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Pellegrini and Swift have recently suggested that the use of special relativity in the calculation of the
electric dipole moment of a moving magnetic dipole cannot be applied to the classic experiment of
Wilson and Wilson, which used rotational motion. This paper contests that view. The disagreement
arises in the choice of coordinates used to represent physical quantities measured in the rotating
frame. The arguments of this paper are based on Einstein’s discussion of the validity of arbitrary
coordinates and the difficulty in their interpretation. Because of the lack of synchronization of
clocks, caution must be used in assigning values to physical quantities in the usual coordinates that
describe a rotating frame. This paper gives the detailed transformations to an inertial rest frame,
where the interpretation of measurements is assured. Other aspects of the rotating frame are also
discussed. ©1997 American Association of Physics Teachers.
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I. INTRODUCTION

In 1908, Einstein and Laub1 suggested that a measureme
of the electric dipole moment of a moving magnetic dipo
be used as a test of special relativity. In 1913, Wilson a
Wilson2 performed the experiment on a magnetic insula
rotating in an external magnetic field. A clear account of t
experiment is given by Pellegrini and Swift.3 There are two
effects of the magnetic field. First, the field induces mag
tization in the material. This moving magnetization, acco
ing to relativity, produces an electric polarization as me
sured in the laboratory. Second, the magnetic field exer
force on the moving bound charges, thereby inducing
electric polarization in the material. In the experimen
setup of Wilson and Wilson these two contributions to t
electric polarization must be added. Their experimental
sults agree with the calculated values based on special
tivity. Pellegrini and Swift3 have recently challenged th
conclusion that this experiment is consistent with spe
relativity and insist that when the electric polarization
properly calculated in a rotating system, the result does
agree with experiment. They suggest that the theory m
have to be modified or the experiment is wrong. This aut
disagrees. In this paper, only the contribution to the elec
polarization due to the motion of the magnetized materia
discussed since this is where the disagreement lies. For
purpose, the insulator is taken to have a permanent mag
zation.

A magnetized slab of material in uniform motion perpe
dicular to its magnetization has, according to special rela
ity, an electric polarization as measured in the laborato
The electric polarization of the magnetized slab, if unifor
can be described by a positive bound surface charge de
on one side and a negative bound surface charge densi
the other side. Pellegrini and Swift, however, assert tha
this slab is part of a rotating cylindrical shell, no char
density is induced so that a result at odds with special r
tivity is obtained. The following physical reasoning cas
doubt on this conclusion.

Suppose the radius of the cylindrical shell of magnetiz
material is taken to be extremely large and the angular
locity to be small, such that the speed of a segment of
shell matches the experimental value. If the radius is la
946 Am. J. Phys.65 ~10!, October 1997
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enough, it would be difficult to distinguish, in a short tim
interval, the rotational motion of a finite segment from re
tilinear motion. To claim that the two motions are qualit
tively different in that one induces surface charge while
other doesn’t, should bother one’s physical intuition. It a
pears physically unreasonable to have zero induced sur
charge density in a motion that can be made arbitrarily cl
to rectilinear motion, for which everyone agrees surfa
charge is induced. It should also be noted that the iner
frames used to interpret experiments are only approxim
and invariably are part of a rotating system.

A more rigorous treatment follows in Sec. II, where th
methods for the determination of physical quantities as
would observe them in a rotating frame are laid out acco
ing to the reasoning of Einstein, and in Secs. III and IV t
necessary transformations are given and applied to an i
experiment. In Sec. V, some questions and objections to
method of calculation are discussed. Finally, in the conc
sion, the effect of the differential centrifugal force is di
cussed.

II. THE PRINCIPLE

In the mathematical analysis of this experiment it is a
sumed that the laboratory is an inertial frame with invaria
line interval

ds25c2dt22dr22r 2df22dz2, ~1!

where the spatial part is described by cylindrical coordina
Transformation to arbitrary coordinates leaves this inter
unchanged; only the space–time description of events wil
different. Einstein,4 basing his arguments on the principle
equivalence, concluded that all coordinates are equally va
But the laws of nature are known only in inertial frame
where length is measured by standard rods and time is m
sured by standard clocks. Einstein suggests the use
freely falling observer whose frame will be inertial. Einste
states: ‘‘We can therefore always regard an infinitesima
small region of the space-time continuum as Galilean.
such an infinitely small region there will be an inertial sy
tem relative to which we are to regard the laws of the spe
theory of relativity as valid.’’ In general, even with a metr
that describes a gravitational field, a transformation can
946© 1997 American Association of Physics Teachers



es
e

ne
a
a

th
e
t
o
b

is
in

e

re

m
e

e
pe
on
en

r a
ha
en
ei
su
l
a

s
s-
ire
o

s
o

pr
s.

le-

se
rix

r,
er

f

l is

.
-

es

ry,

rver
is

re
a of
ym-

in-
-

asis
at

es of
the
a

the
d-

to
f co-
the
a-

ach
hen
in
ra-
ways be made to a local inertial frame such that the geod
equation is a straight line, that is, material particles behav
if ‘‘free’’ of gravitational or inertial forces. The word local is
used since the transformation is strictly valid only at o
point in space–time. Even so, the inertial system will be
extremely good approximation if attention is confined to
sufficiently small neighborhood of the space–time point.

It should be noted that Einstein was not suggesting
restriction of relativity to local inertial frames but, on th
contrary, his discussions were aimed at the developmen
the general theory. He argues that all arbitrary frames
reference are equally valid and the laws of physics are to
written in generally covariant form. The important point
that the laws of physics must reduce to their familiar form
a local inertial frame. In such a frame one has confidenc
assigning values to physically measurable quantities.

Although the explicit transformation is given below, the
is no need for it in the case at hand. The correct frame
which to measure the electric charges and currents of a s
segment of the rotating cylindrical shell is the inertial fram
which is instantaneously at rest with respect to the segm
Then special relativity applies. Wilson and Wilson used s
cial relativity to calculate the induced electric polarizati
for the rotating material and verified the results experim
tally.

Since the transformation to an inertial frame is valid fo
small region of space–time, only physical relationships t
are local can be described. Maxwell’s equations in differ
tial form are local in that they relate the fields and th
sources at any space–time point. On the other hand,
things as the radiation of an accelerated charge is globa
that it requires the determination of fields on surfaces that
at large distances to the charge. Such global problem
arbitrary coordinates are extremely difficult, if not impo
sible, to handle. Fortunately, the problem at hand requ
the determination of the current and charge densities, b
local quantities.

III. TRANSFORMATION BETWEEN THE
ROTATING FRAME AND THE LABORATORY

The needed coordinate transformations are most ea
given in terms of matrices. Before looking at the details
these transformations some background material will be
sented. Four vectors are represented by column matrice
particular, the displacement four vector is

dx5S cdt
dr
df
dz
D , ~2!

and its inner product with itself gives the invariant line e
ment,

ds25dxTGdx, ~3!

wheredxT is the row matrix formed by taking the transpo
of dx, and the metric is represented by the symmetric mat

G5S 1 0 0 0

0 21 0 0

0 0 2r 2 0

0 0 0 21

D . ~4!
947 Am. J. Phys., Vol. 65, No. 10, October 1997
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It is easily verified that the matrix multiplication in Eq.~3!
yields the correct line interval. The current four vecto
which transforms like the displacement four vector und
change of coordinates, is

J5S cr
J1

J2

J3
D , ~5!

wherer is the charge density andJi are the components o
the current density. The time componentcr is denoted as the
zeroth component while the Latin indexi ranges over the
spatial components 1, 2, and 3. The invariant line interva
usually written as

ds25gabdxa dxb, ~6!

wheregab are the components of the symmetric matrixG.
Repeated Greek indices are summed over 0, 1, 2, and 3

Consider now the following situation: A uniformly mag
netized material in the form of a cylindrical shell rotat
about its symmetry axis, which is oriented along thez axis.
The magnetization is also along this axis. LetM be the mag-
netization of the material when it is at rest in the laborato
as measured in the laboratory. Two questions arise.

First, what is the magnetization measured by an obse
at rest with respect to the rotating cylinder? In Sec. IV it
shown that this measured value isM /g, whereg is the usual
relativistic factor. Typically, magnetic dipole moments a
described by current loops, that is, current times the are
the loop. In the present case, because of the cylindrical s
metry, the magnetization~dipole moment per unit volume!
can be described by cylindrical sheets of current in the
creasing and decreasingf directions. No electric charge den
sity is needed.

The second question is the most important and is the b
of the disagreement with Pellegrini and Swift, that is, to wh
coordinate system should one ascribe the measured valu
the current density? Notice that this is not the same as
situation of determining the components of a vector in
coordinate system by transforming from a system where
components are known. The following development a
dresses this last question.

To relate the current four vector in the rotating frame
the measured values in the laboratory, three changes o
ordinates will be used. The first transformation goes from
laboratory to the rotating frame; the other two transform
tions are simply changes of coordinates in this frame. E
of the transformations will be discussed separately and t
the overall result will be obtained by applying the three
succession. None of the transformations will change the
dial coordinater , so the following notation will be used
throughout. The velocity of a point is

v5vr , ~7!

b[v/c, ~8!

and

g[~12b2!21/2. ~9!

It should be kept in mind that two points with differentr
coordinates will have different velocities.
947T. A. Weber
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Let the coordinates in the rotating system be denoted
overbars. The transformation from the laboratory to the
tating frame is

t5 t̄, r 5 r̄ ,
~10!

f5f̄1v t̄, z5 z̄.

In terms of these barred coordinates the invariant line in
val given by Eq.~1! is

ds25g22c2dt̄ 222cb r̄ df̄dt̄2dr̄ 22 r̄ 2df̄ 22dz̄ 2. ~11!

Even though the new time coordinate is equal to the o
one should not interpret this to mean that the new clocks
the same as the ones at rest in the laboratory system. C
dinate clocks are usually considered at rest with respec
the corresponding spatial coordinates. The invariant line
terval in Eq. ~11! shows that the proper time interval at
fixed position in the new coordinates is given byDt
5D t̄/g5Dt/g. This demonstrates the time dilation of
standard clock at rest in the rotating frame when compare
the clocks of the laboratory.

The transformation, Eq.~10!, can be written in matrix
form as

dx5T̄dx̄, ~12!

where

T̄5S 1 0 0 0

0 1 0 0

v/c 0 1 0

0 0 0 1

D ~13!

is the transformation matrix. The current four vector follow
the same transformation rule as the displacement four ve
that is:

J5T̄ J̄. ~14!

This is the first of the three transformations needed. No
that if the charge density in the barred system,r̄, were zero,
then no charge density is obtained in the laboratory fra
Since only a surface current density is needed to describe
magnetization, Pellegrini and Swift assumed the charge d
sity to be zero. This is the mathematical basis of their cla
But care must be taken in ascribing meaning to objects
pressed in these new coordinates. As explained in Sec. II
safest way to do this is to transform to a local inertial r
system where the physical meaning of the coordinates is
sured. But even without doing this, there is an obvious d
ficulty with the invariant interval for the rotating system
With the cross-termdt̄ df̄, clocks in the rotating system ar
not synchronized. This follows directly from the method
synchronization by sending a light signal back and forth
tween two clocks. Because of the cross term, light appea
propagate differently in the positivef direction compared to
the negativef direction, thereby requiring an adjustment
bring the clocks into synchronization. See the discussion
the Sagnac effect in Sec. V.

To synchronize5,6 two clocks, say clock B to clock A, the
time on clock B must be adjusted by the amount

cD t̄5cE
A

B

~ ḡ0i /ḡ00!dx̄i522E
A

B

bg2r̄ df, ~15!
948 Am. J. Phys., Vol. 65, No. 10, October 1997
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where the integration is from the location of clock A to th
location of B over some chosen path between the two cloc
Here, ḡ00 is the 00 component of the matrixḠ and the re-
peated Latin indices are summed over the spatial coo
nates. This expression can be used to synchronize clo
along an open curve. Start with clock B infinitesimally clo
to clock A and adjust clock B according to Eq.~15!. Then
move the label B to successive clocks along the cho
curve, adjusting each clock in turn. The clocks will then
synchronized for light traveling on the chosen path, but i
different path between the end clocks is taken, these
clocks may appear unsynchronized.

It is apparent from Eq.~15! that a transformation eliminat
ing the cross termḡ0i will automatically synchronize the
clocks. The transformation should be such that the clocks
reset by varying amounts depending on their positions
with no changes in their spatial coordinates. The infinite
mal transformation7 that resets the clocks is

cdt̄5cdt* 1bg2r * df* , r̄ 5r * ,
~16!

f̄5f* , z̄5z* .

In these new coordinates the invariant line interval reads

ds25g22c2dt* 22dr* 22g2r * 2df* 22dz* 2. ~17!

Unfortunately, the expression fordt̄ in Eq. ~16! is not inte-
grable, that is, no function of the sort

t̄5 t̄~ t* ,r * ,f* ,z* ! ~18!

exists. Therefore clocks cannot be synchronized through
space. But all that is needed in the analysis is the synchr
zation of clocks in a local region of a spatial point as given
Eq. ~16!. In matrix form,

dx̄5T* dx* , ~19!

where

T* 5S 1 0 l 0

0 1 0 0

0 0 1 0

0 0 0 1

D ~20!

and

l[bg2r * . ~21!

This is the second transformation needed.
Even though the starred coordinate system is not an i

tial frame, there is no difficulty in interpreting the metric. F
example, the circumference of a circle of radiusr * is

C* 5E
0

2p

gr * df52pgr * , ~22!

which shows that the spatial part of the metric is not Eucl
ean. The application of Eq.~17! appears to violate the loca
restriction placed on the transformation. But this metric i
plies, however, that the measurement can be carried ou
measuring, at rest, successive lengths on the circumfer
of the circle, each measurement made locally and each m
surement identical to the others. The marked off lengths
summed as indicated in Eq.~22!. Further discussion of the
geometry of the rotating disk will be found in Sec. V.

Since the metric is diagonal, it is easy to transform
Minkowski coordinates at a given space–time point by
948T. A. Weber
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change in scale of all the coordinates. This will be the th
and final change in coordinates. These new Minkowski
ordinates, denoted by a tilde, represent the local inertial
system in which measurements are to be made. The tran
mation is

dt* 5gdt̃, dr* 5dx̃,
~23!

df* 5~gr * !21dỹ, dz* 5dz̃,

or, in terms of matrices,

dx* 5T̃ dx̃, ~24!

where

T̃5S g 0 0 0

0 1 0 0

0 0 ~gr * !21 0

0 0 0 1

D . ~25!

With this transformation the Minkowski line interval,

ds25c2dt̃2dx̃ 22dỹ 22dz̃ 2, ~26!

is obtained for the point considered. It should be emphas
that with this last change of coordinates, the new metric
restricted description of the rotating frame valid locally a
given point. It should also be noted that the overall transf
mation from the lab to this local coordinate patch is a L
entz transformation.

The current four vector in the Minkowski coordinate
must be determined so that it is the source of the obse
magnetization of the material. This can be done with co
dence since these coordinates describe an inertial fram
reference in which the laws of physics are known. Wha
needed is a current density in thedỹ direction and no charge
density. With this component of the current density, deno
by J̃y , the four current is written as

J̃5S 0
0

J̃y

0
D . ~27!

The remaining chore of transforming this vector to the lab
ratory system by the series of transformations is as follo

J* 5T̃ J̃, ~28!

J̄5T* J* , ~29!

J5T̄ J̄. ~30!

Overall, the transformation is

J5T̄ T* T̃ J̃, ~31!

where, from Eqs.~13!, ~20!, and~25!,

T̄ T* T̃5S g 0 bg 0

0 1 0 0

vg/c 0 ~br !211bgv/c 0

0 0 0 1

D . ~32!

Applying this transformation matrix toJ̃ given in Eq.~27!
yields
949 Am. J. Phys., Vol. 65, No. 10, October 1997
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J5S bg J̃y

0

@~gt!211bgv/c# J̃

0

D . ~33!

In particular, the charge density as measured in the lab
tory is

cr5bg J̃y . ~34!

Since the current density is confined to a surface, so als
the charge density. Withk ands denoting the surface curren
and the surface charge densities, respectively, the final re
is

s5bgk/c. ~35!

This is exactly what would be obtained by a special Lo
entz transformation between two inertial frames with relat
velocity v in the direction of the current density. It follow
that the calculation made by Wilson and Wilson using s
cial relativity does indeed give the correct result.

It may be objected that the result given in Eq.~34! implies
a creation of charge by rotation. This, of course, would
impossible. According to Eq.~34!, a circular current loop,
neutral in the rotating frame as seen by the local comov
observer, will have a net charge density as observed from
laboratory. By symmetry, the charge density is the same
each point of the loop and adds to give a nonzero to
charge. It appears that by merely changing the angular
locity, the net charge in the laboratory is changed. On
contrary, it must be concluded that if the angular veloc
changes, the charge as observed in the laboratory rem
unchanged. Therefore, if the rotating frame is brought to r
then the charge density, initially zero as observed in the
tating frame, must increase until it agrees with the laborat
value when the rotation ceases. Several examples suppo
this view are given in Sec. V.

IV. AN IDEAL EXPERIMENT

Let us now calculate the induced charge distributions o
permanently magnetized insulator in the shape of a cylin
cal shell which is rotating. The first task is to determine t
appropriate value of magnetization to be associated with
instantaneous rest frame of the magnetized material.

Let M be the magnetization~magnetic dipole moment pe
unit volume! of the material when it is at rest in the labor
tory, as observed in the laboratory. The cylinder is n
given an angular acceleration and brought up to the fi
angular velocity. It is usually assumed that the physical pr
erties of atoms are not altered by their past history. The
fore, the dipole moment of the atoms in the instantane
rest frame of a segment of the rotating cylinder, as obser
from that frame, is taken to have the same value as it
when at rest in the laboratory. But the periphery of the sh
as measured in the rotating frame has increased by the fa
g according to Eq.~22!. Therefore the density of atoms i
decreased by the factor 1/g, giving a magnetization ofM /g
as measured by an observer in the rotating frame of the s
It should be emphasized that in both cases, the atom is at
with respect to the frame of reference: in the first case, w
respect to the laboratory and in the second case, with res
949T. A. Weber



os
l.
io
a

ac
th
th

ls
th
he
in

et

e
o-

k-

i
ur

th

su
t

os
e
iv

nl
en
si
a
-
h

b

th
a

in-
l

a-
l

o-
the
he
the
e-

nt
jec-
ting

ng

me
k

e
e
the

ary,
ory
of
ne

ay A
rom
by
m.
d

wo
ro-

fol-
e
sted
n-
t an
ay
the
ck
of
ould

uld
per
to a
and

of
and
al
sed
to the rotating frame. And the magnetizations given are th
that would be observed in the rest frames of the materia

As an interesting aside, one could ask a different quest
that is, what is the magnetization of the rotating material
observed from the laboratory if the measured value isM /g
in the rest frame of the material? Taking account of the f
that the motion is perpendicular to the magnetization and
magnetization is part of the electromagnetic field tensor,
Lorentz transformation gives the valueM for the magnetiza-
tion as observed from the laboratory. Of course, one a
obtains an electric polarization, which is the basis of
experiment of Wilson and Wilson. Although relevant, t
discussion of this paragraph is not needed in the follow
analysis.

Consider a cylindrical shell of inner radiusa and outer
radiusb, rotating about its symmetry axis. Specifically, l
the angular velocity point in the positivez direction, that is,
follow the right-hand rule with thumb in the direction of th
angular velocity and fingers pointing in the direction of r
tation, taken as the increasingf direction. Divide this shell
of finite thickness into elemental shells of infinitesimal thic
nessdr. The magnetization of the elemental shell,M /g in
the z direction, is described by a surface current density
the positivef direction on the outside and by a surface c
rent density of the same magnitude in the negativef direc-
tion on the inside. Then, on the inside and the outside of
shell of finite thickness, the current densities are

Kb5M /gb , Ka52M /ga . ~36!

The surface charge densities, determined by Eq.~35!, are

sb5bbM /c, sa52baM /c. ~37!

Since the magnitude of the charge density on the inner
face is less than on the outer surface it appears as if
rotating cylinder becomes positively charged. This is imp
sible since the cylindrical shell was assumed neutral whil
was at rest in the laboratory. Actually, there is a negat
volume charge density throughout the material given by

r~r !52ds~r !/dr2s~r !/r , ~38!

where

s~r !5bM /c5vrM /c2. ~39!

This result can easily be obtained by first noting that the o
nonzero component of the electric polarization of an elem
tal shell is the radial component. This component is ea
found to bes(r ), the surface charge of an elemental shell
given by Eq.~39!. This also gives the polarization through
out the material as a function of the radial coordinate. T
volume charge density, as given by Eq.~38!, then follows
directly from minus the divergence of the polarization. Su
stituting Eq.~39! into Eq. ~38! gives

r~r !522vM /c2. ~40!

This charge density, when integrated over the volume of
finite shell, gives a charge that exactly cancels the surf
charges.

Gauss’s law shows that the electric field within the cyl
drical shell points in the negativer direction and has radia
component in SI units,

E52vrM /~e0c2!. ~41!
950 Am. J. Phys., Vol. 65, No. 10, October 1997
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This result also follows directly from the electric polariz
tion, s(r ). With this electric field, the difference in potentia
between the outer and the inner surfaces is

DV5vM ~b22a2!/~2e0c2!. ~42!

~In the Wilson and Wilson experiment, the value of the p
tential difference consists of the sum of this term plus
contribution due to the motion of the insulator through t
external magnetic field. This magnetic field also induces
magnetization, which can be written in terms of the perm
ability.!

V. RIDDLES AND ENIGMAS

In order to preserve the continuity of the developme
given in the preceding sections, discussion of possible ob
tions to the calculation and other issues related to rota
coordinates are gathered into this section.

A. Synchronization of clocks

Pellegrini and Swift propose that the clocks in the rotati
system be synchronized to a clock~call it the ‘‘big’’ clock !
on the axis of rotation, which reads laboratory timet. This
can be done, for a clock fixed in the rotating system at so
radial distancer , by sending a light signal from the big cloc
at the origin to the clock at radiusr and then back to the big
clock. The clock at radiusr is synchronized by setting th
time of arrival of the signal from the big clock equal to th
time midway between the sending and the receiving of
signal at the big clock. This is precisely how Eq.~15! was
derived and, for the metric of Eq.~11!, it shows that for
clocks on the same radial line no adjustment is necess
that is, all the clocks in the rotating system read laborat
time t, and are synchronized to the big clock on the axis
rotation. But are the clocks synchronized with respect to o
another? That is, suppose one takes two nearby clocks, s
and B, fixed in the rotating system at the same distance f
the axis of rotation, and checks their synchronization
sending a light signal back and forth directly between the
According to Eq.~15! the time on clock B must be adjuste
or changed from timet in order for it to be synchronized
with clock A. Thus we have the apparent paradox that t
clocks synchronized with a third are not necessarily synch
nized with each other.

Clocks can be synchronized along an open curve by
lowing the prescription of Eq.~15!. Suppose that clocks ar
placed all along the curve and adjacent clocks are adju
according to this prescription. Everything works nicely u
less one tries to close the curve. Since the integrand is no
exact differential the integration around a closed path m
not be zero. So if one starts at clock A and synchronizes
clocks along a closed path back to A one may find that clo
A must be adjusted to be synchronized with itself, which
course is nonsense. Now the question arises how one sh
synchronize two adjacent clocks at the fixed radiusr . Should
one follow the radial path to the big clock and back or sho
one take a direct path between the two clocks. In this pa
the direct path between the clocks is chosen. This leads
synchronization necessary for measurements of lengths
volumes in the vicinity of the clocks. Synchronization
clocks is at the core of the differences between this paper
the paper of Pellegrini and Swift. In the following, sever
examples are given which support the synchronization u
in this paper.
950T. A. Weber
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As an example of a transformation that is similar to t
one used to go from the laboratory to the rotating fram
consider the Galilean transformation,

dx5dx̄1vd t̄, dt5d t̄, ~43!

on the two-dimensional Minkowski space described by

ds25c2dt22dx2, ~44!

yielding

ds25c2g22dt̄ 22dx̄ 222v dx̄ dt̄. ~45!

This is a perfectly valid coordinate description of the origin
two-dimensional Minkowski space. This is a transformati
to a new moving reference frame since the transformatio
the x coordinate contains the time. Note that in the n
coordinates, the time is taken to be the original lab coo
natet in parallel with the transformation between the lab a
the rotating system given by Eq.~10!. Also notice the cross
term indicates that the clocks using the lab timet5 t̄ are not
synchronized in the new frame. The cross term can be el
nated by adjusting the readings of the clocks by vary
amounts depending on their positions:

cd t̄5cdt* 1bg2dx* , d x̄5dx* , ~46!

which then gives the line interval

ds25c2g22dt* 22g2dx* 2. ~47!

Now rescale the coordinate by

dt* 5gd t̃, dx* 5g21dx̃, ~48!

to again obtain the Minkowski line interval

ds25c2dt̃ 22dx̃ 2. ~49!

Putting together all the transformations, one obtains the s
cial Lorentz transformation between the coordinate fram
(ct,x) and (c t̃,x̃) with relative velocityv as expected. With
the new time t̃, the clocks are synchronized but no o
would have said that the clocks in the new frame with int
val given by Eq.~45! were synchronized with the old la
time t5 t̄. Notice that this calculation exactly parallels th
development in Sec. III, except that thed t̄ in Eq. ~46! is
integrable in terms oft* andx* , unlike the case of rotating
coordinates.

B. The geometry of the rotating disk

It may be claimed that the geometry of the rotating disk
Euclidean and that the circumference of a circle divided
the radius is 2p, and not greater. The original space–time
flat and the new coordinate description does not change
fact. The Riemann curvature tensor is zero in either se
coordinates. But when it is said that the space of the rota
disk is non-Euclidean, one is talking about a subspace of
original flat space–time, that is, the subspace defined bydt*
set equal to zero. This is similar to taking the ordinary thr
dimensional flat space described by spherical polar coo
nates and obtaining the curved subspace consisting of
surface of a sphere by settingr equal to a constant. Thus, i
the subspace in which the clocks are synchronized, i
found that the circumference of a circle divided by its rad
is 2pg, as given by Eq.~22!. Einstein first talked about this
as an example of a curved space. Over the years it has
written about by many authors including O” . Gro”n, who
obtains8 the same spatial geometry of the metric given in E
951 Am. J. Phys., Vol. 65, No. 10, October 1997
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~17!. O” . Gro”n also states,9 in regard to a rotating disk, tha
‘‘relativistic kinematics alone forbids giving the disk a rota
tion so that the rest lengths of the elements of the periph
remain constant during the period of the angular accele
tion.’’

This geometry of rotating coordinates explains an appa
creation of charge with the initiation of a current in a wir
Suppose a copper wire is bent into a circle of radiusr . The
copper has charge densityr0 of electrons and an equal an
opposite charge density of positive ions which remain at r
The wire is neutral. Now apply an electric field so that t
electrons move. The four-current density10 associated with
the moving electrons is

J5gd r08S c
vd

D , ~50!

where r08 is the charge density in the frame at rest w
respect to the moving electrons. For simplicity, the rand
motion of the electrons is neglected, and it is assumed all
electrons travel at the same velocity, the drift velocityvd .
The relativistic factorgd5(12vd

2/c2)21/2 compensates for
the contraction of lengths in the rest system of the electr
as measured by an observer in the laboratory. It seems
sonable to take the rest density of the moving electrons to
the same as the original rest density as measured in the
that is,r085r0 . But then there is the creation of charge in t
amount

DQ5r0~gd21!2prA, ~51!

whereA is the cross-sectional area of the wire. The reso
tion to this paradox is found in the realization that the c
cumference of the circle in the rotating frame in which t
charge carriers are at rest has increased bygd . With the
same amount of charge distributed over this increased len
the charge density in the rest frame of the moving electr
is

r085r0 /gd , ~52!

so that the density of the moving charges as observed f
the laboratory remains unchanged.

This result can be seen another way. Consider two a
cent electrons with angular separationDf before the appli-
cation of the electric field. Let them both start at rest sim
taneously and have exactly the same angular acceleratio
observed from the laboratory. Then elementary kinema
tells us that the angular separation does not change so
the charge density as observed from the laboratory does
change. The proper length of each element of the arclen
between the charges, when they have reached the drift ve
ity, must be increased by the factorgd to compensate for the
Lorentz contraction; that is, the arclength between
charges in the rotating frame in which they are at rest
gdrDf rather thanrDf. This is an alternate way to see th
the circumference of a circle divided by its radius is grea
than 2p for a rotating frame.

The problem of two electrons with the same angular
celeration parallels the problem posed by Dewan a
Beran.11 Consider two identical rockets at rest in an inert
frame S. Let them face the same direction and be situa
one behind the other. A thin thread links the two rockets a
is just long enough to span the distance between the roc
~center to center, say!. The rockets are then fired simulta
neously and have identical acceleration programs. As
951T. A. Weber
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served fromS, the rockets remain displaced from each oth
by a fixed distance~center to center!. What happens to the
thread? J. S. Bell12 relates the humorous story about the d
cussion of this problem that once took place at the CE
canteen. ‘‘A distinguished experimental physicist refused
accept that the thread would break, and regarded my as
tion, that indeed it would, as a personal misinterpretation
special relativity. We decided to appeal to the CERN The
Division for arbitration, and make a canvas of opinion
There emerged a clear consensus that the thread would
break!’’

C. Charges and neutral currents

Contrary to Pellegrini and Swift, this paper claims the e
istence of charge density as measured in the lab for a rota
neutral current. For simplicity, take the current to be in
circular hoop with axis of rotation though the center of t
hoop perpendicular to its plane. The observer on the rota
hoop claims to measure no charge density at all but on
current density, say in the direction of rotation and the sa
all around the hoop. This observer also claims that the rea
the lab observer measures a charge density is because th
observer, in measuring the charges in a volume, does
measure the sides of the volume simultaneously and, in
time difference as measured by the rotating observer, a
charge has flowed into or out of the volume. That a cha
density is measured in the lab and not in the rotating sys
is simply due to the disagreement between the two obser
on the simultaneity of events. The charge that is measure
the lab has all the properties of charge; that is, the elec
flux through a closed surface containing the rotating neu
current is nonzero. This charge cannot change as the
tional speed of the hoop changes. One must conclude th
charge density must be measured by an observer on the
as his reference frame changes with the slowing of rotat
The following examples may help to clarify this issue.

~1! This example supports the contention that a neu
current cannot be maintained as the system is brought to
Instead of a rotating hoop, consider a long continuous b
The path of the belt has a long straight section, then follo
a semicircle around a spindle into another long straight s
tion which parallels the first, and finally follows a semicirc
around another spindle completing the loop. The belt
driven by the spindles at any desired speed. Suppose
certain speed an observer riding the belt reports a neu
current density in the same direction the belt is moving.
observer in the lab reports no charge density on the cur
sections~according to Pellegrini and Swift! but a positive
charge density on the straight portions according to spe
relativity. It seems strange that the charge density on the
suddenly disappears on the portion of the belt that reach
spindle. Even so, let us take the charge on the curved
tions to be zero. Now it appears that charge can be create
destroyed on the straight portions of the belt by sim
changing the speed of the belt if one insists that no cha
density is ever measured by the observer on the belt.
way out of this paradox is not to claim that there is no o
served charge in the lab but to discard the supposition
the observer on the belt always measures a neutral cur
This is reasonable since the observer is changing refer
frames as the belt slows down. Besides, it rescues sp
relativity.
952 Am. J. Phys., Vol. 65, No. 10, October 1997
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~2! In this example a neutral current density as observe
a rotating system will be constructed and shown to give
charge density in the lab when the rotating system is brou
to rest. The relativistic dynamics necessary to do this with
actual current in a wire is much too complicated. For e
ample, the inertial forces tangent to the wire as the rotatio
reduced to zero must be included. Fortunately, the effect
ing studied is purely kinematic. To simplify, the currents w
be produced by rotating charged hoops of radiusr . Start with
two hoops at rest in the lab, the first one with charge den
r1 in the lab and the second hoop with charge densityr2 .
The charges are fixed in the hoops and it is assumed tha
two hoops are superimposed. The hoops are now rot
about their centers such that hoop one has tangential velo
v1 and hoop two has a greater tangential velocityv2.v1 .
Thus an observer at rest with respect to hoop one will se
current due to the relative motion of hoop two. The char
densitiesr1 and r2 must be chosen such that this observ
measures no net charge. Quantities measured by the obs
on hoop one will be denoted by a tilde. From the discuss
in Sec. V. B it follows that the observer on hoop one me
sures the stationary charge density of that hoop to ber1 /g1
and for neutrality the charge density of hoop two as obser
from hoop one must be

r̃252r1 /g1 . ~53!

The observed current density isr̃2 vd , wherevd is the drift
velocity which, in this case, is the tangential velocity of ho
two as observed from hoop one. Now the four-current d
sity is given by Eq.~50!, where the relativistic factorgd

accounts for the Lorentz contraction of volumes andr08 is the
charge density in the rest system of hoop two, that is,r2 /g2 .
Therefore the charge density of hoop two as observed f
hoop one is

r̃25gd r2 /g2 . ~54!

Equatingr̃2 from Eqs.~53! and ~54! gives

r252
g2

g1

r1

gd
. ~55!

Hence, the observed charge density in the lab is

r lab5r11r25r1S 12
g2

g1gd
D . ~56!

Now eliminateg2 by noting that the velocityv2 is the rela-
tivistic addition ofvd andv1 ,

v25
v11vd

11v1vd /c2 , ~57!

so that

g25S 11
v1vd

c2 Dg1gd . ~58!

Then the observed charge density in the lab is

r lab52r1vdv1 /c2. ~59!

This charge density is written in terms of the current dens
as observed on hoop one,

J̃15 r̃2vd52r1vd /g1 , ~60!

to finally obtain, for the charge density as observed in
lab,
952T. A. Weber
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cr lab5g1b1J̃1 . ~61!

This result is consistent with Eq.~34! obtained by the serie
of transformations in Sec. III.

D. Sagnac effect

The experimentally observed asymmetry in the propa
tion of light around a closed path in a rotating system c
tainly distinguishes it from an inertial frame and is referr
to as the Sagnac effect.13 Setting the line interval of Eq.~11!
equal to zero, the time interval as measured in the lab fo
light signal, traveling at a fixed radius in either direction,
go completely around is

T65
2pg2R

c
~16b!, ~62!

where the plus sign is for the light signal going in the dire
tion of rotation and the minus against.~Note that the integra-
tion is through an angle 2p when integrating in the direction
of rotation and22p against.!

This result shows that clocks cannot be synchronized
the large. Consider the synchronization of clocks in the us
way by sending a light signal back and forth between
clocks. Now try to synchronize a clock with itself by sendin
a light signal in the direction of rotation at a fixed radi
around the disk to the clock and the return signal against
rotation back to the clock. Label the initial sending of t
signal as event 1 occurring at timet. Label the reception of
the signal after it has gone around once along with its em
sion in the opposite direction as event 2. Label the fi
reception of the signal as event 3. From Eq.~62! it is seen
that the times of the events are

t15t,

t25t1
2pg2R

c
~11b!, ~63!

t35t1
4pg2R

c
.

For synchronization of the clock with itself,t2 must be ad-
justed to read

t2syn
5

t11t3

2
5t1

2pg2R

c
, ~64!

which is in conflict with the actual reading of the clock give
in Eq. ~63!. The adjustment in the time,

t2syn2t2522pg2Rb/c, ~65!

can be obtained from Eq.~15! by integrating around a close
path of radiusR and identifying clock B with clock A. As
noted earlier, there is no contradiction in synchronizi
clocks on an open path. For this paper it is not necessar
synchronize clocks in the large but only to synchronize
jacent clocks infinitesimally separated. Measurements
physical quantities are made locally and by symmetry ap
to the measurements made anywhere on the circle.

VI. CONCLUSION

Caution must be used in assigning physical values
quantities described in arbitrary coordinates. In particu
clocks in a rotating frame are not synchronized and this r
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ders the interpretation of the components of four vectors
ficult. But Einstein clearly shows how to assign physic
sense to arbitrary coordinates by considering freely fall
observers. The above analysis follows Einstein’s prescrip
for assigning meaning to arbitrary coordinates and confir
the valid use of special relativity in the experiment of Wilso
and Wilson. As shown in Sec. V, the analysis, based
relativistic kinematics, is simple and self-consistent. There
no need to propose ad hoc mechanisms to resolve the p
dox as presented by Pellegrini and Swift. It should also
noted that these comments apply not only to the interpr
tion of the current four vectors but also to the electric a
magnetic fields.

There is one further aspect of rotating systems that has
been discussed. By transforming to an inertial frame tha
instantaneously at rest with respect to a segment of the
tating shell, a frame of reference is obtained that accounts
the centrifugal force at a single point. But no account
made for differential forces, that is, the difference in force
two different spatial points. For example, the difference
centrifugal force between two charge carriers both of masm
but with radial separation distanceDr is

DF5mv2Dr . ~66!

If an electric dipole is oriented along the radial direction a
is modeled by two equal but opposite chargesq separated a
distanceDr , the dipole moment,

p5qDr , ~67!

is subject to the differential force,

DF5mv2p/q, ~68!

pulling the charges apart. This effect is negligibly small
the Wilson and Wilson experiment.
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In a recent paper on relativistically rotating disks, Web1

presents the prevailing view and appears to contend that
need simply apply traditional relativistic concepts direc
and all problems and paradoxes disappear. After cordial
protracted communication with Professor Weber, the pres
writer remains convinced that the issue is, in fact, far fro
settled, and that the following inconsistencies remain un
solved by the standard ‘‘solution.’’

First, with regard to curvature, it is important to recogni
that finite objects traveling geodesic paths~straight lines as
seen from the lab! in the plane of the disk surface experien
no tidal stresses, and this is true as seen by any obse
including those on the disk itself. Hence the disk surfa
must necessarily be Riemann flat, regardless of how one
lieves time should be defined on the disk. This is directly
odds with the traditional treatment.

Second, consider a continuous standard tape measur
ing up against a ridge on the disk circumference. If we ap
traditional relativity theory and instantaneous co-movi
frames along the disk ridge, we find that the tape one
cumference distance around the rim does not meet bac
with itself at the same point in time. Although one may arg
for local interpretation of standard relativity, at some po
this interpretation must match up globally with physical r
ality. And a continuous tape measure that is temporally d
continuous cannot possibly be a physical reality.

Third, in Secs. V A and V D Weber reviews the tradition
disk analysis tenet of the apparent impossibility of synch
nizing a clock with itself via ‘‘the usual way’’ using ligh
rays traveling around the disk circumference. But how ca
coordinate system in which a clock is out of synchronizat
with itself be a reasonable representation of the real wor

In a recent article the present writer2 has offered a theo
retical solution to these conundrums that agrees with all
periments. In that paper the following fundamental point
emphasized.

Relativity theory is based on two postulates having th
origin in the famous experiment of Michelson and Morle
These are~1! invariance of the speed of light, and~2! ‘‘ref-
erence frame democracy,’’ i.e., all inertial frames are equi
lent; velocity is relative. The first of these carries over
general relativity provided light speed measurements
made locally with standard rods and clocks.

The Michelson–Morley results are applicable to frames
rectilinear ~not rotational! motion, and all of the results o
relativity such as Lorentz contraction, time dilation, a
mass–energy dependence on speed are derived from th
postulates based on that experiment. They are not givea
priori .

The Sagnac3 experiment, on the other hand, is
Michelson–Morley-type experiment for rotational motio
and it showed that the local speed of light in a circumfer
tial direction on rotating frames is not invariant.4 Further, it
has long been known that not all frames are equivalent
rotational motion, as any observer can determine wh
frame is the preferred or nonrotating one~e.g., it is the only
one without a Coriolis ‘‘force’’!.
158 Am. J. Phys.67 ~2!, February 1999
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The problem should be obvious, i.e., we cannot sim
assume that effects such as Lorentz contraction exista priori
on the rotating disk. On the contrary, we have to start w
new postulates based on Sagnac’s results, not those of M
elson and Morley, and rederive the relativity theory for r
tating frames following the same steps Einstein did for r
tilinear motion.

In the paper2 referenced above, the writer has done ju
that. The reference frame used is the~non-Minkowskian! ro-
tating frame itself, not surrogate local Minkowskian c
moving frames~which do not produce the same results!. The
analysis shows time dilation and mass–energy depend
on n5vr , just as in standard special relativity~and therefore
agreeing with cyclotron experiments!, but no Lorentz con-
traction along the disk rim. The disk surface turns out to
Riemann flat, in agreement with tidal force analysis, and
curved as argued by Einstein and others. Further, a cont
ous tape measure does indeed meet back up with itself a
same point in time.

The lack of synchronization of a clock with itself is als
resolved, since the underlying and tacit assumption in
‘‘usual way’’ of synchronizing is Einstein’s first postulat
that the speed of light is invariant, i.e., the same in b
directions around the rim. But the Sagnac experiment sh
that this is not true, and, in fact, to first order,

un light, circumferenceu5c6vr , ~1!

where the velocities in~1! are physical~not merely coordi-
nate! values, i.e., they represent values that would be m
sured by standard physical instruments.

Further, the second relativity postulate does not apply
ther, as anyone can determine their angular velocity and t
circumferential velocity (vr ) relative to the inertial frame in
which their axis of rotation is fixed. When light rays are us
to synchronize clocks around the circumference by obser
knowing their circumferential velocity and the speed of lig
from ~1! above, the synchronization turns out to be exac
what one finds by using light rays from a clock located at
disk center. Hence, a clock can be synchronized with its
using light rays traveling around the circumference, a
there is no paradox at all.

In the paper it is also shown that the ‘‘surrogate rods p
tulate’’ ~small coincident inertial and noninertial standa
rods with zero relative velocity are equivalent!, used liberally
with co-moving frames in prior rotating disk analyses,
invalid for non-time-orthogonal frames, of which the rotatin
frame is one. In other words, Minkowski tangent frames c
represent~curved or flat! time orthogonal frames locally, bu
not ~curved or flat! non-time-orthogonal frames. This impo
tant fact appears never to have been realized before. A
corollary, this conclusion is true even in the large radi
small rotational velocity limit.

The derivation of all of these results is remarkab
straightforward, provided one can put aside the unconsc
predisposition toward a theory derived from different pos
lates than those shown by experiment to be applicable
rotating frames.
158© 1999 American Association of Physics Teachers
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With regard to the traditional argument that ‘‘...inertia
frames used to interpret experiments are only approxim
and invariably are part of a rotating system,’’ for every su
posed rotating system we are in~e.g., earth around sun, su
around galactic center, etc.! except one~earth surface around
earth central axis!, our frame is actually a freefall, or inertial
system and therefore Lorentzian. The only effective ro
tional velocity in that case is the earth surface velocity abo
its own~inertial! axis. Michelson and Gale5 did, in fact, mea-
sure the Sagnac effect for the earth’s surface velocity in
1920s.

The most significant experiment, however, and the m
accurate Michelson–Morley-type test to date, is that of Br
let and Hall.6 They found a ‘‘null’’ effect at theDt/t53
310215 level, ostensibly verifying standard relativity theor
to high order. However, in order to obtain this result the
were forced to subtract out a ‘‘spurious’’ and persistent s
nal of approximate amplitude 2310213 at twice the rotation
frequency of their apparatus. The theory developed by
present writer, in contradistinction to the standard theo
actually predicts just such an effect due to the earth surf
velocity. For the Michelson–Morley test geometry th
theory predicts a signal amplitude of 3.5310213. For the
Brillet and Hall test geometry, however, the light paths a
not restricted to two perpendicular paths, and the result
Dt/t effect is diluted. Brillet and Hall do not specify perti
nent light path dimensions, but from the sketch of their a
paratus, one could expect a reduction in a signal of perh
30%–50%. This would result in a predicted amplitude ran
of 1.7– 2.5310213 and remarkably close agreement with th
measured value.

With regard to electrodynamics, Ridgely7 has recently
used covariant constitutive equations in an elegant anal
to answer a troubling question cogently posed by Pelleg
and Swift.8 Ridgely derives electrodynamic results for th
rotating frame itself, not the co-moving frame~s!, and finds
that those results match what one would find by simply a
plying Maxwell’s equations and traditional special relativit
to the co-moving frame~s!.

The conclusion is this. Only with use of the rotating fram
itself ~and associated transformations and metric! can one
obtain internally consistent results that agree with all expe
ments. However, for the purposes of time dilation, mas
energy, and momentum calculations~as the writer has shown
e
h
o
n

o
l
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in his paper!, and Maxwell’s equations~as Ridgely has
shown!, one can get away with using traditional special re
tivity and local Minkowski co-moving frames. That is, in
these cases Nature conspires to make both the rotating~non-
traditional! and co-moving~traditional! frame solutions pro-
duce the same result for lab observers~i.e., mass–energy
dependence onvr , electric polarization, etc.!. When it
comes to matters of time~synchronization, simultaneity!,
space~curvature!, and Michelson–Morley/Sagnac-type ex
periments, however, then analysis must be confined to
rotating frame itself, otherwise the above-delineated inco
sistencies and inexplicable ‘‘spurious’’ experimental signa
inevitably arise.

Thus, it appears that the rotating disk problem may ha
at long last, been completely solved. According to Ridgely
and the present writer’s analyses, no paradoxes remain,
all theory matches up with the physical world as we know

Finally, and perhaps ironically, the writer’s analysis act
ally turns out to be completely consonant with special re
tivity. That is, unlike other attempts to reconcile the Sagn
results, it leaves Lorentz covariance and all other traditio
ally relativistic effects forMinkowskiframes intact. Apparent
differences, such as those described herein, manifest spe
cally for the non-Minkowskian rotating frame, and general
are characteristic of non-time-orthogonal frames. That is,
underlying physics is the same, merely being seen from
different ~time orthogonal versus non-time-orthogonal! point
of view.

a!Electronic mail: rklauber@netscape.net
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A full discussion of the many issues raised by Rob
Klauber1 is not possible in this short response. But I hope t
following comments give some insight into the problem
the rotating disk and allow the reader to judge where a
how we agree or disagree.

The spatial part of the invariant line interval in the lab
ratory frame~inertial frame! can be described by cylindrica
rt
e
f
d

-

coordinates. To go to the frame of the rotating disk,
azimuthal angle is replaced byf1vt to get2

ds25c2~12r 2v2/c2!dt22dr22r 2 df222r 2v df dt, ~1!

wherev is the angular velocity. The dependence onz, the
coordinate along the axis of rotation, has been suppres
159© 1999 American Association of Physics Teachers



en
ry

-
is

e o

-

e
c

ar

t b
. A
a

iel
el
il
o

l
t

li
t i
h

te
s.
be
er

i-
tly

in
his
hr
m
d

n

u-
ar

ua

r
a

ty

s of
or-

e in

ea-
in-

nt
and
in

for
the

er

out
rtial

e

e

and
he
x-

the

e
is

y
of
ble

ll
ed
s a

2
ly
l to
ith
The anglef has the range 0 to 2p. Coordinate clocks are
taken to be fixed in position on the rotating frame, ev
though the timet that they read is the same as laborato
time.

These coordinates~r, f, andt! are just one set of an infi
nite number that could be used to describe the rotating d
For example, one can go about the disk changing the tim
the clocks by settingt85t8(r ,f,t) without leaving the frame
of the rotating disk. Furthermore, a fixedr andf give a point
on the disk that has velocityv5vr with respect to the labo
ratory. These coordinate markers~r andf! can be changed to
a new set of markers so that, for given values of these n
markers, one again has a point fixed on the disk. All su
coordinates describing the frame of the rotating disk
equally valid according to Einstein.3

Since the coordinate markers are arbitrary, one mus
cautious in their interpretation of length and time intervals
description of an experiment or a measurement can be m
in any of these coordinates and, if done correctly, must y
the same result. As an example, the Schwarzschild line
ment can be written in terms of the traditional Schwarzsch
coordinates or in isotropic coordinates. The transit times
radar signals reflected from an inner planet~a test of genera
relativity! look very different in terms of these two differen
coordinate systems. But the predicted numerical values
the transit times must be the same.4

The traditional way to describe a local event in a comp
cated geometry is to transform to the inertial frame tha
instantaneously at rest with respect to the event. One
confidence in the interpretation of distances and time in
vals in terms of the resulting Minkowski coordinate
Klauber objects to this procedure. Certainly this would
inappropriate for many studies of nonlocal or global prop
ties of the metric.

Because of the cross term in the metric of Eq.~1!, clocks
at fixed r but differentf are not synchronized in the trad
tional way of sending light signals back and forth direc
between the clocks.5 Adjacent clocks on anopencurve, how-
ever, can always be synchronized by adjusting the read
of the various clocks. In the case of the rotating disk t
procedure cannot be extended globally; attempts to sync
nize clocks on a closed curve lead to a discontinuity in ti
between two adjacent clocks. Klauber, however, uses a
ferent synchronization in which the coordinate timest are
synchronized as they stand. His method of synchronizatio
described following Eq.~1! of his comments.

A simple example may clarify how some of the concl
sions of Klauber do not contradict the traditional view. St
with the invariant line interval of an inertial frame,

ds25c2 dt22dx2, ~2!

and transform to a new frame by

x5x81vt, ~3!

to get

ds25~c22v2!dt22dx8222v dt dx8, ~4!

for the line interval described in the new coordinates. Eq
tion ~3! shows that every fixed pointx8 of the new frame
travels with velocityv with respect to the original frame. Fo
the propagation of light, set the invariant line interval equ
to zero to find
160 Am. J. Phys., Vol. 67, No. 2, February 1999
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52v6c, ~5!

that is, the coordinate velocity is (c2v) to the right and
2(c1v) to the left@compare with Eq.~1! of Klauber’s com-
ments#. These velocities do not contradict special relativi
since, in the traditional view, the clocks reading timet are
not synchronized, that is, clocks with largerx8 have later
times than if they were synchronized.

There is no contraction between the coordinate marker
the two frames with an observation made at the same co
dinate timet. This follows directly from Eq.~3!,

Dx5Dx8, for Dt50. ~6!

But the question arises as to what is the actual distanc
the spatial coordinate intervalDx8 of the moving frame.
How would an observer on this frame set about making m
surements and doing experiments so that the results are
telligible when communicated to other observers on differe
frames? An atomic clock can be used to measure time
the SI meter, defined as the distance traveled by light
vacuum during a time of 1/299,792,458 s, can be used
distance. With this definition of distance, an observer on
moving frame can measure the length of the intervalDx8 by
recording the time for a light signal to go back and forth ov
the interval. The distance5 is simply one-half of the proper
time interval elapsed multiplied byc. This gives

Distance5
Dx8

A12v2/c2
, ~7!

that is, the coordinate system appears to bestretched. Then if
a new coordinate system for the moving frame were laid
with the same standard meter as used in the original ine
frame, the new coordinate intervals on the moving fram
would appearcontracted, as observed from the lab.

Unlike the clocks on the rotating disk, all the clocks on th
moving frame with a metric described by Eq.~4! can be reset
to eliminate the cross term. Then, rescaling the spatial
time coordinates one arrives at the Minkowski metric. T
overall transformation is the Lorentz transformation, as e
pected.

The same measurement of distance can be used on
rotating disk; one finds that

Distance5
rDf

A~12v2/c2!
, ~8!

for the coordinate intervalrDf, while the distance in the
radial direction isDr . Measured in this way, the distanc
around the rim of the rotating disk divided by the radius
greater than 2p, that is, the geometry is non-Euclidean.

The experiment of Brillet and Hall is a test of the isotrop
of space.6 They measure the apparent length of the cavity
Fabry–Perot interferometer mounted horizontally on a ta
that is rotated about the vertical at a ratef ~about once every
10 s!. The condition of standing waves within the cavity wi
change if the propagation of light varies due to a preferr
direction of space. Such an anisotropy would show up a
signal at rotation frequency 2f . Brillet and Hall obtained a
null result after subtracting a spurious signal at frequencyf
from their data. The cause of this signal is not explicit
stated in their paper. Klauber attributes the spurious signa
the effects of the rotating frame of the earth. However, w
160Notes and Discussions
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the length of the cavity in terms of the metric as given in E
~8!, one obtains the null result expected for spatial isotro
that is, there is no apparent change in length of the ca
with orientation. Klauber does not agree with this res
since he does not accept the distance formula of Eq.~8!.

Since Eq.~8! is good for small distances and is appropri
for a local experiment, there is the possibility that nonloc
effects of the metric could contribute to the spurious sign
The sensitivity of the instruments may be such that, e
though the experiment is of short duration and spatial ext
nonlocal effects of the metric are observed. Using the me
of Eq. ~1! for the propagation of light, one finds that an
nonlocal effects due to rotation are negligible.

The most reasonable explanation of the spurious sign
the actual change in length of the cavity due to the vary
gravitational stretching of the interferometer. This variat
comes about because the axis of rotation of the interfer
eter is not perfectly vertical. Brillet and Hall state that this
one of two major factors that limit the sensitivity of th
experiment. This stretching produces a strong signal at
161 Am. J. Phys., Vol. 67, No. 2, February 1999
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table rotation frequencyf. This strong signal can be largel
eliminated since the signal of interest is at twice the rotat
frequency. But Brillet and Hall refer to the strong signal
‘‘nearly’’ sinusoidal so one expects higher harmonics. A se
ond harmonic down by a factor of 12 would be approx
mately the strength of the spurious signal at frequency 2f .
No further explanation of this signal is warranted witho
further analysis of the data.
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EXAMS

I believe that perhaps one of the most potent influences tending to the development of medi-
ocrity in thought is to be found in the necessity of testing the progress of the student as he learns,
in the examination system, for example. If it is necessary every few weeks so set a group of half
a dozen questions to test what the student has acquired, it is much easier to have questions which
permit an answer in terms of facts, or in a standardized system of words invented to describe
principles, than it is to set questions which necessitate answers which come from the brain rather
than from the memory. It is convenient for the examiner if the answers are all more or less alike
in method and wording.

W. F. G. Swann, ‘‘The Teaching of Physics,’’ Am. J. Phys.19~3!, 182–187~1951!.
161Notes and Discussions


