Two-dimensional appearance of a relativistic cube
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The two-dimensional or ‘“photographic” appearance of a cube moving at
relativistic speeds is investigated. It is shown that the appearance of the cube
depends upon whether the camera is held fixed with the optic axis perpendicular
to the direction of motion or panned to follow the cube as it moves. The Lorentz
contraction, as it is usually defined, is not visible in either case. However, if the
camera is rotated, the photographic appearance has some of the characteristics of

a picture of a stationary rotated cube.

I. INTRODUCTION

Approximately 20 years ago, Penrose,! Terrel,2 and
Weisskopf? showed that the appearance of a rapidly moving
object differs from what is predicted by a simple contraction
of its length in the direction of motion. Since that time
controversy has arisen regarding the exact nature of the
appearance of such an object.

Consider a cube moving rapidly from left to right past
a stationary observer. The rear (left) face becomes visible
while the cube still appears to be located to the left of the
observer. This effect is caused by the finite speed of light
and is distinct from the Lorentz contraction of the side of
the cube parallel to the direction of motion. The authors of
the articles mentioned above concluded that for large dis-
tances between the object and the camera, the resulting
appearance would be that of a cube rotated through an
angle which depends on the speed of the cube. Even though
the term “visual” appearance was sometimes used by these
authors, the descriptions actually referred to the “photo-
graphic” appearance, i.e., the projection of points from a
three dimensional object onto a two-dimensional “photo-
graph.”

Scott and van Driel* and in more detail, Mathews and
Lakshmanan? later showed that the appearance of such
objects cannot be explained in terms of a simple rotation.
Nevertheless, some ambiguities still seem to exist in the
literature regarding the description of the two-dimensional
picture.5

It is the intent of this paper to show that one must con-
sider the orientation of the camera axis with respect to the
object when discussing the photographic appearance of
rapidly moving objects. If the camera is held in a fixed po-
sition perpendicular to the direction of motion of the cube,
statements found in the literature such as “planes perpen-
dicular to the x axis remain so” 5 are valid. However, if the
camera is panned so that the optic axis always points toward
the center of the cube as it moves, then that statement, as
applied to the two-dimensional picture, can be misleading.
The rotation of the projection plane itself in the latter case
leads to an impression of a rotated cube.

II. RAPIDLY MOVING CUBE

For the purpose of this paper, consideration will be re-
stricted to the photographic appearance of a continuously
self-luminous cube moving from left to right along the x
axis. The cube will be considered to be transparent enough
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so that the observer or camera can “see” all sides. Only a
speed of 8 = 0.9 will be discussed, but the results apply for
any relativistic speed. Any distortion caused by the rotation
of the camera at high speed has been neglected.

The coordinates of any point on the cube in its own frame
are related to the coordinates in the stationary or camera
frame of reference by the Lorentz transformation if the
origins of the two coordinate systems coincide at ¢t = ¢/ =
0:

x'=yx-u), y =y,
2/ =z, = y(t — vx/c?),

Y2=(1-8% B=vf" (1

Here the primed coordinates refer to a point on the cube in
its own frame while the unprimed coordinates locate the
same point in the camera frame of reference.

Light which arrives at the camera at time ¢ must have
been emitted from different points on the cube at different
times owing to the finite speed of light. For a camera located
on the z axis at location (0,0,zo), it has been shown by Scott
and Viner’ and others that the apparent coordinates of the
cube at time 7 are given by

x =y + Byet — B[(x" + Byct)?
+'24 (2 = zp)2]V3,

y=y,z=2. (2)

McGill® has distinguished between “ideal,” “stereo-
scopic,” and “two-dimensional” methods of observation of
an object. The ideal method requires an “ideal” apparatus
capable of determining the exact spatial position of the
perceived object. Under these circumstances, Eq. (2) can
be used to describe the appearance of the cube. For the ideal
method of observation, Yngstrom?® and others have shown
that planes parallel with the x’-y’ plane appear parallel with
the x-y plane and that a plane whose normal is parallel with
the x” axis appears as one sheet of a hyperboloid.

The stereoscopic method of observation has the inherent
difficulty that light arriving simultaneously at two spatially
separated cameras must have been emitted from the cube
at different times. This introduces some distortion which
complicates the description of the appearance of the
cube.

Finally there is the two-dimensional or photographic
technique. The photographic appearance is obtained by
considering all of the light rays that arrive simultaneously
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Fig. 1. Camera held fixed
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at the camera lens and then projecting these rays back
through the lens onto a two-dimensional plane. This plane
can be arranged so that it is always at a fixed distance from
the camera lens.

Two orientations of the projection plane are possible. In
Fig. 1 the camera is held fixed such that the optic axis al-
ways makes an angle of 90° with the x axis. In this case, the
two-dimensional image cannot be represented by a simple
rotated cube. The reasons for this will be discussed later.
The second orientation, shown in Fig. 2, allows the camera
to rotate so that it always points toward the center of the
object. In this case the projection plane, which is perpen-
dicular to the optic axis, is inclined at an angle to the x-y

.plane. As the cube moves along the x axis from left to right,
the projection plane rotates about the camera and the re-
sulting “photographs” at each instant have some of the
characteristics of a rotated cube for certain orientations of
the camera. Terrel’s assumption of an “apparent rotation”
seems to be valid in this case.

HI. PROJECTION IN TWO DIMENSIONS

Shirer and Bartel!0 have considered the general prob-
lem of the photographic appearance of a relativistic object,
i.e., the projection of the coordinates of a three-dimensional
object onto a two-dimensional plane. If u is the vertical
coordinate of the projection plane and v is the horizontal
coordinate, the relation between the u-v coordinates and
the cartesian coordinates is given by

u = (zox + xcz — x.20)/(Xcx — 2oz + 23),
v = p(x2 + 2V (x.x — 2oz + 23), 3)

when the camera is located at (0,0,z¢g). In these equations
(x,y,z) are the coordinates of a point on the cube in the
camera frame of reference and x. locates the center of the
cube on the x axis. Equation (2) relates these coordinates
to the coordinates of the same point in the object frame.

Since u = u(x,z) and v = v(x,y,z) while x = x(x’,y,z) for
fixed time ¢, the slope of any line in the u-v plane can be
determined from

do (0 2x d | 200x  20) /(0 Ox dx

du Oxdx" dz dx0z Oz ox ox’ dz
ou ox , ou
St ) @
ox 9z 0Oz

A. Camera fixed

Figure 1 shows the camera held fixed so that it is al-
ways pointed toward the origin. The expression for # and
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v in this case can be derived from basic principles, but it is
simpler to obtain them from Eq. (3) by taking the special
case when the center of the cube is at the origin, i.e., x, =
0. In this case, the projection plane is parallel with the x-y
plane. The resulting expressions are

u=x/(z =2z, v=y/(z—zp). (5)

Consider a line parallel with the x” axis, i.e., »” and z’ are
constant. The slope of this line in the projection plane, ac-
cording to Eq. (4), is zero. Therefore, all lines parallel with
the x” axis are parallel with the u axis. Since we are pro-
jecting points onto a two-dimensional plane, all planes
parallel with the x’-y’ plane will appear parallel with the
u-v plane.

Lines parallel with the y” axis will project as curved lines
on the u-v plane. This result is to be expected because light
from the center of the line will arrive at the camera before
light from the ends of the line.

For lines parallel with the z’ axis, Eq. (4) gives

dv
du

Y&+ Byct)? + y? + (z = z0)?]'?
By(z — 20)? + x[(x" + Byet)2 + p2 + (z — z9)1]V/?’
(6)

where x is given by Eq. (2). This result is given in detail only
to show the weak dependence on z that is present. For a
distant observer, one for which z <«< zg, the slope of this line
on the u-v plane is constant.

Figure 3 shows a sketch of the photographic appearance
of a cube approaching and receding from the origin at a
speed 8 = 0.9. The cube measures two units on each side
and the camera is located on the z axis five units from the
origin. Since the side of the cube facing the observer (side
ABCD) always remains parallel with the u-v plane, the
appearance is clearly not that of a rotated cube. It is inter-
esting to note that as the cube progresses from left to right,
this face contracts in length steadily while the rear face
(ADEF) becomes more elongated. Therefore, the Lorentz
contraction, as defined by Eq.(1), is definitely not visible
in this photograph.

Another very interesting effect is that the length, in the
direction of motion, of the entire two-dimensional picture
decreases steadily after the cube has passed the origin. This
is because as the cube approaches, light from edge EF ar-
riving simultaneously at the camera with light from edge
BC has traveled a further distance and was emitted at an
earlier time. This resultsin a “stretched-out™ appearance.
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Fig. 2. Camera panned to fol-
low the moving cube. Optic axis
always points toward x. the
center of the cube on the x axis.
The v and y axes are parallel
but the « and x axes are not.
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(b)

Fig. 3. Two-dimensional appearance of a cube (a) approaching and (b)

“receding from the origin when the camera is held fixed with the optic axis
normal to the x-y plane. Face ABCD remains parallel with the u-v (and
x-y) plane and edges 4B and CD are parallel with the u axis. Since one
face of the cube cannot remain in the same plane under a rotation, the
pictures cannot be interpreted in terms of a rotation.

Once the cube passes the origin the same effect in reverse,
i.e., light from edge BC travels the greater distance, serves
to shorten the two-dimensional appearance.

B. Camera panned

For comparison, consider the case in which the camera
is panned so that the optic axis is always directed from the

(b}

Fig. 4. Two-dimensional appearance of a cube (a) approaching and (b)
receding from the origin when the camera is panned to follow the cube.
The flared-out appearance of edges AB and CD in (a) precludes inter-
pretation in terms of a rotation. However, the picture of the cube in'(b)
does have the proper perspective for interpretation in terms of an “apparent
rotation” combined with some distortion.
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camera lens to the center of the cube. In this case, shown
in Fig. 2, the u-v plane is inclined at an angle to the x-y
plane at any given time . As the cube moves to the right,
the projection plane rotates in a circular path around the
camera. The u and v coordinates of any point on the cube
are given by Eq. (3) at any instant.

For this case, lines parallel with the x” axis are not par-
allel with the u axis as they were for the fixed camera. The
slope of a line parallel with the x” axis is

dv _ —yx.(x2+z5)'?
du x%z0—zdz+z3—x%z’

(N

It is important to note that in addition to the weak de-
pendence on z, the slope is directly proportional to x..
Therefore as the cube passes the origin (x. = 0), the slope
of a line on the side edge of the cube, such as edge 4B, goes
from positive to negative. Similarly, the slope of line CD
goes from negative to positive. When the center of the cube
is at the origin, the slope is zero and the result is identical
with that obtained from a fixed camera as considered
above.

Lines parallel with the y* axis will appear curved on the
u-v plane and lines parallel with the z” axis have a constant
slope apart from a weak dependence on z for z < zq similar
to that found in Eq. (6).

The photographic appearance of a cube for the case
where the optic axis always points x,. is shown in Fig. 4. The
dimensions and speed are the same as for the previous case.
The progressive decrease in the length of face ABCD and
elongation of side ADEF are apparent as they were for a
fixed camera. The overall decrease in length of the two di-
mensional picture is still present but this effect is somewhat
reduced by panning the camera to follow the cube’s path.

When the cube is approaching the origin [Fig. 4(a)], the
flared-out appearance of side ABCD precludes interpre-
tation of the picture in terms of a rotation. However, it is
extremely interesting to note that the picture of the receding
cube [Fig. 4(b)], apart from curvature effects, is exactly the
perspective one would expect for a two dimensional repre-
sentation of a stationary, rotated cube. Terrel’s “apparent
rotation” is indeed visible in this instance.

IV. SUMMARY

The photographic appearance of a cube moving from
left to right along the x axis at speed 8 = 0.9 has been in-
vestigated for two cases: (i) camera fixed so that the optic
axis always makes an angle of 90° with the x axis and (ii)
camera panned so that the optic axis always points toward
the center of the cube. Consideration of the slope of lines
formed by the edges of the cube has shown that the two
cases result in different photographic appearances. Fur-
thermore, in one instance, the appearance is similar to that
of a stationary, rotated cube.
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