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Abstract A systematic method for constructing Wess— Zumino supergauge transformations 1s
exhibited

In a recent article Wess and Zumino [1] have invented an interesting new symme-
try. Generahzing from the dual model super-gauge symmetry {2] these authors suc-
ceeded in defining an analogous transformation group in four-dimensional space-
time This invention 1s quite remarkable in at least two respects (1) the irreducible
representations of this symmetry combine fermions with bosons and (11) the stric-
tures of O’Raifeartaigh’s theorem are circumvented — we seem to have here a rela-
tivistic spin-containing symmetry which 1s consistent with unitanty* Moreover, n
a simple Lagrangian model involving two scalars and a Majorana spinor, Wess and
Zumino found that, in the one-loop approximation, there 1s only one (loganthmic)
dwergence [3]

The purpose of this paper 1s to present a rather simple method which can be
used for the construction of at least some of the representations of this symmetry.

We shall confine our considerations to the 14-parameter subalgebra of the Wess—

* The g group of Wess and Zumino can be looked upon as a sort of quasi U(2, 3) the set of unitary
5%x5 mdmces g, whose elementsga, o,B=1,2,3,4,and g5 are ordinary complex numbers
while ga and gg arc anti-commuting c-numbers. The subgroup SU(2, 2) X U(1) of the ordinary
sort 1s identified with the product of the 15-parameter conformal group of space-time and a
1-parameter group of 4 transformations, The anticommuting parts are identified with super-
gauge transformations. Looked at in this way an immediate generahization to U(2,4) (or u@Rsy
1s suggested The ordinary subgroup SU(2, 2) X U(2) (or SU(2,2) X U(3)) might then be said
to include a strictly internal SU(2) (or SU(3)) symmetry Contrasted with this marriage of in-
ternal symmetries with space-time symmetries, one may also consider a rather trivial generah-
zation of Wess and Zumino’s work where cach one of their fields 1s considered as (for example)
the adjoint representation of an internal symmetry U(n),
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Zumino system which 1s generated by the Poincare operatorsJ,,,, P, and the

Majorana spinor S,,. In addition to the usual commutation rules mvolvmg J, and
P, only, we have

1S, P,1 =0,
Sy 7,0 = 10,,)E S, (1)
{S, S;}=(7,0)

af #
where C denotes the charge conjugation matnix*. The last of these rules can be ex-
pressed in the alternative version

[€,S. Se,] =—?:‘17#€2Pu , )
where €, and €, are two arbitrary Majorana spinors which anticommute with one
another and with S (Notice that €S = Se 1s a hermitian operator and that
€7,€2 = -~ €37,€] IS an 1magnary 4-vector? )

Qur basic approach 1s to work out the group action on the space of left cosets
with respect to the subgroup of homogeneous Lorentz transformations This “space”
i1s essentially eight-dimensional, being parametnized by the 4-vector x, and the
(anticommuting c-number) Majorana spinor 6, A simple way to obtain the group
action on this homogeneous space 1s to define the unitary operators

L(x, 0) =exp [zx“Pu] exp 10%S,], 3)

and consider what happens to them when any one of the operators representing,
respectively, a translation, a homogeneous Lorentz transformation or a super-gauge
transformation 1s applied on the left One finds,

exp [zc“P“] L{x, 8) =L(x+c 0),

exp [§iw » #v] L(x, 8) =L(Ax, a(A)8)exp [ztwaW] 4)

exp [1€S] L(x, 8) =L[x —-ze'y 0,0 +¢€],

where a(A) = exp (}—,z)ww v denotes the usual spinor representation of the homo-
geneous Lorentz group? *. (Notice that, because of the Majorana constraints on €

* Our notational conventions are as follows The Dlrac matrices satisfy ( ) {7“, 7U} LW

= diag (+ — — - ) and adjoint spinors arc defined by ¢ = V*‘Yo The matnces v, YoYu YOy
Qr'y‘ns, YoYs are hermitian  The charge conjugate of 18 deﬁned by 4¢ = Cy T where

=_Cand C! 'y“C— ~Yu By a Majorana spinor we mean ¢© = . It 15 useful to remember

that the matrices 7“C and Ouy C= (21) ['y '7V]C are symmetric whlle C, 'ySCand "7;;75(' are

anmymmemc In particular, it follows that Vv, = Wz\l’ . ‘1’1 —v2‘7 V¥ yv‘l’z

= - wzowv Y Y Ysvay = Vz"Y,ﬂsV 1 ViYsVa = Uavsyy lfyw, and V¥, are anticommuting

Majorana spinors.

Space reflections are incorporated by requining that 6 transform according to the rule 6 —

—> 17,0 Likewise for dilations, x = Ax, 8 — A16 and v transformations, 8 — (cos a + yssinwé

with real «

%
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and 0, the displacement 1n x, caused by a super-gauge transformation s real ) Egs
(4) serve to define the action of the group on the space of the parameters x and 6
and indicate how any field defined over this space should transform. Thus, for ¢x-
ample, the scalar super-field ®(x, 0) should satisfy

exp [1€S] b(x, 0)exp[—1€S] =[x - 20€7,0,0+ €] 5)

By appending a Lorentz index* one could define a vector super-field D, (x, 8),a
spinor super-field ¥ _(x, 8), etc

If we were dealing with an arbitrary group then we should not be very pleased
with fields defined on an eight-dimensional space-time It was this aspect of the
old attempts at combining internal symmetries 1n a non-trivial way with the Poin-
care group which hindered their development. The truly remarkable and exciting
feature of the Wess: Zumino group 1s that the superfield & (x, ) 1n eight dimensions
1s exactly equivalent to a 16-component set of ordinary fields in four dimensions
One simply has to expend @ 1n powers of 0, and observe that the sertes must term-
nate n the tourth order This s due, of course, to the fact that the monomnals

0q 00, 04,

must be completely antisymmetric and therefore vanish for n >4 Therefore we can
write

b(x, 0) = ¢x) +6°(x) 0, + 16 1% (x) 0,6,

+1g [aBy] (x)gygﬁoa + 24 alaﬁvﬁloé 0«,8;3601 . (6)

The number of independent real components involved here can be halved by im-
posing the reality condition

d(x, 0)* = d(x, 0), (7)
which reads, in terms of the component fields,

$(x) =¢(x),

6, ()  =C %),

Dlag®) == CoCpp 817 x) (8)

¢1057](x) =—Coa CBB'CW'E[Q o ](x) ’

p— e 'a! '6'
¢laﬁ“16](x) —CM,CM,C”,CSS,d,[&ﬁ“/ ](X),

3
The super-gauge transformations induce no L.orentz transformation



480 A. Salam, J Strathdee, Super-gauge transformations

where the barred quantities are defined i the usual way, ¢(x) = ¢(x)", $*(x) =
= 05(¥)" (1p)5> 81%%1 (¥) = 0104 ()" ()2 (0)f» ete

The behaviour of these components under an infinitesimal super-gauge transforma-
tion can be extracted from (5). One finds

5¢ =¢%, .

50 = -Flfle —LiEr)0a,5 .

5¢ (8] = glad €, +%,(g7“)7au$6 _ %l(?n)ﬁa“a’ ,

splevel = _glaswle _ _;,(-6»7“)8 ayb'“’“" - iEyy 3#34;[631 _%,(g.,“)aauglvél,

55[0375] = %,(-67“)5 a“alaﬁvl _ %,(é-yﬂ)v au$l5“ﬁ1+

+hiEr)Pa 0% — ey )*o plBr] . ©)

(These rules imply, 1n particular, that the space-time 1ntegral of the component
¢[aﬁ75 should be an invarnant 1if surface effects can be neglected ) The representa-
tion (9& turns out to be reducible (although not fully reducible) To see this, 1t 15
convenient to introduce a new notation for the components Write

$(x) =A(x),

?%(x) =y*(x),

Bt () =(CYFFE) +(C Iy P G) +(C i vl (x) + 43, B(X)]
lemrl(x) = e [a (0) + 2u(v, )8 B, Uy (o,

$1oB8](x) = 27 [D(x) — §324(x)] (10)

If the reality conditions (8) are imposed then all boson components are real and
the fermion components  and X are Majorana spinors. The axial-vector field a,, 15
constrained to be transverse, a“a“ =( The transformation rules (9) now take the
form*

84 =€y,
— | -
6B =€y — - €N,
0
* Some of the details 1n these rules are affected by conventions in the definition of C Our C 1s

defined such that (1)e*#18C, 5 = — (C"1)%8, (1)eP(yC0) 5 =+ (C 'y and
Bvb = | af
ey, 75Oy =+ (C—iyyvs)
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sy =},a#,47“e+3218u87“756+Fe+G‘ySe+a“l7“756,
8F =518y +1en,

8\ =De+ L [3,a,-0,a]0, 7€,

30
— v _
ba, = 3€y Yo\ - %1—;-2— €YY\

§D =LiEdn, (12)

and 1t appears that we are dealing with one of those curious representations that
does not reduce 1n the usual way The eight independent components in the set D,
Aand a#(a“a“ = Q) clearly transform irreducibly However, unless they are set equal
to zero, they 1nvolve themselves in the transformations of the other eight compo-
nents, A, B, ¥, Fand G*

The setting to zero of D, X and a, can be viewed as a covariant constraint, In
fact one can construct an axial vector which generalizes the well-known Pauli-
Lubanski operator,

=1 1
K” ——zeprPuJKp - 5517“755, (13)
whose transverse part 1s super-gauge invariant Thus, the antisymmetric tensor
K =PK -PK (14)
uv uov viou

commutes with both translations and super-gauge transformations This operator 1s
realized by the following differential expression

_ 3 oo
Kin®=X005 36 36,
@ 8
3 3 - 3 b
+1(X,,7,0), 5 3, a0, 0,0 5, o, (15)

where X, = - (7#75 3, — 7Y 8“). The equations K“UCD =0 are solved by
D=Xx=a=0

The combining of representations into products 1s, at least in some cases, quite
easy One simply multiplies the super-fields The detailed combinations of compo-

* We have adapted our notation here to that of Wess and Zumino, ref [1] Thus, oureq (11)
with A, 2, and D set equal to zero corresponds to their eq (8) with d ue = 0 Similarly, our
(12) corresponds to their formulac on p 48
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nents will be revealed by expanding the result in powers of 8§ For example 1f
B, (x, 0) = b, (x, 0) D,(x, 0),
then, using the components defined by (6),

1925

¢> =

© |

1
© |
© |
©

¢4 @ o pay
3 1921919,

~af rav. 2 af 3
657 =085° + o765 -5 +0% e,
B3 =665 + 2 (55587 + 5B +95°78,

cyc.

550 =5,8357 + 398 + LG+ Liph 85 + 57 5, (16)
In particular, with &, = &, satisfying K ,,® = 0, 1t 1s a simple matter to show that

§3Pe = X0 [ 14824 +1yB Y +1(3,B) + F 4G

1 gxhrd [g(a“A)2 + -;(a”B)?- +1dY + 2F2 +2G2 —43,(43,4)].(17)

According to the rules (9) this object must transform by a gradient Its space-time
integral 1s invaniant. Wess and Zumino have proposed to use 1t as a Lagranglan den-
sity [1, 3]

The approach discussed 1n this paper may not prove to be the most serviceable
one available but, with the present hazy understanding of this curious and potentially
important symmetry, 1t seems worthwhile to examine every avenue®.
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! From relations (1) and (2), 1t appears that the Wess—Zumino formalism may have close con-
nections with the Twistor formahsm of Penrose (ref [4]), though the motivations of the two
tormalisms are apparently completely different.



