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Pellegrini and Swift have recently suggested that the use of special relativity in the calculation of the
electric dipole moment of a moving magnetic dipole cannot be applied to the classic experiment of
Wilson and Wilson, which used rotational motion. This paper contests that view. The disagreement
arises in the choice of coordinates used to represent physical quantities measured in the rotating
frame. The arguments of this paper are based on Einstein’s discussion of the validity of arbitrary
coordinates and the difficulty in their interpretation. Because of the lack of synchronization of
clocks, caution must be used in assigning values to physical quantities in the usual coordinates that
describe a rotating frame. This paper gives the detailed transformations to an inertial rest frame,
where the interpretation of measurements is assured. Other aspects of the rotating frame are also
discussed. ©1997 American Association of Physics Teachers.

[. INTRODUCTION enough, it would be difficult to distinguish, in a short time
interval, the rotational motion of a finite segment from rec-

In 1908, Einstein and Ladisuggested that a measurementtilinear motion. To claim that the two motions are qualita-
of the electric dipole moment of a moving magnetic dipo|etively different in that one induces surfaqe charg_e_ while the
be used as a test of special relativity. In 1913, Wilson and®ther doesn’t, should bother one’s physical intuition. It ap-
Wilsor? performed the experiment on a magnetic insulatorP€ars physically unreasonable to have zero induced surface
rotating in an external magnetic field. A clear account of thischarge density in a motion that can be made arbitrarily close
experiment is given by Pellegrini and SwifThere are two !0 rectilinear motion, for which everyone agrees surface
effects of the magnetic field. First, the field induces magnecharge is induced. It should also be noted that the inertial
tization in the material. This moving magnetization, accord-frames used to interpret experiments are only approximate
ing to relativity, produces an electric polarization as mea-2nd invariably are part of a rotating system.
sured in the laboratory. Second, the magnetic field exerts a A more rigorous treatment follows in Sec. I, where the
force on the moving bound charges, thereby inducing arnethods for the dete.rmlnatlon' of physical guantities as one
electric polarization in the material. In the experimentalWould observe them in a rotating frame are laid out accord-
setup of Wilson and Wilson these two contributions to theind t0 the reasoning of Einstein, and in Secs. Il and IV the
electric polarization must be added. Their experimental rel€cessary transformations are given and applied to an ideal
sults agree with the calculated values based on special rel§XPeriment. In Sec. V, some questions and objections to the
tivity. Pellegrini and Swifft have recently challenged the method of calculation are dlscu_ssed. F|_nally, in the _conplu-
conclusion that this experiment is consistent with speciafion. the effect of the differential centrifugal force is dis-

relativity and insist that when the electric polarization is CUSS€d-
properly calculated in a rotating system, the result does not
agree with experiment. They suggest that the theory may THE PRINCIPLE
have to be modified or the experiment is wrong. This author
disagrees. In this paper, only the contribution to the electric In the mathematical analysis of this experiment it is as-
polarization due to the motion of the magnetized material isumed that the laboratory is an inertial frame with invariant
discussed since this is where the disagreement lies. For thige interval
g;tri%?fe, the insulator is taken to have a permanent magneti- A= c2dt2— dr2—r2d¢?— d 2, )
A magnetized slab of material in uniform motion perpen-where the spatial part is described by cylindrical coordinates.
dicular to its magnetization has, according to special relativTransformation to arbitrary coordinates leaves this interval
ity, an electric polarization as measured in the laboratoryunchanged; only the space—time description of events will be
The electric polarization of the magnetized slab, if uniform,different. Einsteirf, basing his arguments on the principle of
can be described by a positive bound surface charge densigguivalence, concluded that all coordinates are equally valid.
on one side and a negative bound surface charge density @ut the laws of nature are known only in inertial frames,
the other side. Pellegrini and Swift, however, assert that ifvhere length is measured by standard rods and time is mea-
this slab is part of a rotating cylindrical shell, no chargesured by standard clocks. Einstein suggests the use of a
density is induced so that a result at odds with special relafreely falling observer whose frame will be inertial. Einstein
tivity is obtained. The following physical reasoning castsstates: “We can therefore always regard an infinitesimally
doubt on this conclusion. small region of the space-time continuum as Galilean. For
Suppose the radius of the cylindrical shell of magnetizedsuch an infinitely small region there will be an inertial sys-
material is taken to be extremely large and the angular vetem relative to which we are to regard the laws of the special
locity to be small, such that the speed of a segment of théheory of relativity as valid.” In general, even with a metric
shell matches the experimental value. If the radius is largéhat describes a gravitational field, a transformation can al-
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ways be made to a local inertial frame such that the geodesit is easily verified that the matrix multiplication in E¢B)
equation is a straight line, that is, material particles behave agelds the correct line interval. The current four vector,
if “free” of gravitational or inertial forces. The word local is which transforms like the displacement four vector under
used since the transformation is strictly valid only at onechange of coordinates, is

point in space—time. Even so, the inertial system will be an

extremely good approximation if attention is confined to a Cp
sufficiently small neighborhood of the space—time point. NE

It should be noted that Einstein was not suggesting the J= 32 | ®)
restriction of relativity to local inertial frames but, on the 73

contrary, his discussions were aimed at the development of
the general theory. He argues that all arbitrary frames OT/vherep is the charge density antl are the components of

reference are equally valid and the laws of physics are to bg,e current density. The time componeptis denoted as the

written in generally covariant form. The important point iS ;o 1 component while the Latin indéxranges over the
that the laws of physics must reduce to their familiar form in

e ) .spatial components 1, 2, and 3. The invariant line interval is
a local inertial frame. In such a frame one has confidence in ;
e . " usually written as

assigning values to physically measurable quantities.

Although the explicit transformation is given below, there ds?=g,zdx* dx? (6)
. oo . af ’
is no need for it in the case at hand. The correct frame in
which to measure the electric charges and currents of a smallhereg,; are the components of the symmetric mat@x
segment of the rotating cylindrical shell is the inertial frameRepeated Greek indices are summed over 0, 1, 2, and 3.
which is instantaneously at rest with respect to the segment. Consider now the following situation: A uniformly mag-
Then special relativity applies. Wilson and Wilson used spenetized material in the form of a cylindrical shell rotates
cial relativity to calculate the induced electric polarization ghout its symmetry axis, which is oriented along thaxis.
for the rotating material and verified the results experimen-he magnetization is also along this axis. Mtbe the mag-

tally. . o ) ) netization of the material when it is at rest in the laboratory,
Since the transformation to an inertial frame is valid for aas measured in the laboratory. Two questions arise.

small region of space—time, only physical relationships that gijrst what is the magnetization measured by an observer
are local can be described. Maxwell's equations in differeny; rest with respect to the rotating cylinder? In Sec. IV it is
tial form are local in that they relate the fields and theirg,o\n that this measured valueNl y, wherey is the usual
sources at any space-time point. On the other hand, suGl| svistic factor. Typically, magnetic dipole moments are
things as the radiation of an accelerated charge is global ifogcribed by current loops, that is, current times the area of
that it requires the determination of fields on surfaces that arg, | loop. In the present caée beca{use of the cylindrical sym-
at large distances to the charge. Such global problems i oy “the magnetizatiofdipole moment per unit volume
arbitrary coordinates are extremely difficult, if not impos- can be described by cylindrical sheets of current in the in-

sible, to handle. Fortunately, the problem at hand require : R ;
' o ' " reasing an reasigdirections. No electric char n-
the determination of the current and charge densities, botgigaiss n%gdgddec eas ections. No electric charge de

local quantities. The second question is the most important and is the basis
of the disagreement with Pellegrini and Swift, that is, to what
coordinate system should one ascribe the measured values of

lIl. TRANSFORMATION BETWEEN THE the current density? Notice that this is not the same as the

ROTATING FRAME AND THE LABORATORY situation of determining the components of a vector in a

) , _coordinate system by transforming from a system where the
The needed coordinate transformations are most easilyomponents™ are known. The following development ad-

given in terms of matrices. Before looking at the details ofgresses this last question.

these transformations some background material will be pre- T¢ relate the current four vector in the rotating frame to

sented. Four vectors are represented by column matrices. {Re measured values in the laboratory, three changes of co-

particular, the displacement four vector is ordinates will be used. The first transformation goes from the
cdt laboratory to the rotating frame; the other two transforma-

tions are simply changes of coordinates in this frame. Each

dx= dr , 2 of the transformations will be discussed separately and then
do the overall result will be obtained by applying the three in
dz succession. None of the transformations will change the ra-
and its inner product with itself gives the invariant line ele-dial coordinater, so the following notation will be used
ment, throughout. The velocity of a point is
ds?=dx"Gdx, (€)) v=owrl, @)
wheredx" is the row matrix formed by taking the transpose B=vlc ®
of dx, and the metric is represented by the symmetric matrix, '
1 0 0 O and
0 -1 0 O y=(1-p? "2 9
““lo o -2 o[ @ ’
It should be kept in mind that two points with different
0 O 0o -1 coordinates will have different velocities.
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Let the coordinates in the rotating system be denoted byhere the integration is from the location of clock A to the
overbars. The transformation from the laboratory to the rodocation of B over some chosen path between the two clocks.
tating frame is Here, gy is the 00 component of the matr@ and the re-

=1 r=7_ peated Latin indices are summed over the spatial coordi-

' ' (100  hates. This expression can be used to synchronize clocks
¢:¢T+ ot z=7. along an open curve. Start with clock B infinitesimally close

' ' to clock A and adjust clock B according to E@.5). Then

In terms of these barred coordinates the invariant line intermove the label B to successive clocks along the chosen
val given by Eq.(1) is curve, adjusting each clock in turn. The clocks will then be
o — synchronized for light traveling on the chosen path, but if a

ds?=y 2c2dt 2—2cBrd¢dt—dr 2—r 2d¢ 2>—dz2 (11) different path between the end clocks is taken, these end

clocks may appear unsynchronized.

Even though the new time coordinate is equal to the old,” . . .
one should not interpret this to mean that the new clocks are Itis apparent from Eq(15) that a transformation eliminat

the same as the ones at rest in the laboratory system. Codﬂ-g lt(heTcr:osts terfrrgOi \t/'w” arl:torlrzjakt)lcally smc?:ﬁmzle tEe

dinate clocks are usually considered at rest with respect t&°C tsb € transtorma |<in(sj ou d'e suc h atthe gt_oc St‘;“rf
the corresponding spatial coordinates. The invariant line inf€SEL Dy varying amounts depending on théir positions bu
terval in Eq.(11) shows that the proper time interval at a with no changes in their spatial coordinates. The infinitesi-

fixed position in the new coordinates is given hyr mal trﬂsformatloﬁthat resets the clocks is
=At/y=At/vy. This demonstrates the time dilation of a cdt=cdt* + By?r*d¢*, r=r*,
standard clock at rest in the rotating frame when comparedto — _

the clocks of the laboratory. p=¢*, z=7*.

The transformation, Eq(10), can be written in matrix | these new coordinates the invariant line interval reads as

(16)

form as
_ ds?=y 2c2dt*2—dr*2— y?r*2d¢p*2—dz*2. (17)
dx=Tdx, 12 . — . .
(12 Unfortunately, the expression fait in Eq. (16) is not inte-
where grable, that is, no function of the sort
1 00 O =t %, z%) (18)
— 0O 1 0 O exists. Therefore clocks cannot be synchronized throughout
T= wle 0 1 0 (13 space. But all that is needed in the analysis is the synchroni-
zation of clocks in a local region of a spatial point as given in
0 0 0 1 Eg. (16). In matrix form,
is the transformation matrix. The current four vector follows dx=T*dx*, (19
the same transformation rule as the displacement four vector,h
that is: where
J=TJ. (14

This is the first of the three transformations needed. Notice T*=

that if the charge density in the barred systemyere zero,

then no charge density is obtained in the laboratory frame.

Since only a surface current density is needed to describe the

magnetization, Pellegrini and Swift assumed the charge der?£nd

sity to be zero. This is the mathematical basis of their claim.  \=pgy?r*, (22)

But care must be taken in ascribing meaning to objects ex- . . .

pressed in these new coordinates. As explained in Sec. II, thEiS is the second transformation needed. ,

safest way to do this is to transform to a local inertial rest, EVen though the starred coordinate system is not an iner-

system where the physical meaning of the coordinates is ag_al frame, thereT is no difficulty in m'gerpretlng the metrlc. For

sured. But even without doing this, there is an obvious dif-example, the circumference of a circle of radidsis

ficulty with the invariant interval for the rotating system: 20
c-

With the cross-terntt d¢, clocks in the rotating system are
not synchronized. This follows directly from the method of
synchronization by sending a light signal back and forth bewhich shows that the spatial part of the metric is not Euclid-
tween two clocks. Because of the cross term, light appears tgan. The application of Eq17) appears to violate the local
propagate differently in the positivg direction compared to restriction placed on the transformation. But this metric im-
the negativep direction, thereby requiring an adjustment to plies, however, that the measurement can be carried out by
bring the clocks into synchronization. See the discussion ofeasuring, at rest, successive lengths on the circumference

(20

O O O
O O +r O
o r O~
» O o ©

. yr*dp=2myr*, (22)

the Sagnac effect in Sec. V. of the circle, each measurement made locally and each mea-
To synchroniz&® two clocks, say clock B to clock A, the surement identical to the others. The marked off lengths are
time on clock B must be adjusted by the amount summed as indicated in E¢R2). Further discussion of the
B B geometry of the rc.)ta.ting.disk will _bg found in Sec. V.
cAt_ch (Goi [Gop) dX = _zf By*rdg, (15) _Slnce the metric is dlagona_l, it is easy to trans_form to
A A Minkowski coordinates at a given space—time point by a
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change in scale of all the coordinates. This will be the third

and final change in coordinates. These new Minkowski co-
ordinates, denoted by a tilde, represent the local inertial rest
system in which measurements are to be made. The transfor- j—

mation is
dt* =ydt, dr*=d¥, 23
do*=(yr*)"1dy, dz*=dz
or, in terms of matrices,
dx* =T d, (24
where
y 0 0 0
—~ 0 1 0 0
o o (y)t o 25
0 0 0 1
With this transformation the Minkowski line interval,
ds?=c?dt—dx 2—dy 2—dz?, (26)

is obtained for the point considered. It should be emphasiz
that with this last change of coordinates, the new metric is
restricted description of the rotating frame valid locally at a
given point. It should also be noted that the overall transfor-
mation from the lab to this local coordinate patch is a Lor-

entz transformation.

The current four vector in the Minkowski coordinates
must be determined so that it is the source of the observeﬂ"I
magnetization of the material. This can be done with confi-
dence since these coordinates describe an inertial frame §
reference in which the laws of physics are known. What is
needed is a current density in tHg direction and no charge
density. With this component of the current density, denote

by Jy, the four current is written as

0
(27)

,8')’ij
0
[(yn) '+ Bywic]]
0

In particular, the charge density as measured in the labora-
tory is

cp=PB7J,. (34)

Since the current density is confined to a surface, so also is
the charge density. Witk ando denoting the surface current
and the surface charge densities, respectively, the final result
is

(33

(35

This is exactly what would be obtained by a special Lor-
entz transformation between two inertial frames with relative
velocity v in the direction of the current density. It follows
that the calculation made by Wilson and Wilson using spe-
cial relativity does indeed give the correct result.

e ltmay be objected that the result given in E84) implies

& creation of charge by rotation. This, of course, would be
impossible. According to Eq34), a circular current loop,
neutral in the rotating frame as seen by the local comoving

o= Byx«lc.

observer, will have a net charge density as observed from the
laboratory. By symmetry, the charge density is the same at
each point of the loop and adds to give a nonzero total
arge. It appears that by merely changing the angular ve-
ocity, the net charge in the laboratory is changed. On the
ntrary, it must be concluded that if the angular velocity
Changes, the charge as observed in the laboratory remains
unchanged. Therefore, if the rotating frame is brought to rest,
hen the charge density, initially zero as observed in the ro-
ating frame, must increase until it agrees with the laboratory
value when the rotation ceases. Several examples supporting
this view are given in Sec. V.

IV. AN IDEAL EXPERIMENT

Let us now calculate the induced charge distributions of a

The remaining chore of transforming this vector to the labo-permanently magnetized insulator in the shape of a cylindri-
ratory system by the series of transformations is as followscal shell which is rotating. The first task is to determine the

J=TJ, (29)
J=T*J*, (29)
J=TJ. (30)
Overall, the transformation is
J=TT*T3J, (31)
where, from Eqs(13), (20), and(25),
y O By 0
TT*T 0 1 0 0 32
| wylc 0 (Br)"*+Bywlc 0 (32
0 0 0 1

Applying this transformation matrix td given in Eq.(27)
yields
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appropriate value of magnetization to be associated with the
instantaneous rest frame of the magnetized material.

Let M be the magnetizatiotmagnetic dipole moment per
unit volume of the material when it is at rest in the labora-
tory, as observed in the laboratory. The cylinder is now
given an angular acceleration and brought up to the final
angular velocity. It is usually assumed that the physical prop-
erties of atoms are not altered by their past history. There-
fore, the dipole moment of the atoms in the instantaneous
rest frame of a segment of the rotating cylinder, as observed
from that frame, is taken to have the same value as it had
when at rest in the laboratory. But the periphery of the shell
as measured in the rotating frame has increased by the factor
v according to Eq(22). Therefore the density of atoms is
decreased by the factorl/giving a magnetization ofi/y
as measured by an observer in the rotating frame of the shell.
It should be emphasized that in both cases, the atom is at rest
with respect to the frame of reference: in the first case, with
respect to the laboratory and in the second case, with respect
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to the rotating frame. And the magnetizations given are thos&his result also follows directly from the electric polariza-
that would be observed in the rest frames of the material. tion, o(r). With this electric field, the difference in potential
As an interesting aside, one could ask a different questiorhetween the outer and the inner surfaces is
that is, what is the magnetization of the rotating material as _ 5 o 2
observed from the laboratory if the measured valu#isy AV=0M(b"—a%)/(2€,c%). (42)
in the rest frame of the material? Taking account of the fac{In the Wilson and Wilson experiment, the value of the po-
that the motion is perpendicular to the magnetization and thaential difference consists of the sum of this term plus the
magnetization is part of the electromagnetic field tensor, theontribution due to the motion of the insulator through the
Lorentz transformation gives the vali for the magnetiza- external magnetic field. This magnetic field also induces the
tion as observed from the laboratory. Of course, one alsthagnetization, which can be written in terms of the perme-
obtains an electric polarization, which is the basis of theability.)
experiment of Wilson and Wilson. Although relevant, the
discussion of this paragraph is not needed in the followingy. RIDDLES AND ENIGMAS
analysis. o
Consider a cylindrical shell of inner radiws and outer I order to preserve the continuity of the development
radiusb, rotating about its symmetry axis. Specifically, let 9\ven in the preceding sections, discussion of possible objec-
the angular velocity point in the positiedirection, that is, tions to the calculation and other issues related to rotating

follow the right-hand rule with thumb in the direction of the coordinates are gathered into this section.
angular velocity and fingers pointing in the direction of ro- A. Synchronization of clocks

tation, taken as the increasirfgdirection. Divide this shell Pellearini and Swift that the clocks in the rotati
of finite thickness into elemental shells of infinitesimal thick- ellegrini and Switt propose that the cloc S .'n,, € rotaling
system be synchronized to a clo@all it the “big” clock)

nessd f- The mggnetlzqnon of the elemental shéll/y M on the axis of rotation, which reads laboratory timeThis
the z direction, is described by a surface current density in

L LT ; can be done, for a clock fixed in the rotating system at some
the positive¢ direction on the outside and by a surface cur- . .. . : . .
rent density of the same magnitude in the negatvéirec- radial d|s_ta_1nce, by sending a I'.ght signal from the big CIO.Ck
tion on the inside. Then, on the inside and the outside of th&t the origin to the clock at radiusand then back to the big

shell of finite thickness, the current densities are clock. The clock at radius is synchronized by setting the
time of arrival of the signal from the big clock equal to the
Kpy=M/yp, Kag=—M/y,. (36)  time midway between the sending and the receiving of the

signal at the big clock. This is precisely how E45) was
The surface charge densities, determined by(B§), are dgrived and, fo% the metric of [I)qul), ﬁ showEs(qtrzat for
_ __ clocks on the same radial line no adjustment is necessary,

7o=PoM/C,  7a==BaM/c. @7 that is, all the clocks in the rotating system read laboratory
Since the magnitude of the charge density on the inner sutime t, and are synchronized to the big clock on the axis of
face is less than on the outer surface it appears as if theotation. But are the clocks synchronized with respect to one
rotating cylinder becomes positively charged. This is impos-another? That is, suppose one takes two nearby clocks, say A
sible since the cylindrical shell was assumed neutral while ind B, fixed in the rotating system at the same distance from
was at rest in the laboratory. Actually, there is a negativehe axis of rotation, and checks their synchronization by
volume charge density throughout the material given by  sending a light signal back and forth directly between them.
According to Eq.(15) the time on clock B must be adjusted

p(r)=—da(r)/dr—o(r)/r, (38)  or changed from time in order for it to be synchronized
where with clock A. Thus we have the apparent paradox that two
clocks synchronized with a third are not necessarily synchro-
a(r)=pBM/c=wrM/c?. (39)  nized with each other.

) ] ] ] ] Clocks can be synchronized along an open curve by fol-
This result can easily be obtalned by flrs_t noting that the onlyowing the prescription of Eq(15). Suppose that clocks are
nonzero component of the electric polarization of an elemenp|aced all along the curve and adjacent clocks are adjusted
tal shell is the radial component. This component is easn)éccording to this prescription. Everything works nicely un-
found to bes(r), the surface charge of an elemental shell agess one tries to close the curve. Since the integrand is not an
given by Eq.(39). This also gives the polarization through- exact differential the integration around a closed path may
out the material as a function of the radial coordinate. Thenot be zero. So if one starts at clock A and synchronizes the
volume charge density, as given by E8), then follows  clocks along a closed path back to A one may find that clock
directly from minus the divergence of the polarization. Sub-A must be adjusted to be synchronized with itself, which of
stituting Eq.(39) into Eq. (38) gives course is nonsense. Now the question arises how one should

_ 2 synchronize two adjacent clocks at the fixed radiuShould
p(r)=-2wM/c". (40 one follow the radial path to the big clock and back or should
This charge density, when integrated over the volume of th@ne take a direct path between the two clocks. In this paper
finite shell, gives a charge that exactly cancels the surfacthe direct path between the clocks is chosen. This leads to a
charges. synchronization necessary for measurements of lengths and

Gauss’s law shows that the electric field within the cylin-volumes in the vicinity of the clocks. Synchronization of

drical shell points in the negative direction and has radial clocks is at the core of the differences between this paper and

component in Sl units, the paper of Pellegrini and Swift. In the following, several
examples are given which support the synchronization used
E=—wrM/(eyc?). (41)  in this paper.
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As an example of a transformation that is similar to the(17). ®. Grén also states,in regard to a rotating disk, that
one used to go from the laboratory to the rotating frame;'‘relativistic kinematics alone forbids giving the disk a rota-

consider the Galilean transformation, tion so that the rest lengths of the elements of the periphery
dx=dx+vd T, dt=d T 43) :ieorr?e’l'm constant during the period of the angular accelera-
on the two-dimensional Minkowski space described by This geometry of rotating coordinates explains an apparent
d2=c2d2—dx2, (44) creation of charge W!th t.he |n|t|§1t|0n ofla current in a wire.
o Suppose a copper wire is bent into a circle of radiughe
yielding copper has charge densipy of electrons and an equal and
d?=c?y~2dt2—dx 2— 20 dx dt. (45) opposite charge density of positive ions which remain at rest.

The wire is neutral. Now apply an electric field so that the

This is a perfectly valid coordinate description of the originalelectrons move. The four-current dendftyssociated with
two-dimensional Minkowski space. This is a transformationthe moving electrons is
to a new moving reference frame since the transformation of
the x coordinate contains the time. Note that in the new
coordinates, the time is taken to be the original lab coordi-
natet in parallel with the transformation between the lab and o . ;
the rotating system given by E{L0). Also notice the cross \r/g;ere po i the ch_arge density  in the_ fra_m_e at rest with

L . = pect to the moving electrons. For simplicity, the random
term indicates that the clocks using the lab titret are not  motion of the electrons is neglected, and it is assumed all the
synchronized in the new frame. The cross term can be elimig|actrons travel at the same velocity, the drift veloaity.
nated by adjusting the readings of the clocks by varyin 2)-172
amounts depending on their positions:

J=174 po

c
) : (50

Ud

he relativistic factoryy=(1-v?/c compensates for

_ o the contraction of lengths in the rest system of the electrons
cd t=cdt* + By%dx*, d x=dx*, (46)  as measured by an observer in the laboratory. It seems rea-
sonable to take the rest density of the moving electrons to be

which then gives the line interval the same as the original rest density as measured in the lab,

ds*=c?y 2dt* >~ y2dx*?. (47)  thatis,py=po. But then there is the creation of charge in the
Now rescale the coordinate by amount
dt*=9dt, dx*=y X, (48) AQ=po(yg—1)27rA, (52)
to again obtain the Minkowski line interval whereA is the cross-sectional area of the wire. The resolu-
2 2T 2 % 2 tion to this paradox is found in the realization that the cir-
ds’=cdt “—dx *. (49 cumference of the circle in the rotating frame in which the

Putting together all the transformations, one obtains the spesharge carriers are at rest has increasedypy With the

cial Lorentz transformation between the coordinate framesame amount of charge distributed over this increased length,
(ct,x) and (€ 1,X) with relative velocityv as expected. With  the charge density in the rest frame of the moving electrons
the new timet, the clocks are synchronized but no onels
would have said that the clocks in the new frame with inter- pb=poly. (52)
val given by Eq.(45) were synchronized with the old lab o FotYa

time t=t. Notice that this calculation exactly parallels the SO that the density of the moving charges as observed from

development in Sec. Ill, except that tiget in Eq. (46) is  the laboratory remains unchanged. _ _
integrable in terms of* andx*, unlike the case of rotating This result can be seen another way. Consider two adja-

coordinates. cent electrons With ar]gular separatiap before the app_li—
cation of the electric field. Let them both start at rest simul-
taneously and have exactly the same angular acceleration as
observed from the laboratory. Then elementary kinematics
It may be claimed that the geometry of the rotating disk istells us that the angular separation does not change so that
Euclidean and that the circumference of a circle divided bythe charge density as observed from the laboratory does not
the radius is 2, and not greater. The original space—time ischange. The proper length of each element of the arclength
flat and the new coordinate description does not change thigetween the charges, when they have reached the drift veloc-
fact. The Riemann curvature tensor is zero in either set oity, must be increased by the factgy to compensate for the
coordinates. But when it is said that the space of the rotatinfforentz contraction; that is, the arclength between the
disk is non-Euclidean, one is talking about a subspace of theharges in the rotating frame in which they are at rest is
original flat space—time, that is, the subspace definedtby  y4r A ¢ rather tharr A ¢. This is an alternate way to see that
set equal to zero. This is similar to taking the ordinary threethe circumference of a circle divided by its radius is greater
dimensional flat space described by spherical polar coordithan 2r for a rotating frame.
nates and obtaining the curved subspace consisting of the The problem of two electrons with the same angular ac-
surface of a sphere by settingequal to a constant. Thus, in celeration parallels the problem posed by Dewan and
the subspace in which the clocks are synchronized, it iBeran'! Consider two identical rockets at rest in an inertial
found that the circumference of a circle divided by its radiusframe S. Let them face the same direction and be situated
is 27y, as given by Eq(22). Einstein first talked about this one behind the other. A thin thread links the two rockets and
as an example of a curved space. Over the years it has beenjust long enough to span the distance between the rockets
written about by many authors including. @rtn, who  (center to center, sy The rockets are then fired simulta-
obtaing the same spatial geometry of the metric given in Eq.neously and have identical acceleration programs. As ob-

B. The geometry of the rotating disk
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served fromS, the rockets remain displaced from each other (2) In this example a neutral current density as observed in
by a fixed distancécenter to cent¢r What happens to the a rotating system will be constructed and shown to give a
thread? J. S. Béit relates the humorous story about the dis-charge density in the lab when the rotating system is brought
cussion of this problem that once took place at the CERNo rest. The relativistic dynamics necessary to do this with an
canteen. “A distinguished experimental physicist refused tcactual current in a wire is much too complicated. For ex-
accept that the thread would break, and regarded my assexmple, the inertial forces tangent to the wire as the rotation is
tion, that indeed it would, as a personal misinterpretation ofeduced to zero must be included. Fortunately, the effect be-
special relativity. We decided to appeal to the CERN Theorying studied is purely kinematic. To simplify, the currents will
Division for arbitration, and make a canvas of opinion...be produced by rotating charged hoops of radiuStart with
There emerged a clear consensus that the thread would nivto hoops at rest in the lab, the first one with charge density
break!” p1 in the lab and the second hoop with charge dengity

The charges are fixed in the hoops and it is assumed that the
two hoops are superimposed. The hoops are now rotated
about their centers such that hoop one has tangential velocity
v, and hoop two has a greater tangential velooity>v ;.

Thus an observer at rest with respect to hoop one will see a

Contrary to Pellegrini and Swift, this paper claims the ex- t due to th lati i h i The ch
istence of charge density as measured in the lab for a rotatingme.n. ue to the refativeé motion of hoop two. The charge
ensitiesp, and p, must be chosen such that this observer

neutral current. For simplicity, take the current to be in a e
circular hoop with axis of rotation though the center of theMeasures no net charge. Quantities measured by the observer

hoop perpendicular to its plane. The observer on the rotatingn hoop one will be denoted by a tilde. From the discussion
hoop claims to measure no charge density at all but only &' Sec. V. B it follows that the observer on hoop one mea-
current density, say in the direction of rotation and the samé&ures the stationary charge density of that hoop tp e/,

all around the hoop. This observer also claims that the reasdid for neutrality the charge density of hoop two as observed
the lab observer measures a charge density is because the f§@m hoop one must be

observer, in measuring the charges in a volume, does not Do=—p1ly;. (53)
measure the sides of the volume simultaneously and, in this _ ) _

time difference as measured by the rotating observer, a ndthe observed current density s vq, wherevq is the drift
charge has flowed into or out of the volume. That a charg&elocity which, in this case, is the tangential velocity of hoop
density is measured in the lab and not in the rotating systeriwo as observed from hoop one. Now the four-current den-
is simply due to the disagreement between the two observesity is given by Eq.(50), where the relativistic factotyy

on the simultaneity of events. The charge that is measured iaccounts for the Lorentz contraction of volumes a§ds the

the lab has all the properties of charge; that is, the electrigharge density in the rest system of hoop two, thatisy .

flux through a closed surface containing the rotating neutrafherefore the charge density of hoop two as observed from
current is nonzero. This charge cannot change as the rotgnop one is

tional speed of the hoop changes. One must conclude that, a _
charge density must be measured by an observer on the hoop P2~ 7d p2lv2. (54)
as his reference frame changes with the slowing of rotatiorquuating'ﬁ2 from Egs.(53) and (54) gives
The following examples may help to clarify this issue.

(1) This example supports the contention that a neutral Y2 P1

C. Charges and neutral currents

current cannot be maintained as the system is brought to rest. P2~ Y174’ (55
Instead of a rotating hoop, consider a long continuous belt. o .

The path of the belt has a long straight section, then followd1ence, the observed charge density in the lab is

a semicircle around a spindle into another long straight sec- Y2

tion which parallels the first, and finally follows a semicircle Plab=pP1 7+ p2=p1( 1- vival” (56)

around another spindle completing the loop. The belt is
driven by the spindles at any desired speed. Suppose atNow eliminatey, by noting that the velocity, is the rela-
certain speed an observer riding the belt reports a neutraistic addition ofvy andv;,

current density in the same direction the belt is moving. An

observer in the lab reports no charge density on the curved v1tug (57)

sections(according to Pellegrini and Swijftout a positive v2_1+vlvd/cz’

charge density on the straight portions according to special that

relativity. It seems strange that the charge density on the bet? N

suddenly disappears on the portion of the belt that reaches a V1Uy

spindle. Even so, let us take the charge on the curved por- 72=|1+ T:r) Y1Yd- (58)

tions to be zero. Now it appears that charge can be created or
destroyed on the straight portions of the belt by simplyThen the observed charge density in the lab is
changing the speed of the belt if one insists that no charge - 2
density is ever measured by the observer on the belt. The Prab= "~ P10V1/C". 59
way out of this paradox is not to claim that there is no ob-This charge density is written in terms of the current density
served charge in the lab but to discard the supposition th&s observed on hoop one,

the observer on the belt always measures a neutral current. == / (60)
This is reasonable since the observer is changing reference “1~ P2Vd= ~P1ld! 71

frames as the belt slows down. Besides, it rescues specitd finally obtain, for the charge density as observed in the
relativity. lab,
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CPiab= Y1811 (61)  ders the interpretation of the components of four vectors dif-
] ] ] ] ] i ficult. But Einstein clearly shows how to assign physical
This result is consistent with E¢34) obtained by the series sense to arbitrary coordinates by considering freely falling
of transformations in Sec. II. observers. The above analysis follows Einstein’s prescription
D. Sagnac effect for assigning meaning to arbitrary coordinates and confirms
, i the valid use of special relativity in the experiment of Wilson
_ The experimentally observed asymmetry in the propagaang wilson. As shown in Sec. V, the analysis, based on
tion of light around a closed path in a rotating system ceryg|ativistic kinematics, is simple and self-consistent. There is
tainly distinguishes it from an merugl fr.ame and is referred 5 need to propose ad hoc mechanisms to resolve the para-
to as the Sagnac effe’c:°t$ett|ng the line interval of Eq11)  qox as presented by Pellegrini and Swift. It should also be
equal to zero, the time interval as measured in the lab for §teq that these comments apply not only to the interpreta-
light signal, traveling at a fixed radius in either direction, 105 of the current four vectors but also to the electric and
go completely around is magnetic fields.
27y°R There is one further aspect of rotating systems that has not
(1=p), (62)  been discussed. By transforming to an inertial frame that is
instantaneously at rest with respect to a segment of the ro-
where the plus sign is for the light signal going in the direc-tating shell, a frame of reference is obtained that accounts for
tion of rotation and the minus againéiNote that the integra- the centrifugal force at a single point. But no account is
tion is through an angle’2when integrating in the direction made for differential forces, that is, the difference in force at
of rotation and— 27 against) two different spatial points. For example, the difference in
This result shows that clocks cannot be synchronized ircentrifugal force between two charge carriers both of mass
the large. Consider the synchronization of clocks in the usuabut with radial separation distande is
way by sending a light signal back and forth between the )
clocks. Now try to synchronize a clock with itself by sending ~ AF=mwAr. (66)

a light signal in the direction of rotation at a fixed radius |f an electric dipole is oriented along the radial direction and

around the disk to the clock and the return signal against th@y modeled by two equal but opposite chargeseparated a
rotation back to the clock. Label the initial sending of the yistanceAr . the dipole moment

signal as event 1 occurring at tinhe Label the reception of

the signal after it has gone around once along with its emis- P=0Ar, (67)
sion in the opposite direction as event 2. Label the finalg subject to the differential force,

reception of the signal as event 3. From E6R) it is seen

T*=
Cc

that the times of the events are AF=mw?plq, (68)

t,=t, pulling the charges apart. This effect is negligibly small in

the Wilson and Wilson experiment.
7v°R
=t ———(1+4), (63 ACKNOWLEDGMENTS
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Comments regarding recent articles on relativistically rotating frames

Robert D. Klauber®
1100 University Manor Dr., #38B, Fairfield, lowa 52556

(Received 11 March 1998; accepted 31 August 1998

In a recent paper on relativistically rotating disks, Wéber  The problem should be obvious, i.e., we cannot simply
presents the prevailing view and appears to contend that oressume that effects such as Lorentz contraction existori
need simply apply traditional relativistic concepts directly on the rotating disk. On the contrary, we have to start with
and all problems and paradoxes disappear. After cordial andew postulates based on Sagnac’s results, not those of Mich-
protracted communication with Professor Weber, the preser@lson and Morley, and rederive the relativity theory for ro-
writer remains convinced that the issue is, in fact, far fromtating frames following the same steps Einstein did for rec-
settled, and that the following inconsistencies remain unretilinear motion.
solved by the standard “solution.” In the papéet referenced above, the writer has done just
First, with regard to curvature, it is important to recognizethat. The reference frame used is then-Minkowskian ro-
that finite objects traveling geodesic patlstraight lines as tating frame itself, not surrogate local Minkowskian co-
seen from the lakin the plane of the disk surface experience moving framegwhich do not produce the same reshlishe
no tidal stresses, and this is true as seen by any observeénalysis shows time dilation and mass—energy dependence
including those on the disk itself. Hence the disk surfaceon v=wr, just as in standard special relativiggnd therefore
must necessarily be Riemann flat, regardless of how one begreeing with cyclotron experimentsut no Lorentz con-
lieves time should be defined on the disk. This is directly atraction along the disk rim. The disk surface turns out to be
odds with the traditional treatment. Riemann flat, in agreement with tidal force analysis, and not
Second, consider a continuous standard tape measure lgurved as argued by Einstein and others. Further, a continu-
ing up against a ridge on the disk circumference. If we applyous tape measure does indeed meet back up with itself at the
traditional relativity theory and instantaneous co-movingsame point in time.
frames along the disk ridge, we find that the tape one cir- The lack of synchronization of a clock with itself is also
cumference distance around the rim does not meet back upsolved, since the underlying and tacit assumption in the
with itself at the same point in time. Although one may argue“usual way” of synchronizing is Einstein’s first postulate
for local interpretation of standard relativity, at some pointthat the speed of light is invariant, i.e., the same in both
this interpretation must match up globally with physical re-directions around the rim. But the Sagnac experiment shows
ality. And a continuous tape measure that is temporally disthat this is not true, and, in fact, to first order,
continuous cannot possibly be a physical reality. v _ l=c* wr 1)
Third, in Secs. V A and V D Weber reviews the traditional light, circumference™ > — "1 »
disk analysis tenet of the apparent impossibility of synchrowhere the velocities irfl) are physical (not merely coordi-
nizing a clock with itself via “the usual way” using light nate values, i.e., they represent values that would be mea-
rays traveling around the disk circumference. But how can @&ured by standard physical instruments.
coordinate system in which a clock is out of synchronization Further, the second relativity postulate does not apply ei-
with itself be a reasonable representation of the real world2her, as anyone can determine their angular velocity and their
In a recent article the present writdtas offered a theo- circumferential velocity ¢r) relative to the inertial frame in
retical solution to these conundrums that agrees with all exwhich their axis of rotation is fixed. When light rays are used
periments. In that paper the following fundamental point isto synchronize clocks around the circumference by observers
emphasized. knowing their circumferential velocity and the speed of light
Relativity theory is based on two postulates having theirfrom (1) above, the synchronization turns out to be exactly
origin in the famous experiment of Michelson and Morley. what one finds by using light rays from a clock located at the
These ard1) invariance of the speed of light, artd) “ref- disk center. Hence, a clock can be synchronized with itself
erence frame democracy,” i.e., all inertial frames are equivausing light rays traveling around the circumference, and
lent; velocity is relative. The first of these carries over tothere is no paradox at all.
general relativity provided light speed measurements are In the paper it is also shown that the “surrogate rods pos-
made locally with standard rods and clocks. tulate” (small coincident inertial and noninertial standard
The Michelson—Morley results are applicable to frames inrods with zero relative velocity are equivalgnised liberally
rectilinear (not rotational motion, and all of the results of with co-moving frames in prior rotating disk analyses, is
relativity such as Lorentz contraction, time dilation, andinvalid for non-time-orthogonal frames, of which the rotating
mass—energy dependence on speed are derived from the tframe is one. In other words, Minkowski tangent frames can
postulates based on that experiment. They are not given representcurved or flat time orthogonal frames locally, but
priori. not (curved or flat non-time-orthogonal frames. This impor-
The Sagnat experiment, on the other hand, is a tant fact appears never to have been realized before. As a
Michelson—Morley-type experiment for rotational motion, corollary, this conclusion is true even in the large radius,
and it showed that the local speed of light in a circumferensmall rotational velocity limit.
tial direction on rotating frames is not invarighEurther, it The derivation of all of these results is remarkably
has long been known that not all frames are equivalent fostraightforward, provided one can put aside the unconscious
rotational motion, as any observer can determine whictpredisposition toward a theory derived from different postu-
frame is the preferred or nonrotating ofeeg., it is the only lates than those shown by experiment to be applicable to
one without a Coriolis “force’). rotating frames.
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With regard to the traditional argument that “...inertial in his pape), and Maxwell's equationgas Ridgely has
frames used to interpret experiments are only approximatshowr), one can get away with using traditional special rela-
and invariably are part of a rotating system,” for every sup-tivity and local Minkowski co-moving frames. That is, in
posed rotating system we are (.g., earth around sun, sun these cases Nature conspires to make both the rotatorg
around galactic center, et@xcept ondearth surface around traditiona) and co-moving(traditiona) frame solutions pro-
earth central axijs our frame is actually a freefall, or inertial, duce the same result for lab observéig., mass—energy
system and therefore Lorentzian. The only effective rotadependence orwr, electric polarization, etg. When it
tional velocity in that case is the earth surface velocity aboutomes to matters of timésynchronization, simultaneity
its own (inertial) axis. Michelson and Ga?eﬂd, in fa.Ct, r_ne{_:l- Space(curvature1 and Miche|son_Mor|ey/SagnaC_type ex-
sure the Sagnac effect for the earth’s surface velocity in th%eriments, however, then analysis must be confined to the
1920s. o _ rotating frame itself, otherwise the above-delineated incon-

The most significant experiment, however, and the moskjstencies and inexplicable “spurious” experimental signals
accurate Michelson—Morley-type test to date, is that of B”"inevitably arise.
let and Hall® They found a “null” effect at theAt/t=3 Thus, it appears that the rotating disk problem may have,
X 10™*° level, ostensibly verifying standard relativity theory at Jong last, been completely solved. According to Ridgely’s
to high order. However, in order to obtain this result theyand the present writer’s analyses, no paradoxes remain, and
were forced to subtract out a “spurious” and persistent sig-a|| theory matches up with the physical world as we know it.
nal of approximate amplitude>210™** at twice the rotation Finally, and perhaps ironically, the writer's analysis actu-
frequency of their apparatus. The theory developed by thally turns out to be completely consonant with special rela-
present writer, in contradistinction to the standard theoryiivity. That is, unlike other attempts to reconcile the Sagnac
actually predicts just such an effect due to the earth surfacgesults, it leaves Lorentz covariance and all other tradition-
velocity. For the Michelson—Morley test geometry this g|ly relativistic effects foMinkowskiframes intact. Apparent
theory predicts a signal amplitude of X830~ '%. For the differences, such as those described herein, manifest specifi-
Brillet and Hall test geometry, however, the light paths arecally for the non-Minkowskian rotating frame, and generally,
not restricted to two perpendicular paths, and the resultardre characteristic of non-time-orthogonal frames. That is, the
At/t effect is diluted. Brillet and Hall do not specify perti- underlying physics is the same, merely being seen from a
nent light path dimensions, but from the sketch of their apdifferent (time orthogonal versus non-time-orthogonabint
paratus, one could expect a reduction in a signal of perhapsf view.

30%—-50%. This would result in a predicted amplitude range
of 1.7-2.5<10 3 and remarkably close agreement with the ?Electronic mail: rklauber@netscape.net
measured value. 7. A. Weber, “Measurements on a rotating frame in relativity, and the

With regard to electrodynamics, Ridgélyas recently —Wilson and Wilson experiment,” Am. J. Phy5, 946-953(1997.
R. D. Klauber, “New perspectives on the relativistically rotating disk and

used covariant constitutive equations in an elegant analysisnon_time_orthogomII reference frames,” Found. Phys. LEIt(5) 405—

to answer a troubling question cogently posed by Pellegrini 443 1995, ' ' '

and Swift® Ridgely derives electrodynamic results for the sg 3 Post, “Sagnac effect,” Rev. Mod. Phy39, 475-493(1967.

rotating frame itself, not the co-moving fratsg and finds  “F. Selleri, “Noninvariant one way speed of light and locally equivalent

that those results match what one would find by simply ap- reference frames,” Found. Phys. Let0, 73-83(1997).

plying Maxwell's equations and traditional special relativity ®A. A. Michelson and H. G. Gale, “The effect of the Earth’s rotation on the

to the co-moving fram@). 6veloc'ity of light, Part II,”“Astrophys. JB1, 140—145(1_925. §
The conclusion is this. Only with use of the rotating frame 'Shfsr"';;s”ﬁ;& 4"2' ';'ag;lg'mspsrz‘g%aser test of the isotropy of space,

Itself_ ("?‘”d aSSOCIated. transformations and mk_tmn one . ’C. T. Ridgely, “ApypI)Y/ing relativistic electrodynamics to a rotating mate-

obtain internally consistent results that agree with all experi- (i3 medium,” Am. J. Phys66, 114-121(1998.

ments. However, for the purposes of time dilation, mass—sG. N. Pellegrini and A. R. Swift, “Maxwell's equations in a rotating

energy, and momentum calculatiof@s the writer has shown  medium: Is there a problem?,” Am. J. Phy8, 694—705(1995.

Response to “Comments regarding recent articles on relativistically
rotating frames” [Am J. Phys. 67 (2), 158 (1999)]

T. A. Weber
Department of Physics and Astronomy, lowa State University, Ames, lowa 50011

(Received 27 August 1998; accepted 31 August 1998

A full discussion of the many issues raised by Robertcoordinates. To go to the frame of the rotating disk, the
Klauber* is not possible in this short response. But | hope theazimuthal angle is replaced b+ wt to gef
following comments give some insight into the problem of
the rotating disk and allow the reader to judge where andis?®=c?(1—r2w?/c?)dt?—dr?—r? d¢?—2r?w d¢ dt, (1)
how we agree or disagree.

The spatial part of the invariant line interval in the labo- where w is the angular velocity. The dependence Drihe
ratory frame(inertial frame can be described by cylindrical coordinate along the axis of rotation, has been suppressed.
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The angle¢ has the range 0 to72 Coordinate clocks are dx’

taken to be fixed in position on the rotating frame, even W=—vi0, 5)

though the timet that they read is the same as laboratory

time. that is, the coordinate velocity isc{-v) to the right and
_These coordinates, ¢, andt) are just one set of an infi- —(¢+y) to the left{compare with Eq(1) of Klauber's com-

nite number that could be used to describe the rotating disknentg. These velocities do not contradict special relativity

For example, one can go about the disk changing the time Ogince, in the traditional view, the clocks reading timare

the clocks by setting’ =t'(r, ¢,t) without leaving the frame  not synchronized, that is, clocks with larget have later

of the rotating disk. Furthermore, a fixe@nd¢ give a point  times than if they were synchronized.

on the disk that has velocity= wr with respect to the labo-  There is no contraction between the coordinate markers of

ratory. These coordinate markdrsand¢) can be changed to the two frames with an observation made at the same coor-

a new set of markers so that, for given values of these newlinate timet. This follows directly from Eq/(3),

markers, one again has a point fixed on the disk. All such ,

coordinates describing the frame of the rotating disk are ~AX=Ax’, for At=0. (6)

equally valid according to Einstefh. . But the question arises as to what is the actual distance in
Since the coordinate markers are arbitrary, one must bg,e spatial coordinate intervalx’ of the moving frame.

cautious in their interpretation of length and time intervals. Ay would an observer on this frame set about making mea-

description of an experiment or a measurement can be madgrements and doing experiments so that the results are in-

in any of these coordinates and, if done correctly, must yieldg|jigiple when communicated to other observers on different
the same result. As an example, the Schwarzschild line elgrames? An atomic clock can be used to measure time and
ment can be written in terms of the traditional Schwarzschildhe 5| meter. defined as the distance traveled by light in
coordinates or in isotropic coordinates. The transit times o5 um duriﬁg a time of 1/299.792.458 s. can be used for
radar signals reflected from an inner plafetest of general  gistance. With this definition of distance, an observer on the
relativity) look very different in terms of these two different oving frame can measure the length of the intetval by
coordinate systems. But the predicted numerical values q?écording the time for a light signal to go back and forth over

thgr;]ra?snd_t;meslmusttbedthe sgf'ne.l | ti i the interval. The distanéds simply one-half of the proper
€ traditional way to describe a jocal event In a COMPll-4;q jntepyg| elapsed multiplied bg. This gives

cated geometry is to transform to the inertial frame that is

instantaneously at rest with respect to the event. One has AX’
confidence in the interpretation of distances and time inter- Distance= — 7
vals in terms of the resulting Minkowski coordinates. 1-v?lc

Klauber objects to this procedure. Certainly this would beypat is, the coordinate system appears tstoetched Then if
inappropriate for many studies of nonlocal or global proper- pew coordinate system for the moving frame were laid out
ties of the metric. _ , with the same standard meter as used in the original inertial
Because of the cross term in the metric of Eb), clocks  frame, the new coordinate intervals on the moving frame
at fixedr but different¢ are not synchronized in the tradi- \yquid appeacontracted as observed from the lab.
tional way of sending light signals back and forth directly  ypjike the clocks on the rotating disk, all the clocks on the
between the clock3Adjacent clocks on anpencurve, how-  moying frame with a metric described by Hd) can be reset
ever, can always be synchronized by adjusting the readingg e|iminate the cross term. Then, rescaling the spatial and
of the various clocks. In the case of the rotating disk thistime coordinates one arrives at the Minkowski metric. The

procedure cannot be extended globally; attempts to synchrsyerall transformation is the Lorentz transformation, as ex-
nize clocks on a closed curve lead to a discontinuity in time,gcted.

between two adjacent clocks. Klauber, however, uses a dif- The same measurement of distance can be used on the
ferent synchronization in which the coordinate tinteare  (qtating disk; one finds that
synchronized as they stand. His method of synchronization is
described following Eq(1) of his comments. D rA¢ ®
A simple example may clarify how some of the conclu- Istance= ———=——-,
sions of Klauber do not contradict the traditional view. Start (1=v%/c%)
with the invariant line interval of an inertial frame, for the coordinate intervatA ¢, while the distance in the
42— c? di2— dx @ radial direction isAr. Measured in this way, the distance
=c x5 around the rim of the rotating disk divided by the radius is
greater than 2, that is, the geometry is non-Euclidean.

and transform to a new frame by The experiment of Brillet and Hall is a test of the isotropy

x=x"+ut, 3) of space® They measure the apparent length of the cavity of
Fabry—Perot interferometer mounted horizontally on a table
to get that is rotated about the vertical at a réf@bout once every
10 9. The condition of standing waves within the cavity will
ds?=(c?—v?)dt?—dx’'?>—2v dt dx/, (4)  change if the propagation of light varies due to a preferred

direction of space. Such an anisotropy would show up as a
for the line interval described in the new coordinates. Equasignal at rotation frequency 2 Brillet and Hall obtained a
tion (3) shows that every fixed point’ of the new frame null result after subtracting a spurious signal at frequenty 2
travels with velocityv with respect to the original frame. For from their data. The cause of this signal is not explicitly
the propagation of light, set the invariant line interval equalstated in their paper. Klauber attributes the spurious signal to
to zero to find the effects of the rotating frame of the earth. However, with
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the length of the cavity in terms of the metric as given in Eq.table rotation frequenc§: This strong signal can be largely
(8), one obtains the null result expected for spatial isotropygliminated since the signal of interest is at twice the rotation
that is, there is no apparent change in length of the cavityrequency. But Brillet and Hall refer to the strong signal as
with orientation. Klauber does not agree with this result“nearly” sinusoidal so one expects higher harmonics. A sec-
since he does not accept the distance formula of(8q. ond harmonic down by a factor of 12 would be approxi-
Since Eq(8) is good for small distances and is appropriatemately the strength of the spurious signal at frequenéy 2
for a local experiment, there is the possibility that nonlocal No further explanation of this signal is warranted without
effects of the metric could contribute to the spurious signalfurther analysis of the data.
The sensitivity of the instruments may be such that, even
though the experiment is of short duration and spatial extent,, U 1 ver sc ; di ¢ articl lativisticall
nonlocal effects of the metric are observed. Using the metric o, . “0 28 O ey, | ees O TEvISIealy
. . . g frames,” Am. J. Phys$7 (1999.
of Eq. (1) for the propagation of light, one finds that any 21 A weber, “Measurements on a rotating frame in relativity, and the
nonlocal effects due to rotation are negligible. Wilson and Wilson experiment,” Am. J. Phy85, 946-953(1997.
The most reasonable explanation of the spurious signal iSAlbert Einstein, The Meaning of RelativityPrinceton University Press,
the actual change in length of the cavity due to the varyingAPrinceton, 1955 pp. 55-63. .
gravitational stretching of the interferometer. This variation D K- Ross and L. " ,,S‘F:,';'ﬁ' Q”\iﬁ’s'izolf;h‘izplro‘l’gged planetary radar
comes about because the axis of fotation of the interferom*/E40 eerment, Fus ke 121e itatecn, |
eter is not perfectly vertical. Brillet and Hall state that this is 1,0, oxford, 1978 pp. 234-237.
one of two major factors that limit the sensitivity of the ¢a Brillet and J. L. Hall, “Improved laser test of the isotropy of space,”
experiment. This stretching produces a strong signal at thePhys. Rev. Lett42, 549-552(1979.

EXAMS

| believe that perhaps one of the most potent influences tending to the development of [medi-
ocrity in thought is to be found in the necessity of testing the progress of the student as he |earns,
in the examination system, for example. If it is necessary every few weeks so set a group of half
a dozen questions to test what the student has acquired, it is much easier to have questions which
permit an answer in terms of facts, or in a standardized system of words invented to describe
principles, than it is to set questions which necessitate answers which come from the brain|rather
than from the memory. It is convenient for the examiner if the answers are all more or less| alike
in method and wording.

W. F. G. Swann, “The Teaching of Physics,” Am. J. Ph{§(3), 182—-187(1951).
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