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Abstract Unlike the Lorentz transformation which repla-
ces the Galilean transformation among inertial frames at high
relative velocities, there seems to be no such a consensus in
the case of coordinate transformation between inertial frames
and uniformly rotating ones. There have been some attempts
to generalize the Galilean rotational transformation to high
rotational velocities. Here we introduce a modified version
of one of these transformations proposed by Philip Franklin
in 1922. The modified version is shown to resolve some of
the drawbacks of the Franklin transformation, specially with
respect to the corresponding spacetime metric in the rotat-
ing frame. This new transformation introduces non-inertial
eccentric observers on a uniformly rotating disk and the cor-
responding metric in the rotating frame is shown to be consis-
tent with the one obtained through Galilean rotational trans-
formation for points close to the rotation axis. Employing
the threading formulation of spacetime decomposition, spa-
tial distances and time intervals in the spacetime metric of a
rotating observer’s frame are also discussed.

1 Introduction

“There is no relativity of rotation”. This relatively famous
quote by Feynman [1] may look as the final word on the
discussion of rotation in the context of special relativity.
Based on the fact that the presence of acceleration in a uni-
formly rotating frame, by the equivalence principle, takes
us into the realm of general relativity may convince one not
to bother with the formulation of rotation in the context of
special relativity and look for the resolution of each rotation-
based problem in general relativity and in the suitably cho-
sen/constructed solutions of Einstein field equations (which
are of course not usually available). Indeed the problem of
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the relativistic rigidly rotating disk and the spacetime met-
ric in such a frame has been claimed to be the missing link
that led Einstein to the introduction of the inevitable relation
between curved spacetimes and gravitational fields in the
years between 1912 to 1913 [2]. On the other hand rotation
and rotating frames have always been a source of confusion
while treated in the context of special relativity; the famous
example is the Ehrenfest’s Paradox [3]. Indeed, looking at
the literature [4], one finds how diverse are ideas on the rela-
tivistic physics in rotating frames and consequently how dis-
tant we are from establishing a general consensus even over
the main concepts and notions in this subject.1 So in prac-
tice one uses either the Galilean rotational transformation
(GRT), which is only valid for centrally rotating observers,
or consecutive Lorentz transformations between an inertial
(laboratory) frame and comoving inertial frames which are
momentarily at rest with respect to the non-inertial rotating
observers (eccentric observers). The latter could be obtained
either by employing the so-called hypothesis of locality along
with the same procedure which led to the Fermi coordinates
of an accelerated spinning observer [5,6], or by reducing a
general Lorentz transformation obtained for accelerated spin-
ning frames [7,8] to the case of rotating frames [9]. Another
alternative is the introduction of a relativistic rotational trans-
formation (RRT), which is the main subject of the present
paper.

It seems that Ehrenfest’s Paradox is a good starting point
to begin our discussion on rotation and RRTs. To explain
the paradox we consider two frames/observers one at rest
(the laboratory observer/frame) and the other one rotating
counter-clockswise around it with constant angular velocity
� (the rotating observer/frame) measured by/in the inertial
(non-rotating) observer/frame. At this point we use frames
(set of clocks and extended fiduciary triad axes) and observers

1 We refer the reader to the preface of [4] by J. Stachel and also the
detailed historical survey by Ø. Grøn in the same reference.
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interchangeably but to be more precise one should differenti-
ate between them, for a rotating frame is a non-inertial frame
but not all observers in a rotating frame are non-inertial. In
other words we should distinguish between a centrally rotat-
ing observer (i.e. at the center of the disk) which is an inertial
observer and those at nonzero radii which are non-inertial.
We will elaborate on this point later in this section. Using
cylindrical coordinates we denote the spacetime points in
the non-rotating frame with coordinates (t, r, φ, z) and in the
one rotating around the z(z′) axis with (t ′, r ′, φ′, z′) where
φ′ is measured from the x ′ axis. These are related through
the GRT as follows:

t ′ = t, r ′ = r, φ′ = φ −�t, z′ = z (1)

or in its differential form

dt ′ = dt, dr ′ = dr, dφ′ = dφ −�dt, dz′ = dz. (2)

It is noted that in both rotating and the non-rotating frames the
radial distances are measured from the rotation axis. Through
the above equation we would like to emphasize the mean-
ing of the GRT. Interpreted kinematically, as in the cases of
linear Galilean and Lorentz transformations, it introduces a
prescription of how the spacetime coordinates of an event in
the two frames are related to one another. This interpretation
leads to the following relation between the angular velocities
of a test particle observed in the two frames (Fig. 1):

ω′ = ω −�, (3)

which in turn leads to the well-known relation E ′ = E −L.�
between the energies of the particle in the two frames [10].
Usually the problem of rotation and rotating frames is dis-
cussed in the context of uniformly rotating rigid disks [11],
in other words the rotating frame is a frame attached to a uni-
formly rotating incompressible disk whose constant angular
velocity is measured in the non-rotating (inertial) frame. The
above coordinate transformation could also be employed for
a uniformly rotating disk and its points (at different times)
taken as events whose spacetime coordinates are measured
both in the laboratory frame and in the rotating frame attached
to the disk. Obviously in this case it is expected that for any
point on the disk ω′ = 0 and ω = � (Fig. 2).

1.1 Ehrenfest’s Paradox

Ehrenfest’s Paradox is the contradiction that an inertial (labo-
ratory) observer faces in applying special relativistic length
contraction to a rotating disk. From an inertial observer’s
point of view the rim of a rotating disk undergoes a length
contraction due to its transverse motion with velocity v =
R� and so the circumference of a rotating disk (P ′) is shorter
than the one non-rotating (P), i.e. P ′ < P . On the other hand
since the radius of the disk is perpendicular to the direc-
tion of the rotational motion of the rim, the same observer
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Fig. 1 Two frames, one rotating (solid) around the other one (dashed)
with uniform angular velocity�. Trajectory of a test particle and a point
P on it as an event observed in the two frames, assigned with angular
velocities ω and ω′
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Fig. 2 A disk and its frame (solid) rotating around the laboratory frame
(dashed) with uniform angular velocity �. Coordinates of a point P in
the rim are given in the two frames with angular velocities ω′ = 0 and
ω = �

will not attribute a length contraction to it and so R′ = R.
Therefore the inertial (laboratory) observer, living in a flat
spacetime and thereby using the Euclidean prescription for
the circumference of a circle, finds the contradictory result
P = 2πR = 2πR′ = P ′.

Perhaps it should be left for experiment to decide which rela-
tion holds between P and P ′, but nevertheless many have
tried hard to find either a theoretical resolution to this para-
dox or otherwise to invalidate it. An apparently favorite res-
olution in the literature is based on considering the situation
from a rotating observer’s point of view and on the idea,
introduced by Einstein [11–13], that the spatial geometry in

123



Eur. Phys. J. C (2014) 74:3098 Page 3 of 14 3098

such a frame is non-Euclidean.2 But, as we will show below,
that does not seem to be leading to any kind of resolution
of the paradox but to a somewhat similar paradox from the
rotating frame’s point of view.

As pointed out earlier, in the case of a rotating disk one should
distinguish between the observer at the center of the disk
(called the centrally rotating observer/frame) whose spa-
tial coordinates, measured in the non-rotating (laboratory)
frame, are fixed and those at different nonzero radii which
are non-inertial due to the centrifugal force felt by them and
called orbiting observers/frames. Einstein calls them eccen-
tric observers “relative to whom a gravitational field prevails”
[11]. In other words these observers, by the equivalence prin-
ciple, find themselves and anything fixed with respect to the
disk in a gravitational field. Later, elaborating on this matter,
it will be shown that rotating observers at nonzero radii are
of central importance in our discussion of RRTs but for the
purpose of Ehrenfest’s Paradox we only deal with the rotat-
ing observer/frame at the center of the disk. From a rotating
observer’s point of view the above-mentioned non-Euclidean
character of the disk geometry could be obtained from con-
sidering the metric of flat spacetime in the rotating frame, as
it is the spatial geometry (metric), defined through spacetime
metric, which accounts for spatial distances including that of
the disk circumference. Using the differential GRT (2), the
flat spacetime metric in the non-rotating frame

ds2 = c2dt2 − dr2 − r2dφ2 − dz2 (4)

transforms into [15,16]

ds2 =(c2−�2r2)dt2−2�r2dtdφ′−dr2−r2dφ′2 − dz2

(5)

in the rotating frame. It is seen that this metric is applicable
for radii less than c/�, corresponding to the so-called light
cylinder, beyond which g00 becomes negative (with the cor-
responding points having velocities greater than c) and hence
from the physical point of view is not of interest [15,16].

The famous result, based on special relativistic arguments
made by Einstein, that a rotating clock at nonzero radius
r = R runs slower than that sitting at the center of the disk
(or very close to it) [11,12] is clearly encoded in the above

metric, from which we have dτ =
√

1 − �2 R2

c2 dt where dt is
the world time recorded by the inertial/laboratory clocks as
well as the one at the center of the disk. The above spacetime
metric plays the same role for a centrally rotating observer
as the Rindler spacetime metric

2 Actually it seems that Theodor Kaluza should be credited with the first
assignment of non-Euclidean geometry to a rotating disk [14], though
he has not provided any mathematical details to support his idea.

ds2 = ηabdxadxb = (1 + ax̄1)
2
(dx̄0)

2

−(dx̄1)
2 − (dx̄2)

2 − (dx̄3)
2

(6)

with

x0 = (a−1 + x̄1) sinh(ax̄0); x2 = x̄2

x1 = (a−1 + x̄1) cosh(ax̄0); x3 = x̄3
(7)

plays for a uniformly accelerating observer with 3-acceleration
a = (a, 0, 0). In other words the Rindler metric in the limit
x̄1 � 1 (i.e. for points infinitesimally close to the world line
of the observer) is equivalent to the Fermi metric [17], at first
order (i.e. O(x̄ l) ), in the absence of rotation (i.e. � = 0),
while (5) in the limit r � 1 (i.e. infinitesimally close to the
centrally rotating observer) is equivalent to the Fermi metric,
at the same order, in the absence of linear acceleration (i.e.
a = 0) [9]. It should be noted that the spacetime in a rotating
observer’s frame (5), like Rindler spacetime, is the flat space-
time in a coordinate system which is not maximally extended
due to the existence of a light cylinder in the former and the
horizon in the latter. On the other hand, unlike Rindler space-
time, it is a stationary spacetime (reflected in the presence of
its cross term dtdφ) and so one needs to employ a spacetime
decomposition formalism to define spatial distances and time
intervals, and on their basis to prescribe suitable measure-
ment procedures. In what follows we will employ the 1 + 3
or threading formulation of a spacetime decomposition [15]
which is essentially based on sending and receiving light sig-
nals between nearby observers (refer to the appendix for a
brief introduction). Although we are not going to discuss the
spacetime measurement procedure here, the employment of
the 1+3 formulation makes it clear that, in principle, we are
using light signals to measure the relevant physical quanti-
ties, namely spatial distance and time intervals. Based on a
1 + 3 formulation, the spatial line element for the metric (5)
is given by [15]

dl2 = dr2 + dz2 + r2dφ′2

1 − �2r2

c2

. (8)

Now for a circle of radius r = r ′ = R in the z =constant
plane the circumference is given by

P ′ =
∫ 2π

0
dl = 2πR√

1 −�2 R2/c2
= P√

1 −�2 R2/c2
, (9)

so that P ′ > P with P the circumference of a non-rotating
disk. Therefore from the rotating observer’s point of view P
and P ′ are also not equal, but the relation between the two
quantities is just the opposite of that found by the inertial
(laboratory) observer based on Lorentz contraction.

The interpretation of the above results goes as follows:
Although the transformed spacetime is the flat spacetime in
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disguise, its spatial geometry now has nonzero Gaussian cur-
vature, leading to the fact that the ratio of the circumference
of a circle to its radius is larger than 2π . We are not going to
follow this disagreement on the relation between P and P ′
from the two observers’ points of view nor discuss further the
content of Ehrefest’s Paradox. But there remains a legitimate
question that one might ask and that is: Are we allowed to
use the GRT (1) in all the above considerations? Specially
we note that the metric in the rotating frame can be employed
out to a specific radius, given by c/�, which decreases as
we increase the angular velocity. A negative answer to this
question has led to the introduction of RRTs.

1.2 Relativistic rotational transformations

Our experience with Lorentz transformations intuitively
leads to the expectation that GRT is an approximation valid
for points near the axis of rotation having small linear (tan-
gential) velocities. Hence for eccentric observers at large
radii and/or with high angular velocities one needs to replace
the GRT with a relativistic (Lorentz-type) rotational transfor-
mation to account for linear (tangential) velocities compara-
ble to c. Obviously if one could devise a proper RRT, it might
be expected that either the transformation (based on its kine-
matical interpretation) or the spatial line element of the trans-
formed flat spacetime metric leads to a contracted/dilated cir-
cumference for a rotating disk or any other circle of a given
radius.

A comparison between the usual Lorentz transformation
(LT), and GRT is useful at this point. In the case of LT the
length contraction is built into the transformation itself and,
since the flat spacetime line element is form invariant under
the transformation, the length contraction is not expected to
be tractable in the form of the corresponding spatial met-
ric. On the other hand in the case of GRT as we noticed,
the transformation (1) is devoid of any length contraction
or dilation, while the transformed spatial metric (8) leads to
the length dilation. An interesting RRT was introduced by
Philip Franklin, a Princeton mathematician, in 1922 [18] and
some 30 years later by Trocheris [19] and Takeno [20].3 The
Franklin transformation is not the only non-classical rota-
tional transformation and there are a few other proposals such
as those introduced in [21–25]. RRTs could be classified into
two general categories: I—those which employ the same lin-
ear velocity distribution as in GRT [22,23,25] and II—those
which introduce a nonlinear velocity distribution in their con-
struction [18,21,24]. In the former cases the construction of
the RRT is based, in one way or another, on the application of

3 In some literature this transformation is called the Trocheris–Takeno
transformation, but due to Franklin’s precedence by almost 30 years
and also to highlight his largely overlooked work, we will call it the
Franklin transformation.

an instantaneous Lorentz transformation. For example Post
uses the GRT but with a time dilation applying a γ -factor
with a linear velocity distribution [22], while Strauss mod-
ifies the Franklin transformation by replacing its nonlinear
velocity distribution by a linear one [23]. In [25] the authors
introduce an RRT between inertial and non-inertial frames
rotating at nonzero radii on circular orbits. Their transfor-
mation does not reduce to GRT when the orbit radius is set
equal to zero. As an example of the second category, in [21],
Hill introduces an RRT with a nonlinear velocity distribution
in terms of Bessel functions, which reduces to the classical
linear distribution near the rotation axis and approaches the
upper limit of light velocity at infinity.

In the present article we will discuss the Franklin transfor-
mation and its characteristics including its advantages over
the classical transformation and also its drawbacks specially
with respect to the corresponding spacetime metric and show
how a simple modified version of the transformation could
lead to the resolution of some of these drawbacks. Obviously
the main criterion for the preference of any non-classical
rotational transformation over the classical one (i.e. GRT)
should be the verification of its experimental consequences.
For the sake of completeness we will give a brief derivation
of Franklin transformation in the next section.

2 Franklin transformation

Taking two coordinate frames, S and S′, with S′ uniformly
rotating about S, Franklin requires the following plausible
conditions and properties to be valid on the relation between
the two frames [18]:

1. The velocity of a fixed point in S′ with respect to the
point in S with which it momentarily coincides is inde-
pendent of the time, and is the same for all points at a
given distance from the axis of rotation.

2. For the two concentric circles r ′ = r = Constant, the
equations of the transformation are similar to those for
a Lorentz boost (say along the x-direction) with rφ the
arclength replacing the linear distance (say x). These two
properties lead to the following transformation law:

t ′ = γ (r)
(

t − v(r)rφ/c2
)

; r ′ = r

r ′φ′ = γ (r) (rφ − v(r)t) ; z′ = z, (10)

in which γ = 1√
1−v(r)2/c2

is the Lorentz-type factor with

velocity v(r) to be determined through the last property
which is as follows.

3. The velocity of a point at the distance r ′ +	r ′ from the
axis with respect to a point at the distance r ′ from the
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axis (both in the system S′) is given by �	r ′. In other
words two different points at two different radii with two
different rotational velocities are taken as the analogs of
two inertial frames moving uniformly with respect to one
another.

In effect, the last property is a prescription for the veloc-
ity composition law, out of which the nontrivial form of the
rotational velocity is obtained. For two points B and C at
radii rB = r and rC = r + 	r with velocities v(r) and
v(r + 	r) (with respect to the point A at the center of the
disk), respectively, the composition law reads

vBC = vAC − vAB

1 − vACvAB
c2

⇒ �	r = v(r +	r)− v(r)

1 − v(r+	r)v(r)
c2

. (11)

In the limit 	r → 0 this leads to the velocity relation

v(r) = c tanh(�r/c). (12)

Substituting (12) in (10), the explicit form of the Franklin
transformation (FT) is given by

t ′ = cosh(�r/c)t − r

c
sinh(�r/c)φ; r ′ = r

φ′ = cosh(�r/c)φ − c

r
sinh(�r/c)t; z′ = z. (13)

For points close to the rotation axis i.e. when �r
c � 14 this

transformation reduces to the classical Galilean transforma-
tion by neglecting terms of order �2r2

c2 and higher. These
transformations form a group and the inverse transformation
is given by changing � to −�. One of the advantages of
this transformation over the old Galilean one is in the def-
inition of the velocity given in (12), which approaches c at
r → ∞ (i.e. the light cylinder is not at a finite distance but is
sent to infinity) and reduces to the Newtonian value v = �r
for points near the axis. A formal comparison with a pure
Lorentz transformation as a hyperbolic rotation reveals that
it is the linear velocity v = �r in (12) which now plays the
role of some kind of rapidity.

Another obvious difference between the Franklin transfor-
mation and the Lorentz transformation, when FT is rewritten
in the following form:

ct ′ = 1√
1 − v(r)2

c2

(
ct − v(r)

c
rφ

)
; r ′ = r

rφ′ = 1√
1 − v(r)2

c2

(
rφ − v(r)

c
ct

)
; z′ = z,

(14)

4 It should be noted that � is taken as a constant and such that the
integrity of the rotating disk is retained.

is the fact that velocity entering the definition of FT unlike
LT is not a constant but an r -dependent quantity. This will
lead to undesirable results in the case of FT when we consider
the transformed spacetime metric (i.e. in the rotating frame)
and the corresponding spatial distances and time intervals.
It will be shown that neither will reduce to their expected
expressions at small rotational velocities (i.e. when �r

c � 1).
But before discussing these issues, it seems appropriate to
discuss the interpretation of FT as compared to those of GRT
and LT.

2.1 Interpretation of FT

An important issue about the Franklin transformation, which
seems to be taken for granted in most of the previous stud-
ies, is its interpretation as the transformation of the space-
time coordinates of an event between two frames; a non-
rotating (inertial) frame and another one rotating uniformly
about their common axis. This is the same usual interpre-
tation attributed to the GRT as illustrated in Fig. 1. But the
characteristics of FT would prevent one to easily interpret this
transformation as a kinematical one. The main characteristic
acting so is the radial dependence of the velocity entering the
transformation. This velocity distribution is attributed to the
rigid arms of the rotating frame (or disk points if the frame
is attached to a uniformly rotating rigid disk) and so, taking
into account the fact that in FT the non-rotating and rotat-
ing frames share the rotation axis, the transformation of the
arclengths in FT (which is given in terms of this velocity) is
only valid for disk points. By the above reasoning, it seems
more reasonable to look at FT as a transformation specially
tailored for the problem of a rotating disk in which events
are nothing but different points of a rotating disk at different
times. In other words one should be cautious in interpret-
ing FT as a kinematical transformation relating coordinates
of an event in a rotating frame to that of an inertial non-
rotating one. For example, based on a kinematical interpre-
tation of FT, for events on the rotation axis i.e. for r = r ′ = 0
(where the cylindrical coordinate system is degenerate and
v(0) = 0), FT reduces exactly to GRT and this has no clear
interpretation. If FT is going to be elevated to a kinematical
transformation one needs to modify and reinterpret it.

3 Spacetime Metric and Spatial Geometry in the
Rotating Frame through a Franklin transformation

Using the inverse of the Franklin transformation in its differ-
ential form,

cdt =cosh(�r/c)cdt ′+r sinh(�r/c)dφ′+ A1dr; dr =dr ′

rdφ=cosh(�r/c)rdφ′+sinh(�r/c)cdt ′+ A2dr; dz =dz′
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A1 = sinh(�r/c)(φ′ +�t ′)+ cosh(�r/c)

(
�r

c
φ′
)

A2 = sinh(�r/c)

(
�r

c
φ′ − ct ′/r

)
+ cosh(�r/c)(�t ′),

(15)

and substituting in (4) the spacetime metric in the rotating
frame is given by

ds2 = c2dt ′2 − (1 − A2
1 + A2

2)dr2 − r2dφ′2 − dz2+
2c (A1 cosh(�r/c)− A2 sinh(�r/c)) drdt ′

+ 2 (A1 sinh(�r/c)− A2 cosh(�r/c)) rdrdφ′. (16)

Unlike the cross term in (5), which is the typical dt ′dφ′ term
representing the rotational character of the metric, the cross
terms in the above metric include drdt ′ and drdφ′ terms
and that is why the reduction of this metric form to (5) for
�r/c � 1 is not expected. Also it should be noted that due to
the explicit appearance of φ′ and t ′ in (16) both the temporal
and the angular isometries present in (5) are now lost.

3.1 Spatial distances and time intervals

From the above result on the spacetime metric it is obviously
not expected that the spatial geometry corresponding to (16)
is reducible to the one given by (8) in the limit �r/c � 1.
Indeed using the 1 + 3 decomposition [Eq. (A2)] the spatial
metric corresponding to (15) is given by

dl2 = {1 − A2
1 + A2

2 + 4c2[A1 cosh(�r/c)− A2 sinh(�r/c)]2}dr2 +
−2[A1 sinh(�r/c)− A2 cosh(�r/c)]rdrdφ′ + dz2 + r2dφ′2,

(17)

through which the circumference of a disk with radius r = R
in the z = constant plane is given by the Euclidean value
2πR compared to the non-Euclidean value (9) obtained
through the Galilean transformed spatial metric (8). It should
be noted that despite the above fact the Gaussian curvature
of the spatial metric is not zero indicating the non-Euclidean
nature of the spatial metric [18]. It should also be noted from
(16) that the proper time interval in the rotating frame, for a
clock fixed at r = R, is given by

dτ ′ = dt ′ = cosh−1(�R/c)dt (18)

where use is made of (15). In the limit �R
c � 1 the

above relation reduces to that obtained from the Galilean
transformed metric for rotating clocks at nonzero radii i.e.

dτ ′ =
√

1 − �2 R2

c2 dt . On the other hand, as we discussed ear-
lier, one could relate spatial distances and time intervals not
only through the metric obtained from the Franklin transfor-
mation but also through the coordinate transformations them-
selves according to their kinematical interpretation. Obvi-
ously using the formal analogy between FT and LT one can

obtain a relation between spatial distances (arclengths) and
time intervals in the two coordinate systems as follows:

	t = 1√
1 − v2

c2

	t ′, (19)

	l = R	φ =
√

1 − v2

c2 R	φ′ =
√

1 − v2

c2	l ′, (20)

where in (19) we employed 	φ′ = 0 (see Fig. 2) and in
(20) we used the simultaneous measurements (	t = 0) of
both ends of the corresponding arclength. The above equa-
tions correspond to the time dilation and length contraction
of clocks and rulers at rest in the rotating observer’s frame S′,
respectively. With v = c tanh(�R

c ) at radius r = R, the above
results are consistent with what one expects from applying
a special relativistic length contraction (based on LT) to a
rotating disk for �R

c � 1. It seems that once again we are
faced with Ehrenfest’s Paradox, in the sense that using the
spatial geometry given by Eq. (17) implies that the circum-
ference of a rotating disk is the same as the circumference
of the non-rotating disk, whereas, employing the Franklin
transformation, the circumference of a rotating disk is found
to be shorter than the one non-rotating.

3.2 Angular velocity of a test particle/disk point in the two
frames related by FT

Using the differential Franklin transformation (15) to calcu-
late the rotational frequency in the inertial observer’s frame
we find

ω = dφ

dt
= cosh(�r/c)dφ′ + cdt ′

r sinh(�r/c)+ A2
r dr ′

cosh(�r/c)dt ′ + r
c sinh(�r/c)dφ′ + A1

c dr ′
(21)

from which for the frequency in the rotating frame we have

ω′ = dφ′

dt ′
= ω cosh(�r/c)− c

r sinh(�r/c)+ dr
dt ′ (

A1
c ω− A2

r )

cosh(�r/c)−ω r
c sinh(�r/c)

.

(22)

In the limit where (�r/c) � 1, the above expression reduces
to the classical relation (3)

ω′ ≈ ω −�. (23)

4 Modified Franklin transformation: its interpretation
and the spacetime metric in the rotating frame

As is obvious from its derivation, the Franklin transformation
was obtained in close analogy with the usual Lorentz trans-
formation for inertial frames moving with constant velocities
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relative to one another. Our starting point for the modification
of the Franklin transformation is its main formal difference
from the Lorentz transformation which is the dependence
of relative velocity on the radial coordinate (i.e. v ≡ v(r))
in (12)). It is clear from Franklin’s derivation of (12) that
this coordinate-dependent velocity is a direct consequence of
applying the relativistic composition law to high rotational
velocities. Indeed the nonlinear velocity relation (12) could
also be obtained by the requirement that for any two infinites-
imally close points (separated by a radial distance dr ) on
a uniformly rotating rigid rod (divided into n infinitesimal
segments), the difference in their linear velocities is given
by �dr [26]. Then using the relativistic composition law
iteratively to find the velocity at a finite distance along the
rod, in the limit n → ∞, one ends up with the velocity dis-
tribution (12). Since the kinematical transformation is sup-
posed to give the relation between coordinates assigned to
events by two observers, an inertial non-rotating one (labo-
ratory observer/frame) and a non-inertial rotating observer
at a given radius R, going back to the transformation law
(by formal analogy with LT), it is the observer velocity at
that radius (i.e. v = c tanh(R�/c)) which should enter
the transformation law. Indeed it has already been pointed
out in some literature [27,28], without further clarification,
that a Franklin transformation leads to inconsistencies if one
neglects the fact that it is determined at r =constant as well as
at z =constant. We have mentioned some of these inconsis-
tencies in the previous sections, and so by the above argument
we introduce the following modified Franklin transformation
(MFT):

t ′ = cosh(�R/c)t − R

c
sinh(�R/c)φ; r ′ = r

φ′ = cosh(�R/c)φ − c

R
sinh(�R/c)t; z′ = z. (24)

This could be obtained by changing the second and third steps
in the derivation of the Franklin transformation by assigning
observers to the disk points at a given radius r = R, for which
the velocity with respect to the inertial observers, using the
third step, is found to be v = c tanh(R�/c). In terms of this
velocity the MFT could be written as follows:

ct ′ = 1√
1 − v2

c2

(
ct − v

c
Rφ
)

; r ′ = r

Rφ′ = 1√
1 − v2

c2

(
Rφ − v

c
ct
)

; z′ = z.
(25)

This is indeed a simple, physical modification with profound
consequences. To see its effects, first of all we find the equiva-
lent metric by finding the inverse differential transformation,
which is

dt = cosh(�R/c)dt ′ + R

c
sinh(�R/c)dφ′; dr = dr ′

dφ = cosh(�R/c)dφ′ + c

R
sinh(�R/c)dt ′; dz = dz′,

(26)

and substituting them in the inertial frame’s flat spacetime
metric (4) upon which we end up with (taking β = R�

c )

ds2 = c2 cosh2 β

(
1 − r2

R2 tanh2 β

)
dt ′2 − dr2

− r2 cosh2 β

(
1 − R2

r2 tanh2 β

)
dφ′2

+ 2cR sinh β cosh β

(
1 − r2

R2

)
dt ′dφ′ − dz2. (27)

Note that now there is a radial coordinate r as well as a con-
stant radius R which specifies a class of observers fixed at
that radius. This will allow a kinematical interpretation of
the above MFT. In other words no matter what the constant
radius in (24), this transformation gives a prescription of how
the temporal (t and t ′) and angular (φ and φ′) coordinates
of an event in the two frames are related. Indeed, it is now
that one could justify the division of the originally introduced
transformation of arclengths (r ′φ′ & rφ for an event at radial
coordinate r = r ′) by the common radial coordinate leading
to the transformation of angular coordinates φ and φ′. In
other words the angular coordinates are defined using the
arclengths at the radial position r = r ′ = R of the eccentric
observer. It should be noted that spatial coordinate measure-
ments by the inertial as well as the eccentric (non-inertial)
observers are made from the axis of rotation as a preferred
direction and the eccentric observers carry their own clocks
but use the triad axes of the centrally rotating observer to
designate spatial coordinates to events. The presence of R
as a constant in the transformed flat spacetime as given by
(26) may look strange but obviously it is no stranger than the
appearance of� in (1) or in (13). Both� and R are transfor-
mation parameters, one (�) from an inertial observer’s frame
to a centrally rotating frame and the other (R) from the cen-
trally rotating observer’s frame to a set of equivalent rotating
observers at radius R (non-inertial observers). Indeed they
are now combined to form the new transformation parame-
ter, which is the velocity v = c tanh(R�/c) (or R� for that
matter). Also compared to the case of the Rindler metric, in
which the observer’s acceleration enters the spacetime met-
ric (6), the appearance of the parameter R which determines
an eccentric observer’s velocity and acceleration is expected
on the same grounds. Further it should not be forgotten that
the spacetime in the rotating coordinates is always flat, for
a coordinate transformation never changes the nature of a
spacetime whether it is the old Galilean transformation (5)
or FT (both having the parameter �) or MFT (with param-
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eter R�), and it is only the spatial metric in the rotating
observer’s frame which loses its Euclidean character. Obvi-
ously the metric (27) is of interest for radial distances

r � β

| tanh β|
( c

�

)
, (28)

and in the classical Galilean limit where β � 1 (i.e. close to
the rotation axis) it reduces to

ds2 = c2
(

1 − r2�2

c2

)
dt ′2 − dr2 − r2

(
1 − R2

r2 β
2
)

dφ′2

+ 2R2�

(
1 − r2

R2

)
dt ′dφ′ − dz2, (29)

which in turn reduces to the spacetime metric (5) under the
extra condition that the radial coordinates of the events under
consideration are larger than or equal to R. In other words,
for observers close to the axis the range R � r < c

�
replaces

the range 0 � r < c
�

.5 So, unlike the Franklin transforma-
tion, not only the transformation itself, but also the metric
in the rotating frame reduces to the Galilean one in the limit
β � 1. It should be noted that for r = R in (27), i.e. at the
radial position of the eccentric observer, the metric reduces
to that of a spatially Euclidean flat spacetime (5) of an inertial
observer, i.e. at r = R the form of the spacetime metric is
invariant under MFT. This is a feature of (29) which is some-
what shared with the Fermi metric of an accelerated, spinning
observer in a flat or curved background. Recall the feature
of the Fermi metric that on the observer’s world line reduces
to the Minkowski metric [17]. Now the reduction of MFT
to exact GRT, by setting R = 0 in (24), while (27) reduces
to (5), has a consistent interpretation (in contrast to setting
r = 0 in FT which was shown to lead to inconsistencies
with respect to its kinematical interpretation); it corresponds
to the centrally rotating observer who is at rest with respect
to the non-rotating inertial (laboratory) observer, and so their
observations are naturally related through GRT. So in our set-
ting of the problem of rotation and rotating frames, we have
drastically changed the scenario by introducing non-inertial
observers fixed at nonzero radii on the disk and also intro-
ducing the MFT as the kinematical transformation between
the coordinates assigned to events by these observers and the
inertial ones.

In the next two subsections we find how the spatial and time
intervals in the rotating and inertial frames are related through
MFT. We also discuss the energy and angular velocity of a
test particle (disk point) in the two frames. It should be noted
that the eccentric observers use a local Cartesian coordinate
system attached to a rigidly rotating disk at their position such

5 Note that the condition β � 1 is equivalent to R � c
�

, whereas the
same condition employed in (28) leads to r � c

�
.

that its axes are always parallel to the axes of the Cartesian
coordinate system used by the centrally rotating observer.
In this way the radial coordinates assigned to events by all
observers are measured from the rotation axis.

4.1 Spatial line element and spatial distances

Using the 1+3 approach (Appendix A), the metric (27) could
be written in the following form:

ds2 =c2 cosh2 β

(
1− r2

R2 tanh2 β

) (
dt ′− Aαdx ′α)2−dl2,

(30)

in which the spatial line element is given by

dl2 = dr2 + dz2 +
⎛
⎝r2 cosh2 β

(
1 − R2

r2 tanh2 β

)

+ R2
sinh2 β(1 − r2

R2 )
2

(1 − r2

R2 tanh2 β)

⎞
⎠ dφ′2, (31)

and the gravitomagnetic potential is

Aα ≡ Aφ′δφ
′
α =

⎛
⎝0, 0,−R

tanh β(1 − r2

R2 )

(1 − r2

R2 tanh2 β)

⎞
⎠ . (32)

Now one could find the circumference of a circle/disk of
radius r in z = constant plane using the above line element
as

L M FT =
∫

dl =
∫ 2π

0

⎛
⎝r2 cosh2 β(1 − R2

r2 tanh2 β)

+ R2
sinh2 β(1 − r2

R2 )
2

(1 − r2

R2 tanh2 β)

⎞
⎠

1/2

dφ′. (33)

It is an easy task to show that the above spatial line element
(27) reduces to the classical spatial element (8) in the limit of
β � 1. Also it is noted that for an observer fixed at nonzero
radius R, a circle at that radius, i.e. r = R, has the Euclidean
circumference 2πR as expected from the form invariance
of the metric (27) at that radius. On the other hand using
the MFT (26), one obtains the following relation between
the differential arclengths (at radius R) as measured by the
rotating and inertial observers:

Rdφ = cosh(�R/c)Rdφ′. (34)

In other words as in the case of FT, again we are faced with the
Ehrenfest’s paradox in the sense that an arclength of a rotating
disk, measured by the inertial observer, is the same as that
of the non-rotating disk if the spacetime metric is employed
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but different if MFT is used. The relation between length
measurements by the inertial and rotating observers, based
on MFT and the hypothesis of locality [29], are discussed
and compared in [30].

4.2 Time intervals and their relations

As in the case of FT one can obtain the relation between
proper time intervals in the inertial observer’s frame and
that of a rotating one at a nonzero radius R using the MFT.
Using the MFT or its corresponding metric (27) in the rotat-
ing frame, we find that the proper time intervals at the rest
frame of the clock at r = R and that at the center of the disk
r = 0 (measured by an inertial observer) are related by

dτ0 = cosh βdτ , (35)

corresponding to time dilation of rotating clock readings as
measured by an observer in the inertial frame. This is the
same relation as obtained in the case of FT (see Eq. (18)).
In the limit where β � 1 the above relation for finite time
intervals reduces to

	τ0 ≈
(

1 + �2

2c2 R2 + 5

24

�4

c4 R4
)
	τ, (36)

which up to the second order in β agrees with the rela-
tion based on applying instantaneous Lorentz transforma-
tion along with the linear velocity distribution employed in
GRT [30]. An application of the instantaneous Lorentz trans-
formation is experimentally verified in the measurements of
circulating muons lifetime at CERN [31], but one should be
cautious that in applying MFT the ticking clock is fixed at a
nonzero radius on a rotating platform and not forced to move
on a circular path by the application of electromagnetic fields.
So if one is going to test the above theoretical prediction in
an experimental setup, it should be a setup with an unsta-
ble particle fixed at a nonzero radius on a rotating platform.
The same argument as above could be used to discuss the
transverse Doppler effect as a rotational phenomenon in the
context of MFT [30].

4.3 Energy of a test particle

The energy of a particle of mass m moving with 3-velocity v
in a stationary field is shown in Appendix A to be given by

E = mc2√g00√
1 − v2

c2

, (37)

which is a conserved quantity. For a particle fixed at a constant
radius R on the rotating frame (e.g. on a rigidly rotating disk),
in the comoving frame (i.e. v = 0), which is the rotating
frame of the eccentric observer at R, the same energy is given
by E ′ = mc2√g00(r = R) so that Eq. (37) could be rewritten

as follows:

E = E ′
√

1 − v2

c2

. (38)

Now using the fact that in MFT the 3-velocity at radius R is
given by v = c tanh(R�/c), the above relation reduces to,

E =cosh(R�/c)E ′ ≈
(

1+ �2

2c2 R2+ 5

24

�4

c4 R4
)

E ′, (39)

which is again, up to the second order in β, in agreement
with the relation based on applying instantaneous Lorentz
transformation along with the linear velocity distribution on
a uniformly rotating disk. Obviously both the above result
and the relation (36), are direct consequences of the nonlinear
velocity distribution v = c tanh(R�/c) on the disk.

4.4 Angular velocity of a test particle/disk in MFT

In terms of the kinematical interpretation, the angular veloc-
ities of a test particle in the two frames related by the MFT
are found by employing the inverse differential rotation (26)
so that

ω = dφ

dt
= cosh βdφ′ + c

R sinh βdt ′

cosh βdt ′ + R
c sinh βdφ′ , (40)

leading to

ω′ = ω

(
1 + R

c
tanh β

)
− c

R
tanh β, (41)

in which we used the fact that ω′ = dφ′
dt ′ . As in the case of FT,

it could easily be seen that in the limit of β � 1 the above
relation reduces to the classical relation (3), which was found
through the Galilean transformation. On the other hand, from
an inertial observer’s point of view, the angular velocity of
the disk (or its points) is dφ

dt = �, and so the above relation
for the disk itself changes into

ω′ = �

(
1 + R

c
tanh β

)
− c

R
tanh β; (42)

in other words, in MFT, for the eccentric observers, the angu-
lar velocity of the rotating disk depends on the radial position
of the observer. But close to the centrally rotating observers,
i.e. in the limit β � 1, the expectation based on GRT is
restored where ω′ ≈ 0.

5 Non-invariance of electromagnetism under (modified)
Franklin transformation

In some of the studies in the literature discussing the Franklin
transformation it is claimed that this transformation restores
the full Lorentz (-type) covariance of electrodynamics [28,
32]. Here we show in detail that such a claim is not correct and

123



3098 Page 10 of 14 Eur. Phys. J. C (2014) 74:3098

the covariance mentioned in those studies only is satisfied by
implicitly fixing the radial coordinate in the transformation
(i.e. r =constant), in which case the transformed metric (16)
retains its Euclidean form by setting dr = 0. But for a general
transformation this is not true as shown below for the MFT,
in which case again, the covariance is only restored at the
position of the observer i.e. at r = R where the spacetime,
as discussed and interpreted previously, is Euclidean form
invariant.
To be specific, under a Lorentz transformation, the Maxwell
equations are invariant in the sense that they retain the same
three-dimensional vector form in the transformed coordi-
nates, and consequently the electromagnetic wave equation
which is obtained from these equations is also form invari-
ant. In what follows we show that neither the Maxwell equa-
tions nor the wave equation are form invariant under Franklin
transformation. To make life easier we show this in the
absence of any EM sources and for the modified Franklin
transformation, but the same result (non-invariance of elec-
tromagnetism) holds for the original Franklin transformation.
From the modified Franklin transformation (24) we have the
following relation between the partial derivatives:

∂

∂t ′
= cosh β

∂

∂t
+ 1

R
sinh β

∂

∂φ

∂

∂φ′ = R sinh β
∂

∂t
+ cosh β

∂

∂φ

∂

∂r ′ = ∂

∂r
; ∂

∂z′ = ∂

∂z
.

(43)

5.1 Non-invariance of wave equation under MFT

Using the above relations the wave equation in the unprimed
coordinates (inertial frame),

∂2ψ

∂t2 − 1

r
∂r

(
r
∂ψ

∂r

)
− 1

r2

∂2ψ

∂φ2 − ∂2ψ

∂z2 = 0, (44)

transforms into

(
r2 cosh2 β − R2 sinh2 β

r2

)
∂2ψ

∂t ′2

+2

(
(R2 − r2) sinh β cosh β

Rr2

)
∂2ψ

∂t ′∂φ′ − 1

r
∂r

(
r
∂ψ

∂r

)

+
(

r2 sinh2 β − R2 cosh2 β

R2r2

)
∂2ψ

∂φ′2 − ∂2ψ

∂z2 = 0 (45)

under MFT, i.e. the wave equation is not form invariant under
MFT. The same result could also be obtained by using the
metric corresponding to MFT [Eq. (27)] and the following
general form of the wave equation in a curved background

with metric gi j :

�ψ = 1√
g

∂

∂qi

(
g1/2gik ∂ψ

∂qk

)
= 0 (46)

where qi = t ′, r, φ′, z.

5.2 Non-invariance of Maxwell equations under MFT

To obtain the (source-free) Maxwell equations for a rotat-
ing observer from those in the frame of an inertial observer
related through MFT we use the field tensor in the spacetime
of a rotating observer (MFT metric) given by

F ′
i j =

⎛
⎜⎜⎜⎝

0 − A
R E ′

r −r E ′
φ′ − A

R E ′
z

A
R E ′

r 0 − Ã
A E ′

r + Rr
A B ′

z −B ′
φ′

r E ′
φ′ Ã

A E ′
r − Rr

A B ′
z 0 Ã

A E ′
z + Rr

A B ′
r

A
R E ′

z B ′
φ − Ã

A E ′
z − Rr

A B ′
r 0

⎞
⎟⎟⎟⎠ ,

(47)

where

A =
√

R2 cosh2 β − r2 sinh2 β and

Ã = (−R2 + r2) sinh β cosh β, (48)

so that the inhomogeneous equations

1√
g
∂i (

√
gF ′i j

) = 0 (49)

are given by

∂r

[
r

(
R

A
E ′

r − Ã

r A
B ′

z

)]
+ ∂φ′(E ′

φ′)

+ ∂z

[
r(

R

A
E ′

z + Ã

A
B ′

r )

]
= 0, (50)

R

A
∂t ′ E

′
r − Ã

r A
∂t ′ B

′
z − A

r R
∂φ′ B ′

z + ∂z B ′
φ′ = 0, (51)

∂t ′ E
′
φ′ + ∂r

(
A

R
B ′

z

)
− ∂z

(
A

R
B ′

r

)
= 0, (52)

r R

A
∂t ′ E

′
z + Ã

A
∂t ′ B

′
r − ∂r

(
r B ′

φ′
)+ A

R
∂φ′ B ′

r = 0, (53)

respectively, for j = 0, 1, 2, 3. Also the homogeneous equa-
tions

∂[i F ′
jk] = 0 (54)

give rise to

∂r

(
Ã

A
E ′

z + Rr

A
B ′

r

)
+ ∂φ′ B ′

φ′ + ∂z(− Ã

A
E ′

r + Rr

A
B ′

z) = 0, (55)

∂t ′

(
− Ã

A
E ′

r + Rr

A
B ′

z

)
+ ∂r (r E ′

φ′ )− ∂φ′
(

A

R
E ′

r

)
= 0, (56)

123



Eur. Phys. J. C (2014) 74:3098 Page 11 of 14 3098

∂t ′ B
′
φ′ − ∂r

(
A

R
E ′

z)+ ∂z(
A

R
E ′

r

)
= 0, (57)

Ã

A
∂t ′ E

′
z + r R

A
∂t ′ B

′
r + A

R
∂φ′ E ′

z − ∂z
(
r E ′

φ′
) = 0. (58)

These equations are different in form from those obtained in
the non-rotating inertial frame which are given by the above
equations with A = R and Ã = 0. On the other hand in the
limit β � 1, where MFT reduces to GRT, from (48) we have
A ≈ R and Ã ≈ 0, i.e. the above homogeneous equations
retain their inertial forms. In other words for points close to
the rotation axis, where MFT reduces to GRT, the homoge-
neous Maxwell equations are form invariant under GRT, a
result first shown by Schiff [33].

The same results as above could also be obtained by first
writing the Maxwell equations in the non-rotating inertial
frame using the field tensor in flat spacetime in cylindrical
coordinates as follows:

Fi j =

⎛
⎜⎜⎝

0 −Er −r Eφ −Ez

Er 0 r Bz −Bφ
r Eφ −r Bz 0 r Br

Ez Bφ −r Br 0

⎞
⎟⎟⎠ (59)

and then employ the general relation between the field tensors
in the two frames,

Fi j = ∂x ′m

∂xi

∂x ′n

∂x j
F ′

mn (60)

to relate the primed and unprimed electromagnetic fields
using (47), and finally replace the unprimed quantities
(including partial differentials using Eq. (43)) by the primed
ones. So in general neither the wave equation nor the Maxwell
equations are invariant under MFT.

6 Discussion and summary

The Galilean rotational transformation is only true for cen-
trally rotating observers. To relate the observations of inertial
observers to those of eccentric, non-inertial ones (at large
radii leading to relativist rotational velocities) on a rigidly
rotating disk, one should either apply instantaneous LTs,
introduced by Mashhoon et al. [34] in the context of the
hypothesis of locality, or alternatively look for consistent
RRTs. In the present article, we have discussed the char-
acteristics of a proposed RRT, dubbed as a Franklin transfor-
mation, which relates coordinates of an event in two frames,
one an inertial non-rotating frame and the other one rotat-
ing around their common axis with constant angular veloc-
ity � (measured by the inertial observers). The advantages
and also drawbacks of this transformation specially with
respect to the spacetime metric from the rotating observer’s

point of view as well as of its kinematical interpretation are
pointed out. By introducing non-inertial observers at nonzero
radii we have modified FT and showed how the modified
transformation gives rise to a more consistent spacetime
metric for these observers. The resulting spacetime metric
includes two parameters,� and R, corresponding to the rota-
tional angular velocity and radial position of these observers.
Though we have a flat spacetime, it has a non-Euclidean
spatial line element (found through the 1 + 3 formulation
of a spacetime decomposition) leading to a non-Euclidean
value for the circumference of a rotating disk or any other
circle of a given radius. In our setting of the problem of
relativistic rotational transformations, there are three differ-
ent kinds of observers: I inertial non-rotating (laboratory)
observers; II centrally rotating (spinning) observer, and III
non-inertial rotating observers at nonzero radii (eccentric
observers) who are rotating analogs of Rindler observers.
In brief, the following are the important features of the
MFT:

1. Unlike FT it leads to a spacetime metric in the rotating
frame which reduces to the spacetime metric obtained
through GRT in the corresponding limit (i.e. close to the
rotation axis).

2. Unlike in FT, the spacetime metric obtained via MFT
preserves the temporal and angular isometries present in
(5).

3. At R = 0 it reduces to the exact GRT as expected from
its interpretation.

4. It gives a possible answer to the question: what is the
spacetime metric for an eccentric observer on a rotating
disk?

5. Related to the above point, at the position of an eccentric
observer (i.e. at r = R), the spacetime metric is found to
be form invariant (i.e. it reduces to the spatially Euclidean
flat metric), a fact hinting toward a possible relation with
Fermi metric and Fermi coordinates.

The last point above seems to be interesting evidence rein-
forcing our interpretation of the MFT and its correspond-
ing metric. The fact that the MFT includes two parame-
ters, � and R, does not change its group character inher-
ited from FT. Indeed, comparing (14) and (25), the group
parameter in MFT is v = c tanh β, whereas in FT it is �.6

Indeed when it is compared to the coordinate transforma-
tion obtained in the approach based on the hypothesis of
locality and Fermi metric (restricted to a uniformly rotat-
ing observer) the appearance of R is expected naturally as
in that case the radial position of the eccentric observer
enters the transformation both explicitly and also through

6 As a matter of fact one could think of Rφ in MFT, or rφ in FT, as an
arclength coordinate.
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the parameter β (refer to [34]). The above-mentioned rela-
tion could be further investigated by a comparative study
between the approaches based on MFT and its correspond-
ing metric (27) on the one hand, and the Fermi metric [17]
attributed to a uniformly rotating observer [34] on the other
hand. These features are discussed and analyzed in detail in
[30].

It is also shown explicitly that, against the previous claims,
neither the Maxwell equations are invariant under FT or MFT,
nor is the wave equation.

From the experimental and observational points of view
it is expected that the application of a relativistic rotational
transformation to known physical effects related to the rotat-
ing systems and phenomena should lead to predictions differ-
ent from those obtained through application of GRT or rota-
tional transformations based on the hypothesis of locality.
Some of the examples include the transverse Doppler effect,
the Sagnac effect [35] and rotational properties of pulsars
[28]. For a light source circling a receiver on a rotating disk,
the transverse Doppler effect will be affected naturally by
FT and MFT, due to the nonlinear velocity distribution (12)
introduced in FT, and this could be the most feasible test of
the validity of MFT. Also it is expected that employing a
relativistic rotational transformation will lead to a relativis-
tic Sagnac effect distinct from the one due to propagation of
light in a non-vacuum medium where the relativistic veloc-
ity addition rule applies. Finally, the fastest rotating celes-
tial objects (apart from the supermassive black holes) are
pulsars and the fastest pulsar, named PSR J1748-2446ad, is
located some 28,000 light-years from Earth in the constella-
tion Sagittarius and is spinning at 716 Hertz. If its radius is
taken to be 16 km it will have a Galilean linear velocity of
75,000 km/s, i.e. about 25 % that of light speed, at the equa-
tor. It is expected that at this rotational velocity a relativis-
tic rotational transformation is at work and observationally
effective. To look for experimental signatures of departure
from GRT or rotational transformations based on the hypoth-
esis of locality, other physical effects (mainly electromag-
netic in nature), which have already been studied in rotating
frames [29,36–38], should be reconsidered and interpreted in
terms of MFT. In this regard, some of the rotational phenom-
ena mentioned above are studied comparatively using both
MFT and the formalism based on the hypothesis of locality
in [30].

Another very interesting issue which needs a careful treat-
ment is the Unruh effect for uniformly rotating eccentric
observers, which is already expected to be a controversial
issue. By the above discussions it seems inevitable that one
should employ a relativistic rotational transformation, such
as MFT, to see whether eccentric observers detect any parti-
cle in the vacuum state of an inertial observer. These matters
will be discussed elsewhere [39].
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Appendix A: 1 + 3 (threading) formulation of spacetime
decomposition and spatial distance

To define spatial metric and spatial distances in a given space-
time (metric) one could choose different spacetime decompo-
sition formalisms. In our study we have employed the 1+3 (or
threading) formulation of a spacetime decomposition. Unlike
the 3 + 1 (or foliation) formulation of a spacetime decompo-
sition [17] in which spacetime is foliated into constant-time
hypersurfaces, in the 1+3 formulation it is decomposed into
threads tracking the history of each spatial point. This formu-
lation of a spacetime decomposition starts from the following
form for the metric of a stationary spacetime (M, gab) [15]:

ds2 = dτ 2
syn − dl2 = g00(dx0 − Agαdxα)2

− γαβdxαdxβ, α, β = 1, 2, 3, (A1)

in which all the metric components are time-independent,
i.e. the coordinate system is adapted to the timelike Killing
vector field of the spacetime (ξa .= δa

0 = (1, 0, 0, 0)). Also
dτsyn = √

g00(dx0 − Agαdxα) is the synchronized proper
time, Agα = − g0α

g00
is the so-called gravitomagnetic potential,

and

dl2 = γαβdxαdxβ =
(

−gαβ + g0αg0β

g00

)
dxαdxβ (A2)

is the spatial line element (also called the radar distance ele-
ment) of the 3-space (denoted by �3) in terms of its three-
dimensional spatial metric γαβ . It should be noted that the
3-space �3, introduced in this formalism, is the quotient
space/manifold M

G1
where G1 is the one-dimensional group

of motions generated by the timelike Killing vector field of
the underlying spacetime [40,41]. It should be noted that�3

is a manifold but not necessarily a submanifold (hypersur-
face) of the original spacetime manifold (M). Indeed it is
the integral of the above line element which gives the spatial
distance between two events with spatial coordinates xαi and
xαf [15],

L =
∫ xαf

xαi

dl. (A3)
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For two simultaneous events at nearby points xα and xα+dxα

the difference between their coordinate (world) time is given
by

	x0 = Aαdxα. (A4)

This allows one to synchronize clocks in an infinitesimal
region of space and also along any open curve. But synchro-
nization of clocks along a closed path is generally not possi-
ble, since upon returning to the initial point the world-time
difference is not zero and in the case of stationary spacetimes
is given by the line integral

	x0 =
∮

Aαdxα, (A5)

taken along the closed path. Using the above equation the
world-time difference for two photons starting at the same
point but traveling in opposite directions (clockwise and
counter clockwise) along a circle of radius R on a disk rotat-
ing with angular velocity � such that �R

c � 1 is given by

	t = 4πR2 �

c2 . (A6)

This difference, which leads to a phase shift δφ = 2πc	t
λ

could also be obtained through classical reasoning by an iner-
tial non-rotating observer and is the theoretical basis of the
so-called Sagnac effect [35] or in its modern version, ring
laser interferometry.
The 3-velocity of a test particle is defined in terms of the
synchronized proper time as follows:

vα = dxα

dτsyn
= cdxα√

g00(dx0 − Aαdxα)
, (A7)

where now using (A1) and (A7) the spacetime line element
could be written as follows:

ds2 = c2dτ 2
syn(1 − v2

c2 ). (A8)

Now the components of the 4-velocity ui = dxi

ds (i =
0, 1, 2, 3), in terms of the components of the 3-velocity are
given by

u0 = 1
√

g00
√

1 − v2/c2
+ Aαvα√

1 − v2/c2
; uα= vα√

1 − v2/c2
,

(A9)

where in the comoving frame, vα = 0, it reduces to ui =
( 1√

g00
, 0, 0, 0) as expected. Also using the above definition of

the 3-velocity one could show that, in a stationary spacetime,

the energy of the particle defined as the time component of
its 4-momentum is given by

E ≡ P0 = cg0i u
i = mc2√g00√

1 − v2

c2

, (A10)

which is a conserved quantity reducing to mc2√g00 in the
comoving frame [15]. It is this same formulation of space-
time decomposition which allows one to use the analogy
with electromagnetism and define gravitoelectric and grav-
itomagnetic fields as follows:

Eg = −∇h

2h
Bg = ∇ × A. (A11)

In terms of the above fields and in the context of the so-
called gravitoelectromagnetism, the vacuum Einstein field
equations could be rewritten in the following quasi-Maxwell
form [42,43]:

∇ × Eg = 0; ∇ · Bg = 0, (A12)

∇ · Eg = 1/2h B2
g + E2

g, (A13)

∇ × (
√

hBg) = 2Eg × (
√

hBg)], (A14)

(�3)Rμν = −Eμ;ν
g + 1

2
h(Bμg Bνg − B2

gγ
μν)+ Eμg Eνg ,

(A15)

where (�3)Rμν is the three-dimensional Ricci tensor of the
3-space constructed from the three-dimensional metric γαβ
in the same way that the usual four-dimensional Ricci tensor
Rab is made out of gab. Equations (A12) are direct conse-
quences of our definitions of gravitoelectric and gravitomag-
netic fields and the original ten field equations are now given
by those constituted in (A13)–(A15).

It should also be noted that in the above equations all the
differential operations are defined in the 3-space with metric
γαβ [15,42]; in particular the divergence and curl of a vector
are defined as follows:

divV = 1√
γ

∂

∂xα
(
√
γ V α), (A16)

(curlV)α = 1

2
√
γ
εαβγ

(
∂Vγ
∂xβ

− ∂Vβ
∂xγ

)
,

in which γ = det γαβ , and one can show that

−g = hγ. (A17)

123



3098 Page 14 of 14 Eur. Phys. J. C (2014) 74:3098

References

1. R.P. Feynman, Feynman Lectures on Physics, vol. 2 (Reading,
Addison-Wesley Pub. Co, 1968)

2. J. Stachel, in General relativity and Gravitation: One hundred
years after Albert Einstein’s birth, vol. 1, ed. by A. Held (New
York: Plenum Press, 1980)

3. P. Ehrenfest, Physik. Zeits. 10, 918 (1909)
4. G. Rizzi, M. L. Ruggiero (eds.) Relativity in Rotating Frames: Rel-

ativistic Physics in Rotating Reference Frames (Dordrecht: Kluwer
academic publishers, 2004)

5. B. Mashhoon, Phys. Lett. A 122(67), 299 (1987)
6. B. Mashhoon, Phys. Lett. A 126, 393 (1988)
7. R.A. Nelson, J. Math. Phys. 28, 2379 (1987)
8. R.A. Nelson, J. Math. Phys. 35, 6224 (1994)
9. H. Nikolic, Phys. Rev. A 61, 032109 (2000)

10. L.D. Landau, E.M. Lifshitz, Mechanics (New York: Pergamon
Press, 1988)

11. A. Einstein, Relativity: the special and general theory (Pi Press,
New York, Translated by Robert W. Lawson, 2005), pp. 101–105

12. C.W. Berenda, Phys. Rev. 62, 280 (1942)
13. Ø. Grøn, Am. J. Phys. 43, 869 (1975)
14. Th Kaluza, Zur Relativittstheorie. Physik. Zeitschrift 11, 977

(1910)
15. L.D. Landau, E.M. Lifshitz, The classical theory of fields (New

York, Pergamon Press, 1975)
16. W. Rindler, Relativity: Special, General, and Cosmological

(Oxford, Oxford University Press, 2006)
17. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Free-

man and Company, New York, 1973)
18. Ph. Franklin, Proc. Nat. Acad. Sci. 8, 9 (1922)

19. M.G. Trocheris, Philos. Mag. 40, 1143 (1949)
20. H. Takeno, Prog. Theor. Phys. 7, 367 (1952)
21. E.L. Hill, Phys. Rev. 69, 488 (1946)
22. E.J. Post, Rev. Mod. Phys 39, 475 (1967)
23. M. Strauss, Int. J. Theor. Phys. 11, 107 (1974)
24. L. Herrera, Nuovo Cimento B 115, 307–318 (2000)
25. L. Hsu, J.-P. Hsu. Eur. Phys. J. Plus 128, 74 (2013)
26. Z.X. Cao, Ch.L. Chen, L. Liu. arXiv:physics/0304006v2
27. S. Kichenassamy, R.K. Krikorian, Astrophys. J. 431, 715–717

(1994)
28. S. Kichenassamy, R.K. Krikorian, J. Math. Phys. 35, 5726 (1994)
29. B. Mashhoon, J.C. Hauck, Annalen Phys. 12, 275–288 (2003)
30. M. Nouri-Zonoz, H. Ramezani-Aval, Fermi coordinates and mod-

ified Franklin transformation: a comparative study on rotational
phenomena, arXiv:1403.7615v2

31. J. Baily et al., Nature 268, 301–305 (1977)
32. P. Hillion, Phys. Rev. E 57(6), 7239 (1998)
33. L. Schiff, Proc. Nat. Acad. Sci. 25(7), 391 (1939)
34. B. Mashhoon, Phys. Lett. A 145, 147 (1990)
35. G. Sagnac, C. R. Acad, Sci. 157, 708–710 (1913)
36. B. Mashhoon, Phys. Lett. A 139, 103–108 (1989)
37. B. Mashhoon, Phys. Lett. A 249, 161–166 (1998)
38. B. Mashhoon, Phys. Lett. A 306, 66–72 (2002)
39. M. Nouri-Zonoz, H. Ramezani-Aval, work in progress
40. R. Geroch, J. Math. Phys. 12, 918 (1971)
41. H. Stephani, et al., Exact Solutions of Einstein’s Field Equations.

(Cambridge: Cambridge University Press, 2003)
42. D. Lynden-Bell, M. Nouri-Zonoz, Rev. Mod. Phys. 70, 427–445

(1998)
43. M. Nouri-Zonoz, A. Tavanfar, J. High Energy Phys. 59, (2003)

123

http://arxiv.org/abs/physics/0304006v2
http://arxiv.org/abs/1403.7615v2

	On Franklin's relativistic rotational transformation  and its modification
	Abstract 
	1 Introduction
	1.1 Ehrenfest's Paradox
	1.2 Relativistic rotational transformations

	2 Franklin transformation
	2.1 Interpretation of FT

	3 Spacetime Metric and Spatial Geometry in the Rotating Frame through a Franklin transformation
	3.1 Spatial distances and time intervals
	3.2 Angular velocity of a test particle/disk point in the two frames related by FT

	4 Modified Franklin transformation: its interpretation and the spacetime metric in the rotating frame
	4.1 Spatial line element and spatial distances
	4.2 Time intervals and their relations
	4.3 Energy of a test particle
	4.4 Angular velocity of a test particle/disk in MFT

	5 Non-invariance of electromagnetism under (modified) Franklin transformation
	5.1 Non-invariance of wave equation under MFT
	5.2 Non-invariance of Maxwell equations under MFT

	6 Discussion and summary
	Acknowledgments
	Appendix A: 1+3 (threading) formulation of spacetime decomposition and spatial distance
	References


