe-
nomenon has numerical support from lattice simulations of
gauge theory, but its theoretical proof is still missing. 

Once again, gauge/string duality provides new insights.
Admittedly, no simple string theory dual to QCD has been
found, but some confining gauge theories do have tractable
dual formulations.4 Those theories are not scale invariant;
they have a preferred length scale that is comparable to the
size of the lightest bound states. For example, in QCD the
scale is about that of the proton radius, 10−15 m. When the QFT
is not scale invariant, the dual spacetime has nonconstant cur-
vature and a “warped” metric of the form

(2)

In such a spacetime, the gravitational energy of a mas-
sive particle is proportional to eA(y). The function A(y) is such
that for large y, the energy approaches the exponential e y

found in the AdS metric, but its form becomes more compli-
cated as y decreases. It attains its absolute minimum, eA(0), at
y = 0. Thus massive objects fall to the bottom of the gravita-
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Relations between string theory and strong interactions are
older than quantum chromodynamics (QCD) itself. In fact, string
theory was born in the late 1960s to describe hadronic spectra
and interactions. The motivation was partly experimental. Some
observed hadronic states exhibited a linear relation between
mass squared and spin; relativistic strings could explain that
relation. But it did not take long for the string models to run into
problems: The simplest string theories could be defined only in
10 spacetime dimensions (for theories containing bosons and
fermions) or 26 dimensions (for theories with bosons only), and
they had to include quantum gravity.8

Furthermore, deep inelastic scattering experiments were
showing signs of more fundamental constituents inside the
hadrons, a result that seemed incompatible with a string descrip-
tion. Those experiments provided an important piece of infor-
mation: Strong interactions become weaker at high energies.
The only known theories in four spacetime dimensions with that
property, called asymptotic freedom, are the Yang–Mills gauge
theories (see PHYSICS TODAY, December 2004, page 21). In the
early 1970s, the SU(3) Yang–Mills gauge theory (that is, QCD) was
proposed as the exact description of strong interactions, and it is
now an integral part of the standard model. Yet QCD is hard to
solve because the coupling g becomes strong at low energies.

Strings, though, may come to the rescue. In QCD they form as
color electric flux tubes that are well established through
numerical lattice simulations. Also, QCD itself simplifies if the
number of colors is changed from three to a large number N,
provided that g2N is held fixed.9 A simple argument shows that
in the large-N limit, the gauge theory should become a kind of
string theory, with splitting and joining interactions suppressed
by 1/N. The argument, however, does not specify the string the-
ory. Theorists initially assumed that the string theory should be
defined in the four spacetime dimensions of the gauge theory.
But Alexander Polyakov later conjectured that one needs at least
five dimensions and a curved spacetime.10

Meanwhile, theorists continued to study string theory as a
theory of quantum gravity. They intently studied 10D string
theory and came to understand many of its properties in great

detail. In the mid-1990s Joseph Polchinski found that the the-
ory contains various spatially extended objects called 
D-branes.11 One type of D-brane has three infinite spatial
dimensions, just like the observed world. At low energies, N
coincident D-branes of that type are described in terms of a 4D
SU(N) gauge field theory similar to QCD, except with extra sym-
metries—supersymmetry and conformal invariance. But the
stack of D-branes curves the 10D spacetime in which it is
embedded. In the region near the stack, half of the dimensions
form a 5D anti–de Sitter space, and the rest describe a 5D
sphere. So, one point of view on the dynamics of the D-branes
uses the 4D gauge theory; the other, the 10D string theory in
the curved space (see PHYSICS TODAY, August 1998, page 20). The
conjecture that the two theories are exactly equivalent pro-
vides the most solid example of the gauge/string duality.
Recent tests of the correspondence12 involve calculations of
certain quantities in the supersymmetric gauge theory as func-
tions of g2N. Remarkably, they rely on Bethe ansatz methods
that are frequently used to study spin chains arising in con-
densed-matter physics (see the article by Murray Batchelor,
PHYSICS TODAY, January 2007, page 36). For large g2N, the results
agree with the predictions of string theory.

Similar gauge/string dualities have been found for theories
that are not scale invariant, but QCD itself has so far evaded a
solution. Due to asymptotic freedom, QCD is weakly coupled at
high energy. The dual description of weakly coupled theories
requires highly curved spacetimes for which higher powers of
curvature are more important than the leading power. At high
energy, though, one doesn’t need to resort to the dual calcula-
tion; the theory is weakly coupled. On the other hand, at low
energies the coupling is strong enough to invalidate naive per-
turbative computations, but not so strong that QCD has a 
weakly curved dual description. General relativity is thus not
enough to analyze the dual theory; one needs the full apparatus
of string theory, which has so far been too difficult to imple-
ment. Nonetheless, the tools developed during the past 10 years
or so have generally improved physicists’ understanding of
strongly coupled gauge theory.

Box 2. String theory and QCD
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tional well, where they retain a nonzero energy proportional
to eA(0). Note that in QCD most of the proton mass comes from
the effects of confinement; the masses of the quarks make a
relatively small contribution.

Theorists have posited that as a heavy quark–antiquark
pair separates in a confining theory, a color electric flux tube
forms with constant energy per unit length and a character-
istic thickness. That object, often called a confining string, has
been observed in numerical simulations. When such a string
is spinning, it nicely explains the masses of high-spin mesons.
(For more on how string theory is connected to QCD, see box
2.) How is the confining flux tube manifested in the dual,
string-theoretic description of the gauge theory? The answer
is unexpectedly simple: It is the fundamental string located
at the bottom of the potential-energy well shown in figure 5.
Indeed, the energy per unit length of a string at fixed y and
stretched along one of the spatial directions in the metric of
equation 2 is proportional to Ts e2A(y), where Ts is the funda-
mental-string tension. Such a string naturally falls to the bot-
tom of the gravitational potential-energy well, where it re-
tains a nonvanishing tension Ts e2A(0). Since all confining
gauge theories are expected to generate flux tubes, their dual
formulations cannot be given merely in terms of a gravita-
tional field theory—they must involve string theory.

A variety of applications
The gauge/gravity duality has found theoretical applications
to physics ranging from the highest to the lowest conceivable
energies. At the high end, theorists are exploring physics at
the Planck scale of about 1019 GeV, which necessarily involves
quantized fluctuations of spacetime geometry. Gauge theo-
ries with N colors are dual to quantum gravity in curved
spacetime, with the effective gravitational coupling being of
order 1/N. Those gauge theories have conventional quantum
mechanics, with unitary time evolution of wavefunctions.
Therefore, the duality provides the most solid argument to
date for why quantum gravity in general, and a black hole in
particular, does not destroy information.

At the low-energy end, QFTs often arise in the low-
temperature domain of condensed-matter physics. One
much-explored class of examples concerns the behavior of
systems at quantum critical points.5 The relevant zero-
temperature, scale-invariant theories are analogous to field
theories describing second-order phase transitions, but they
are formulated in d spacetime dimensions rather than in just
spatial dimensions. In quantum critical systems, one is inter-
ested in computing transport properties at zero or finite tem-
peratures. The theories with tractable dual gravity descrip-
tions can be viewed as toy models for which such
computations are feasible at strong coupling. So far, those
manageable theories don’t correspond to real-world con-
densed-matter systems, but they may capture some of those
systems’ important features. For a study of transport prop-
erties near quantum criticality in that vein, see reference 6.

Now is an exciting time in particle physics—the Large
Hadron Collider at CERN will soon reach its peak collision
energy of 14 TeV. We are confident that the current standard
model of particle physics is not the final word about nature
at high energies, and the LHC’s experiments may well shed
light on the new layer of physics. Those who build particle
models explore many different scenarios, but they are often
limited by difficulties associated with strongly coupled QFT.
The gauge/gravity duality enables them to investigate alter-
native, strongly coupled theories. And in fact, the warped
AdS-like geometries of equation 2 were also introduced for a
number of phenomenological reasons, in particular to ex-

plain why the scale of weak interactions, 250 GeV, is so much
smaller than the Planck scale.7

The gauge/gravity duality has enabled field theorists to
explore new possibilities away from weak coupling. Some
strongly coupled field theories can now be solved via their
dual curved spacetimes and provide a “hyperbolic cow” ap-
proximation to interesting physical systems. We are opti-
mistic that the future will reveal even closer connections be-
tween gauge/gravity duality and nature.
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Figure 5. A string theory of quark confinement. A long
fundamental string that has fallen to the bottom of the
gravitational potential energy well describes the so-called
color flux tube in a confining gauge theory at the boundary
of the extra dimension. Such strings explain why the poten-
tial energy between a quark and an antiquark rises linearly
with their separation and prevents the two particles from
escaping to freedom. The thickness of the string in the
gauge theory is related to the position of the fundamental
string in the y direction.


