Rotation associated with the product of two Lorentz transformations
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In the usual presentation of the Lorentz transformation
there is an almost complete absence of the use of products
of these transformations. On the rare occasions when such
products are discussed it is done in the infinitesimal form.’
This implies that the finite rotation inherent in such a pro-
duct is not demonstrated to students in an elementary way.
It is well known that if two velocities U and V are added the
resultant velocity W is not symmetrical in U and V. The
literature merely mentions this fact without further com-
ment.

One of the reasons for the state of affairs described above
appears to be the large amount of calculation involved
when multiplying the 4 X 4 matrices of the vector represen-
tation of the Lorentz transformation.

In this note the above points are cleared up, at least in
part, by using the coordinate-free, two-component spinor
representation of rotations and Lorentz transformations,
thereby reducing the amount of work considerably, It is
shown that if L, and L, are two finite pure Lorentz trans-
formations then

L.L,=RL=L'R,

where the finite rotation R and the finite pure Lorentz
transformations L and L’ are easily found by means of the
spinor formulation. A general formula for the axis and fin-
ite angle of rotation is obtained for R. Similarly the resul-
tant velocities W and W’ can be derived from L and L',
respectively.

Finally it is shown that the theory derived in this note
can be applied to Thomas precession in a very simple and
direct way.
~ In the theory of the two-component spinor the coordi-
nate-free pure rotation and Lorentz transformation are giv-
en by>?

R (1,0) = exp(lifo-fi) = cos(6 /2) + io+h sin(6 /2), (1)

L (1,4 ) = exp{ipo~il) = cosh(¢ /2) + o-ii sinh(d /2), (2)
respectively, where o; withj = 1,2,3 are the 2 X 2 Pauli ma-
trices, il and ii are unit vectors, 6 is the angle of rotation
while

U =cii tanh ¢, (3)

with ¢ the velocity of light, is the relative velocity of the two
inertial frames linked by the pure Lorentz transformation.
Consider the decomposition

L (i,¢,)L (¥,6,) = R (8,0 )L (W4 ) 4
of the product of two pure Lorentz transformations into
the product of a pure rotation and a pure Lorentz transfor-

mation. We must determine i, W, & and ¢ for given i, ¥, dys
and @,. In the notation

S, =sinh(¢,/2), C, =-cosh(g,/2),
§  =sinh(¢/2), C  =cosh(g/2),
s = sin(6 /2), c = cos(6 /2),

we have from (1), (2), and (4)
(Cy + 0°S))(C, + 0°9S,) = (¢ + io+iis)(C + o-#S).  (5)
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Applying the multiplication rule for Pauli matrices
(0v8)(ob) = &b + io~(a , b)
and equating coefficients of corresponding Pauli matrices
we have from (5) that
cC =C,C,+ 8,50,
iw =0,

cSW—sShi, W = C,S,i+ C,S,¥,
sCih = 8,50, ¥.
Solution for the unknowns yields
tan(6 /2) = [0A ¥|S18,/(C,C, + S,5,i+9), (6)
A =1,%/|i, ¥V, (7)
§*= (6S,C, + i\"Sz(fvl)zs (8)

WSC = iS,C, + V[ 8,C,(C? + 5%) +25,C,S2(@¥)]. (9)

Equations (6), (7), and (8) follow immediately while (9) re-
quires some effort. According to (4), (6), and (7), @ is the
finite angle of the rotation about the axis fi contained in the
product of the two pure Lorentz transformations. The axis
of rotation i is perpendicular to @, ¥, and W.

After considerable calculation we find

W= {U+V[y+ @y — )NUVVV?]}/[71 + UV/)],
(10)

where

U=ciitanh¢,, V=cP¥tanhgp,, W=cWtanhg
and

y= (l _ VZ/CZ)—I/Z.
The physical meaning of (10)is of course that if F, F' and F
are three Lorentz frames such that the velocity of F” rela-
tive to F' is U and the velocity of F’ relative to Fis V, then
the velocity of F” relative to Fis W.

Note that W is unsymmetrical in U and V. The roles of U

and V in W are exchanged if the order in which R and L
appear on the right-hand side of (4) is changed. If

L (8,6,)L (V.6)) =L (W,¢ R ('8 "),

then solution for %, ¢', ', 6" in terms of &, ¥, ¢,, and ¢,
yields

0'=0, i =A,
while
WSC = i[S,C\(C3 +S%)+ 25,C,8 1 (@-9)] + 95,C,.

Hence the lack of symmetry of W is associated with the fact
that the factors on the right-hand side of (4) do not com-
mute. The literature refers only to the lack of commutati-
vity of the factors on the left-hand side of (4). Commutation
of these factors lead to a change in the sign of i and to W or
#' depending on the order of the factors on the right-hand
side of (4).

The formulae (6)10) have been derived by means of the
two-component spinor form of the Lorentz transforma-
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tion. These results also hold for the vector form of the Lor-
entz transformation.

The above theory can be applied in a very direct way to
the Thomas precession. Starting out from (4) in the form*

L(=V%¢ )LV +d¥%¢, +dp,) = R (0,d0)L (W.ds),

the required angular velocity follows from (6) and (7) in the
following very simple way:

id0/2= — v, (V+d¥)S?
or
idf = —2¥,dvS?
= — ¥V, d¥(cosh¢, — 1)

Phase of a reflected acoustic wave
C.T. Tindle

and finally
i0=0= -V, Viy—1)/¥?

where
y=cosh¢, = 1/(1 — V'

'J. T. Cushing, Am. J. Phys. 35, 858-862 (1967).

?See, for example, B. L. van der Waerden, Group Theory and Quantum
Mechanics (Springer-Verlag, New York, 1974), Chap. III.

3J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics
(McGraw-Hill, New York, 1964), Chap. 2.

*1. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd
ed., p. 544.
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In two introductory physics textbooks, % it is incorrectly
stated that a sound wave reflected at a rigid boundary is
180° out of phase with the incident wave. The error has
apparently gone unnoticed by the teaching community as it
has persisted in several editions of one of the books.! The
error occurs because it is easy to overlook the fact that the
sign of the particle displacement of a longitudinal wave
depends on the direction of travel of the wave.

In most introductory physics textbooks traveling waves
are introduced by considering transverse waves on a
stretched string. An upright pulse incident on a fixed end is
reflected as an inverted pulse in order that the displacement
at the fixed end is zero at all times. This inversion is correct-
ly described as a phase change of 180° due to reflection from
the fixed end. Thus for a transverse wave the positive or
upward displacement of the incident pulse is cancelled at
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Fig. 1. Reflection at a rigid boundary. (a) Transverse wave; (b) longitudinal
wave. The arrows indicate the direction of travel. The words show the
direction of displacement.
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the fixed end by the negative or downward displacement of
the reflected pulse. Typical incident and reflected waves
are shown in Fig. 1(a).

If we now consider acoustic or longitudinal waves re-
flected from a rigid boundary it is clear that there can be no
particle motion at the boundary and so the particle dis-
placement at the boundary is zero at all times. Since there-
fore the displacement at the boundary due to the incident
wave is cancelled by the displacement due to the reflected
wave it is tempting to assume by analogy with transverse
waves that the two waves have opposite phase. Unfortu-
nately this is not correct and the reflected wave is actually
in phase as is illustrated in Fig. 1(b).

For a longitudinal wave a positive displacement is a dis-
placement in the direction of travel. The incident wave in
Fig. 1(b) is traveling to the right and the positive pulse
shown represents a displacement to the right. The reflected
wave is traveling to the left and the positive pulse shown
represents a displacement to the left. Thus as required, the
total displacement at the boundary is zero since the dis-
placement to the right due to the incident pulse is cancelled
by the displacement to the left due to the reflected pulse.

Thus, contrary to Refs. 1 and 2, there is no phase change
on reflection and a longitudinal wave reflected from a rigid
boundary is in phase with the incident wave.

'D. Halliday and R. Resnick, Fundamentals of Physics (Wiley, New
York, 1981), 2nd ed., extended version, p. 325.

2D. E. Roller and R. Blum, Physics, Vol. I (Holden-Day, San Francisco,
1981), p. 491.
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