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In this paper, the rotating disk as an example of a non-Euclidean space is carefully examined; the
basic arguments of Einstein are emphasized. A new approach is also presented which resolves the
Ehrenfest paradox. ©1997 American Association of Physics Teachers.
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Einstein, in his popular book,1 The Meaning of Relativity
gives a rotating coordinate system as an example of a n
Euclidean space. We reconstruct his arguments while
phasizing the principles involved. We also present a n
approach which gives the same result and shows that a
terial body set into rotational motion experiences stretch
tangent to circles centered on the axis of rotation.
Consider a region where there are no effects of grav

Let K be an inertial frame of reference and let the frameK̄
rotate with constant angular velocityv about a fixed point O
in K. For both frames choose cylindrical coordinates w
common origin at O and with thez andz̄ axes aligned along
the axis of rotation. We restrictr by vr,c so that the co-
ordinate system ofK̄ can be realized by markings on a m
terial body. Here,c is the velocity of light in vacuum andvr
is the velocity of a point inK̄ as observed byK. In K let C
be a circle of radiusr centered at O and perpendicular to t
axis rotation. LetC̄ be the locus of points inK̄ that coincide
with C at any given time.C̄ will be a circle of radiusr̄ . We
know that the circumference of the circleC divided by its
radius is 2p since we have Euclidean geometry in inert
frames of reference. Einstein showed that the ratio,R̄, of the
circumference ofC̄ as measured inK̄ to its radius is greate
than 2p. Such a measurement presents a problem sinc
involves an interpretation of coordinates in a non-inertial r
erence frame.
We can start with the invariant interval as described by

coordinates inK:

ds25c2 dt22dr22r 2 df22dz2, ~1!

where the time is measured by a set of synchronized clo
placed at convenient fixed positions inK and cylindrical co-
ordinates are used for the spatial part. Arbitrary transform
tions to new coordinates will leave the interval unchang
only the space-time description of events will be chang
Now all of these frames of reference with new space-ti
coordinates are equally valid. Einstein was led to this c
clusion by thoughtful consideration of the local equivalen
of an accelerated frame to a gravitational field. Even thou
all these frames are equally valid we know the form of t
laws of nature only in inertial frames where distance is m
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sured with standard rods and time intervals by stand
clocks. Even in the case of a space time manifold includ
gravitational fields,2 a transformation can be made to a loc
inertial coordinate system such that the geodesic equatio
a straight line, that is, coordinates in which particles beh
as if ‘‘free’’ of gravitational forces or inertial forces. Einstei
refers to observers in such coordinates as freely falling. Fr
the known laws of physics in the inertial system we can th
infer the form of the laws in the general system.
There is no need to make any detailed algebraic trans

mations to apply the above procedure to the measureme
the circumference and the radius ofC̄ ~see Adler, Bazin, and
Schiffer3 for the details of such a transformation!. The mea-
surement of the length of any short segment in the plane oC̄
can be done in an inertial frame that is instantaneously at
with respect to the segment. Imagine using many short s
dard rods placed end to end along a curve to measure
length. Do this along the circumference ofC̄, with each rod
in the instantaneous rest system of the segment it is to m
sure. As observed simultaneously fromK, the rods appear
Lorentz contracted and lie end to end along the circleC̄
which is superimposed onC. Since the rods are shortened
compared to a rod at rest inK, the number along the circum
ference ofC̄ is greater by the factor~12v2r 2/c2!21/2 than
the number of rods inK needed to measure the circumfe
ence ofC. Do the same for the radius and find thatr5 r̄
since lengths perpendicular to the motion are not Lore
contracted. We therefore conclude that the circumferenc
C̄, as measured by freely falling standard rods instan
neously at rest with respect to the segments ofC̄, divided by
its radius is

R̄52p~12v2r 2/c2!21/2. ~2!

At this point one might ask about a reciprocal measu
ment of C as observed fromK̄. It might be mistakenly
thought that the measured circumference ofC would be
larger thanC̄. Certainly such reciprocity exists in the me
surements of lengths between two inertial frames, but fo
rotating system coordinate clocks cannot be synchroni
throughout space.2 Without synchronization of clocks, con
486© 1997 American Association of Physics Teachers
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sistent measurements of moving lengths cannot be m
Thus the measurement can be made fromK but not K̄.
We can also arrive at this same result in a new way. Dr

n equally spaced radial lines from O toC in the frameK.
Draw the same number of equally spaced radial lines from
to C̄ in the frameK̄. Note that clocks need not be synchr
nized for the construction of these equally spaced radial li
in eitherK or K̄. For definiteness take the number to be 3
In each frame these radial lines divide the circumference
the corresponding circle into 360 equal intervals. As o
served simultaneously fromK, the length of the intervals on
the circleC̄ must appear to be exactly the same length as
intervals on the circleC. If they appeared otherwise, a cou
of the intervals on the circleC̄ would not be 360. This is
impossible since fromK one can observe all the radial line
in K̄ simultaneously. Note that this applies for any angu
velocity of the rotating frame, even during an acceleration
the frame from rest to its final angular velocity. For the i
tervals to appear the same length in spite of the Lore
contraction, the actual rest length of an interval inK̄ must be
greater by the factor~12v2r 2/c2!21/2. This confirms our ear-
lier result and leads to an interesting conclusion. Suppose
coordinate system is realized by markings on a material d
Then the material within the intervals must physically stre
as the disk, starting at rest, is brought up to rotational sp
v.
Notice that the above arguments, based solely on rela

istic kinematics, offers a resolution of the Ehrenfe
paradox.4–6 The paradox is as follows: As observed from t
inertial systemK, the Lorentz contraction acts only on th
periphery and not on the radius of the disk. It is therefo
proposed that the ratio of the circumference to the radius
the rotating disk is less than 2p, an apparent violation of the
Euclidean geometry of an inertial frame! But, as seen abo
an increase in rest length compensates for the Lorentz
traction. This is consistent with the statement of O” . Gro”n7

that ‘‘relativistic kinematics alone forbids giving the disk
rotation so that the rest lengths of the elements of the per
ery remain constant during the period of angular accele
tion.’’ In detail, consider two closely spaced marks on t
periphery of the disk which is initially at rest. As observe
from K, the two marks have exactly the same angular ac
eration as the disk is brought up to rotational speedv. It
follows from simple kinematics that the distance between
487 Am. J. Phys., Vol. 65, No. 6, June 1997
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two marks must not change as observed from the ine
frame. Special relativity then implies that the rest length b
tween the two marks has increased. Thus, if the ends o
unstretched spring were initially fastened to the marks,
spring would be elongated by

D l5 l 0@~12v2r 2/c2!21/221#, ~3!

where l 0 is the unstretched length of the spring. As stat
earlier, the material of the disks within the intervals mu
physically stretch. This change in rest length is entirely d
ferent than the change in size associated with observat
made between moving inertial frames in special relativi
Here it is assumed that the disk will elastically deform rath
than fragment.
Discussion of the forces involved and the elastic prop

ties of the material of the disk are beyond the scope of
present note. Some dynamical aspects of the rotating
can be found in the papers by Clark,8 Cavaller,9 Brotus,10

and McCrea.11
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SIMPLICITY VS. UGLINESS

Ever since ’t Hooft’s 1971 paper I had been quite convinced of the correctness of the ou
of this theory, but I regarded the particular version of this theory that Salam and I had constr
as only one specially simple possibility. For instance, there might be other members of the fa
formed by the photon and theW andZ particles, or other particles related to the electron a
neutrino. Pierre Duhem and W. Van Quine pointed out long ago that a scientific theory can n
be absolutely ruled out by experimental data because there is always some way of manipu
the theory or the auxiliary assumptions to create an agreement between theory and experim
some point one simply has to decide whether the elaborations that are needed to avoid c
with experiment are just too ugly to believe.

Steven Weinberg,Dreams of a Final Theory~Pantheon Books, New York, 1992!, p. 125.
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