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Pellegrini and Swift have recently suggested that the use of special relativity in the calculation of the
electric dipole moment of a moving magnetic dipole cannot be applied to the classic experiment of
Wilson and Wilson, which used rotational motion. This paper contests that view. The disagreement
arises in the choice of coordinates used to represent physical quantities measured in the rotating
frame. The arguments of this paper are based on Einstein’s discussion of the validity of arbitrary
coordinates and the difficulty in their interpretation. Because of the lack of synchronization of
clocks, caution must be used in assigning values to physical quantities in the usual coordinates that
describe a rotating frame. This paper gives the detailed transformations to an inertial rest frame,
where the interpretation of measurements is assured. Other aspects of the rotating frame are also
discussed. ©1997 American Association of Physics Teachers.

[. INTRODUCTION enough, it would be difficult to distinguish, in a short time
interval, the rotational motion of a finite segment from rec-

In 1908, Einstein and Ladisuggested that a measurementtilinear motion. To claim that the two motions are qualita-
of the electric dipole moment of a moving magnetic dipo|etively different in that one induces surfaqe charg_e_ while the
be used as a test of special relativity. In 1913, Wilson and®ther doesn’t, should bother one’s physical intuition. It ap-
Wilsor? performed the experiment on a magnetic insulatorP€ars physically unreasonable to have zero induced surface
rotating in an external magnetic field. A clear account of thischarge density in a motion that can be made arbitrarily close
experiment is given by Pellegrini and SwifThere are two !0 rectilinear motion, for which everyone agrees surface
effects of the magnetic field. First, the field induces magnecharge is induced. It should also be noted that the inertial
tization in the material. This moving magnetization, accord-frames used to interpret experiments are only approximate
ing to relativity, produces an electric polarization as mea-2nd invariably are part of a rotating system.
sured in the laboratory. Second, the magnetic field exerts a A more rigorous treatment follows in Sec. I, where the
force on the moving bound charges, thereby inducing arnethods for the dete.rmlnatlon' of physical guantities as one
electric polarization in the material. In the experimentalWould observe them in a rotating frame are laid out accord-
setup of Wilson and Wilson these two contributions to theind t0 the reasoning of Einstein, and in Secs. Il and IV the
electric polarization must be added. Their experimental rel€cessary transformations are given and applied to an ideal
sults agree with the calculated values based on special rel§XPeriment. In Sec. V, some questions and objections to the
tivity. Pellegrini and Swifft have recently challenged the method of calculation are dlscu_ssed. F|_nally, in the _conplu-
conclusion that this experiment is consistent with speciafion. the effect of the differential centrifugal force is dis-

relativity and insist that when the electric polarization is CUSS€d-
properly calculated in a rotating system, the result does not
agree with experiment. They suggest that the theory may THE PRINCIPLE
have to be modified or the experiment is wrong. This author
disagrees. In this paper, only the contribution to the electric In the mathematical analysis of this experiment it is as-
polarization due to the motion of the magnetized material isumed that the laboratory is an inertial frame with invariant
discussed since this is where the disagreement lies. For thige interval
g;tri%?fe, the insulator is taken to have a permanent magneti- A= c2dt2— dr2—r2d¢?— d 2, )
A magnetized slab of material in uniform motion perpen-where the spatial part is described by cylindrical coordinates.
dicular to its magnetization has, according to special relativTransformation to arbitrary coordinates leaves this interval
ity, an electric polarization as measured in the laboratoryunchanged; only the space—time description of events will be
The electric polarization of the magnetized slab, if uniform,different. Einsteirf, basing his arguments on the principle of
can be described by a positive bound surface charge densigguivalence, concluded that all coordinates are equally valid.
on one side and a negative bound surface charge density @ut the laws of nature are known only in inertial frames,
the other side. Pellegrini and Swift, however, assert that ifvhere length is measured by standard rods and time is mea-
this slab is part of a rotating cylindrical shell, no chargesured by standard clocks. Einstein suggests the use of a
density is induced so that a result at odds with special relafreely falling observer whose frame will be inertial. Einstein
tivity is obtained. The following physical reasoning castsstates: “We can therefore always regard an infinitesimally
doubt on this conclusion. small region of the space-time continuum as Galilean. For
Suppose the radius of the cylindrical shell of magnetizedsuch an infinitely small region there will be an inertial sys-
material is taken to be extremely large and the angular vetem relative to which we are to regard the laws of the special
locity to be small, such that the speed of a segment of théheory of relativity as valid.” In general, even with a metric
shell matches the experimental value. If the radius is largéhat describes a gravitational field, a transformation can al-
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ways be made to a local inertial frame such that the geodesit is easily verified that the matrix multiplication in E¢B)
equation is a straight line, that is, material particles behave agelds the correct line interval. The current four vector,
if “free” of gravitational or inertial forces. The word local is which transforms like the displacement four vector under
used since the transformation is strictly valid only at onechange of coordinates, is

point in space—time. Even so, the inertial system will be an

extremely good approximation if attention is confined to a Cp
sufficiently small neighborhood of the space—time point. NE

It should be noted that Einstein was not suggesting the J= 32 | ®)
restriction of relativity to local inertial frames but, on the 73

contrary, his discussions were aimed at the development of
the general theory. He argues that all arbitrary frames OT/vherep is the charge density antl are the components of

reference are equally valid and the laws of physics are to bg,e current density. The time componeptis denoted as the

written in generally covariant form. The important point iS ;o 1 component while the Latin indéxranges over the
that the laws of physics must reduce to their familiar form in

e ) .spatial components 1, 2, and 3. The invariant line interval is
a local inertial frame. In such a frame one has confidence in ;
e . " usually written as

assigning values to physically measurable quantities.

Although the explicit transformation is given below, there ds?=g,zdx* dx? (6)
. oo . af ’
is no need for it in the case at hand. The correct frame in
which to measure the electric charges and currents of a smallhereg,; are the components of the symmetric mat@x
segment of the rotating cylindrical shell is the inertial frameRepeated Greek indices are summed over 0, 1, 2, and 3.
which is instantaneously at rest with respect to the segment. Consider now the following situation: A uniformly mag-
Then special relativity applies. Wilson and Wilson used spenetized material in the form of a cylindrical shell rotates
cial relativity to calculate the induced electric polarization ghout its symmetry axis, which is oriented along thaxis.
for the rotating material and verified the results experimen-he magnetization is also along this axis. Mtbe the mag-

tally. . o ) ) netization of the material when it is at rest in the laboratory,
Since the transformation to an inertial frame is valid for aas measured in the laboratory. Two questions arise.

small region of space—time, only physical relationships that gijrst what is the magnetization measured by an observer
are local can be described. Maxwell's equations in differeny; rest with respect to the rotating cylinder? In Sec. IV it is
tial form are local in that they relate the fields and theirg,o\n that this measured valueNl y, wherey is the usual
sources at any space-time point. On the other hand, suGl| svistic factor. Typically, magnetic dipole moments are
things as the radiation of an accelerated charge is global ifogcribed by current loops, that is, current times the area of
that it requires the determination of fields on surfaces that arg, | loop. In the present caée beca{use of the cylindrical sym-
at large distances to the charge. Such global problems i oy “the magnetizatiofdipole moment per unit volume
arbitrary coordinates are extremely difficult, if not impos- can be described by cylindrical sheets of current in the in-

sible, to handle. Fortunately, the problem at hand require : R ;
' o ' " reasing an reasigdirections. No electric char n-
the determination of the current and charge densities, botgigaiss n%gdgddec eas ections. No electric charge de

local quantities. The second question is the most important and is the basis
of the disagreement with Pellegrini and Swift, that is, to what
coordinate system should one ascribe the measured values of

lIl. TRANSFORMATION BETWEEN THE the current density? Notice that this is not the same as the

ROTATING FRAME AND THE LABORATORY situation of determining the components of a vector in a

) , _coordinate system by transforming from a system where the
The needed coordinate transformations are most easilyomponents™ are known. The following development ad-

given in terms of matrices. Before looking at the details ofgresses this last question.

these transformations some background material will be pre- T¢ relate the current four vector in the rotating frame to

sented. Four vectors are represented by column matrices. {Re measured values in the laboratory, three changes of co-

particular, the displacement four vector is ordinates will be used. The first transformation goes from the
cdt laboratory to the rotating frame; the other two transforma-

tions are simply changes of coordinates in this frame. Each

dx= dr , 2 of the transformations will be discussed separately and then
do the overall result will be obtained by applying the three in
dz succession. None of the transformations will change the ra-
and its inner product with itself gives the invariant line ele-dial coordinater, so the following notation will be used
ment, throughout. The velocity of a point is
ds?=dx"Gdx, (€)) v=owrl, @)
wheredx" is the row matrix formed by taking the transpose B=vlc ®
of dx, and the metric is represented by the symmetric matrix, '
1 0 0 O and
0 -1 0 O y=(1-p? "2 9
““lo o -2 o[ @ ’
It should be kept in mind that two points with different
0 O 0o -1 coordinates will have different velocities.
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Let the coordinates in the rotating system be denoted byhere the integration is from the location of clock A to the
overbars. The transformation from the laboratory to the rodocation of B over some chosen path between the two clocks.
tating frame is Here, gy is the 00 component of the matr@ and the re-

=1 r=7_ peated Latin indices are summed over the spatial coordi-

' ' (100  hates. This expression can be used to synchronize clocks
¢:¢T+ ot z=7. along an open curve. Start with clock B infinitesimally close

' ' to clock A and adjust clock B according to E@.5). Then

In terms of these barred coordinates the invariant line intermove the label B to successive clocks along the chosen
val given by Eq.(1) is curve, adjusting each clock in turn. The clocks will then be
o — synchronized for light traveling on the chosen path, but if a

ds?=y 2c2dt 2—2cBrd¢dt—dr 2—r 2d¢ 2>—dz2 (11) different path between the end clocks is taken, these end

clocks may appear unsynchronized.

Even though the new time coordinate is equal to the old,” . . .
one should not interpret this to mean that the new clocks are Itis apparent from Eq(15) that a transformation eliminat

the same as the ones at rest in the laboratory system. Codﬂ-g lt(heTcr:osts terfrrgOi \t/'w” arl:torlrzjakt)lcally smc?:ﬁmzle tEe

dinate clocks are usually considered at rest with respect t&°C tsb € transtorma |<in(sj ou d'e suc h atthe gt_oc St‘;“rf
the corresponding spatial coordinates. The invariant line inf€SEL Dy varying amounts depending on théir positions bu
terval in Eq.(11) shows that the proper time interval at a with no changes in their spatial coordinates. The infinitesi-

fixed position in the new coordinates is given hyr mal trﬂsformatloﬁthat resets the clocks is
=At/y=At/vy. This demonstrates the time dilation of a cdt=cdt* + By?r*d¢*, r=r*,
standard clock at rest in the rotating frame when comparedto — _

the clocks of the laboratory. p=¢*, z=7*.

The transformation, Eq(10), can be written in matrix | these new coordinates the invariant line interval reads as

(16)

form as
_ ds?=y 2c2dt*2—dr*2— y?r*2d¢p*2—dz*2. (17)
dx=Tdx, 12 . — . .
(12 Unfortunately, the expression fait in Eq. (16) is not inte-
where grable, that is, no function of the sort
1 00 O =t %, z%) (18)
— 0O 1 0 O exists. Therefore clocks cannot be synchronized throughout
T= wle 0 1 0 (13 space. But all that is needed in the analysis is the synchroni-
zation of clocks in a local region of a spatial point as given in
0 0 0 1 Eg. (16). In matrix form,
is the transformation matrix. The current four vector follows dx=T*dx*, (19
the same transformation rule as the displacement four vector,h
that is: where
J=TJ. (14

This is the first of the three transformations needed. Notice T*=

that if the charge density in the barred systemyere zero,

then no charge density is obtained in the laboratory frame.

Since only a surface current density is needed to describe the

magnetization, Pellegrini and Swift assumed the charge der?£nd

sity to be zero. This is the mathematical basis of their claim.  \=pgy?r*, (22)

But care must be taken in ascribing meaning to objects ex- . . .

pressed in these new coordinates. As explained in Sec. II, thEiS is the second transformation needed. ,

safest way to do this is to transform to a local inertial rest, EVen though the starred coordinate system is not an iner-

system where the physical meaning of the coordinates is ag_al frame, thereT is no difficulty in m'gerpretlng the metrlc. For

sured. But even without doing this, there is an obvious dif-example, the circumference of a circle of radidsis

ficulty with the invariant interval for the rotating system: 20
c-

With the cross-terntt d¢, clocks in the rotating system are
not synchronized. This follows directly from the method of
synchronization by sending a light signal back and forth bewhich shows that the spatial part of the metric is not Euclid-
tween two clocks. Because of the cross term, light appears tgan. The application of Eq17) appears to violate the local
propagate differently in the positivg direction compared to restriction placed on the transformation. But this metric im-
the negativep direction, thereby requiring an adjustment to plies, however, that the measurement can be carried out by
bring the clocks into synchronization. See the discussion ofeasuring, at rest, successive lengths on the circumference

(20

O O O
O O +r O
o r O~
» O o ©

. yr*dp=2myr*, (22)

the Sagnac effect in Sec. V. of the circle, each measurement made locally and each mea-
To synchroniz&® two clocks, say clock B to clock A, the surement identical to the others. The marked off lengths are
time on clock B must be adjusted by the amount summed as indicated in E¢R2). Further discussion of the
B B geometry of the rc.)ta.ting.disk will _bg found in Sec. V.
cAt_ch (Goi [Gop) dX = _zf By*rdg, (15) _Slnce the metric is dlagona_l, it is easy to trans_form to
A A Minkowski coordinates at a given space—time point by a
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change in scale of all the coordinates. This will be the third

and final change in coordinates. These new Minkowski co-
ordinates, denoted by a tilde, represent the local inertial rest
system in which measurements are to be made. The transfor- j—

mation is
dt* =ydt, dr*=d¥, 23
do*=(yr*)"1dy, dz*=dz
or, in terms of matrices,
dx* =T d, (24
where
y 0 0 0
—~ 0 1 0 0
o o (y)t o 25
0 0 0 1
With this transformation the Minkowski line interval,
ds?=c?dt—dx 2—dy 2—dz?, (26)

is obtained for the point considered. It should be emphasiz
that with this last change of coordinates, the new metric is
restricted description of the rotating frame valid locally at a
given point. It should also be noted that the overall transfor-
mation from the lab to this local coordinate patch is a Lor-

entz transformation.

The current four vector in the Minkowski coordinates
must be determined so that it is the source of the observeﬂ"I
magnetization of the material. This can be done with confi-
dence since these coordinates describe an inertial frame §
reference in which the laws of physics are known. What is
needed is a current density in tHg direction and no charge
density. With this component of the current density, denote

by Jy, the four current is written as

0
(27)

,8')’ij
0
[(yn) '+ Bywic]]
0

In particular, the charge density as measured in the labora-
tory is

cp=PB7J,. (34)

Since the current density is confined to a surface, so also is
the charge density. Witk ando denoting the surface current
and the surface charge densities, respectively, the final result
is

(33

(35

This is exactly what would be obtained by a special Lor-
entz transformation between two inertial frames with relative
velocity v in the direction of the current density. It follows
that the calculation made by Wilson and Wilson using spe-
cial relativity does indeed give the correct result.

e ltmay be objected that the result given in E84) implies

& creation of charge by rotation. This, of course, would be
impossible. According to Eq34), a circular current loop,
neutral in the rotating frame as seen by the local comoving

o= Byx«lc.

observer, will have a net charge density as observed from the
laboratory. By symmetry, the charge density is the same at
each point of the loop and adds to give a nonzero total
arge. It appears that by merely changing the angular ve-
ocity, the net charge in the laboratory is changed. On the
ntrary, it must be concluded that if the angular velocity
Changes, the charge as observed in the laboratory remains
unchanged. Therefore, if the rotating frame is brought to rest,
hen the charge density, initially zero as observed in the ro-
ating frame, must increase until it agrees with the laboratory
value when the rotation ceases. Several examples supporting
this view are given in Sec. V.

IV. AN IDEAL EXPERIMENT

Let us now calculate the induced charge distributions of a

The remaining chore of transforming this vector to the labo-permanently magnetized insulator in the shape of a cylindri-
ratory system by the series of transformations is as followscal shell which is rotating. The first task is to determine the

J=TJ, (29)
J=T*J*, (29)
J=TJ. (30)
Overall, the transformation is
J=TT*T3J, (31)
where, from Eqs(13), (20), and(25),
y O By 0
TT*T 0 1 0 0 32
| wylc 0 (Br)"*+Bywlc 0 (32
0 0 0 1

Applying this transformation matrix td given in Eq.(27)
yields
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appropriate value of magnetization to be associated with the
instantaneous rest frame of the magnetized material.

Let M be the magnetizatiotmagnetic dipole moment per
unit volume of the material when it is at rest in the labora-
tory, as observed in the laboratory. The cylinder is now
given an angular acceleration and brought up to the final
angular velocity. It is usually assumed that the physical prop-
erties of atoms are not altered by their past history. There-
fore, the dipole moment of the atoms in the instantaneous
rest frame of a segment of the rotating cylinder, as observed
from that frame, is taken to have the same value as it had
when at rest in the laboratory. But the periphery of the shell
as measured in the rotating frame has increased by the factor
v according to Eq(22). Therefore the density of atoms is
decreased by the factorl/giving a magnetization ofi/y
as measured by an observer in the rotating frame of the shell.
It should be emphasized that in both cases, the atom is at rest
with respect to the frame of reference: in the first case, with
respect to the laboratory and in the second case, with respect
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to the rotating frame. And the magnetizations given are thos&his result also follows directly from the electric polariza-
that would be observed in the rest frames of the material. tion, o(r). With this electric field, the difference in potential
As an interesting aside, one could ask a different questiorhetween the outer and the inner surfaces is
that is, what is the magnetization of the rotating material as _ 5 o 2
observed from the laboratory if the measured valu#isy AV=0M(b"—a%)/(2€,c%). (42)
in the rest frame of the material? Taking account of the fac{In the Wilson and Wilson experiment, the value of the po-
that the motion is perpendicular to the magnetization and thaential difference consists of the sum of this term plus the
magnetization is part of the electromagnetic field tensor, theontribution due to the motion of the insulator through the
Lorentz transformation gives the vali for the magnetiza- external magnetic field. This magnetic field also induces the
tion as observed from the laboratory. Of course, one alsthagnetization, which can be written in terms of the perme-
obtains an electric polarization, which is the basis of theability.)
experiment of Wilson and Wilson. Although relevant, the
discussion of this paragraph is not needed in the followingy. RIDDLES AND ENIGMAS
analysis. o
Consider a cylindrical shell of inner radiws and outer I order to preserve the continuity of the development
radiusb, rotating about its symmetry axis. Specifically, let 9\ven in the preceding sections, discussion of possible objec-
the angular velocity point in the positiedirection, that is, tions to the calculation and other issues related to rotating

follow the right-hand rule with thumb in the direction of the coordinates are gathered into this section.
angular velocity and fingers pointing in the direction of ro- A. Synchronization of clocks

tation, taken as the increasirfgdirection. Divide this shell Pellearini and Swift that the clocks in the rotati
of finite thickness into elemental shells of infinitesimal thick- ellegrini and Switt propose that the cloc S .'n,, € rotaling
system be synchronized to a clo@all it the “big” clock)

nessd f- The mggnetlzqnon of the elemental shéll/y M on the axis of rotation, which reads laboratory timeThis
the z direction, is described by a surface current density in

L LT ; can be done, for a clock fixed in the rotating system at some
the positive¢ direction on the outside and by a surface cur- . .. . : . .
rent density of the same magnitude in the negatvéirec- radial d|s_ta_1nce, by sending a I'.ght signal from the big CIO.Ck
tion on the inside. Then, on the inside and the outside of th&t the origin to the clock at radiusand then back to the big

shell of finite thickness, the current densities are clock. The clock at radius is synchronized by setting the
time of arrival of the signal from the big clock equal to the
Kpy=M/yp, Kag=—M/y,. (36)  time midway between the sending and the receiving of the

signal at the big clock. This is precisely how E45) was
The surface charge densities, determined by(B§), are dgrived and, fo% the metric of [I)qul), ﬁ showEs(qtrzat for
_ __ clocks on the same radial line no adjustment is necessary,

7o=PoM/C,  7a==BaM/c. @7 that is, all the clocks in the rotating system read laboratory
Since the magnitude of the charge density on the inner sutime t, and are synchronized to the big clock on the axis of
face is less than on the outer surface it appears as if theotation. But are the clocks synchronized with respect to one
rotating cylinder becomes positively charged. This is impos-another? That is, suppose one takes two nearby clocks, say A
sible since the cylindrical shell was assumed neutral while ind B, fixed in the rotating system at the same distance from
was at rest in the laboratory. Actually, there is a negativehe axis of rotation, and checks their synchronization by
volume charge density throughout the material given by  sending a light signal back and forth directly between them.
According to Eq.(15) the time on clock B must be adjusted

p(r)=—da(r)/dr—o(r)/r, (38)  or changed from time in order for it to be synchronized
where with clock A. Thus we have the apparent paradox that two
clocks synchronized with a third are not necessarily synchro-
a(r)=pBM/c=wrM/c?. (39)  nized with each other.

) ] ] ] ] Clocks can be synchronized along an open curve by fol-
This result can easily be obtalned by flrs_t noting that the onlyowing the prescription of Eq(15). Suppose that clocks are
nonzero component of the electric polarization of an elemenp|aced all along the curve and adjacent clocks are adjusted
tal shell is the radial component. This component is easn)éccording to this prescription. Everything works nicely un-
found to bes(r), the surface charge of an elemental shell agess one tries to close the curve. Since the integrand is not an
given by Eq.(39). This also gives the polarization through- exact differential the integration around a closed path may
out the material as a function of the radial coordinate. Thenot be zero. So if one starts at clock A and synchronizes the
volume charge density, as given by E8), then follows  clocks along a closed path back to A one may find that clock
directly from minus the divergence of the polarization. Sub-A must be adjusted to be synchronized with itself, which of
stituting Eq.(39) into Eq. (38) gives course is nonsense. Now the question arises how one should

_ 2 synchronize two adjacent clocks at the fixed radiuShould
p(r)=-2wM/c". (40 one follow the radial path to the big clock and back or should
This charge density, when integrated over the volume of th@ne take a direct path between the two clocks. In this paper
finite shell, gives a charge that exactly cancels the surfacthe direct path between the clocks is chosen. This leads to a
charges. synchronization necessary for measurements of lengths and

Gauss’s law shows that the electric field within the cylin-volumes in the vicinity of the clocks. Synchronization of

drical shell points in the negative direction and has radial clocks is at the core of the differences between this paper and

component in Sl units, the paper of Pellegrini and Swift. In the following, several
examples are given which support the synchronization used
E=—wrM/(eyc?). (41)  in this paper.
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As an example of a transformation that is similar to the(17). ®. Grén also states,in regard to a rotating disk, that
one used to go from the laboratory to the rotating frame;'‘relativistic kinematics alone forbids giving the disk a rota-

consider the Galilean transformation, tion so that the rest lengths of the elements of the periphery
dx=dx+vd T, dt=d T 43) :ieorr?e’l'm constant during the period of the angular accelera-
on the two-dimensional Minkowski space described by This geometry of rotating coordinates explains an apparent
d2=c2d2—dx2, (44) creation of charge W!th t.he |n|t|§1t|0n ofla current in a wire.
o Suppose a copper wire is bent into a circle of radiughe
yielding copper has charge densipy of electrons and an equal and
d?=c?y~2dt2—dx 2— 20 dx dt. (45) opposite charge density of positive ions which remain at rest.

The wire is neutral. Now apply an electric field so that the

This is a perfectly valid coordinate description of the originalelectrons move. The four-current dendftyssociated with
two-dimensional Minkowski space. This is a transformationthe moving electrons is
to a new moving reference frame since the transformation of
the x coordinate contains the time. Note that in the new
coordinates, the time is taken to be the original lab coordi-
natet in parallel with the transformation between the lab and o . ;
the rotating system given by E{L0). Also notice the cross \r/g;ere po i the ch_arge density  in the_ fra_m_e at rest with

L . = pect to the moving electrons. For simplicity, the random
term indicates that the clocks using the lab titret are not  motion of the electrons is neglected, and it is assumed all the
synchronized in the new frame. The cross term can be elimig|actrons travel at the same velocity, the drift veloaity.
nated by adjusting the readings of the clocks by varyin 2)-172
amounts depending on their positions:

J=174 po

c
) : (50

Ud

he relativistic factoryy=(1-v?/c compensates for

_ o the contraction of lengths in the rest system of the electrons
cd t=cdt* + By%dx*, d x=dx*, (46)  as measured by an observer in the laboratory. It seems rea-
sonable to take the rest density of the moving electrons to be

which then gives the line interval the same as the original rest density as measured in the lab,

ds*=c?y 2dt* >~ y2dx*?. (47)  thatis,py=po. But then there is the creation of charge in the
Now rescale the coordinate by amount
dt*=9dt, dx*=y X, (48) AQ=po(yg—1)27rA, (52)
to again obtain the Minkowski line interval whereA is the cross-sectional area of the wire. The resolu-
2 2T 2 % 2 tion to this paradox is found in the realization that the cir-
ds’=cdt “—dx *. (49 cumference of the circle in the rotating frame in which the

Putting together all the transformations, one obtains the spesharge carriers are at rest has increasedypy With the

cial Lorentz transformation between the coordinate framesame amount of charge distributed over this increased length,
(ct,x) and (€ 1,X) with relative velocityv as expected. With  the charge density in the rest frame of the moving electrons
the new timet, the clocks are synchronized but no onels
would have said that the clocks in the new frame with inter- pb=poly. (52)
val given by Eq.(45) were synchronized with the old lab o FotYa

time t=t. Notice that this calculation exactly parallels the SO that the density of the moving charges as observed from

development in Sec. Ill, except that tiget in Eq. (46) is  the laboratory remains unchanged. _ _
integrable in terms of* andx*, unlike the case of rotating This result can be seen another way. Consider two adja-

coordinates. cent electrons With ar]gular separatiap before the app_li—
cation of the electric field. Let them both start at rest simul-
taneously and have exactly the same angular acceleration as
observed from the laboratory. Then elementary kinematics
It may be claimed that the geometry of the rotating disk istells us that the angular separation does not change so that
Euclidean and that the circumference of a circle divided bythe charge density as observed from the laboratory does not
the radius is 2, and not greater. The original space—time ischange. The proper length of each element of the arclength
flat and the new coordinate description does not change thigetween the charges, when they have reached the drift veloc-
fact. The Riemann curvature tensor is zero in either set oity, must be increased by the factgy to compensate for the
coordinates. But when it is said that the space of the rotatinfforentz contraction; that is, the arclength between the
disk is non-Euclidean, one is talking about a subspace of theharges in the rotating frame in which they are at rest is
original flat space—time, that is, the subspace definedtby  y4r A ¢ rather tharr A ¢. This is an alternate way to see that
set equal to zero. This is similar to taking the ordinary threethe circumference of a circle divided by its radius is greater
dimensional flat space described by spherical polar coordithan 2r for a rotating frame.
nates and obtaining the curved subspace consisting of the The problem of two electrons with the same angular ac-
surface of a sphere by settingequal to a constant. Thus, in celeration parallels the problem posed by Dewan and
the subspace in which the clocks are synchronized, it iBeran'! Consider two identical rockets at rest in an inertial
found that the circumference of a circle divided by its radiusframe S. Let them face the same direction and be situated
is 27y, as given by Eq(22). Einstein first talked about this one behind the other. A thin thread links the two rockets and
as an example of a curved space. Over the years it has beenjust long enough to span the distance between the rockets
written about by many authors including. @rtn, who  (center to center, sy The rockets are then fired simulta-
obtaing the same spatial geometry of the metric given in Eq.neously and have identical acceleration programs. As ob-

B. The geometry of the rotating disk
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served fromS, the rockets remain displaced from each other (2) In this example a neutral current density as observed in
by a fixed distancécenter to cent¢r What happens to the a rotating system will be constructed and shown to give a
thread? J. S. Béit relates the humorous story about the dis-charge density in the lab when the rotating system is brought
cussion of this problem that once took place at the CERNo rest. The relativistic dynamics necessary to do this with an
canteen. “A distinguished experimental physicist refused tcactual current in a wire is much too complicated. For ex-
accept that the thread would break, and regarded my assexmple, the inertial forces tangent to the wire as the rotation is
tion, that indeed it would, as a personal misinterpretation ofeduced to zero must be included. Fortunately, the effect be-
special relativity. We decided to appeal to the CERN Theorying studied is purely kinematic. To simplify, the currents will
Division for arbitration, and make a canvas of opinion...be produced by rotating charged hoops of radiuStart with
There emerged a clear consensus that the thread would nivto hoops at rest in the lab, the first one with charge density
break!” p1 in the lab and the second hoop with charge dengity

The charges are fixed in the hoops and it is assumed that the
two hoops are superimposed. The hoops are now rotated
about their centers such that hoop one has tangential velocity
v, and hoop two has a greater tangential velooity>v ;.

Thus an observer at rest with respect to hoop one will see a

Contrary to Pellegrini and Swift, this paper claims the ex- t due to th lati i h i The ch
istence of charge density as measured in the lab for a rotatingme.n. ue to the refativeé motion of hoop two. The charge
ensitiesp, and p, must be chosen such that this observer

neutral current. For simplicity, take the current to be in a e
circular hoop with axis of rotation though the center of theMeasures no net charge. Quantities measured by the observer

hoop perpendicular to its plane. The observer on the rotatingn hoop one will be denoted by a tilde. From the discussion
hoop claims to measure no charge density at all but only &' Sec. V. B it follows that the observer on hoop one mea-
current density, say in the direction of rotation and the samé&ures the stationary charge density of that hoop tp e/,

all around the hoop. This observer also claims that the reasdid for neutrality the charge density of hoop two as observed
the lab observer measures a charge density is because the f§@m hoop one must be

observer, in measuring the charges in a volume, does not Do=—p1ly;. (53)
measure the sides of the volume simultaneously and, in this _ ) _

time difference as measured by the rotating observer, a ndthe observed current density s vq, wherevq is the drift
charge has flowed into or out of the volume. That a charg&elocity which, in this case, is the tangential velocity of hoop
density is measured in the lab and not in the rotating systeriwo as observed from hoop one. Now the four-current den-
is simply due to the disagreement between the two observesity is given by Eq.(50), where the relativistic factotyy

on the simultaneity of events. The charge that is measured iaccounts for the Lorentz contraction of volumes a§ds the

the lab has all the properties of charge; that is, the electrigharge density in the rest system of hoop two, thatisy .

flux through a closed surface containing the rotating neutrafherefore the charge density of hoop two as observed from
current is nonzero. This charge cannot change as the rotgnop one is

tional speed of the hoop changes. One must conclude that, a _
charge density must be measured by an observer on the hoop P2~ 7d p2lv2. (54)
as his reference frame changes with the slowing of rotatiorquuating'ﬁ2 from Egs.(53) and (54) gives
The following examples may help to clarify this issue.

(1) This example supports the contention that a neutral Y2 P1

C. Charges and neutral currents

current cannot be maintained as the system is brought to rest. P2~ Y174’ (55
Instead of a rotating hoop, consider a long continuous belt. o .

The path of the belt has a long straight section, then followd1ence, the observed charge density in the lab is

a semicircle around a spindle into another long straight sec- Y2

tion which parallels the first, and finally follows a semicircle Plab=pP1 7+ p2=p1( 1- vival” (56)

around another spindle completing the loop. The belt is
driven by the spindles at any desired speed. Suppose atNow eliminatey, by noting that the velocity, is the rela-
certain speed an observer riding the belt reports a neutraistic addition ofvy andv;,

current density in the same direction the belt is moving. An

observer in the lab reports no charge density on the curved v1tug (57)

sections(according to Pellegrini and Swijftout a positive v2_1+vlvd/cz’

charge density on the straight portions according to special that

relativity. It seems strange that the charge density on the bet? N

suddenly disappears on the portion of the belt that reaches a V1Uy

spindle. Even so, let us take the charge on the curved por- 72=|1+ T:r) Y1Yd- (58)

tions to be zero. Now it appears that charge can be created or
destroyed on the straight portions of the belt by simplyThen the observed charge density in the lab is
changing the speed of the belt if one insists that no charge - 2
density is ever measured by the observer on the belt. The Prab= "~ P10V1/C". 59
way out of this paradox is not to claim that there is no ob-This charge density is written in terms of the current density
served charge in the lab but to discard the supposition th&s observed on hoop one,

the observer on the belt always measures a neutral current. == / (60)
This is reasonable since the observer is changing reference “1~ P2Vd= ~P1ld! 71

frames as the belt slows down. Besides, it rescues specitd finally obtain, for the charge density as observed in the
relativity. lab,
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CPiab= Y1811 (61)  ders the interpretation of the components of four vectors dif-
] ] ] ] ] i ficult. But Einstein clearly shows how to assign physical
This result is consistent with E¢34) obtained by the series sense to arbitrary coordinates by considering freely falling
of transformations in Sec. II. observers. The above analysis follows Einstein’s prescription
D. Sagnac effect for assigning meaning to arbitrary coordinates and confirms
, i the valid use of special relativity in the experiment of Wilson
_ The experimentally observed asymmetry in the propagaang wilson. As shown in Sec. V, the analysis, based on
tion of light around a closed path in a rotating system ceryg|ativistic kinematics, is simple and self-consistent. There is
tainly distinguishes it from an merugl fr.ame and is referred 5 need to propose ad hoc mechanisms to resolve the para-
to as the Sagnac effe’c:°t$ett|ng the line interval of Eq11)  qox as presented by Pellegrini and Swift. It should also be
equal to zero, the time interval as measured in the lab for §teq that these comments apply not only to the interpreta-
light signal, traveling at a fixed radius in either direction, 105 of the current four vectors but also to the electric and
go completely around is magnetic fields.
27y°R There is one further aspect of rotating systems that has not
(1=p), (62)  been discussed. By transforming to an inertial frame that is
instantaneously at rest with respect to a segment of the ro-
where the plus sign is for the light signal going in the direc-tating shell, a frame of reference is obtained that accounts for
tion of rotation and the minus againéiNote that the integra- the centrifugal force at a single point. But no account is
tion is through an angle’2when integrating in the direction made for differential forces, that is, the difference in force at
of rotation and— 27 against) two different spatial points. For example, the difference in
This result shows that clocks cannot be synchronized ircentrifugal force between two charge carriers both of mass
the large. Consider the synchronization of clocks in the usuabut with radial separation distande is
way by sending a light signal back and forth between the )
clocks. Now try to synchronize a clock with itself by sending ~ AF=mwAr. (66)

a light signal in the direction of rotation at a fixed radius |f an electric dipole is oriented along the radial direction and

around the disk to the clock and the return signal against th@y modeled by two equal but opposite chargeseparated a
rotation back to the clock. Label the initial sending of the yistanceAr . the dipole moment

signal as event 1 occurring at tinhe Label the reception of

the signal after it has gone around once along with its emis- P=0Ar, (67)
sion in the opposite direction as event 2. Label the finalg subject to the differential force,

reception of the signal as event 3. From E6R) it is seen

T*=
Cc

that the times of the events are AF=mw?plq, (68)

t,=t, pulling the charges apart. This effect is negligibly small in

the Wilson and Wilson experiment.
7v°R
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