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1 Introduction

The aim of these lectures is to introduce some of the arguments that have
been used successfully in the last five years to obtain exact information about
strongly coupled field theories. I will focus on four-dimensional field theories
(without gravity), although the techniques described here have been applied
to theories in other dimensions and to string/M theory as well.

The basic notion is that of a low energy (or Wilsonian) effective action.
This is simply a local action describing a theory’s degrees of freedom at energies
below a given scale E. An example is the low energy effective action for
QCD, chiral perturbation theory describing the interactions of pions at energies
E < ΛQCD. In such a theory particles heavier than ΛQCD are included in
the pion theory as classical sources. Other examples are the various ten and
eleven-dimensional supergravity theories, which appear as effective actions for
string/M theory at energies below their Planck scales.

The effective action is obtained by averaging over (integrating out) the
short distance fluctuations of the theory. If there is a sufficiently small ratio
E/Λ between the cutoff energy scale E and the energy scale Λ characteristic
of the dynamics of the degrees of freedom being averaged over, renormaliza-
tion group arguments imply that the effective action can be systematically
expanded as a power series in E/Λ—essentially an expansion in the number of
derivatives of the fields.

We will use low energy effective actions to analyze four dimensional field
theories by taking the limit as the cutoff energy scale E goes to zero, or equiv-
alently, by just keeping the leading terms (up to two derivatives) in the low
energy fields. I will call such E → 0 low energy effective actions infrared effec-
tive actions (IREAs). The idea is to guess an IR effective field content for the
microscopic (UV) theory in question and write down all possible IREAs built
from these fields consistent with the global symmetries of the UV theory. For
a “generic” UV theory this is no better than doing chiral perturbation theory
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for QCD, and would seem to give little advantage for obtaining exact results.
However, if the theory has a continuous set of inequivalent vacua, it turns out
that selection rules from global symmetries of the UV theory can sometimes
constrain the IREA sufficiently to deduce exact results. There are a number
of reviews deriving these exact results 1 assuming the constraints from super-
symmetry. The purpose of these lectures will be to deduce and explain these
constraints in a relatively non-technical way.

We will start with properties of general IREAs and then progressively
specialize to those with N = 1 and then N = 2 supersymmetry. The con-
straints on the IREAs become progressively more restrictive as the number of
supersymmetries is increased; in the N = 2 case they are strong enough to
allow quite general and restrictive properties of the moduli space of vacua of
gauge theories to be deduced. Important topics omitted include the properties
of interacting IREAs—the representation theory of superconformal algebras 2

and their use in analyzing IREAs;3 instead these lectures concentrate on IR
free effective actions. Also missing (as much as possible) are details of super-
symmetry algebras and the construction of their representations—many good
texts and review articles cover this material 4—or the application of the ideas
presented here to theories in other dimensions.5

Since an IREA describes physics only for arbitrarily low energies, it is, by
definition, scale invariant: we simply take the cutoff scale E below any finite
scale in the theory. Scale invariant theories and therefore IREAs can therefore
fall into one of the following categories:

Trivial theories in which all fields are massive, so there are no propagating
degrees of freedom in the far IR.

Free theories in which all massless fields are non-interacting in the far IR.
(They can still couple to massive sources, but these sources should not be
treated dynamically in the IREA.) An example is QED, in which the IREA
describes free photons when the lightest charged particle is massive.

Interacting theories of massless degrees of freedom which are usually as-
sumed to be conformal field theories.6

We generally have no effective description of interacting conformal field
theories in four dimensionsa so we must limit ourselves to free or trivial theories
in the IR. A large class of these is given by the Coleman-Gross theorem7 which
states that for small enough couplings any theory of scalars, spinors, and U(1)
vectors in four dimensions flows in the IR to a free theory. We will therefore
focus on IREAs with this field content. Note that other IR free theories are
known, for example non-Abelian gauge theories with sufficiently many massless

aSee however lectures in this volume on the anti de Sitter/conformal field theory
correspondence.
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charged scalars and spinors. They will not play as important a role as the U(1)
theories, since even within supersymmetric theories they can be destabilized
by adding mass terms.

2 IREAs with No Supersymmetry

We thus take the field content of our IREA to be a collection of real scalars φi,
Weyl spinors ψaα, and U(1) vector fields AIµ. Here α and µ are the space-time
spinor and vector indices, while i, a, and I label the different field species.

Since this theory is free in the IR, no interesting dynamics involving the
spinor fields (like the formation of scalar condensates) can occur (basically by
definition). Thus the vacuum structure of this theory is governed by the scalar
potential. So, dropping the other fields we write the general Lagrangian with
up to two derivatives for a set of real scalars

L = −V (φ) + 1
2gij(φ)∂µφ

i∂µφj . (1)

Here the potential V is an arbitrary real function of the φi which is bounded
below (for stability), while the coefficient gij of the generalized kinetic term
is a real, symmetric and positive definite tensor (for unitarity). Let’s assume
V attains its minimum value, which without loss of generality we take to be
V = 0.

Minimizing the generalized kinetic energy term implies that in the vacuum
the scalars should all be constant. Denoting these constant values by the same
symbols as for the fields, the set of all possible vacua is then seen to naturally
have the structure of a Riemannian manifold

M0 = {φi} (2)

with metric gij . Note that the manifold defined by Eq. 2 is independent of
the particular choice of scalar fields used in Eq. 1 because an arbitrary non-
singular field redefinition φi → φ̃i(φ) transforms gij in the same way as a metric
transforms under a change of coordinates. Eq. 1 is called a sigma model on
M0.

If V = 0 identically, then M0 would describe a manifold of vacua of this
theory. We call such a manifold of vacua the moduli space of the theory.
Without any extra symmetries to constrain it, generically V 6= 0, so M0 is not
the moduli space, but instead

MV = M0/{V = 0} (3)

is. At least locally MV has the structure of a submanifold of M0.
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Note that the derivative expansion that we are doing in getting the IREA
effectively treats φi as dimensionless. In the usual discussions of perturbative
quantum field theory, one assigns φi a scaling dimension of (mass). This is
because we are interested in the scaling properties of the fluctuations of φ about
a given vacuum, which are governed by the kinetic terms. But in determining
the vacuum itself it is the potential that is important, and so the constant part
of φi (the vevs) should be treated as dimensionless constants. In particular,
taking the scale of the low energy effective action to be an energy E does not
imply that only vacua with 〈φi〉 < E should be allowed.

Now let us incorporate the U(1) gauge fields into our discussion of the
moduli space. Some of the scalar fields may be charged under the U(1)n gauge
group of the IREA. The infinitesimal U(1)n action of the gauge group on the
scalars then generates a diffeomorphism of M0

φi → φi + ξiI(φ), (4)

where I labels the U(1) generators. For Eq. 4 to be a symmetry of the IREA
it is easy to see that it must both leave V invariant and be an isometry of the
metric gij . In that case the IREA can be written (excluding the spinors) as

L = −V (φ) + 1
2gij(φ)Dµφ

iDµφj −
1

32π
Im

[
τIJ(φ)FI

µνF
Jµν

]
, (5)

where, treating the ξiI as (Killing) vectors generating the isometry, we have
Dµ = ∂µ +AIµξI . The last term in Eq. 5 is a generalized Maxwell term for the

U(1) field strengths F Iµν = ∂µA
I
ν − ∂νA

I
µ, where we have defined

FI
µν = F Iµν −

i

2
εµνρσF

Iρσ, (6)

and τIJ is a complex (gauge invariant) function of the φi symmetric in I and
J and whose imaginary part is positive definite (for unitarity). Eq. 5 is called
a gauged sigma model on M0.

Defining the real and imaginary parts of the couplings as

τIJ =
θIJ
2π

+ i
4π

(e2)IJ
, (7)

the generalized Maxwell term can be expanded to

LU(1) = −
1

4(e2)IJ
F IµνF

Jµν +
θIJ
64π2

εµνρσF IµνF
J
ρσ, (8)
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showing that the imaginary part of τIJ is a matrix of couplings and the real
part are theta angles. We will discuss the physical interpretation of these
couplings momentarily.

First, though, let us see how the addition of the U(1) gauge fields affects the
moduli space. Two points of M0 which are related by a gauge transformation
Eq. 4 must be identified. Thus M0 or MV (since V is gauge invariant) is
replaced by M, formed by dividing by the action of the gauged isometry group
U(1)n:

M = MV /U(1)n. (9)

The metric g′ induced on M is not simply the restriction of g to M ⊂ M0,
but is instead defined by g′ijdφ

idφj = gijDφ
iDφj , where Dφi ≡ dφi + AIξiI ,

with dφi = ∂µφ
idxµ and AI = AIµdx

µ thought of as one-form valued tangent
vectors to M0. This construction is known as a Riemannian quotient, and is
just a geometrical realization of the (classical) Higgs mechanism.

Since our IREA is is supposed to be free in the IR, we must comment on
the meaning of the couplings τIJ . There are two kinds of vacua to consider.
The first is one where a charged field (scalar or spinor) is massless. In this
case the one-loop running of the U(1) coupling implies that in the IR the
coupling vanishes (corresponding to Imτ → +i∞). The second case is where
all the charged fields are massive, in which case the U(1) couplings stop running
at energy scales below the mass of the lightest charged particle (just as the
electromagnetic coupling is fixed at ∼ 1/137 on scales below the electron mass).
Thus, in this case the coupling Imτ in the IREA is the strength of the gauge
coupling to massive (classical) sources.

The theta angles are coefficients of topological (total derivative) terms in
the action which count the instanton number of a given field configuration.
Since this is an integer, the theta angles are indeed angles: θIJ ≡ θIJ + 2π,
implying τIJ ≡ τIJ + 1. It is often remarked that there are no non-trivial
instanton field configurations for U(1) gauge groups in four-dimensional space-
time, and thus no physics can depend on the θIJ for U(1) theories. This is not
correct for IREAs, however, since the theta angles are couplings to massive
sources not described by the IREA fields. In the presence of such sources, the
space-time manifold on which the IREA is defined is not all of R4, but should
have the world-lines of the sources removed. On such manifolds there can be
non-trivial U(1) bundles, i.e. U(1) gauge field configurations with non-zero
instanton number. The basic example of this (realizable semi-classically) is
when the microscopic theory is a non-Abelian gauge theory Higgsed down to
U(1) factors admitting magnetic monopole solutions, so that there are both
electrically and magnetically charged sources in the U(1) IREA. In the presence
of such sources the instanton number is proportional to products of electric and
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magnetic charges present (and is an integer because of the Dirac quantization
condition).

Note that the vacuum expectation values (vevs) of charged scalars can not
parameterize the moduli space, because when a charged scalar gets a nonzero
vev it Higgses the U(1) it is charged under and thereby gets a mass. It is
therefore not a flat direction—i.e. changing its vev takes us off the moduli
space M. So, since we are interested only in the extreme IR limit, we only
need to keep the neutral scalars which parameterize M. In this case the IREA
Eq. 5 simplifies since V = 0 on M by definition and Dµ = ∂µ on neutral
scalars. Thus only the metric gij(φ) and couplings τIJ(φ) need to be specified.
(If we included the fermions, there would also be the coefficient functions of
their kinetic terms as well.)

It will be our mission in the rest of these lectures to determine the metric
and U(1) couplings on M. Already in the non-supersymmetric case there is
more that can be said about the properties of the coupling matrix τIJ , and is
the topic of the next subsection.

2.1 Electric-Magnetic Duality

It is convenient to discuss the U(1) gauge fields in the language of forms. Thus
we define the one-form potentials and their 2-form field strengths by

AI = AIµdx
µ

F I = dAI = 1
2F

I
µνdx

µ ∧ dxν , (10)

and the Hodge dual of a p-form C = Cµ1···µp
dxµ1 · · · dxµp to be the (4−p)-form

∗C ≡
1

p!
εµ1···µ4

Cµ1···µpdxµp+1 ∧ · · · ∧ dxµ4 , (11)

so that ∗∗C = (−)p+1C. In this language Eq. 6 becomes FI = F I − i∗F I and
the Maxwell part of the IREA Eq. 5 becomes

S = −
1

16π

∫
Im [τIJF ∧ ∗F ] . (12)

The classical Maxwell’s equations with electric and magnetic sources follow
from the action

S =

∫ (
−

1

2e2
F ∧ ∗F +A ∧ ∗je + Ã ∧ ∗jm

)
, (13)
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where, away from any electric sources Ã is defined through ∗F = dÃ. The
Dirac quantization condition 8 implies that if there are electric sources of unit
strength, so that a stationary point source at the origin would have ∗je =
δ(3)(x)dx1 ∧ dx2 ∧ dx3, then the strength g2 of a magnetic source (i.e. ∗jm =
g2δ(3)dx1 ∧ dx2 ∧ dx3) obeys g2 = 4πnm/e

2 for nm an integer. With these
normalizations, we call the (integer) strength of the electric source, ne, the
electric charge, and nm the magnetic charge. The equations of motion following
from Eq. 13 are

1

e
d∗F = eneδ

(3),
1

e
dF =

4π

e
nmδ

(3), (14)

which are invariant under the electric-magnetic duality transformation

(F/e) → ∗(F/e), ∗(F/e) → −(F/e),

nm → ne, ne → −nm,

e ↔ 4π/e. (15)

The minus signs are because ∗∗F = −F in four-dimensional Minkowski space.
We can show that this duality of the classical equations of motion holds

quantum mechanically as well, though this should be obvious since we are just
talking about a free theory. We will also take this opportunity to generalize the
above discussion to n U(1) factors and include the theta angles. We compute
physical quantities in the quantum theory as a path integral over all gauge
potential configurations

∫
DAIeiS . This can be rewritten as a path integral

over field strength configurations as long as we insert the Bianchi identity as
a constraint:

∫
DF IDÃJe

iS′

, where 4πS′ = 4πS +
∫
ÃI ∧ dF I . Here ÃI is

a (one-form) Lagrange multiplier enforcing the Bianchi identity, and whose
normalization is chosen so that it couples to monopoles with strength one.
Performing the Gaussian functional integral over F I using

∫
ÃI∧dF

I =
∫
F̃I∧

F I = 1
2

∫
Im[F̃I ∧ ∗FI ] where F̃I is related to F̃I = dÃI as in Eq. 6, we find

an equivalent action, S̃, for ÃI :

S̃ = −
1

16π

∫
Im

[
(−τIJ )F̃I ∧ ∗F̃J

]
, (16)

where τIJ is the matrix inverse of τIJ : τIJτJK = δIK . Thus the free U(1) gauge
theory with couplings τIJ is quantum mechanically equivalent to another such
theory with couplings −τIJ . This is the electric-magnetic duality “symmetry”.
It is not really a symmetry since it acts on the couplings—it is an equivalence
between two descriptions of the physics.
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The electric-magnetic duality transformation

S : τIJ → −τIJ , (17)

together with the invariance of the physics under 2π shifts of the theta angles
(integer shifts of ReτIJ)

T (KL) : τIJ → τIJ + δKI δ
L
J + δLI δ

K
J , (18)

generate a discrete group of duality transformations:

τIJ → (AI
LτLM +BIM )(CJN τNM +DJ

M )−1, (19)

where

M ≡

(
AI

K BIL
CJK DJ

L

)
∈ Sp(2n,Z). (20)

The conditions on the n× n integer matrices A, B, C, and D for M to be in
Sp(2n,Z) are (in an obvious matrix notation)

ABT = BTA, BTD = DTB,

ATC = CTA, DTC = CDT ,

ATD − CTB = ADT −BCT = 1, (21)

and imply that

M−1 =

(
DT −BT

−CT AT

)
. (22)

We have seen that under an electric-magnetic duality transformation, a
massive (classical) dyonic source with magnetic and electric charges (nIm, ne,J )
in the original description couples to the dual U(1)’s with charges (ne,I ,−n

J
m).

The effect of a T (KL) theta angle rotation on the charges is (nIm, ne,J) →
(nIm, ne,J − nKmδ

L
J − nLmδ

K
J ), as follows from the generalization of the Witten

effect 9 to n U(1) factors. Together these generate the action

(nm ne) → (nm ne) ·M
−1 (23)

of the Sp(2n,Z) electric-magnetic duality group on the 2n-component row
vector of magnetic and electric charges.

Thus electric-magnetic duality simply expresses the equivalence of free
U(1) field theories coupled to classical (massive) sources under Sp(2n,Z) re-
definitions of electric and magnetic charges. The importance of this redun-
dancy in the Lagrangian description of IREAs becomes apparent when there is
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a moduli space M of inequivalent vacua. In that case, upon traversing a closed
loop in M the physics must, by definition, be the same at the beginning and
end of the loop, but the Lagrangian description need not—it may have suffered
an electric-magnetic duality transformation. This possibility is often expressed
by saying that the coupling matrix τIJ , in addition to being symmetric and
having positive definite imaginary part, is also a section of a (flat) Sp(2n,Z)
bundle with action given by Eq. 20.

Electric-magnetic duality can be generalized to other free theories with
U(1) gauge invariances. For example, in four dimensions we can also con-
sistently couple a two-form field B = 1

2Bµνdx
µ ∧ dxν if it is invariant under

the gauge transformation δB = dΛ for an arbitrary one-form Λ. Then the
gauge-invariant field strength is the three-form H = dB, and the IR free La-
grangian is L ∼ H ∧ ∗H . We can define a dual “magnetic” field strength
one-form by H̃ ≡ ∗H , and, away from sources, its gauge potential (zero-form)

Φ by H̃ = dΦ. In this case the gauge transformations are shifts of Φ by con-
stants, and the Lagrangian becomes L ∼ dΦ ∧ ∗dΦ. Thus electric-magnetic
duality implies that the two-form potential theory is equivalent to that of a
derivatively-coupled real scalar field. In particular, we lost no generality by
not including two-form potentials in our free IREAs. In a general space-time
dimension d, electric-magnetic duality relates IR free U(1) theories of p-form
potentials to those of (d− p− 2)-form potentials; the resulting discrete duality
groups (including theta angle rotations) have been worked out.10

2.2 Effective Actions of Asymptotically Free Gauge Theories

As an example of an application of the above considerations, and to introduce
the main class of field theories that we will be interested in, we discuss in this
subsection effective actions of asymptotically free (AF) gauge theories.

A microscopic (UV) theory is characterized by some parameters (e.g.
masses, strong coupling scales, theta angles, dimensionless couplings). We
can always take ratios of these parameters to describe them by at most one
scale Λ and a set of dimensionless parameters λk. The coefficient functions gij
and τIJ of the IREA will, in general, depend on Λ and the λk. Determining
this dependence of these IR quantities on UV parameters is the ultimate goal
of the techniques reviewed in these lectures.

Consider an AF gauge theory kinetic term

L =
τ0

32πi
tr(F · F) (24)

Here we are thinking of L as an effective action at a scale µ0, and g0 is the
coupling at that scale. For g0 small enough we can calculate with arbitrary
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accuracy the RG running of the coupling from the one loop result

µ
dg

dµ
= −

b0
16π2

g3 + O(g5) ⇒
1

g2(µ)
' −

b0
8π2

log

(
|Λ|

µ

)
, (25)

where we have defined
|Λ| ≡ µ0e

−8π2/b0g
2
0 , (26)

the strong coupling scale of the gauge group. The coefficient of the one-loop
beta function is given by

b0 =
11

6
T (adj) −

1

3

∑

a

T (Ra) −
1

12

∑

i

T (Ri) (27)

where the indices a run over Weyl fermions in representations Ra of the gauge
group, and i runs over real scalars in the representations Ri. T (R) is the index
of the representation R; for SU(N), for example, the index of the fundamental
representation is 1, and of the adjoint representation is 2N .

Thus the complex gauge coupling is

τ0 ≡
θ

2π
+ i

4π

g2
0

=
1

2πi
log

[(
|Λ|

µ0

)b0
eiθ

]
, (28)

where we have used the definition of the strong coupling scale |Λ| in the last
step. It is thus natural to define a complex “scale” by

Λ = |Λ|eiθ/b0 ⇒ τ0 =
b0
2πi

log

(
Λ

µ0

)
. (29)

Since we are dealing with an AF theory (b0 > 0), if we take the scale
µ0 � |Λ|, then the theory is weakly coupled. Let us consider how this effective
theory will change as we run it down in scale a little to µ < µ0. As long as
the ratio µ/µ0 is not too small, the theory should remain weakly coupled, and
we expect that the effective theory should be describable in terms of the same
degrees of freedom. The effective gauge coupling τ will then be some function
τ(Λ, φi;µ) of the strong coupling scale Λ, the renormalization scale µ, and any
scalar vevs φ.

We also have to take into account the angular nature of the theta angle
θ ' θ + 2π, which means that as we rotate the phase of Λb0 → e2πiΛb0 , we
must have τ → τ + 1. This constrains the functional form of τ to be

τ(Λ, φ;µ) =
b0
2πi

log

(
Λ

µ

)
+ f(Λb0 ,Λ

b0
, φ;µ), (30)

10



1

Λ φ E

g

U(1)
G

2

Figure 1: Running of the coupling of an AF gauge theory with gauge group G Higgsed to
U(1)’s at a scale φ � Λ. The U(1) couplings do not run below φ only because we have
assumed there are no charged fields lighter than φ; otherwise they would run to even weaker

couplings.

where f is an arbitrary single-valued function of its arguments (no cuts in the
complex Λb0 plane).

Since we are dealing with an AF theory, the Λ → 0 limit corresponds to
the weak coupling limit, in which the effective couplings should not diverge.
This allows non-analytic contributions to f of the form (log |Λ|)−n ∼ g2n (an

n-loop perturbative contribution) as well as analytic terms Λb0n ∼ e−8nπ2/g2

(an n-instanton contribution).
This discussion has only applied to weakly coupled AF theories where the

description in terms of the microscopic degrees of freedom is good. As we
run the RG down to the IR, the theory will become strongly coupled, and our
description in terms of the φi and F fields may break down. However, in a case
where a charged scalar gets a large vev Higgsing the AF gauge group down to
a U(1)n subgroup at a large scale (and therefore weak coupling), the analysis
of the preceding paragraphs can be applied to the low energy U(1)n theory;
see Fig. 1. Since this theory is IR free, we can then run the RG scale to the
far IR, giving for the low energy couplings

τIJ =
b0
2πi

log

(
Λ

φ

)
+ f(Λ,Λ, φ). (31)

Here, since we have run to the far IR, the renormalization scale µ = 0, and so,
by dimensional considerations, φ has to appear in the combination Λ/φ. (More
complicated dependences can occur if there is more than one φ modulus.)

By itself this does not tell us much, since f is not determined. But an
interesting constraint on f comes from the requirement that τIJ be a section
of an Sp(2n,Z) bundle. This allows τIJ to “jump” by an element of Sp(2n,Z)
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upon making a circle in the φ moduli space. For example, using the matrix
notation of Eq. 20, upon making a large circle in a complex φ plane τ could
“jump” as

τ(e2πiφ) =
A · τ(φ) +B

C · τ(φ) +D
. (32)

The element M =
(
A B
C D

)
∈ Sp(2n,Z) is called the monodromy around the

given closed path in the moduli space.

3 N = 1 Supersymmetric IREAs

The preceding discussion of electric-magnetic duality monodromies in the mod-
uli space is largely moot in the case of non-supersymmetric theories, since
generically they do not have non-trivial moduli spaces. One familiar example
of a manifold of vacua occurs in theories with a spontaneously broken global
symmetry. In this example, however, the vacua are related by the broken global
symmetry generators and therefore necessarily have equivalent physics. Any
further vacuum degeneracy is usually considered “accidental” and has to be
engineered by fine-tuning parameters in the UV theory. For example, without
any other symmetry, one would expect V to take on its minimum only at a
discrete point in M0, so M is generically just a point. From a low energy
perspective the problem is that degenerate vacua involve having exactly flat
directions in the potential for some scalar fields.

Supersymmetry is another global symmetry which can constrain the form
of the scalar potential by relating the scalars to the Weyl spinor fields in the
IREA. Essentially because the way the spinor fields can enter is constrained
by Lorentz invariance the form of the the kinetic terms and scalar potential
are also constrained, in particular sometimes to have exactly flat directions.
Note that since supersymmetry transformations take scalars to spinors, they
can not relate different vacua (scalar vevs) and so do not imply equivalent
physics along the flat directions. These supersymmetric selection rules will be
the subject of succeeding subsections.

We start with N = 1 supersymmetry, the minimum amount of supersym-
metry in four dimensions. Just using some basic facts about representations
of the supersymmetry and Lorentz algebras (i.e., avoiding detailed construc-
tions needed for existence proofs) we can fairly quickly derive the important
selection rules for the IREAs.

Recall that representations of the Lorentz algebra in four dimensions,
so(3, 1) 'C su(2)L × su(2)R, can be labeled by their left and right su(2)
“spins” (jL, jR). The smallest representations are scalars (0, 0), left handed
Weyl spinors (1

2 , 0), right handed Weyl spinors (0, 1
2 ), vectors (1

2 ,
1
2 ), self-dual
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antisymmetric tensors (1, 0), and anti-self-dual antisymmetric tensors (0, 1).
Also, complex conjugation reverses left and right spins of representations, so,
by CPT invariance, fields with jL 6= jR must be complex.

Supersymmetry generators are space-time spinors. The minimum amount
of supersymmetry corresponds to a single complex (1

2 , 0) Weyl spinor super-
charge Q. The basic N = 1 superalgebra is then

{Q,Q} = P, {Q,Q} = {Q,Q} = 0, [Q,P ] = [Q,P ] = 0, (33)

where Q is the hermitian conjugate of Q and therefore a (0, 1
2 ) Weyl spinor,

P is the generator of space-time translations—a (1
2 ,

1
2 ) vector of charges which

act on fields as ∂µ—and all Lorentz indices and necessary Clebsch-Gordon
coefficients (Pauli matrices and the like) have been suppressed.

The irreducible representation of Eq. 33 containing a scalar field φ is easy
to construct. b First, ψ ≡ Qφ is a (1

2 , 0) spinor, and for Q2φ = 0 we therefore

need Qψ = 0. For {Q,Q}φ = Pφ we need Qψ = Pφ. If φ were real then

Qφ = ψ, implying Q
2
ψ = Pψ in contradiction with Eq. 33. Thus we must

take φ complex and set Qφ = 0, giving

Qφ = ψ, Qφ = 0,

Qψ = 0, Qψ = Pφ, (34)

along with their complex conjugates

Qφ = ψ, Qφ = 0,

Qψ = 0, Qψ = Pφ. (35)

It is easy to see that this satisfies Eq. 33; (φ, ψ) is called a chiral multiplet.
Eq. 34 already shows the most important feature of four dimensional supersym-
metry for IREAs—complex conjugation of the scalars is tied to the chirality
of the spinors. This gives the moduli space M a complex structure.

To see this, we examine the general scalar kinetic terms in the IREA:

hijPφ
iPφj + hıPφ

ı
Pφ


+ giPφ

iPφ

, where h and g are functions of the φi

and their complex conjugates and we are using the (somewhat redundant)
notation of putting a bar over the species label of complex conjugated fields
as well as over the fields themselves. Hermiticity implies that g satisfies the
reality condition gi = gjı, while h is symmetric in i and j.

We will now show that hij = 0 (our first supersymmetric selection rule).
Consider the term Lφ2 = hijPφ

iφj . Its Q variation contains the term QLφ2 ⊃

bIn what follows I am constructing on-shell supersymmetry transformations, assuming
that supersymmetry is not spontaneously broken.
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hijPψ
(iPφj). For the Lagrangian to be supersymmetric, this variation should

cancel against the Q variation of some other term. But, from Eq. 33 it is easy
to see that no other such term is possible and therefore hij = 0. Thus the
general N = 1 scalar kinetic term is

L = gkPφ
kPφ


. (36)

Thus the moduli space M is a complex manifold with metric gi; such manifolds
are called a Hermitian.

In fact M satisfies a stronger condition. To see this, consider the term

Lψ4 = rık`ψ
ı
ψ

ψkψ`, where r is a function of the φi symmetric on ı and

k` (since ψkψ` have to be combined antisymmetrically on their spinor indices
to make a scalar, so, since they anticommute, they are symmetric in their k`

indices). Then QLψ4 ⊃ rık`ψ
(ı
Pφ

)
ψkψ`. The only term that can cancel this

variation is Lψ2φ = Γıkψ
ı
Pφ


ψk for some function Γ of the φ since QLψ2φ ⊃

Γık,`ψ
ı
Pφ


ψkψ`, where Γık,` ≡ (∂/∂φ`)Γık. For this cancelation to work

implies Γık = Γık. Now, QLψ2φ ⊃ Γıkψ
ı
Pφ


Pφk, and this variation can

only be canceled by the kinetic term Eq. 36 since QL ⊃ gk,ıψ
ı
Pφ


Pφk. But

then the symmetry of Γık in ı implies gk,ı = gkı,. This condition and its
complex conjugate have the solution (locally)

gk = K,k, (37)

where K is some real function of the φ and φ, called the Kähler potential;
manifolds with such metrics are called Kähler manifolds. Thus the moduli
space M of an N = 1 supersymmetric theory is a Kähler manifold.

We can add in the U(1) vector fields as well. The field strength can be
written in terms of a self-dual antisymmetric tensor F defined in Eq. 6 and
its anti-self-dual complex conjugate tensor. Since the (1, 0) self-dual tensor
representation appears in the tensor product of two left-handed Weyl spinor
representations, we can make an (on-shell) N = 1 supersymmetry representa-
tion from a (1

2 , 0) spinor λ and F much as in Eq. 34

Qλ = F , Qλ = 0,

QF = (Pλ)
(
1
2 ,0)

, QF = (Pλ)
(1,

1
2 )
, (38)

along with their complex conjugates. In the second line I have included sub-
scripts to emphasize which Lorentz spin components of the right hand sides
appear. In general, Pλ ∼ (1

2 ,
1
2 ) ⊗ (1

2 , 0) = (1, 1
2 ) ⊕ (0, 1

2 ), but one of these
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irreducible representations is projected out in the second line as follows from
the Lorentz spin content of QF and QF . (λ,F) form the field strength chiral
multiplet; but we will call it the vector multiplet since that is the name of a
related multiplet in which the vector potential lives.

Because of the QF = Pλ relation in Eq. 38, the closure of the superalgebra
on the vector multiplet is a bit more complicated than in the chiral multiplet
case. On the one hand, (Pλ)

(
1
2 ,0)

= 0 by the equations of motion for a massless

Weyl spinor, so on shell for massless vector multiplets this term could just be
dropped. On the other hand it will be useful keep this term when deriving
selection rules for N = 2 supersymmetric actions in the Sec. 4.

The general kinetic term we can write for the vector multiplets in the
IREA is

L = ImτIJF
I · FJ , (39)

where τIJ is a section of an Sp(2n,Z) bundle over M, and so depends on the
vevs of the chiral multiplet scalars φi (the coordinates of M). FI · FJ is a
shorthand for FI ∧∗FJ = FI

µνF
Jµν . τIJ is in fact a holomorphic section. This

follows from the fact that QL ⊃ τIJ,ıψ
ı
FI ·FJ , but there is no other term that

can cancel this supersymmetry variation, so

τIJ,ı = 0. (40)

In summary, the bosonic part of the general N = 1 supersymmetric IREA
is given by the Lagrangian

L = K,i(φ, φ)∂µφ
i∂µφ


−

1

32π
Im

[
τIJ (φ)FI

µνF
Jµν

]
. (41)

3.1 Nonrenormalization Theorems

The holomorphic nature of τIJ has strong consequences. 11,12 Denote the mi-
croscopic (UV) parameters of the theory (e.g. masses, strong coupling scales,
theta angles, dimensionless couplings) by some scale Λ and a set of dimension-
less parameters {λ}. The coefficient functions K, τIJ of the IREA are functions
of Λ and the λk which we wish to determine.

Now, it is a fact that these UV parameters enter into the action of N = 1
UV theory in the same way as the scalar components of chiral superfields
do. (Showing this fact involves writing down general forms of asymptotically
free N = 1 gauge actions, the subject of many standard texts. 4) Thus, it is
consistent to assign these constants supersymmetry transformation properties
as if they were the lowest components of chiral superfields. This is often
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expressed by saying that we can think of all the UV parameters as classical
background chiral superfields. This implies that whatever strong dynamics
takes place upon flowing to the IR, these parameters will only enter the IREA
in the way chiral multiplet scalars do. In particular, τIJ will be a holomorphic
function of Λ and the λ —i.e. if λ is a coupling, then only λ and not λ can
appear in any quantum corrections to τIJ , since τIJ is a function only of chiral
superfields and not their complex conjugates.13,14

Let us examine more closely the logic of this argument. We are assuming
that the effective theory (the IREA) will be described by a nonlinear sigma
model of some set of light chiral fields which are not necessarily simply a subset
of those of the UV theory. We have no derivation of this hypothesis—we can
only test it to see if it gives consistent answers. The couplings of the effective
theory will be some functions of the couplings of the microscopic theory, which
we would like to solve for. The next step of thinking of the couplings in the
superpotential as background chiral superfields is just a trick—we are certainly
allowed to do so if we like (since the couplings enter in the microscopic theory
in the same way a background chiral superfield would). The point of this trick
is that it makes the restrictions on possible quantum corrections allowed by
supersymmetry apparent. These restrictions are just a supersymmetric version
of the familiar “selection rules” of quantum mechanics.

Perhaps an example from quantum mechanics will make this clear: Re-
call the Stark effect, in which one calculates corrections to the hydrogen atom
spectrum in a constant background electric field. Thus we perturb the Hamil-
tonian by adding a term of the form δH = E1x1 +E2x2 +E3x3. As the Ei are
just some constants, this term explicitly breaks rotational invariance. But the
resulting perturbed energy levels cannot depend on the perturbing parameters
Ei arbitrarily. Indeed, one simply remarks that the electric field transforms as
a vector E under rotational symmetries, thus giving selection rules for which
terms in a perturbative expansion in the electric field strength it can con-
tribute to. On the other hand, these selection rules are equally valid without
the interpretation of the electric field as a background field transforming in a
certain way under a symmetry (which it breaks). Instead, one could think of
it as an abstract perturbation, and the selection rules follow simply because it
is consistent to assign the perturbation transformation rules under the broken
rotational symmetry.

The holomorphy of τIJ is the same sort of a selection rule, but this time
following from supersymmetry. The unfamiliar feature of it is that the UV
parameters do not explicitly break the supersymmetry.

We can immediately see the power of this supersymmetry selection rule.
For suppose our enlarged theory (thinking of the λ as a chiral superfield) has
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a U(1) global symmetry under which, say, λ has charge Q(λ) = 1, i.e. in the
UV gauge coupling there is a term τUV ⊃ λO−1, where O−1 is some charge −1
operator. Say we are interested in the appearance of a given operator O−10

of charge Q(O−10) = −10 among the quantum corrections. Normally, one
would say that this operator can appear only at tenth and higher orders in
perturbation theory: δτ ∼ λ10O−10 + λ11λO−10 + . . .+ λ10e−1/|λ|2O−10 + . . .,
(assuming that there is a regular λ→ 0 limit, so that no negative powers of λ
are allowed), where I’ve also indicated potential non-perturbative contributions
as well. However, by the above argument we learn that only the tenth-order
term is allowed, all the higher-order pieces, including the non-perturbative
ones, are disallowed since they necessarily depend on λ non-holomorphically.

Even more importantly, any operator of positive charge under the U(1)
symmetry is completely disallowed, since it would necessarily have to have
inverse powers of λ as its coefficient. But since we assumed the λ → 0 weak-
coupling limit was smooth (i.e. the physics is under control there), such singu-
lar coefficients are disallowed. Note that this is again special to supersymmetry,
for if non-holomorphic couplings were allowed, one could always include such
operators with positive powers of λ instead.

This argument can be summarized prescriptively as follows:15 The effective
(macroscopic) τIJ is constrained by

(1) holomorphy in the (microscopic) coupling constants,

(2) “ordinary” selection rules from symmetries under which the coupling
constants may transform or from electric-magnetic duality, and

(3) smoothness of the physics in various weak-coupling limits.

Much of the progress in understanding the non-perturbative dynamics of su-
persymmetric gauge theories of the past half decade years has resulted from
the systematic application of the above argument.

The most important application of this argument is to AF gauge theories.
Consider an AF gauge theory with complex strong coupling scale

Λ = µ0e
−8π2/b0g

2
0eiθ/b0 (42)

so that the one loop complex coupling at a scale µ is

τ =
b0
2πi

log

(
Λ

µ

)
. (43)

The coefficient of the one-loop beta function is given by

b0 =
3

2
T (adj) −

1

2

∑

i

T (Ri) (44)
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in an N = 1 supersymmetric gauge theory, where the sum is over each chiral
multiplet (φi, ψi) transforming in the representation Ri of the gauge group.
This follows from Eq. 27 if we recall that the vector multiplet includes one
Weyl fermion in the adjoint representation, and each chiral multiplet has a
complex scalar and Weyl fermion in the representation Ri.

As in Eq. 30, the effective τ at scale µ will have the functional form

τ(Λ, φi;µ) =
b0
2πi

log

(
Λ

µ

)
+ f(Λb0 , φi;µ), (45)

where f is now an arbitrary holomorphic function of its arguments. The im-
portant point is that τ can only depend holomorphically on Λ and φi. Since
we are dealing with an AF theory, the Λ → 0 limit corresponds to the weak
coupling limit, in which the effective couplings should not diverge. Thus we
have

τ =
b0
2πi

log

(
Λ

µ

)
+

∞∑

n=1

Λb0nan(φ
i;µ), (46)

(i.e. inverse powers of Λb0 do not appear). By comparing this expression to the
perturbative expansion, where log Λ ∼ 1/g2 (a one loop perturbative contri-

bution) while Λb0n ∼ e−8nπ2/g2 (an n-instanton contribution), we see that the
gauge coupling τ in the Wilsonian effective action only gets one loop corrections
in perturbation theory, though non-perturbative corrections are allowed.

As in the discussion of Sec. 2.2, these considerations also apply to the
U(1)n couplings τIJ of the IREA of an AF theory Higgsed with a sufficiently
large vev. In the case of a single U(1) and a single chiral multiplet vev φ, the
IREA coupling has the form

τ =
1

2πi
log

(
Λb0
φα

)
+

∞∑

n=1

an

(
Λb0
φα

)n
. (47)

Here φ is some gauge invariant combination of the scalar Higgs fields in the UV
theory, which can be determined classically; the power α with which it appears
is determined by dimensional considerations. Now, as we make a large circle
in the φ plane, τ undergoes the monodromy

τ → τ − α, (48)

which should be an element of Sp(2,Z), implying that α is an integer. In any
given AF gauge theory Higgsed to U(1)’s this can indeed be checked to be the
case, and is a reflection of the Witten effect.9 The combination of the Sp(2n,Z)
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and holomorphic properties of τIJ in some cases is sufficient to determine it
exactly.12,16

We should emphasize the main limitation of this “not much renormal-
ization” theorem: it is only derived for weakly coupled theories where the
description in terms of the microscopic degrees of freedom is good. As we
run the RG down to the IR, the theory will become strongly coupled, and
our description in terms of the φi and F fields may break down. For exam-
ple, the above non-renormalization theorem can be sharpened in an important
way by using the selection rules of other global symmetries in the theory. An
important new element is the treatment of the selection rules stemming from
anomalous symmetries, and leads to exact non-perturbative expressions for the
Wilsonian beta-function in N = 1 theories.17 However, for low enough scales,
these exact beta functions have singular behavior indicative of the breakdown
of the description of the low energy physics in terms of the assumed degrees
of freedom. (These exact beta functions can nevertheless be used to show the
existence of exactly marginal operators in many interesting cases.18)

Finally, it is important to note that the statements of this and other
non-renormalization theorems only hold in a renormalization scheme which
preserves the supersymmetric selection rules.19 For instance, the scalar field
strength renormalizations depend on the UV parameters as well as their com-
plex conjugates since the Kähler potential does. So, if one worked in a scheme
in which one insisted on the canonical normalization of the scalar kinetic
terms, one would have to rescale the holomorphic τIJ couplings by the non-
holomorphic field strength renormalizations, thus invalidating the supersym-
metric selection rule.

3.2 N = 1 Supersymmetric Effective Action Potential Terms

So far we have dealt only with the effective action in the far IR limit which
only massless neutral scalars and U(1) gauge bosons survive. This begs the
question of whether a non-trivial moduli space exists for a given theory. To
answer this question we need to examine possible N = 1 supersymmetric po-
tential terms for both neutral and charged scalar fields. We can not do this in
as easy and direct manner as we did for the kinetic terms since inclusion of po-
tential terms necessarily takes us off-shell—by definition the potentials vanish
on constant scalar field configurations satisfying the equations of motion. (The
supersymmetric constraints on possible scalar potential terms can, of course,
be deduced from a direct but fairly technical construction of supersymmetric
actions.4)

We will deduce the supersymmetric form of the potential terms by the
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following indirect argument. Denote the (Kähler) manifold of scalar vevs in
the IREA of Eq. 41 by M0 = {φi}. Now think of this action as an effective
action at some finite scale E and imagine turning on some relevant operators
(a potential) at a scale much less than E. The resulting IREA will again
be of the form of Eq. 41, though the set of fields will be smaller (i.e. just
those minimizing the potential). In particular the moduli space M of the new
IREA must also be a Kähler manifold. Since this construction takes place
at arbitrarily weak coupling (since the IREA is IR free), the same set of low
energy degrees of freedom can be used to describe the effective action at all
scales below E, and so M must be some Kähler submanifold of M0. It now
only remains to write the most general potential whose minimization picks out
such a submanifold and also preserves the invariance of the effective action
holomorphic reparameterizations (field redefinitions).

One way of singling out a Kähler submanifold M ⊂ M0 is by specifying
a set of holomorphic conditions {Fi(φ

j) = 0}. Then it is straightforward
to check that M = M0/{Fi = 0} is not only a complex submanifold but
also is necessarily istelf Kähler with Kähler potential simply the restriction
of the Kähler potential on M0. The potential giving rise to these complex
conditions must itself be real, though, suggesting it must be of the form V =∑

i FiF ı. This, however, is not a reparametrization invariant formula. The
correct formula must use the Kähler metric on M0 to contract the indices of
the Fi, implying an F term potential

VF = Fig
iF , (49)

where gi is the inverse of gi. Postive definiteness of g (from unitarity of the
effective action) implies that VF takes its minimum value of 0 when the F
terms vanish individually:

Fi = 0. (50)

Note that VF = 0 is also the condition for supersymmetry to be unbroken
in the vacuum, since if not the supersymmetry algebra Eq. 33 implies that
〈{Q,Q}〉 6= 0 and therefore for some component of Q we would have Q|0〉 6= 0.

There is a further constraint (besides holomorphicity) on the Fi. Claiming
that VF is reparametrization invariant assumes that Fi transforms as a vector
under reparametrizations. The only way (without some extra structure on
M0) to form such an object out of functions of the scalar vevs φi is as the
derivative of a holomorphic function on M0:

Fi = W,i. (51)

W is an arbitrary (gauge invariant) holomorphic function on M0 called the
superpotential.
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A general W gives rise to an independent condition Fi = 0 for each complex
coordinate direction i, and thus generically one expects M to be a single
point. It would seem that we are no closer to getting a non-trivial moduli
space of vacua with N = 1 supersymmetry than we were without it. But
the holomorphicity of W gives rise to non-renormalization theorems (in the
same way that the holomorphicity of τIJ does) which allow one (in favorable
cases) to specify UV couplings which lead to special low energy superpotentials
which admit non-trivial moduli spaces.20 Another way of putting it is that even
though non-trivial moduli spaces of inequivalent vacua are still “accidental” in
N = 1 supersymmetric theories, our knowledge of their RG flows allow us to
arrange the necessary accident.

When M0 has isometries, there is an additional structure that one can
use to construct potential terms. Suppose M0 has a U(1)n group of isome-
tries generated by φi → φi + ξiI for I = 1, . . . , n. Then we can gauge those
isometries with the low energy U(1)n gauge group; equivalently, and perhaps
more descriptively, we turn on an electric charge under the U(1)I gauge group
for the scalars which are shifted under the action of the U(1)I isometry. (Re-
call the relation between isometries and low energy gauge groups mentioned in
Sec. 2 above.) For example, if the U(1) isometries are realized linearly, then
ξiI = qIiφ

i (no sum on i) where qIi is the charge of the complex scalar φi

under the U(1)I gauge group. Appropriately minimally coupling the charged
scalars leads to an effective action as in Eq. 5. Letting the charged φi’s get
vevs induces a potential (by the Higgs mechanism) of the form

VD = DI(Imτ)
IJDJ , (52)

where (Imτ)IJ is the matrix inverse of ImτIJ and the D terms are given by

DI = Re(ξiIK,i) + ξ0I , (53)

where ξ0I are real constants called Fayet-Illiopoulos terms. Since ImτIJ is pos-
tive definite by unitarity of the effective action, VD takes its minimum value
VD = 0 when the D terms vanish individually:

DI = 0, (54)

which is also a condition for supersymmetry to be unbroken. From the ex-
pression for the D term it follows that when all the fields are neutral any
non-zero Fayet-Illiopoulos term spontaneously breaks supersymmetry. Hence-
forth we ignore Fayet-Illiopoulos terms: they can be shown to obey a stringent
non-renormalization theorem which prevents them from being generated in an
effective action if they are not generated at one loop in perturbation theory.
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One may worry that since the D-term equations are not holomorphic that
upon solving them one finds a moduli space M′ = M0/{DI = 0} which is not
Kähler, in contradiction to our supersymmetric selection rule for the IREA.
Actually, since some scalars are charged, to find the moduli space we must also
divide by the action of the gauge group: M = M′/U(1)n. It turns out that
this process always leads to a Kähler M, and is known 21 as a Kähler quotient
construction, and can be described in a holomorphic way as division of M0

by the natural action of the complexified gauge group: M = M0/U(1)n
C

. The
end result is that the D terms always have a solution which is the Kähler
submanifold parametrized by the holomorphic gauge neutral combinations of
scalars.

4 N = 2 Supersymmetric IREAs

The basic (no central charges) N = 2 superalgebra is, in the indexless notation
of the last section,

{Qm, Qn} = δmnP, {Qm, Qn} = 0, m, n = 1, 2. (55)

This is just two copies of the N = 1 algebra, Eq. 33; in particular, it has
two N = 1 subalgebras generated by Q1 and Q2. Note that the N = 2
algebra has an SU(2)R group of automorphisms under which Qm transforms
as a doublet. (Global symmetries under which the supercharges transform are
called R symmetries.)

On shell irreducible representations of Eq. 55 are easy to construct. Be-
cause of the Q1 subalgebra, any N = 2 representation must be made up of
N = 1 representations. Suppose that one of these N = 1 representations is
a chiral multiplet, as in Eq. 34. Under the action of the Q2 generators this
multiplet must also form an N = 1 representation; but it is easy to see that
there is no way to do this consistent with the N = 2 algebra. If we replace
the initial N = 1 chiral multiplet by an N = 1 vector multiplet, one also finds
no solution. So N = 2 representations are formed by combining at least two
N = 1 multiplets. It is not hard to go through the various possibilities to find
that the two solutions are the hypermultiplet, made from two N = 1 chiral
multiplets (φ, ψ) and (φ̃, ψ̃) which satisfy

Qnφm = εnmψ, Qnφm = δnmψ̃,
Qnψ = 0, Qnψ = εnmPφm,

Qnψ̃ = δnmPφm, Qnψ̃ = 0,

(56)
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where I have defined φn = (φ̃, φ); and the vector multiplet, made from one
N = 1 chiral multiplet (φ, ψ) and one N = 1 vector multiplet (λ,F) which
satisfy

Qnφ = λn, Qnφ = 0,
Qnλm = εnmF , Qnλm = δnmPφ,

QnF = εnmPλm, QnF = −εnmPλm,

(57)

where I have defined λn = (ψ, λ).

Important distinguishing features of the hypermultiplet are that its scalars
form a complex SU(2)R doublet and that this SU(2)R action mixes an N = 1
chiral multiplet scalar with an anti-chiral multiplet partner. This has the
immediate consequence that when coupling hypermultiplets in N = 2 gauge
theories, they always transform in a real representationRi⊕Ri (where Ri is the
representation of the N = 1 chiral multiplet and so Ri is the representation of
its anti-chiral partner). The bosonic degrees of freedom in a vector multiplet,
by contrast, are a single complex scalar and a (real) vector field, both trans-
forming in the adjoint of the gauge group, and both singlets under SU(2)R.
In particular, in the case of U(1)n gauge group, which we are interested in for
describing IREAs, the vector multiplet scalars are necessarily neutral.

In an N = 2 IREA with gauge group U(1)n and neutral hypermultiplets,
the general action (following from, say, the Q1 N = 1 supersymmetry) would
be just as in Eq. 41, where the i, j indices run over all the complex bosons
(whether in hyper or vector multiplets). To take into account the N = 2
structure, let us now reserve the i, j indices for the complex (doublet) scalars
φin of hypermultiplets, and label the complex (singlet) scalars of the vector
multiplets φI .

The first N = 2 selection rule we wish to derive is that no ∂µφ
I∂µφ

ı
kinetic

terms can occur. To see this, suppose there was a term L ∼ K,IıPφ
I · Pφ

i

n.

Then QmL ⊃ K,IıPφ
I · Pψ̃ δnm. But it is easy to see, refering to Eq. 57, that

there is no term whose Qm variation can could cancel this, implying that we
must have K,Iı = 0. This in turn implies that the Kähler potential splits into
the sum of two pieces depending on the hypermultiplet vevs and the vector
multiplet vevs separately:

K = KH(φin, φ
i

n) + KV (φI , φ
I
). (58)

Thus the kinetic terms for the scalars also split as

L = gi(φ
k) ∂φi · ∂φ


+ gIJ(φK) ∂φI · ∂φ

J
, (59)
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Figure 2: Cartoon of a classical N = 2 moduli space. The Higgs and mixed branches intersect
along a Higgs submanifold A, while the mixed branch intersects the Coulomb branch along

a Coulomb submanifold B.

implying that the moduli space has a natural (local) product structure

M = MH ×MV ; (60)

MH is the subspace of M along which only the hypermultiplet vevs vary while
the vector multiplet vevs remain fixed, and vice versa for MV . In cases where
MV is trivial (a point), M = MH is called a Higgs branch of the moduli space;
when MH is trivial MV is called the Coulomb branch (since there are always
the massless U(1) vector bosons from the vector multiplets). Cases where both
MH and MV are non-trivial are called mixed branches.

In general the total moduli space of a given theory need not be a smooth
manifold—it may have “jumps” where submanifolds of different dimensions
meet. Classically this occurs as a result of the Higgs mechanism: a charged
scalar vev Higgses some vector multiplets, typically lifting them (making them
massive). But at the special point where the charged vev is zero, the vector
multiplets become massless, leading to extra flat directions and a jump in the
dimensionality of the moduli space. Hence, at least classically, the general
picture of an N = 2 moduli space is a collection of intersecting manifolds,
which can be Higgs, Coulomb, or mixed branches;22,23 see Fig. 2.

This classical picture is, of course, modified quantum mechanically. How-
ever, a further N = 2 supersymmetric selection rule relating the metric on
MV to the generalized coupling τIJ greatly restricts the possible form of these
modifications. To see this, consider the U(1)n kinetic term L ∼ τIJF

IFJ .

Then QL ⊃ τIJF
IPλ

J
. To cancel this variation then requires a fermion ki-
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netic term L′ ∼ τIJλ
IPλ

J
. Then QL′ ⊃ τIJPφ

IPλ
J
. Finally, to cancel this

variation requires a scalar kinetic term L′′ ∼ τIJPφ
IPφJ . Adding also the

complex conjugate terms then implies

gIJ = ImτIJ . (61)

In particular, since gIJ is a function only of the φI , so must τIJ be.

Now, consider an N = 2 AF gauge theory with dynamically generated
scale Λ (τ ∼ log Λ). Since Λ appears in τIJ (at, say, one loop), it appears in
the Lagrangian in the same way a scalar vev φI of an N = 2 vector multiplet
would. Therefore, we can think of log Λ as a background U(1) vector superfield.
Since the metric on the Higgs branch is independent of vector superfields, it
is independent of Λ. Finally, we can use the fact that the classical theory is
obtained in the limit Λ → 0 to conclude that the Higgs metric is given exactly
by the classical answer.22 Note also that any masses for hypermultiplets also
enter into the one loop running of the gauge coupling, and so can be promoted
to background vector superfields. (These vector superfields correspond to the
gauging of global flavor symmetries.) We immediately learn that the metric
on the Higgs branch is independent of the masses.

We thus learn that only the Coulomb branch can receive quantum correc-
tions, and that the mixed non-baryonic branch will retain its classical product
structure of a hypermultiplet manifold times the vector multiplet manifold
corresponding to the subspace of the Coulomb branch along which the non-
baryonic and Coulomb branches intersect; see Fig. 3. A key fact about the
Coulomb branch is that though it can be corrected quantum mechanically, it
is never wholly lifted in AF N = 2 gauge theories. This is because there is
a Coulomb branch for large adjoint scalar vevs where the AF gauge theory is
Higgsed to U(1)n at arbitrarily weak coupling. Quantum corrections in the
resulting N = 2 IREA cannot lift these flat directions since the only way (at
weak coupling) to give mass to the U(1) photons in the vector multiplets is by
the Higgs mechanism; but there are no charged scalars in the vector multiplet.
Thus, unlike N = 1 supersymmetric gauge theories, N = 2 supersymmetric
gauge theories are always guaranteed to have a non-trivial moduli space of
physically inequivalent vacua.

Since the hypermultiplet manifolds can be determined classically in N = 2
supersymmetric gauge theories, we will not consider them further. But one
should note that they are constrained by N = 2 supersymmetry to be hy-
perKähler manifolds. This is essentially a manifold which is simultaneously
Kähler with respect to three different complex structures. These complex
structures transform as a triplet under the SU(2)R symmetry. Hypermultiplet
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Figure 3: Map of Cartoon of a quantum N = 2 moduli space. The Higgs branch and the
Higgs (hypermultiplet vev) directions of the mixed branch remain unmodified from their
classical geometries, though they may be deformed in the Coulomb (vector multiplet vev)

directions. The Coulomb branch is generally different from its classical geometry.

branches can be lifted by the Higgs mechanism, which corresponds geometri-
cally to a hyperKähler quotient construction.21

The geometry of the vector multiplet manifolds are similiarly constrained
by N = 2 supersymmetry. Consider the vector multiplet kinetic term L ∼
τIJF

IFJ . Then QnL ⊃ τIJ,KFIFJλKn . The only term that could cancel this
variation is L′ ∼ τIJ,KFIλJ` λ

K
mε`m. For this term to be a scalar, the two λ’s

have to combine to form a (1, 0) Lorentz representation, that is, symmetrically
on their spinor indices. But since they are antisymmetrized on their SU(2)R
indices and are anticommuting fields, they must therefore be symmetric under
interchange of J and K. Thus such a term could only cancel the symmetric
part proportional to τI(J,K) of the supersymmetry variation of L, and so N = 2
supersymmetry can only be preserved if

τIJ,K = τIK,J . (62)

This integrability condition together with Eq. 61 and the Sp(2n,Z) transfor-
mation properties of τIJ can be taken as the definition of a rigid special Kähler
manifold.24

This rigid special Kähler structure together with certain important phys-
ical assumptions11,25 have been used to solve for the exact Coulomb branch
geometry of many AF N = 2 gauge theories. An exposition of these construc-
tions is the subject of another review.26
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