Real Time Relativity

Walter Gekelman, James Maggs, Lingyu Xu
Department of Physics
University of California

Los Angeles, 90024-1547

Abstract

A software package which calculates and displays in real time the
shape of a cube moving at relativistic velocity in the sunlit world is
described, and examples of its output are presented to illustrate the
effects of high velocity on the appearance of a common object. The
cube may be launched from any position and at any angle relative to
the observer, but the velocity, B = v/c, is assumed constant. The
parameters used in the program may be varied in real time using
buttons and knobs. The entire program is menu driven, and one can
chose to view the cube as a Doppler shifted object or to have each
face colored differently to keep track of the large distortions which
can occur. The paper contains the theory and computational method
used to calculate and display the resulting shape. The most
important subroutines are contained in an appendix.

Intr ion

In introductory courses on special relativity students are
taught about Lorentz contaction and time dilation with respect to two
inertial frames in relative motion. Many students come away with
the impression that if an object was moving toward them at an
appreciable fraction of the speed of light, it would appear contracted
in its direction of motion. It has been understood for many years
that this is not the case, the Lorentz contraction applies in a world
described by measurement with a lattice of clocks and meter sticks
(Taylor and Wheeler, 1966). The "observation” of an object in this
world rests in an analysis of data tapes issued by detectors and
clocks within the lattice, long after the object is gone. All parts of an
object must be measured at the same time in order to observe the
phenomena of Lorentz contraction. The difference between a human
observer, or a camera, and this type of measurement is that a light
sensor, at any given instant of time, detects light which may have
originated from the object at very different times. This effect was
recognized by several authors (Weisskopf, 1960; Terrell, 1959;
Penrose, 1959) nearly thirty years ago and several calculations were

done to find the shape of simple objects moving at relativistic speeds,
as seen by a human observer.

For several reasons, little of this has filtered down to the
classroom. Students generally have such a hard time with relativity
that many instructors feel additional information may lead to an
irreversible overload. Also, there has been very little available in
visualization tools to dramaticially illustrate relativistic effects. A
large part of the difficulty that students have with Physics is an
inability to form a picture which captures the essence of the subject
apart from the mathematics in which it is couched. If the problem
involves three (or more) dimensional forms changing in space and
time, ordinary blackboard diagrams become nearly useless.

Fortunately, the introduction of powerful graphics workstations
is changing this picture. This paper describes, in detail, an
interactive program which runs and renders, in real time, a cube
moving at constant relativistic speeds in any direction with respect
to an observer. The code can be straightforwardly modified to deal
with any shape or any velocity trajectory. The paper is orgainized as
follows. First we describe the problem in more detail and review
some of the ways others have tackled it. We then present our
algorithim for solving it, before proceeding with a description of the
program and its user interface and a presentation of several
examples of the output. Finally, we list the most important parts of
the code.

he vij aran f an obj movi relativistic velociti
Consider the emission of light from a simple object, namely a

cube, moving rapidly toward an observer in the absense of
gravitational fields. As shown in Figure 1, a spherical wave emitted,
with the cube at rest, from a point P on the rear surface is blocked
by the back of the cube, and is therefore not visible to the observer
at point X. Diffractive effects are not considered here. Light rays are
normal to the spherical surface, and can not bend around corners. In
contrast , when the cube moves rapidly towards the observer at
velocity v along x, it can outrace most of the expanding light sphere,
and the ray emitted from the point P on the rear face can get to the
observer's eye. The angle of elevation, ¥, at which this happens is
given simply by ¥p = cos-1(v/c) (Taylor, 1963). It is therefore
possible to see the rear side of a cube approaching at relativistic

speed, from a viewing angle at which it would not be if the cube
were at rest!

If the cube is far enough away so that every point on it
subtends approximately the same angle ¥ with respect to the
observer, the cube will appear to be rotated as a solid object
(Weisskopf, 1960). The cube appears to rotate as a solid object
because it is Lorentz contracted. If it were not Lorentz contracted it
would appear to be elongated along its direction of motion. The
relationship between the angle of observation, ¥, and the angle of

apparent rotation, ¢, is given by:

(1) @ = arccos { lc?sﬂ"'c;sﬁw

}-v

When ¥ = 0° , the object moves directly towards the observer and
the rear face is never observed (i.e., ¥ + ¢ = 0). When ¥ increases for a
fixed large B, (B = v/c) the rear face of the cube comes into view at
the angle of elevation ¥ (i.e., ¥ + ¢ = n/2). In the limiting case as
Bp—1, the cube appears to rotate so that only the rear face is visible
from any observation angle (i.e., ¥ + ¢ = x). If one plots the angle of
apparent rotation of the cube as a function of the angle of
observation (Taylor, 1966), as shown in Figure 2 another interesting
phenomena emerges. For large B (B > .95) and a certain range of
observation angles (¥ < 90°), the cube can appear to rotate more than
90 degrees. In these cases, the bottom face of the cube appears to
swap places with the front face, and the rear face with the bottom
face, as illustrated in Figure 3. For small B (0.5) the object rotates
slightly (¢= 18°). As P approaches unity the cube can rotate more
than 90 degrees so that the rear is visible to the observer.

This simple analysis breaks down when the cube is close
enough to the observer that each point on it subtends a significantly
different observation angle ¥. In these circumstances, one could as
suggested by Taylor, approach the problem by breaking the cube up
into a multiplicty of smaller cubes and then calculating and
performing the above rotation on each cube. This conceptual
proceedure becomes quite cumbersome in a calculation, since the
algorithim must determine how many cubes to break the mother
cube into, and then find a way to smoothly join the resulting bunch
of differentially rotated daughter cubes for graphical presentation.

The problem is further componded if the original object is a smooth
curved surface and not easily cubized. Because of these difficulties,
we choose not to use this approach.

There are other aspects which must also be incorporated
into a visual presentation. One of these is the Doppler effect which
will change the wavelength of the light from the surface of the object
according to the relation,

1.0
(1 + Bcos(¥))1/2 J

(2) A= ko2 {

where v = (1-B2)-1. As the cube approaches it becomes bluer, and is red
shifted when it receeds. Another effect is relativistic magnification.
One sees the rear of a rapidly approaching object in the quasi-remote
past, and it will appear smaller than the front surface since it was
further away when it emitted (or reflected) the light. Finally, there is
the searchlight effect in which the distribution of light emitted from a
rapidly moving object is most intense along the direction of motion.
This effect occurs because, as seen from the observers viewpoint, the
spherical surfaces containing emitted light energy are closest together
along the objects direction of motion, and thus the light intensity is
highest in this direction. The distribution of light intensity is given by
(Weisskopf, 1962)

1- 2
(1 + Bcos(0))2 }

3) 1(6) = I(8") {

Here 0 is the angle of observation of the emitted light with respect to
the surface of the object, and ' is the angle of light emission in the
frame of the object.

The problem is how to handle all these effects in a situation
where real time interactivity is essential. The ray tracing method
circumvents all the calculations involving rotations by simply following
each ray from the eye of the observer back to the object, and keeping
track of the different propagation times. This technique has been used
by Peterson (1990) in an article which contains many striking visual
displays. Ray tracing, however is a time consuming process which can
take tens of minutes to hours to generate one image. At this time there
is no hardware which can ray trace in real time, so we decided to

develop an algorithim based on ray tracing concepts which could be
implemented on one of the new breed of supergraphics workstations.!

1 i A Relativisti

Light, emitted or reflected from a moving object, reaching an
observer's position at time t=0, travels various paths of differing
length. In order to reach an observer at the same instant, light from
a section of the object farthest away from the observer must be
emitted earlier than light from the nearest section of the object.
Moreover, since the object is in motion, it is in a different position at
an earlier time, so that a snap shot of the object in relatvistic motion
could be distorted from its shape at rest.

Suppose we know the rest shape of an object, and represent it
in the computer as an array of points on the surface of the object. In
order to compute the spatial location of various points on the object's
surface when they emit rays reaching the observer at t=0, it is
convenient to consider the spatial location of the object at the time
the ray traveling the shortest path length reaches the observer. This
ray is emitted from the point on the object nearest the observer. The
light emitted from the nearest point travels a distance r, (r_nearest)
to reach the observer, in a time interval of length rp/c . All other
points on the object's surface lie outside a sphere of radius ry
centered about the observer, as illustrated in Figure 4. Denoting the
position vector of a point on the object's surface, measured from the
observer's location by r(t), (vectors are denoted by bold face) with
v(t) the velocity vector, the object is in position r(t=-rp/c) moving at
velocity v(t=-rp/c) when the ray from the nearest point reaches the
observer. The trajectory of the cube need not be a straight line
moving at constant velocity. For simplicity of analysis, however, we
will consider the velocity constant, i.e., v(t) = v(t=0). The extention
of the method to an accelerated trajectory will be discussed after
analyzing the constant velocity case.

Now we calculate the position of some point located on the
object's surface (but not the nearest point) when it emits a light
pulse that arrives at the observer at t=0. The spatial location of this
point at time t=-rp/c is r = Ar + ry , where

(4) Ar = Arg - (Arp « B)(1 - v)/B

1 In this case a Stardent Titan (64 Meg memory, 2 CPU's)

5

The vector Arg is the displacement vector from the nearest point to
the emitting point measured when the object is at rest. Notice that
the expression (4) contains a Lorentz contraction factor in the
direction of the particle velocity, because the location r is

determined relative to rp, the location of the nearest point, at a fixed
time, namely t=-rp/c. In order for a pulse of light emitted from the
point located at r to reach the observer at time t=0 it must penetrate
the spherical surface of radius rp about the observer's postion at the
time t=-rp/c. If the position of the point at the time the pulse is
emitted is denoted by rpret, then the time of flight along the ray path
before the pulse penetrates the sphere of radius ry, is, t = (frer -Tn)/c
and the emitting point on the object has moved a distance

(5) d = vt = B(rret -tn)/c
from its location.

The location of the point at the time of emission, rye:, is related
to, r, by

(6) d=T - Tret

where d is given by (5). Taking the vector dot product of both sides
of (6) and using (5) gives the expression

(7) Bz(rl‘et - l'n)2 =12+ l'retz -2r * Iret

Taking the vector dot product of (6) with r and using (5) to replace
d, the resulting value for r rpe; used in (7) gives

(8) Tret2 (1-B2) - 2rreq(re B - P2ry) = 12 -2re B ra + B2ry2

Equation (8) can be solved for rrey using the standard solution for
quadratic equations,

1
% Tret = 5 { -b1 +(b12 - 4ajcy)1/2)
where:
(9.a) aj= 1-p2
(9.b) b1 = 2(r+ B - B2ry)
(9.c) c1 = (12 -2r+ B rp + P2ry2)

The set of all end points of the spatial location vectors, rret, of
points on the surface emitting pulses that arrive at the observer at
the same instant of time (t=0, for the case under consideration) is
called the photosurface. The photosurface is generated by the
program from the object's location at t=-rp/c, using equations (4) -
(9). The photosurface can be selected for rendering and viewing
from any angle. Of course ,the appearence of the object is found only
by viewing the photosurface from the observers location. This view
of the photosurface is how the object would appear if a camera
located at the observers position took a snap shot of the object at the
time t=0.

Another way to represent the relativistically moving object is
to transform it so that its appearance, when viewed by the observer,
is the same as the appearance of the photosurface. We first rotate
each point on the surface of the cube using the expression for the
apparent rotation angle of a cube of negligible size (given by
equation 1) located at the retarded position rret. The elevation angle
of the point located at rye; is given by

(10) Yret = arccos (Iret * P /Prret)

As illustrated in Figure 5, the rotation of this particular vector
(delta_r) occurs about an axis in the direction of r x B (which is the
same as rret X B). This axis of rotation has been named rotme. Once
the point on the object's surface is rotated in this fashion, the vector
from the observer to the rotated point (rrotated in Figure 5) is projected
onto the direction of the corresponding point on the photosurface. This
process ensures that each point on the transformed cube is along the
observer's line of sight to the corresponding point on the photosurface.
The rotated-projected cube will then appear identical to the
photosurface from the observers viewpoint. The transformed cube is
generated by the program using equations (1) and (10), and can be
selected for viewing from any angle.

Both the photosurface and rotated-projected cube appear
identical only when viewed from the observer's position. However,
both objects can be viewed on the computer screen from positions
other than the observer's position. Usually their appearence is -
strickingly different. This ability to view the objects from various
aspects can be thought of as a second observer observing the original

observer and cube. The second observer's view of the photosurface
and transformed cube can not be realized in the physical world, but
provides some instructive insights into the appearance of the
relativistically moving cube.

The procedures used to find the photosurface and transformed
cube can be easily generalized to objects of more complex shape and
accelerated trajectories. The shape of the object is a problem only as
regards program speed. The data input required is an array of
points on the surface of the object at rest. The complexity of the
object's shape, or accuracy of its description, is then limited by the
array size. Too large an array will slow the program to the point
where it can no longer be considered interactive.

An accelerated trajectory can be handled by replacing
equation (5) with the expression

tn
(11) d= jdt' v(t) = vt,
tn-t

with t = (et - Tn)/c, and where v is the average velocity over the
interval from tp-tto tn. The vector rre; can then be found using an
iterative approach. The average velocity is first approximated by
setting it equal to v(tn), that is, its instantaneous value when the ray
from the nearest point is emitted. The vector rre; is then found as in
the constant velocity case, and the time interval used in equation
(11) is found using t=(rre; -Tn)/c. This new value of the average
velocity is then used, and the procedure repeated until the change in
the average velocity after the iteration is below some preset criteria
(e.g. 1A v/ vl < .01).

The velocity trajectory is followed by breaking it up into
segments, along which the velocity is constant. At one time step the
shapes of the surfaces are computed as described above. At the next
time step in which t; — ta+At(n), the spatial location of the cube is
advanced using velocity vp, and the new surfaces are computed as
before. Clearly the repeated procedure for finding the average
velocity corresponding to each point on the surface could greatly
slow the program. It can be speeded up by replacing the first
estimate of the average velocity by the value found at the previous
time step for the point in question, or by some similar procedure

depending upon the technique used to evaluate the integral in
equation (11). For example, if an extended trapezodial rule is used to
numerically evaluate v that is,

M
verr { 3 Vita-mo)] (v(a-D+v(t))/2}, where t=t/M,

m=0
the integration can be updated at each time step by adding the term
[v(ta+At(n))+v(tp)-v(ty-t+1)-v(tg-t)]/2M. If the acceleration along
the trajectory is not large this value will be close to the correct
expression.

In addition, the magnitutde of At(n) need not be the same for
each time step. The value of At(n) can be determined, for example,
by limiting the size of the derivitive of the velocity at each step.
That is, requiring lv(t+At) - v(t)I/lv(t)l < €, where & is a small,
arbitrarily choosen, positive number. In this case the value of At(n)
varies for each time step, and can adequately represent the motion
when the acceleration is large.

Running the Realtiview Program

The user interface for the relativity program is structured so
that only a mouse and a dial box are used. Once the program is
initiated by typing RUNME from the control console, a main window
and several border windows appear as shown in Figure 6. The biggest
window which is positioned on the upper left hand part of the screen is
the Dore window. Dore (Dynamic Object Rendering Enviornment) is an
object oriented software 2 graphics system All of the objects required
such as the cube and the "gun" which fires it are rendered within the
Dore window. The cube at rest is shown with the bottom face colored
white and the face facing the observer colored magenta. A three
dimensional grid centered at (0,0,0) is displayed. The rectangular
coordinates range from -100 < to < 100 Is (light seconds, or the
distance light travels in a second. Each time interval is a second). At
the bottom left of the screen there is an explanation/instruction
window which contains a brief abstract of the program. To the right of
this there is an I/O (input-output) window which is initially blank. It
has been used during program development for debugging purposes

9

and can show the instantaneous value of a parameter of interest such
as ¥, the average elevation angle in real time.

A stop sign, displayed on the lower right of the screen is used to
exit from the program. To exit, the mouse is positioned within it and
clicked.

A button window is located in the upper right corner of the
screen. To "press” a button the mouse arrow is positioned on one and
clicked to activate it. The button commands are explained in detail
below.

A window on which a set of dials, very much like those on the
dial box, is drawn on the lower right corner of the screen. There is a
one to one coorespondance between the dial icons and the physical dial
set. The function of each dial is written on the screen below it. If the
dial hardware is not present, a dial may be activated by placing the
mouse on it and clicking . A button labelled "knob set A" can toggle
between alternate knob sets since there were more knob functions
necessary to run the program than physical knobs. By clicking it one
can toggle between knob sets A and B.

The buttons displayed on the screen perform the following functions:

1. Rep Type : This button sets the mode in which solid objects are
drawn. Objects can be displayed as points, in wireframe mode, or as a
shaded surface.

2. Shading : This button sets the shading type. The cube and gun can
be flat or Gourard shaded.

3. Highlights: This button determines whether glossy highlights will be
present or not

4. Time steps : This button sets the maximum number of time steps for
the animation which can be any positive integer number. The default
number is 100. If an object moves slowly it may not go far in 100
steps.

5 Background: This the screen background color to black, red, green or
blue.

6 Box color:. This button can set the color of the cube to either a single
color or a seperate color for each face. The single color, which is set to
green when B = O, is used to illustrate the Doppler effect. As B -> 1 the
cube becomes blue and turns red for B -> -1. The seperately colored
surfaces are not Doppler shifted but are useful when studying the

10

rotations and extreme distortions of the cube at large P and arbitrary
direction of motion with respect to the observer.

7 Object. This button determines the viewing case. In one instance,
the object displayed on screen is the photo-surface, and in the second
instance it is the rotated-deformed cube.

8. Camera: This button switches the camera between two positions. In
one case the camera is positioned at the observer's location. In the
second case the camera may be positioned anywhere, and the
observers position is denoted by an X along the x axis. This case
corresponds to an observer observing the original observer.

9. Animate : This button starts or stops a clock which determines the
time intervals between succsive positions of the cube. When the cube
is moving and the animate button is pressed, the cube will remain
frozen at its last position

Next we explain the function of the knobs. The knob box contains
eight knobs which, unfortunately, are not enough to handle all the
functions required by the program. To overcome this difficulty there
is a button beneath the knob descriptor (Figure 6) which, when
clicked, changes the function of the knobs. A short description of its
function is written underneath each knob.

no €

All the dials in this set are used to set the cube's initial position
and velocity in 3D space. A gun is shown with its muzzle pointing in
the direction of the cube velocity.

Dials 1,2, and 3. These dials set the cube's initial x, y and z position on
the rectangular coordinate axis.

Dial 4: This dial sets the observer's position on the x axis. The current
observer's location is displayed by the symbol X

Dial 5,6: These dials set the spherical coordinate angles theta and phi.
The angles are in degrees and written below the knob as it turns.

Dial 7: This dial sets the magnitude of the cube's initial velocity.

Dial 8: This dial changes the intensity of the lights which illuminate
the cube.

Knob set B:

All the dials in this set are used to control the orientation of the
volume viewed with respect to the second observer. They do not
change any of the parameters of the cube motion.

Dials: 1,2,3: These dials rotate the entire grid around the x, y, or z
coordinate axis. The degrees rotated are shown below the

11

corresponding icon and may take on positive or negative values.
Positive rotations are determined by the right-hand rule.

Dial 4: This dial zooms the camera in or out from the grid origin

Dials 5,6: These dials translate the entire grid relative to the center of
the screen in the x and y directions.

Examples

Figure 7a shows the appearance of a cube traveling at B = .99 in
the x direction towards an observer located at x = 600 Is. The cube is
intially located at (x,y,z) = (0,80,0) so that its elevation angle is 7.5
degrees. Figure 7b shows the photosurface for the same case as 7a.
from the perspective of an observer looking at both the cube and the
true observer. Note the photosurface is highly elongated since B is
large, but as illustrated in Figure 7c, both the cube and photosurface
appear identical from the perspective of the observer located at
x=600. Even though P is large, the apparant rotation (Figure 3) is less
than ninety degrees since the angle of elevation is small, and the
observer sees the (white) bottom and (magenta) front surfaces of the
cube. Figure 8 shows the distortion of a large size cube due to
variation of elevation angle from bottom to top. The cube center is at
y = 20 1s while its lower edge is at y = 2 Is, and the observer is much
closer at x = 100 lIs.. The top edge of the cube subtends an angle of
11.3 degrees, and with B = 0.95 a small cube would appear to rotate by
about 55 degrees. The bottom edge subtends an angle of only 1.1
degrees so a small cube would only rotate about 5 degrees. The large
cube in this figure differentially rotates and thus its front surface
becomes rounded.

In the next sequence, a cube centered at the origin and moving
along the x-axis with B = 0.95 approaches an observer at x = 20 Is.
Before the cube reaches the observer (Figure 9a) it is blue shifted and
appears elongated, nearly bullet shaped. Light from the back of the
cube reaches the observer from the past when the cube was much
further away so that the rear is squashed down. In Figure 9b the cube
is on top of the observer and its overall color shifts toward green
which is the object's color at B = 0. The leading edge appears large,
since it is beyond, but close to the observer so that it subtends a large
solid angle. Finally the cube turns red and appears more cubelike
(Figure 9c) as it receeds from the observer. Since it was difficult to
correctly color each part of the cube according to its elevation angle
(equation 2) an average color was used in this demonstration. Finally,

12

for the same P and observer position as in the previous case, the cube
can assume very un-cubelike appearances when it is launched at an
arbitrary angle such as 6 = 112.5° and ¢ = 43.5° as shown in Figure 10.
The velocity direction angles are the standard angles used in sperical
coordinates, with 6 measured from the positive z-axis and ¢ measured
from the positive x-axis.

Program Structure

The code can be roughly grouped into three classes of software.
The main part, and the focus of most of this paper, is the subroutine
which calculates the positions of points on the surface of the
relativistic object as a function of time. This module, realtiview, is
written in FORTRAN and is described in detail below. The next
module, geom_spec , is written in C and uses the data passed from
realtiview to create the graphical objects. (In this case the cube and
gun which fires it) One the first things that Geom_spec does is pass
the data on the object's surface points to a routine called PATCHFIT.C
(Green, 1990) which takes an array in rectangular coordinates and
fits a set of triangular patches to it. Any graphical object is
constructed out of a number of these patches. As the object becomes
more deformed this routine may create tens of thousands of patches
to accurately fit it. This means that highly deformed cubes, which
are moving close to the speed of light, wind up moving more slowly
across the screen since the computation time goes up as the number
of patches. Geom_spec next calls the Dore library which in turn
renders and colors the objects in three dimensional space. The main
graphical program Main.C is not unlike the conductor of an
orchestra. It initializes the X windows, controls all the peripherals
such as the mouse and knobs, and allows the user to interact with
the objects. These latter routines are complex, took many man years
to write and, fortunately can be ignored for the most part. They are
simply linked into the program. The total number of modules in this
package is 22, and requires access to nine libraries (i.e. FORTRAN77
,C, X11, mathlib, Dore, etc.)

Realtiview
The FORTRAN subroutine which does all the calculations is

entitled realtiview (Realtime relativity view). It was written in
FORTRAN since this compilier generates faster and more effeciently

13

vectorized code. A commented listing of it is provided as an

appendix . It calculates and passes the points on the photosurface
and transformational cube to the graphics programs. The first array,
surface, is the rotated and deformed cube as seen by an observer at
location r = (X,0,0). The second array, ph_surface, is the

photosurface. Other information about the observer's position, and
gun location is passed to this routine as well. For every time step, 'it',
realtiview evaluates the position, shape and color of the cubes, and
passes them to the graphics package for rendering.

In the first time step, it= O, realtiview creates two cubes. One
cube (surface) is sized normally and is used to calculate the
transformed cube, and the other (Lorentz_surf) is Lorentz
contracted, and used to calculate points on the photosurface. The
transformed cube is placed at the origin and rotated to line up with
the gun. All rotations are done point by point using the standard
transformation and rotation matricies (Harrington,1987). In general
every time this subroutine is called an array of vectors, r_surf, from
each point on the Lorentz surface to the eye of the observer is
created, and an axis of rotation for each surface point is evaluated
from r_surfx v and placed in rotme.. Next the point on
Lorentz_surf nearest to the observer's eye is found and stored in
nearest. Then the photsurface is calculated from the current
position of Lorentz_surf, according to r = vt. In addition, the angle
of elevation of the points on the photsurface are found and stored in
sigh_tot. The program then creates the distorted cube by rotating
each point on surface by angle ¢ calculated from formula (1), about
the axis in rotme The rotated surface is then moved so that the
point on the surface corresponding to the nearest point is at position
nearest.

Acknowledgements

This work would not have been possible without a grant from
the UCLA Office of Instructional Development. The authors of this
paper would like to thank the Stardent computer corporation for
help in supplying needed software and for providing help with their
graphics program Dore. We would also like to acknowledge many
useful discussions with Prof. Joe Rudnick of the Physics department.

Figure Captions

14

1. Illustration of how light emitted from the rear of a rapidly
moving cube can reach an observer a) Light emmited from a point
on the back of a stationary cube is blocked by the cube. The
hemispherical blue surface represents a light pulse emitted from the
rear of the cube b) A rapidly moving cube emits a light pulse at the
same time as the stationary cube in a). The cube races to the right
and light from the expanding spherical wavefront is no longer
blocked and can arrive at the observer.

2. Graph of equation 1, the apparent rotation of a small cube as a
function of elevation angle and B. For B > 0.95 and a range of
elevation angles the cube can rotate more than 90° so that an
observer will see the rear face.

3. Illustration of the rotation of a cube which subtends a small solid
angle when it moves at intermediate and high B a) ¥ =300, 8 = 0.50,
¢ =182 b)¥ =30°,B = 0.99 and the rear face (colored blue) and the
bottom (colored orange) are seen. The rotation angle ¢ = 1200°.

4. Some of the vectors used in calculation of point by point rotation
of surface elements of the cube. The coordinate origin is at
(x,y,2)=(0,0,0), the vector eye goes from the origin to the observer's
eye. rp is from the observer's eye to the nearest point on the surface
of the cube, while r is a vector to an arbitrary point on the cube. r ¢
is the location of the point on the surface (corresponding to r) when
it emits a light pulse that reaches the observer at the same time as
the light from r,. The point moves a distance d=vt in the time it
takes the light emitted at rp to penetrate a sphere of radius rp
(drawn in blue) surrounding the observer.

5. Elements in the proceedure used to transform the rotated cube so
that appears, to the observer, identical to the photosurface. A vector
on the surface rinj;ia1 is rotated about the axis rotme by an angle
prescribed by equation 1. The rotated vector, rrotated, is then
projected onto rre;, the line of sight to the corresponding point on the
photosurface. Delta_r is the difference between rinitial and
nearest, the vector from the observer to the nearest point on the
cube (rn).

6. The computer terminal showing thescreen layout used in the

program. A cube is shown at rest at the origin from the perspective
of the second observer.

15

7. A view of the transformed cube and photosurface from the
perspective of the second observer, and both from the observer's
viewpoint. The center of object at y = 80.0 Is, the viewer is at x =
600.0 1s, and the cube is moving along the x-axis with B = 0.99 . This
and subsequent figures are discussed in more detail in the 'Examples’
section of the text.

8. A cube moving along the x-axis with B = 0.95 and center at 20.0 Is
shows the differential rotation due to the changing viewing angle
across the surface of a large object. The observer is at x = 100.0 Is.

9. A sequence showing the cube moving along the x-axis through
the observers position at at x = 20.0 Is with B = 0.95, illustrating both

the dramatic change in the appearance of the object and the doppler
shift.

10. The cube can appear highly distorted for certain viewing aspects
and high velocities, as illustrated here by a cube with velocity
direction angles 6 = 112.5° ,¢ = 43.5° and B = .95.

16

References

E.F. Taylor,J.A. Wheeler, Spacetime Physics, pp17-22,W.H. Freeman
Company, New York (1966)

Taylor, E.F.,Introductory Mecahnics, pp349-358,]J. Wiley & Sons,New
York (1966)

V.F. Weisskopf,Physics Today,pp24-27(Sept 1960)
J. Terrell, Phys. Rev.,116,1041, (1959)

R. Penrose, Proc. Cambridge Phil. Soc. 55,137 (1959)
I. Peterson,SCIENCE NEWS,137,232(1990)

S. Harrington,Computer Graphics, a Programming Approach, pp256-
261,McGraw Hill,New York(1987) .

17

Appendix

Subroutine realtiview(surface,ph_surface,eye,orig,
1 pos_gun,v,vvv,it,hue)
c

B delta_ r

pos_gun

ctr_to_nearest

y4 observer
CCeeeeeeee

c Input parameters:

c eye(3) position of the observer's eye

c orig(3) position of the origin

c v(3) velocity of cube 0<v<.995

c pos_gun(3) position of gun which fires the cube
c vvv(3) 0, ¢, v angles gun makes and mag of velocity
c it time step 2 0

c Output parameters:

c surface surface of distorted cube

c ph_surface photosurface of cube

c hue Doppler shifted color of cube

c

c The horizon is at y = 0

c Written W. Gekelman, J. Maggs, L. Xu 1989

CCCee

Cc
Cc
Cc

O 000600

Declaration of variables:

real eye(3),orig(3)

students eye position

! and origin of cooorindate system position

real pos_gun(3)

real

eye_mag

real v(3)
real vvv(3)
real t,temp

real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real
real

theta

del_theta
beta,c

theta_prime,time
pos_old(3),pos_new(3)
hue,hue0
color_norm

angle

gamma

bottom
r_ret_hat(6,16,3)
surface(6,16,3)
ph_surface(6,16,3)
surface_orig(6,16,3)
Lorentz_surf_orig(6,16,3)
Lorentz_surf(6,16,3)
r_surf(6,16,4)
rotme(6,16,3)
sigh_tot(6,16)

nearest(4)

integer it,i

save surface_orig,Lorentz_surf_orig

data color_norm/1.414214/

!
!
!
!
!
!
!
!
!
!
!
!
!

GumD GmED G—uD SR SeuP St S G=nP Guup Se=d S Gemm Suam

init position of cubes
center

magnitude of eye

cube's center velocity
theta , phi , v_mag

time

angle as seen by observer
angle of rotation of each
vic

angle seen by observer
original position of cube
color 0.0-0.5
normalization for color

! average angle cube makes with horizon

relativistic factor
used in Doppler calc
unit vector in r_ret direc.
points on object's surface
photosurface
created surface
surface with contractions
surface with contractions
store scratch rpoint,magr
rotation axis ,
total rot angle each point
nearest point to eye
time step

! keep on reentering

el e ke e afeaje e e el o e e e o e e e e ol s e e e e o ke el e e e ke e e o e e e

The original position of the cube is stored in the

1st of 16 arrays

O 0O 00 O 000

(¢}

1st of 16 arrays

hue0 = 0.25 ! O=red,0.25=green,.50=blue
¢=10 ! normalized speed of light
if (it.eq.0)then ! is it the first pass?
beta = 0.0
doi=13 ! save original position
! of the gun
pos_old(i) = pos_gun(i) ! initialize position
pos_new(i) = pos_gun(i) ! ditto
beta = v(i)**2 + beta
enddo
beta = sqrt(beta)/c
if(beta.ge.1.0)beta = 0.99999 ! protection on divide
gamma = sqrt(1.0-beta*beta) ! definition of relativistic factor

Calculate position of points on surface given pos_new and beta
First create the cube with center at the orgin

call create(surface,Lorentz_surf,beta,gamma) ! create cube

Rotate cube so that face 6 is in beta direction, and place it at
initial position pos_new position of cube center

call rotate(Lorentz_surf,v,beta) !Lorentz surface
call rotate(surface,v,beta) ! rotate uncontracted cube

Next: point cube in beta direc. and translate to ipos()

do isur = 1,6 ! save newly created surfaces
do ipnt = 1,16 ! 16 points/side of cube
doix=1,3 ! x,yz

surface_orig(isur,ipnt,ix) = surface(isur,ipnt,ix)
Lorentz_surf_orig(isur,ipnt,ix) = Lorentz_surf(isur,ipnt,ix)
enddo

enddo
enddo
endif 1 it = 0 surfaces done
time = it ! make it real
doi=13

O o0 06

o 00

QOO0 O0 0

O 0O 006a6a0

pos_new(i) = pos_old(i) + v(i)*time

! for visible motion on screen
pos_gun(i) = pos_new(i) ! pass position of cube center
enddo

Move surface to next position Dist = vel*time

do isur = 1,6 ! new position of undistorted but Contracted
! surface
do ipnt = 1,16
doix=1,3
Lorentz_surf(isur,ipnt,ix) = Lorentz_surf_orig(isur,ipnt,ix)
1 + pos_new(ix) ! move em out

surface(isur,ipnt,ix) = surface_orig(isur,ipnt,ix) ! rawhide!
enddo
enddo
enddo

Find the position vectors of points on the surface relative
to the observer - store them in r_surf.

call calc_r(Lorentz_surf,r_surf,beta,cye)

Calculate axis of rotation for each point on the surface.

call axis_of_rot(r_surf,v,beta,rotme)

Find nearest point to observers's eye and keeps track of it
nearest is the point on cube through which overall rotation will
be done, ie rotation will be done about axis in rotme direction

and point of rotation at nearest!

call nearest_pt(r_surf,nearest,eye,eye_mag) ! find nearest
! point on surface to the observer

Calculate the photosurface - store results in ph_surface
Calculate elevation angles at retarded position - store
values in sigh_tot.

(¢)

O 0000060006 (¢} O 0006

O 000060

relative rotates each point on the cube as if it was a
microscopic cube.

call relative(surface,nearest,sigh_tot,r_surf,rotme,
1 r_ret_hat,eye,v,beta,pos_new,angle)

Relativistic rotation based upon elevation angle of the
retarded position

do isur = 1,6 ! new position of distorted surface
do ipnt = 1,16
doi=13
surface(isur,ipnt,i) = surface(isur,ipnt,i)
1 + pos_new(i) ! move em out
enddo
enddo
enddo

Now finally,finally calculate Doppler shifted color

bottom = (1.0+angle)+1.0e-6 ! neg sign of v receeding cube
hue = hueO*(color_norm)*(gamma/bottom)

hue = 0.75- hue

if(hue.gt.1.0)hue = 1.0 ! protect from Dore freakout

At t=0 hue=0.25 or green. If theta=0 and v= vmax (.999999c)
then alog() is 12.3 and color is maxed out at 0.50
If v=-vmax then hue = 0.25-0.25 or blue

sheale e e e e e e e e 2 e e e e de e e e e kol e afe e e e o) ke dfefesfe e ke e e dfe e e e 3k

return ! to graphics program
end

subroutine create(surface,Lorentz_surf,beta,gamma)

Given beta and assume center of cube is at (0,0,0) find all the
surface points (six surfaces 16 points on each) surface
Surfacesl-4 are Lorentz contracted, beta is normal to surface 6.
beta is along the x direction. y direction is vertical

real surface(6,16,3) ! pts on surface of cube

O OO0

[¢)

real Lorentz_surf(6,16,3) ! array of Lorentz contracted pts
real x,y,z,xc ! points on surfaces
real lil_side,side,contside,c,gamma,alpha

! start with cube at origin
and assume that v points along z axis.. Then rotate cube so
that its contracted face is parallel to v

lil_side = 12.0 ! length of side of cube
side = 3.0*lil_side ! for even spacing along each side
contside = side*gamma ! Lorentz contracted side

Create all points on the surface if beta is along x

dois =14 ! surfaces parallel to beta
ipnt =0 ! init counter
doix = 1,4 ! 4 perp surfaces
y = float(ix-1)*1il_side -0.5*side
doiy = 1,4
ipnt = ipnt + 1 ! step to 16 for each is
if(mod(is,2).eq.0)then ! face 2 and 4 or bot and top

! at +/- y = side/2
= float(iy-1)*lil_side - 0.5*side
xc = (float(is)-3.0)*0.50*gamma*side ! contracted bot

! surface is # 2
x = (float(is)-3.0)*0.50*side ! bot surface is=2
elseif(mod(is,2).eq.1)then ! face 1,3 is=1,3
z = (float(is/2) -0.5)*side lis =1 get -L/2,is=4 get L/2

xc = float(iy-1)*gamma*lil_side - 0.5*contside
x = float(iy-1)*lil_side - 0.5*side

endif

surface(is,ipnt,1) = x

surface(is,ipnt,2) = y

surface(is,ipnt,3) = z

Lorentz_surf(is,ipnt,1) = xc

doi=23 ! contraction is along x only!!
Lorentz_surf(is,ipnt,i) = surface(is,ipnt,i)
enddo
enddo ! iy
enddo liz
enddo lis=1,4

- -~ e ., - ..

O 00006

do is = 5,6 ! furthest (5) and closest to beta (6)
y = side*(float(is)-5.0) - 0.50*side
ipnt = 0 :
doiz=14
z = float(iz-1)*lil_side - 0.5*side
doiy =14
ipnt = ipnt + 1
x = float(iy-1)*lil_side - 0.5*side
xc = float(iy-1)*lil_side*gamma - 0.5*contside
surface(is,ipnt,1) = x
surface(is,ipnt,2) = y
surface(is,ipnt,3) = z
Lorentz_surf(is,ipnt,1) = xc
doi=23 ! contraction is along x only!!
Lorentz_surf(is,ipnt,i) = surface(is,ipnt,i)
enddo :
enddo
enddo
enddo !is

return
end

subroutine axis_of_rot(r_surf,v,beta,rotme)
Given the particle velocity and vector from each point on

its surface to eye() find rotation axis
This is done using the vector cross product vXr_surf

real r_surf(6,16,4) ! points on surface
real v(3) ! cube velocity
real rotme(6,16,3) ! rotation axis for each point
dois = 1,6 ! six surfaces
do ipnt = 1,16 ! 16 pnts on each
rotme(is,ipnt,1) v(3)*r_surf(is,ipnt,2)-v(2)*r_surf(is,ipnt,3)

v(1)*r_surf(is,ipnt,3)-v(3)*r_surf(is,ipnt,1)
v(2)*r_surf(is,ipnt,1)-v(1)*r_surf(is,ipnt,2)

rotme(is,ipnt,2)
rotme(is,ipnt,3)
enddo
enddo
return
end

(¢]

subroutine nearest_pt(r_surf,nearest,eye,eye_mag)
Finds nearest point to observers's eye and keeps track of it

real r_surf(6,16,4) ! scratch array

real nearest(4) ! returned position and magnitude
real eye(3),eye_mag

real lorentz_surf(6,16,3)

real a,bmag,delta_r(3) ! used in finding nearest

real magn,magna ! scratch variables

real saveme(2,16) ! scratch array

integer nearmag ! number of identical nearest pts

magna = r_surf(1,1,4)
dois = 1,6
do ipnt = 1,16
if(magna.gt.r_surf(is,ipnt,4))then
magna = r_surf(is,ipnt,4)
endif
enddo
enddo
nearmag = 0
dois = 1,6
do ipnt = 1,16
if(magna.eq.r_surf(is,ipnt,4))then
Allow for possibility of more than one nearest point!
nearmag = nearmag + 1
saveme(1,nearmag) = is
saveme(2,nearmag) = ipnt
endif
enddo
enddo

doi=1,5 ! initialize

nearest(i) = 0.0
enddo
Calculate average nearest point
do j = l,nearmag

doi=14

nearest(i) = r_surf(saveme(1,j),saveme(2,j),i)+nearest(i)

enddo
enddo
doi=14

nearest(i) = nearest(i)/float(nearmag)
enddo

c Calculate actual nearest point starting with average nearest
c point as an estimate
c The following loop could be repeated to improve accuracy - but
c one pass gives an estimate adequate for most purposes.
c
do is=1,6 ! loop over surfaces
do ipnt = 1,16 ! 16 points per surface
c :
¢ Find projection of each vector from ‘nearest' to a point on surface
¢ (delta_r) and test if it is negative - if yes make new ‘nearest
¢ which is perpendicular to delta_r
c
a=0.
do i=1,3
delta_r(i) = r_surf(is,ipnt,i) - nearest(i)
a = delta_r(i)*nearest(i) + a
enddo
if ((a.lt.0.0).and.(a .lt. -0.1)) then
¢ Compute the square of the magnitude of delta_r
bmag = 0.
do i=1,3
bmag=delta_r(i)*delta_r(i) + bmag
enddo
c compute new nearest
do i=1,3
nearest(i)=nearest(i)-a*delta_r(i)/bmag
enddo
endif
enddo
enddo
c
magn = 0.0
do i=1,3
magn = nearest(i)*nearest(i) + magn
enddo
magn = sqrt(magn)
nearest(4)=magn ! magnitude of nearest vector
100 return

O 00060

Given cube at origin. Move to position(3) and then
rotate it to point along the beta direction

returns rotated array in

real Dbeta,v(3) !
real surface(6,16,3) !
real theta

real little

real A1,B1,Cl1

real V1V,L

real x1,x2,x3

real yl,y2,y3

real z1,z2,z3

real sinl,cosl,sinJ,cosJ
real vector(3)

Seu Gees SomD Gl Vem Geap Gnwm

little = 1.0e-6

surface

v/c, velocity vector of cube
original/rotated array

blowup protection

vector components of curl

in transform matricies

temporary x position

temporary y position

temporary z position

angles for rotation about VXrip

! vector position of each pt on cube

! to prevent blowup

Determine axis of rotation.

Al = 0.
Bl = v(3)/(beta + little)
Cl = - v(2)/(beta + little)

V1V = (B1*B1 + C1*C1)
L = sqrt(V1V + Al1*Al)
V1V = sqrt(V1V)

cosl = C1/(V1V + little)
sinl = B1/(V1V + little)
cos] = V1V/(L + little)
sin] = A1/(L + little)

! components of rotation axis

if((Cl.eq.0.).and.(Bl.eq.0.)) goto 100
Rotation angle is found by taking dot product between y-axis

and v.

theta = acos(v(l)/(beta + little))

do isur = 1,6
do ipnt = 1,16
doiu=1,3

vector(iu) = surface(isur,ipnt,iu)

10

enddo

c
x1 = vector(1)
yl = cosI*vector(2)-sinl*vector(3)
z1 = cosl*vector(3)+sinl*vector(2)
c
c now rotate cube about y so that z axis corresponds to axis of
c rotation
c
x2 = cosJ*x1-sinJ*zl
y2 =yl
z2 = cosJ*z1+sinJ*x1
c
c now DO the relativistic rotation (about new z)
c
x3 = x2*cos(theta) + y2*sin(theta)
y3 = y2*cos(theta) - x2*sin(theta)
3 =22
c
c now do inverse transforms
c
x2 = cosJ*x3+sinJ*z3 ! inverse rot about y
y2 =y3
z2 = cosJ*z3-sinJ*x3
c
x1 =x2 ! inverse rot about x
yl = cosI*y2+sinl*z2
z1 = cosl*z2-sinl*y2
c
c Now translate cube back to where it was at the outset
c
surface(isur,ipnt,1) = x1
surface(isur,ipnt,2) = yl
surface(isur,ipnt,3) = zl
c
enddo ! ipnt over points
enddo ! isur 6 surfaces
c
100 return
end
c

subroutine calc_r(Lor_surf,r_surf,beta,eye)

11

OO0 0600

[« TN « I ¢ N ¢]

(o]

100

Calculates the angle of rotation

for each point on surface according to apparant relativistic
rotation. Taylor Introductory Mechanics pg 357

These are put into an array (sigh(6,16)) to be used later

real beta

real eye(3) ! position of observer's eye

real Lor_surf(6,16,3) ! points on surface of rotated cube
real little ! overflow prevention

real r_surf(6,16,4) ! for calculations (rpoint,rmag)

real rpoint(3),mag_rpoint

if(beta.eq.0)goto 100 ! bail out no need to work
little = 1.0e-6 ! divide protect

dois = 1,6 ! over all 6 surfaces

do ipnt = 1,16 ! 16 points/surface

Find the spatial location of points on the surface
as measured from the observer's position.

mag_rpoint = 0.0 ! initialize
doi=13

rpoint(i) = Lor_surf(is,ipnt,i) - eye(i)

mag_rpoint = mag_rpoint + rpoint(i)**2
enddo

mag_rpoint = sqrt(mag_rpoint)

Calculate angle of elevation for this x,y,z triplet

doi=13
r_surf(is,ipnt,i) = rpoint(i) ! save for later
enddo
r_surf(is,ipnt,4) = mag_rpoint
enddo ! ipnt
enddo lis
return
end

12

(¢]

O 00O06a0

real r_surf(6,16,4)
real ph_surf(6,16,3)

store scratch rpoint,magr,sigh
light surface - position of
retarded emission points
unit vector along r-retarded

St e dems o=em

real r_ret_hat(6,16,3)
real beta,beta2,v(3),eye(3)

real rmag ! magnitude of rpoint()

real nearest(4) ! nearest point on cube to eye
real sigh_tot(6,16) ! total rotation angle

real c,dlittle

real al,bl,cl,dl ! for calculating rret

real r_dot_beta,b2rn,rnmag,rret
real vt,ret_pos(3),cos_sigh

calculate angle beta makes with x-z plane

little = 1.0e-6 ! divide protect
if(beta.eq.0)goto 100 ! bail out no need to work
beta2 = beta*beta

rmmag = nearest(4)

b2rn = beta2*rnmag

dois = 1,6 ! over all 6 surfaces
do ipnt = 1,16 ! 16 points/surface
rmag = r_surf(is,ipnt,4)

Calculate the position of the points such that
emitted rays reach the observer simultaneous
with a ray from the nearest point.

r_dot_beta = 0.0
doi=13

r_dot_beta = r_surf(is,ipnt,i)*v(i) + r_dot_beta
enddo

al = 1. - beta2

bl = 2*(r_dot_beta + b2rn)

cl = -rmag*rmag - 2.*r_dot_beta*rnmag-b2rn*rnmag
dl = bl*bl - 4.*al*cl

rret = (-bl + sqrt(d1))/(2.*al + little)

vt = rret-rnmag

cos_sigh = 0.0
doi=13

ret_pos(i) = r_surf(is,ipnt,i) -vt*v(i)

13

[¢)

100

O 000006606

r_ret_hat(is,ipnt,i) = ret_pos(i)/(rret + little)
ph_surf(is,ipnt,i) = eye(i) + ret_pos(i)

Calculate the angle of elevation of the retarted position.

cos_sigh = - ret_pos(i)*v(i) + cos_sigh
enddo

cos_sigh = cos_sigh/(rret*beta + little)
sigh_tot(is,ipnt) = acos(cos_sigh)

enddo ! ipnt
enddo lis
return
end

subroutine relative(surface,nearest,sigh_tot,r_surf,rotme,
1 r_ret_hat,eye,v,beta,pos_new,angle)

Rotate each point on surface according to apparant relativistic
rotation. Taylor + plane wave correction

With sigh_tot the total rotation angle move cube so that axis
through nearest point is z axis and rotate each point by sigh_tot
about this. rotate pointson the uncontracted cube. Points on the
contracted cube were used to find the rotation- angles

real r_surf(6,16,4)

real beta,v(3),beta2,gamma
real surface(6,16,3)

real nearest(4)

real sigh_tot(6,16)

real rotme(6,16,3) rotation axis

real r_ret_hat(6,16,3) unit vector along r-retarded

! store scratch rpoint,magr,sigh
!
!
!
!
!
!
real little ! small number
!
!
!
!
!
!
!

v/c,velocity, beta*beta

points on surface of rotated cube
nearest point on cube to eye
total rotation angle

real eye(3),pos_new(3) dist eye to (0,0,0) and new pos
real ctr_to_nearest(3) vector for moving cube b/4 rot
real ctn_unc(3) uncontracted ctr_to_nearest
real proj(3),pro projection along beta

real A1,B1,C1 vector components of curl

real V1V,L in transform matricies

real theta,xx,angle cos(total angle of elevation)

14

(¢)

o000

real sign,signdop
real sinl,cosl,sinJ,cosJ
real vector(3)

real r_dot_rhat

sign's of angles

angles for rotation about VXrip
vector pos of each pt on cube
dot product of r and r_ret_hat

P N

if(beta.eq.0.0)goto 100 ! no action dont bother
little = 1.0e-6

beta2 = beta*beta

gamma = 1./(sqrt(1.-beta2))

ctn_dotv = 0. ! used to undo a Lorentz contract
doi=13

ctr_to_nearest(i) = nearest(i) - pos_new(i) + eye(i)

ctn_dotv = ctr_to_nearest(i)*v(i) + ctn_dotv
enddo

ctn_dotv = ctn_dotv*(gamma - 1.0)/beta2

Uncontract center-to-nearest point on cube vector
doi=13

ctn_unc(i) = ctr_to_nearest(i) + ctn_dotv*v(i)
enddo

Rotate each vector on the surface around rotme by angle sigh_tot

dois = 1,6

do ipnt = 1,16
Al = rotme(is,ipnt,1)
B1 = rotme(is,ipnt,2)
C1 = rotme(is,ipnt,3)
V1V = (B1*B1 + C1*Cl1)
L = sqrt(V1V + Al*Al)
V1V = sqrti(V1V)
cosl = C1/(V1V + little)
sinl = BI/(V1V + little)
cos] = V1V/(L + little)
sinJ = A1/(L + little)

Calculate angle of elevation for this x,y,z triplet
For Doppler shift evaluation

cos_doppler = 0.0
doi=13

cos_doppler = cos_doppler - r_surf(is,ipnt,i)*v(i)
enddo

cos_doppler = cos_doppler/(r_surf(is,ipnt,4) + little)

18

O 0O 006

Q000 Qo O 00006

(¢)

(¢]

angle = angle + cos_doppler ! ave angle for
! Doppler shift

Now do relativistic rotation

sigh = sigh_tot(is,ipnt)
cos_sigh = cos(sigh)
xx = (cos_sigh - beta)/(1. - beta*cos_sigh + little)
if(abs(xx).gt.1.) xx = 1.
theta = acos(xx) - sigh

Before rotation about rotme we must
Translate cube back so that it will rotate about nearest()
Recalculate Lorentz contraction
Uncontract component of ctr_to_nearest along velocity vector

doi=13
Vector points from a point on the surface nearest the
observer to each labled point on the surface

vector(i) = surface(is,ipnt,i) - ctn_unc(i)
enddo

now rotate cube (about x) so that new axis of rotation
is in the x-z plane

x1 = vector(1)
yl = cosI*vector(2)-sinl*vector(3)
z1 = cosI*vector(3)+sinI*vector(2)
rotate cube about y so that z axis corresponds to axis of rotation
x2 = cosJ*x1-sinJ*z1
y2 =yl
z2 = cosJ*z1+sinJ*x1
now DO the relativistic rotation (about new z)
x3 = x2*cos(theta) + y2*sin(theta)
y3 = y2*cos(theta) - x2*sin(theta)
3 =22

now do inverse transforms

1A

y2 =y3
z2 = cosJ*z3-sinJ*x3

xl = x2 ! inverse rot about x
yl = cosl*y2+sinl*z2
z1 = cosI*z2-sinl*y2

Correct rotated surface so that each point lies along direction
of corresponding point on photosurface.

O 000

r_dot_rhat = (nearest(1) + xI1)*r_ret_hat(is,ipnt,1)
r_dot_rhat = (nearest(2) + yl)*r_ret_hat(is,ipnt,2)
1 + r_dot_rhat

r_dot_rhat (nearest(3) + zl1)*r_ret_hat(is,ipnt,3)
1 + r_dot_rhat
r_dot_rhat*r_ret_hat(is,ipnt,1) - nearest(1)
r_dot_rhat*r_ret_hat(is,ipnt,2) - nearest(2)
r_dot_rhat*r_ret_hat(is,ipnt,3) - nearest(3)

<
[
mnwn

c Now translate cube back to where it was at the outset
surface(is,ipnt,1) = x1 + ctr_to_nearest(1)
surface(is,ipnt,2) = yl + ctr_to_nearest(2)
surface(is,ipnt,3) = z1 + ctr_to_nearest(3)

enddo ! ipnt
enddo lis
100 angle = angle/(16.0*6.0) ! ave angle cube makes with x-z plane
return
end

17

CeM oy

\PooJvop) dLpUE UULJEATLD (|

081 091 ov1 0¢t 00T 08 09 0] 0c 0

| To00=d lM\\\M\\M\\\

0co=4d

660 = 9

1] i ! 1 | L !

"7 2131

LCOLP TP ~0O0C TDOVOLLOOO®

Figure 3

Figure 4

LINE OF SIGHT TO
PHOTOSLUES ACE

DELTA_R

NEAREST

v

PROJECTED
YECTOR

OBSERVER

Eiagure >

Figure 7€

Figure 7€

Figure 9c¢

Figure 10

