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The idea of a rest frame for a point particle is most useful when it is defined as a
proper-time-dependent basis of the Minkowski vector space with time axis along the tangent vector
to the particle’s worldline. There are many such rest frames; the different possibilities rotate with
respect to each other. Methods are developed to make simple and workable the concepts and
techniques to deal with the relative rotations. The Thomas precession becomes clear and easy to

calculate. Applications are made to spin equations.

Teachers.

I. INTRODUCTION

The Thomas precession' ™ has surprised, not to say con-
fused, several generations of students of physics. In fact, this
reaction could serve as a definition of the phenomenon, for
the phrase has been applied to almost any relativistic rota-
tional motion whose existence is surprising from a nonrela-
tivistic point of view.,

The purpose of the present paper is to make clear the new
distinctions that the relativistic point of view calls for, to
develop simple and effective mathematical tools for dealing
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with the phenomena, and (it is hoped) thereby to remove the
surprises. The treatment involves considerable mathematics,
but no more than is absolutely necessary. Unfortunately,
physical intuition, grounded on nonrelativistic phenomena,
fails in this area. It could hardly be otherwise, for the Tho-
mas angular velocity wy, of magnitude va/c? in household
units, vanishes in the nonrelativistic limit ¢— . But, this
fact is no cause for despair. It gives us an opportunity to
improve our understanding and to develop a new relativistic
physical intuition.
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The search for a suitable relativistic understanding has
never stopped. In contrast to the geometrical approach of the
present paper, the Clifford algebra formalism is expounded
in reference,* and a new groupoid structure is developed in
Ref. 5; both these references have extensive bibliographies.
However, notation is a serious problem in a subject whose
foundations are not yet set. Two references seldom share a
common notation (even if they are by the same author!%).

In the nonrelativistic kinematics of an accelerating point
particle, given an inertial frame of reference, there is at each
instant a well-defined instantaneous rest frame (a Euclidean
triad). This is chosen at each instant to be parallel to the
given frame (the lab, say). The instantaneous rest frames, for
different instants, are parallel to each other. These simple
facts are the basis for our nonrelativistic expectations about
the properties of rest frames.

The relativistic generalisation of the ideas in the previous
paragraph shows that new distinctions have to be made. If
the point particle is not moving uniformly (in which case its
instantaneous rest frame could be a fixed inertial frame), then
it is not possible for its rest frame (now a tetrad rather than a
triad) to remain parallel to a given frame: the timelike basis
vector, required to be parallel to the spacetime velocity of the
point, must change under acceleration; and the spatial triad,
required to be orthogonal to the timelike basis vector, must
change too.

The simplest universal idea of parallelism having failed,
separate relativistic concepts must be introduced to embody
separate features of the nonrelativistic notion.

Two inertial frames of reference, K and K', whose coor-
dinates (we use x®=ct and units such that c=1) are related
by

x'0=y(x®— Vx!)
x"=y(x1—Vx?) 1)
x'f=x% x"=x

have two sets of corresponding parallel basis vectors, E]
= E,,E; = E;. But,E| = y(E, + VE,) # E; notall the spa-
tial axes are parallel in spacetime because E) = y(E,
+ VE,). Such ““partially parallel,” or ‘‘quasiparallel’” (the
name used by Schwartz’), frames traditionally are again sim-
ply called ‘‘parallel”” in much of the literature of special
relativity. The latter name is also used for pairs of frames
related to K and K’ by a common (subjective) rotation of
their spatial axes. There is perhaps no logical reason why this
name should not be used, but the danger of psychological
drag from the nonrelativistic idea must be guarded against.

The idea of partially parallel frames is a concept which
helps us get beyond nonrelativistic intuition. Also, for a con-
tinuous sequence of frames one can analyse more carefully
the ideas of rotation. Among sequences of frames the instan-
taneous rest frames are the most interesting.

Two types of instantaneous rest frame have proved to be
especially useful. The first, called a Fermi—Walker or ‘‘non-
rotating’’ frame, is defined by differential equations govern-
ing its development in proper time. The intuitive idea that the
equations implement is that the frame changes in such a way
that at each instant it is parallel (that is, ‘‘partially parallel,”’
as above) to itself at the just previous instant. This condition
can also be understood as requiring that the angular velocity
of the frame with respect to the rest space should vanish. The

1185 Am. J. Phys., Vol. 64, No. 9, September 1996

Fermi—Walker frame appears to have great physical impor-
tance; rotational equations of motion take much their sim-
plest forms with respect to it.

The second type of instantaneous frame is the so-called
““boosted frame,”” a rest frame which at each instant is par-
allel (““partially parallel”) to a given fixed inertial frame, the
lab.

The two frames just mentioned differ from each other, at
one instant, by a spatial rotation. As time passes they rotate
with respect to each other; this motion is the commonest
instance of a Thomas precession. It is no wonder that the
idea is hard to grasp from a nonrelativistic perspective: We
must contemplate the relative rotation of two frames both of
which ‘‘ought to be’’ fixed.

Precisely the rotation above arises if we specify the
““fixed’” spatial direction of a gyroscope, carried by a mov-
ing point, by

d’s

dr 0. )
(The notation, which will be developed later, in Sec. VII,
means that the spin, the vector S, does not change with re-
spect to the Fermi—Walker frame.) When Eq. (2) is decom-
posed with respect to the boosted rest frame, however, the
spin vector S is seen to precess with respect to it. It is there-
fore vital to keep clear the difference between the various
rest frames, and useful, to say the least, to use a notation that
makes this easy, something that has not always been done in
the literature.

To help make the important distinctions we keep quite
separate spacetime . (a collection of points, with the set of
inertial coordinate systems) on the one hand, and the space
of vectors (a four-dimensional vector space Z” with many
orthonormal basis sets, called frames) on the other. Any or-
thonormal basis will be the special coordinate basis for many
coordinate systems, differing only by translations, but de-
spite this we do not think of vectors in terms of coordinate
differences. Vectors are always just elements of the abstract
space 7" and can be decomposed in any basis. Referring to
the spin vector of (2), we might write

$=571, =S, =SLE, (3)

to exhibit the decompositions with respect to the Fermi-
Walker basis, the boost basis, or an inertial frame basis. We
never use a concept of vectors tied to one basis, such as
(SE.SE,SE.5%)-

The Fermi—Walker frame is the rest frame with the great-
est physical importance; it arises in the theoretical develop-
ment of rotational equations of motion for particles. How-
ever, it requires the solution of differential equations to make
it explicit. The boosted rest frame is calculationally more
accessible, and this fact accounts for its use. The inertial
frames, on the other hand, are part of the furniture of space-
time, indeed part of the definition of spacetime; they are
immediately available to all. But, as (3) shows, using inertial
frames can introduce redundant components. One can get
some of the advantages of the Fermi—Walker frame, to-
gether, with accessibility of the inertial frames, by using an
“‘unboosted’” Fermi—Walker frame in an inertial frame, i.e.,
a representative of the former in the inertial frame. By the
same process, an unboosted S gives a representative ¢ in the
inertial frame with no redundant component.

In the sections that follow the ideas mentioned above are
developed: in Sec. II a description of the conceptual frame-
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work of relativity, the distinction between .# and 7 in Sec.
III, the notation for relative velocities and accelerations of a
moving point; the idea of basis frame in Sec. IV, together
with generalised angular velocity; in Secs. V and VI, the
definitions of the Fermi-—Walker frames and the boost
frames; relative angular velocity, as appears implicitly in (2),
is defined in Sec. VII; the unboosted Fermi—Walker frame is
defined in Sec. VIII; spin equations for a magnetic dipole in
a general external field are discussed in Sec. IX, and the
frames are explicitly displayed for the case of a uniform
magnetic field in Sec. X. The methods are also applicable to
discrete inertial frames, as arise in the general addition-of-
velocities formula or representations of the Poincaré group.
This is discussed in Sec. XI.

IL. Conceptual Framework of Special Relativity

In this section, we lay out the bare bones of our represen-
tation of special relativity. It is not meant to be a serious
development of the full theory, but just a setting down of
sufficient relations so that the important distinctions are
made, and so that ambiguities due to unexplained notations
and unrevealed conventions are avoided.

We consider the spacetime of special relativity to be a
four-dimensional manifold .Z whose points P,(Q,... are the
mathematical counterpart of 1deahzed physical events.

Mappings K,K',... of .Z onto R* provide coordinate sys-
tems for /4. Typlcally,
K: #—R*, K:P'—>x$=(x?,,x'{,') eR*. 4)

If K and K' are the Minkowskian coordinate systems asso-
ciated with inertial frames of reference, then for every P, the
K and K’ coordinates are related by a Poincaré transforma-
tion

xpt=ablxp+ak, (5)
where

aﬁ“;”uv= ﬂaﬂu (6)
with

7. diagonal, diagonal elements=(—1,+1,+1,+ 1)
()

We are using spacetime units with c=1. Time orientation
and space orientation are fixed by restricting ourselves to
systems such that

det(at)=+1 8

for the transformations between them. We may think of time
increasing into the future and all spatial coordinate systems
as right-handed.

The important point at this stage is that the theory exists at
a coordinate-independent level. There is a distinction be-
tween the geometrical, or ‘‘absolute’” ./Z with its pomts
P.Q,... and the ‘‘relative’’ representations of them in R*
given by x5, xQ ,... . We understand concepts best when they
are expressed in gcometrlcal terms.

Spacetime vectors are defined, in the first instance, as
translation vectors in .#, a special class of mappings of .Z
onto itself. They form a new space, a four-dimensional vec-
tor space 7. Two points P,Q define a vector, which deter-
mines the mapping connecting any pair of points Py, Q; in
the same relation to each other as P,Q

ag>0,
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PQe ¥ M—.#, PQ:P—Q, PO:P—~Q04,....
9)
Translations are only the beginning of vectors, but all others
get their physical significance by their relation (an isomor-
phism) to the translations. We use the same notation for all
(bold-face type except for the translations written PQ). In-
troducing vectors in such a relatively abstract way actually
makes them more physical and so more concrete: they are
defined independently of any coordinate system.
Nonetheless, the coordinate systems determine useful ba-
sis systems for 7. For each inertial coordinate system K, we
define four basis vectors E, by

E, :P(with K coordinates xp)—>Q(x,=xp+6,).
(10)
Then,

PO= (xg—xp)E,=(xg'—xp")E, . (11)

The relation between the bases {E,} and {E,} is given in
terms of the matrix in (5) by

E,=a.E,. (12)

(The bases associated with inertial frames will consistently
be denoted by an uppercase E. The noninertial moving rest
frames, to be introduced later, will be denoted by lower case
letters b, f,,r,, e, .) Other noninertial frames F,,, R, also
appear, whlch are not rest frames but whose tlme axxs is
fixed.

Because of (6) and (12), the scalar product

E,-E,=7,, (13)

has the same form for all inertial bases.

Dyadics will prove to be very useful in the subsequent
development. They relate different bases, express generalised
angular velocities, represent the electromagnetic field. They
form a sixteen dimensional vector space denoted by 7 ®7".

Without serious loss they may be considered to be linear
transformations of 2 into itself. For any two ordered vectors
a and b there is an elementary dyadic a®b for which the
corresponding transformation is

a®b: 77— %, a®b:x—a(b-x)=(a®b)-x. (14)

Compound dyadics are linear combinations of the elemen-
tary ones. (Because Z is a finite-dimensional vector space,
with a scalar product, there are several equivalent definitions
of dyadics and more general tensors. They may, for example,
simply be considered to be formal sums of primitive ele-
ments a®b, but it is very convenient to be able to relate them
to the already-familiar concept of linear transformation of
vectors. The scalar product that appears is a version of a
linear functional of vectors. A discussion of various defini-
tions (in a very general settmg) and their equivalence is
given in Penrose and Rindler.?)

For each basis {E,} of 7 there is a basis {E,®FE,} of
Z'QF'. A general dyadic (sans serif letters are used to denote
single symbol dyadics) may be decomposed

U=U*E,®E,=U'*"E,®E,, (15)

where the components U*”, U’ are related by the tensor
transformation law.
The unit dyadic is written

n=7"E,QE,=~E®E+E,®E,, (16)
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and satisfies 7-x=x (in the notation of (14)).

The dot product of dyadics works like the composition of
the corresponding linear transformations and is exemplified
by

(a®b)-(c@d)=(b-c)a®d.
The transpose U” of the dyadic U in (15) is defined by
U'=U»E,QE,=U""E,QFE,,

so UT#¥=U", We use a special notation for the antisymmet-
ric combination

a\b=a®b—-b®a.

(The wedge product notation comes from the exterior prod-
uct, but none of its properties will be needed beyond the
built-in antisymmetry.)

Finally, we introduce the dual of an antisymmetric dyadic
F=—FT. The definition is given using a specific inertial ba-
sis, in terms of which

F=F“E,®E,, F*=—F",

but the result is actually basis indegendent. We need the
completely antisymmetric symbol €™, fixed by " >=+1,
and the covariant components of F,

Frp=Mpump,F*"=Ey-F-E,.
Then define the dual of F to be
F*=F**'E,®E,, F*''= %e“""PF)\p .
For the dual of a/\b we also use a second notation
(a/Ab)* =E#®E,,e’“’“’(a-E)\)(b-Ep)
=¢(a,b)=E,QE,e*"a,b,. 17)

The notation can be extended to give a vector which is a
linear, antisymmetric function of three others

e(a,b,c)EE#e"”)“’avb)\cp. (18)
If a=E0, and b’E0=C'E0=O, then

€(Eq,b,0) =E, " ?(1,0)(byc,)=Ene""bic,=bXc
(19)

gives a workable formulation in 27 of the three-dimensional
vector product in a frame with time axis E;. Both the factors
and the product itself are spatial in the special frame. The
same notation is used with spatial vectors in the rest frame.
(Note: spatial is frame dependent, a is spatial with respect to
E, if a-E,=0; spacelike is frame independent, a-a>0.)

Because we have vectors (in 7) and dyadics (in Q%)
available at an abstract, ‘‘absolute’’ level, equations involv-
ing them are not tied to one basis. One can routinely work,
without difficulty or ugliness, with equations using different
bases in different terms, or different bits of one term, or no
basis at all. This is especially valuable while one is trying to
unravel the definitions of, and relations between, the various
possible rest frames.

III. WORLDLINE OF A POINT PARTICLE

The worldline of a point particle may be specified by a
7-dependent translation vector from some fixed point O in
spacetime:

Z(T) e Z7:0—P(7). (20)
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The spacetime velocity vector v(7), the tangent vector at
P(7) to the curve in (20), is
dz
=—. 21
v(r)= 1)
The worldline must be timelike, which requires v-v<0, and
the parameter 7 is proper time (as we assume) if

v(7)-v(7)=—1. (22)
With this parameterization, the spacetime acceleration,
dv
=_ 23
a(n="=, 23)
satisfies
v-a=0. (24)

We choose 7 to increase into the future.
Decomposing z with respect to an inertial frame basis, we
have

2=Z*E,=TEy+Z"E,, (25)

where Z°=T, two alternative notations for time in the frame.
(The notational scheme that we try to adhere to, when other
conventions do not have priority, is: upper case letters for
relative, inertial frame dependent vectors and scalars; lower
case letters for basis-independent geometric quantities.)
Then,

dz dZ* ar azm
V=E=7’T—E#=E(E0+HEM), (26)
where
az®
VEW E, 27

is the relative velocity of the particle with respect to the
inertial frame (V is spatial in the inertial frame, E,-V=0; the
derivative is with respect to T, the time in the frame). The
condition (22) requires that y=—v-E, satisfies

»y:—v.E ::d—T=+(1_V_V)—1/2 (28)
" dr )

In the new notation, the spacetime velocity is
v="y(Ey+V) (29)

when decomposed relative to the frame K.
Differentiating (29), we get the K-frame decomposition of
the spacetime acceleration

dv av_
a=—=YEy+V)+y ——=7'V-A(E;+ V) + ¥’A,

dr dr
(30)
where
A= T A-Ey=0 (31)
is the relative acceleration. The magnitude of a is given by
a-a=y'A-A+9y5(V-A)2 (32)

IV. MOVING FRAMES OF REFERENCE

We consider a set of 7-dependent orthonormal basis vec-
tors, that is, {e, (7)€ 7} such that
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e,u,( T) 'ev( 7-): Nuv- (33)

We call such a collection a moving frame. When the basis
vectors are related to a particle worldline, 7 will be its proper
time; till then it is just a real parameter. We suppose that at
each 7 the basis e,(7) coincides with one of the inertial
frames of Sec. II, so ey may be considered to be future point-
ing and the e,, right-handed.

Denoting the derivative with respect to 7 by an overdot,
differentiating (33) gives

e,ete, e,=0. (34)
If we define the dyadic 0, e 7®@%7 by

Q,=n"",8e,=—¢Re+¢,e,, (39)
then

e,=Q.e,, (36)

and this will lead us to an understanding of (), as a genera-
lised angular velocity dyadic. Equation (34) may be written

e, .e,t+e, ., e=0. 37
This means that ), is antisymmetric
Q.+0r=0. (38)
Any antisymmetric dyadic can be decomposed in the form
Q. =eNat+(e/\B)* (39)
with vectors e, B orthogonal to ey; in fact (39) holds with
a=Q,¢, PB=—0}¢. (40)

[To prove these relations it is enough to split up the sums in
Q=01 ,®e,= Qe \e,+ 0™, B,

and check with the definition of the dual in (17). Any unit
timelike vector can be used in place of e,, though of course
the a and B will depend on the choice.] It is just such a
decomposition of the electromagnetic field dyadic F that pro-
duces the (relative) electric and magnetic fields in the frame
with time basis vector ;.

The basis {e,(7)} is a rest frame for the worldline z(7) if

ey(T)=v(7)=2(7). 1)
In this case, (36) and (40) give

¢=v=a=0_-¢=a. (42)
The remaining equations in (36) are then

e,=Q.e,=v(a-e,)+(v\P)*-e,. (43)

By (17) and (18), the second term on the right may be writ-
ten

(e, ,v,.B)= (v, B.e,,)= BXe,, (44)

as in (19). When the acceleration is zero, e,,=fXe,, , show-
ing that 8 is an angular velocity in the frame with time axis
v=eg, (a rest frame). To make the notation more suggestive,
we write @ in place of 8 so (39) becomes, for a rotating rest
frame,

Q.,=vAa+(vA\w)*, 45)

withw=—QF - v.
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V. FERMI-WALKER (NONROTATING) FRAME

The Fermi-Walker (F-W) frame is a particular case of
the moving rest frames of the previous section. (A useful
reference is the book Gravitation.’) It is defined to be a rest
frame for the worldline z(7) such that the angular velocity
(7) of (45) is zero. This accounts for the alternative desig-
nation, ‘‘nonrotating.”” If an orthonormal basis changes, a
minimum of two vectors must change. The minimum case is
therefore one timelike and one spacelike or two spacelike;
the former is ‘‘nonrotating” (despite one spatial vector
changing), the latter is pure rotation in a plane. This is a
geometrical (absolute) characterisation of a changing basis.
But of course the F—W frame can rotate with respect to other
rest frames (a simple example will be given in Sec. IX). In a
sense, it is the frame in special relativity which comes closest
to playing the role of the Newtonian inertial frames of non-
relativity [compare the simple spin equations (112) and
(113)]. With respect to the F~W frame, rotational equations
for particles take their simplest form, simpler even than with
the geometrical derivatives based on inertial frames, because
the worldline determines a privileged rest space and the
F-W frame is able to take maximum advantage of it [com-
pare the more complicated spin equations involving radiation
reaction (132), (133) with (134)].

The F-W frame is denoted by a special letter, f. The
frame {f, 2} is defined by the differential equations that
express the vanishing of the angular velocity with respect to
the rest space:

i‘#=ﬂf~fﬂ, Qp=vNa, fy=v; (46)

alternatively, we may write simpler but equivalent equations
in which the structure is somewhat concealed,

f,=v(a-f,). 47)

There is very little freedom in the solutions to (46). Given a
worldline z(7), v(7), and a(7) are determined. The equations
have a unique solution for each choice of initial vectors
£,(0)=v(0), £,(0). A different choice of initial vectors
f,(0) = v(0), £,(0) = R,,.£,(0), a spatial rotation of the
original choice, leads to the trivially different
fo(D=f(n=v(n), £(=R,.L.(7) with the same
r-independent rotation.

A complete solution of (46) requires a knowledge of the
worldline z(7). But, we can see what condition the equations
impose by looking at the infinitesimal change from proper
time zero (say) to proper time 67,

of, = 6r(vA\a)-f,. (48)

At 7=0 we have v(0) and a(0) and, because of the rotational
freedom, we can suppose a(0)=af;(0). Then, Eqs. (46), at
proper time zero, reduce to

f,=f;=0, (49)

fo=a,

fo=af,, f =af,,
and, therefore,
f,(87)=1,(0) + S1af;(0)
f,(87)=1,(0)+ 67afy(0) (50)
f,(67)=£(0), £(67)=1£(0).

These equations express the change from the frame £,(0) to a
new frame f,(67) moving at (small) relative velocity
dtaf,(0) with respect to the former. The fact that two spatial
basis vectors remain unchanged identifies the transformation
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as nonrotating. It is, in fact, just the small V case of (1),
which connected ‘‘partially parallel’” frames. So, over an
infinitesimal interval, nonrotating frames are partially paral-
lel. We also describe Eq. (50) as a small active boost (see
next section). If we do not arrange the special relation be-
tween the acceleration and the F~W frame at 7=0, we have
the general case a(0)=a™f,(0) and then

f,(87)=1£,(0)+a(0)dr, f£,(67)=£,(0)+ a"51’f0((z). \
51

A solution to (49), regarded as differential equations for
all 7, is simple and celebrated. It gives the bases associated
with so-called hyperbolic motion. The basis vectors of the
frames K and K’ of Eq. (1) provide the solution. Writing f,
in place of E, , we have, according to (12),

fo=y(Eo+ VE,)
fi=y(E,+VEy) (52)
£,=E,, £=E;, y,=(1-V?)"1A

Differentiating w1th respect to 7, we find that Eq. (49) is
satisfied if a= yVV In this case, (52) provides a nonrotating

F-W frame for a worldline accelerating for all 7, but because
two spatial axes are fixed throughout it is a very special
nonrotating frame.

In general, for an arbitrary worldline, in the absence of an
analytic solution of (46) for the F-W frame, one may intu-
itively picture it as built up in a succession of small steps
each of the form (50) or (51).

VI. BOOSTED FRAME

The boosted rest frame arises in a quite different way from
the F~W frame. At a given point z(7) on the worldline, when
the spacetime velocity is v, the Fermi—Walker frame is de-
termined by the history of an initial rest frame at 7=0 and
differential equations that require the frame to be nonrotating
along the worldline up to the point. But the boosted rest
frame is at each point determined by the relation of the
worldline to a special inertial frame K (the lab, say, with
associated basis E ). The boosted rest frame {b (Dne?,
by(7)= V(T)} is determmed when v=yE;+V), to be the
frame moving with relative velocity V with respect to K
which is partially parallel to K. This characterization is de-
termined by the relation at one instant between the worldline
and the lab frame K, the relevant parameters being E; and V,
or alternatively, E; and v.

If V=VE,, so v=/{E;+VE,), then the case is exactly the
same as for (1) and the boost basis for this point coincides
with the F~W basis in (52). The general formulae are ob-
tained by rotating the spatial lab basis vectors E,, and the
boosted spatial basis vectors by the same (subjective) rota-
tion. {That this procedure really implements partial parallel-
ism will be shown presently, after Eq. (59).] For the general
case the relative velocity is V=V"E,,. We can convert (52)
to the general boost by replacing, on the right hand sides of
the equations, E,, by R,,,E, and on the left hand sides, £, by
R,.,b,, where R, is a rotation matrix. If we choose R,,, so
that V"=VR,,,, this gives

v=b0= ’y(E0+ VnEn)
Rib,=y(R1,E,+ VEg)
R2nbn=R2nEn s R3nbn=R3nEn
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Rearranging the spatial equations (using Ry, R;,= 8,,,), we

get
¥

b,=E,+ ;— V*"V'E,+ yV"E,. (53)

The relation between E, and b, is most easily handled by
using the boost dyadic B(‘llior—w) € 7" given by

Bz“b0®E0+bm®Em=77 l,I.'),u'®F;,,. (54)
The transpose,
B'=7*E,®b,, (55)

satisfies
B-B'=B".B=7=7""b,8b,= 7»""E,0F,, (56)

where 7 is the unit dyadic (16), so the dyadic does transform
an orthonormal basis to an orthonormal basis.

The dyadic provides the connections between the two
bases in various forms:

b,=B-E,=E,-B’ (57)
and
E,=B"-b,=b,-B. (58)

Equation (52), with f,—b,, is the simplest boost; if we
substitute from it in (54) we gct

(bo+Ep)®(by+Eg)

B=7—2by®E,+ e

(59

In fact, this is the general form of the dyadic which is true for
all boosts. It is easy to see that B-Ey=by, and if
by=HEy+V™E,,), we can verify that B-E,, reproduces b,
of (53). The dyadic makes the structure of the boost trans-
formation particularly clear. Only vectors in the plane of E;
and v=b, are affected by it; those orthogonal to the plane are
unchanged. The invariant spatial plane is the characteristic of
the boost and verifies its partial parallelism.

A significant advantage of the boosted rest frame
b,=B-E,, is that it is completely known as soon as by=v is
known. No differential equations have to be solved as for the
F-W frame. But the generalized angular velocity (), for the
boosted frame is nonetheless of great interest. In fact, the
relative angular velocity of the F-W frame with respect to
the boost frame provides probably the simplest way of get-
ting an understanding of the motion of the F—W frame. This
relative angular velocity proves to be (,—{}; and will be
discussed in the next section.

We can find (), in terms of B from

b,=B.E,=B-B"-b,=Q,b,. (60)
From (59), with by=v and y=-v-E,,

a®(v+Ey)+(v+Ey)®a

E
- (—% (v+Eq)® (v+Ey). (61)

Writing out the terms in the product, we find

(v+Ej)N\a

=.. T=
0,=B-B o

(62)

after cancellations.
To express 2, in the form (45), first write
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(Ey—yv)/\a

Q,=vAa+
p=V/\a y+1 y

(63)
in the second term of which both a and Ey—yv are orthogo-
nal to v. The next step requires a simple formula for the dual
(17) of such an antisymmetric dyadic.

If x and y are orthogonal to v, we can use a rest frame
basis (with e;=v) in (17) to write

(x\y)*=e,®e, " x,y,, (64)

where x)=e,-x, y,=e,-y with x,=y;=0. Then, because
& is completely antisymmetric,

(X/\Y) *= e0®en60nlrxlyr+ em®e06mmrxl.))r

=v/\€(V,x,y) ' (65)
in terms of the definition (18). Also, since ** = —1, taking
the dual gives

N\y=—(v\e(v,x,y))*. (66)

Using (66), (63) becomes
(v\e(v,a,Eq— yv))*

Qb=V/\a+ 7+ 1 3 (67)
or
Q,=vAa+(v\wy)*, (68)
with
_evaky
w,,——y_;l—. (69)

The vector e, is orthogonal both to v and to Ey; it is
spatial both in the lab and in the rest frame. Using (29) and
(30), it can be written in terms of relative velocity and rela-
tive acceleration with respect to the lab:

')’3

wb:'-m €(EO 9V,A)' (70)

The right-hand side is more familiar as a cross product of
spatial vectors in the lab, 1’V XA/(y+1). This form gives the
standard angular velocity of Thomas precession of a lab rep-
resentative of the F—W frame [see (99)].

VII. RELATIVE ANGULAR VELOCITY

Any vector in 27 can be expanded in any basis, in an
inertial basis E, or a moving basis e,(7). For some
7dependent vector W(7) typical expansions are

W(r)=Wg(T)E,=WE(1)e, (1), (M)
where the subscripts on the components refer to the relevant
basis

Wg(7)=n""E,-W(71), Wi(1)=7n""e, W(7). (72)

The (‘‘absolute’’) derivative of W(7) with respect to 7,
which we have been using up till now without comment, is
defined by

aw(r)
= lim

W(r+8)—W(7)
dr )

5 (73)

60

In terms of the expansion in an inertial basis,
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dW(7) _ dwg(r) E

dr dr # (74)
but using a moving basis,
dW(7) dW4(r) de, dW*(7)
=—_°¢ (L. .
dr dr Cut We dr dr et e W,
(75)

in the notation of (36).

It is useful to have available a new concept, a relative
derivative of vectors with respect to a moving basis. The idea
is the same as is used with rotating frames of reference in
three-dimensional dynamics—see, for example,
Woodhouse.'® For the basis e ..» the relative derivative is de-
fined by

d°W  dW¥
dr  dr
only the components in the e, -decomposition are differenti-

e
ated. A superscript on the d indicates the new derivative.
Then, from (75),

dW d*W

dr dr

For the derivative of a scalar product, A-B=A%7,,B,, we
have

€.; (76)

+Q,-W. (77)

d AB _dA B+A dB d°A B+A d’B
i AB= g B A= B Ao
the last form because of the antisymmetry of 2, .
If the relative derivative of a dyadic T=e,®e, T, is de-
fined similarly,

(78)

deT aTe?

E=e#®ev P 79)
then

dT d°T

E= 77 +Q,-T-T-Q,. (80)

From these definitions, if A=T-B, then not only A='i'-B
+T-B, but also

d°’A d°T AT d’B

dr ~ dr Tdre

With two moving bases to consider, e, and g, , say, then
from (77) for each basis,

(81)

d8W  d°W

T = s +(Q,—Q,)-W. (82)
We call

Q,,=0,-Q, (83)

the relative angular velocity of the e, basis with respect to
the g, basis. It appears in the generalisation of (36)

dte, —0

dr elg €u> (84)

which is just (82) applied to W=e,,.
The relative angular velocity of the g, basis with respect
to the e, basis has the opposite sign:

Qe=0,~ Q.= — Q. 85)
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Note also that

Q,=0,+Q,, (86)
and

Qejg=Qeipt Qg (87)

When both moving frames are rest frames, the relative
angular velocity takes a simple form

Q1e=(VA©)* — (VN @) *=(V\(w,~ ©,))*  (88)

since the v/\a terms of (45) cancel. The relative motion of
the two rest frames is then described by the rest-spatial vec-
tor

W, =0, ~ W,. (89)

As an immediate application of (88), the relative angular
velocity of the boosted frame b, with respect to the F~W
frame f,, is, from (68) and (46),

Qb|f_ (v/\wb) (90)
with
wb=wb|f=e(v,a,E0)/(y+ 1) (91)

But since the b, frame is completely known, it is perhaps
more valuable to emphasise the motion of the F-W frame
with respect to it, given by the vector wy,=—a,.

VIII. UNBOOSTED FERMI-WALKER FRAME

It can be helpful to introduce a rotating frame in the lab
which serves as a representative for the F-W rest frame. The
advantages of the new frame depend on some simple prop-
erties.

First the definition. In parallel with E, =B7. b, , which
could be said to “‘unboost’’ the boosted frame back to the lab
frame, we define here a frame which is ‘‘unboosted’” back to
the lab from the Fermi—~Walker frame

F (1)=BT-f,(7). (92)

Because fy=by=v, the time basis vector of the new frame is
the same as the lab’s Fy=E, and this is why the new frame
can be said to be rotating in the lab. Its rate of change can be
specified completely by a lab-spatial angular velocity vector.
From Q,=B-B” and the antisymmetry of ), , we get

BT=-BT. Q,, (93)

so that, differentiating Eq. (92) and using Eq. (90) with an
identity proved below [Eq. (97)],

F,=B"-(Q;—Q,)-f,=—B"-(vAw,)* -B-F,
= —(Ey\w,)*-F,,. (94)

The last step in (94) required a simple identity. For any
two vectors x and y, the dyadic (x/\y)*, written with the
b -basis, is

(x\y)*=b,®b,e**?(x-b,)(y-b,). (95)
Then,
B”. (x/\y)*-B=E,®E,e*"*(x-b,)(y-b,). (96)

But, x-b,=x-B-E,=(B”.x)-E, is the E,-component of
B” -x. So,

BT (x/\y)*-B=((B”-x)/\(B-y))*. 97
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In addition, for (94), B -v=E,, BT-w, =, , the last because
wy, is orthogonal to both v and E,.

According to (94) and (70) the F -frame rotates in the lab
with angular velocity (measured w1th respect to 7)

,y3

— = ——— ) 98

Wy ,y+1 G(E()’A,V) ( )
This angular velocity, reckoned with respect to lab time in-
stead of proper time, is the standard rate of Thomas preces-

sion
¥
wr= 1 AXYV, (99)

It is the rate of rotation, with respect to the lab, of a frame
that serves as the lab representative of the nonrotating F-W
rest frame. The frame F, is a representative of the F-W
frame by means of the unboosting operation, a process which
connects partially parallel frames (two spatial directions un-
changed). This is the best that can be achieved; parallelism is
impossible (three spatial directions cannot remain invariant if
an orthonormal basis changes). Hence, although the F-W
frame does not rotate, the F, frame does.

The problem of finding the F,-frame is the problem of
integrating Eq. (94). Because FO Ey, it is a three-
dimensional problem; in terms of lab time 7,

dF,
_mszXFm .

dT (100)

When this is solved, the F-W frame is found by reversing
Eq. (92):
f,=B-F,. (101)

The second advantage provided by the new frame is best
explained in the context of the example in which it is most
used, classical spin."*

The intrinsic spin of an elementary point particle is mod-
elled as a vector S € 7" which is orthogonal to the particle’s
spacetime velocity:

S-v=0. (102)

Therefore, S is spatial in any rest frame. There are several
relevant expansions

S=SEE,=Syb,=571f,. (103)

The lab frame E,, is relevant just because it is the most
accessible frame; it is, after all, the lab. But the components
S§ are not independent because of (102). The F-~W frame,
f.. in which there is no redundant timelike component, is
important because the equations of motion take by far their
simplest form in it. (The equations will be discussed in Sec.
IX.) The boost frame has no timelike component, and it is
calculable (by b,=B-E ), but the equations are not in their
conceptually s1mplest form (the Thomas precession inter-
venes).

A way of combining the advantages of the different
frames is to introduce a lab frame representative for the spin
vector S, defined, like (92), by unboosting the spin

o(7)=BT-8(7). (104)

(The notation o is chosen because of the similarity with the
quantum mechanical spin vector.) Using (103) we get two
important decompositions for o,
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o(7) =Sy (1)E,=SF(1)Fyu(7). (105)

Exactly the same components appear in the decomposition of
o with respect to the inertial lab basis E,, as appear in the
decomposition of S with respect to the boost basis b, . Simi-

larly, the F -components of ¢ are the f,-components of S.

From (105), we see that the derivative of o is
do _dSy — d’s
dr~dr o C dr (106)

the lab representative of the derivative of S with respect to
the b,-basis. A rather complicated derivative in the rest
frame is made simple in terms of the representative in the
lab. Again from (105),

do . men g 4’8

The right-hand sides of the last two equations are just the
results of applying BY to each side of

d’s _d’s 0.-0
ar " @ P S

Such equations are very awkward indeed to write in a for-
malism in which vectors are regarded as collections of com-
ponents (printed, usually, as single bold face symbols, with
no indication of the relevant basis). In such a formalism a
7~derivative is automatically the derivative with respect to
the relevant basis. This is an advantage which is recovered
[as in (106)] by using the idea of lab representative.

(108)

IX. SPIN EQUATIONS FOR A MAGNETIC DIPOLE
IN AN EXTERNAL FIELD

We consider in this section various forms of the relativis-
tic spin equations for a point particle with mass m, charge e,
spin S and magnetic dipole moment

ge

T om
The equations were developed by Thomas' and Frenke
immediately after the idea of spin was proposed. An excel-
lent textbook treatment is provided by Jackson.’

Only the effect of an external electromagnetic field F will
be taken into account here. The field can be decomposed into
lab frame electric and magnetic fields

F=E0/\EL—(E0/\BL)*, (110)

where Ey-E, =E;-B;=0, or into rest frame electric and
magnetic fields

F=vAE—(vA\B)*, (111)

where v-E=v-B=0. (The notations nearly clash, but not
quite: basis vectors Ey, E,,, E,, lab electric field E;, rest
frame electric field E.) The rest frame electric field depends
only on v, not on the specific rest basis.

The nonrelativistic equations for the spin of a particle at
rest in a lab magnetic field are (using the notations of a
relativistic rest frame as if it were a nonrelativistic inertial
frame)

p=xS, (109)

111

dr
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The relativistic generalisation, for a particle in arbitrary mo-
tion, is most succinctly put in terms of the derivative of S
with respect to the ‘‘nonrotating’> F—W rest frame,

d’s

e €(v,u1,B). (113)
The right-hand side is the vector cross product in the rest
frame of u and the rest frame magnetic field. If the particle is
stationary in the lab, v=E,, and (113) reduces to the nonrel-
ativistic form (112).

Although (113) is conceptually the simplest equation at
the present level, it does presuppose a knowledge of the
F-W frame. To remove from the equation its dependence on
the special F-W frame we may use

ds _d’s 0.5 d’'s Aa).S

d—T——E'i' f'S—‘Z;‘l"(V a)~ N (114)
to get, in view of v-S§=0,

dsS

Z—V(a-S)=e(v,ﬂ,B). (115)

Here, the 7-derivative is absolute (geometrical) and all vec-
tors are, of course, basis-independent. It is worth noting that
there is no sign of a Thomas precession either in (113) or in
(115): it comes in only when the boost basis is used or the
lab representative ¢ for the spin.

The right-hand side of (115) may be expressed in terms of
the electromagnetic field F instead of the rest frame magnetic
field B. To do that, note in (111) that E=F-v, so

F-u=(vVA(F-v))- p—(vAB)*- u
=v(pu-F-v)+€(v,u,B).

Therefore,

(116)

ds
—~v(a-S)=F.ut+v(v-F- ).

' (117)

Approximating ma with the Lorentz force eF-v gives the
famous Bargmann—Michel-Telegdi (BMT) version'? of the
equation:
dsS e
=2 {g F-S+(§—1)v(v-F-S)}.

dtr m (118)

Equation (118) is used to get information about the rate of
transfer of longitudinal polarization to transverse polarisa-
tion; this procedure avoids having to find redundant compo-
nents of S in a decomposition in an inertial basis. Equation
(113), although elegant, requires a knowledge of the F-W
frame, which is not in general easily available.

To get an equation for the spin’s lab representative o, first
rewrite (113) in terms of a derivative with respect to the
boost frame [as in (82)]

d”S_ B Nay)*-8= e( S,B+ ! )
E'—E(v”‘% ) (V wb) *O= K€ V,D, wa .
(119)
We see here the effect of using a frame which is rotating
(with respect to the F-W frame).
Because the boosted frame is completely known, we can

unboost (119), as in (104) and (106), to get an equation for
the lab representative o=B"-§,
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do r 1
E=KB -€l v,S5,B+ ; Wy |.
The right-hand side can be dealt with the way (97) was de-
rived:
do_ E,,0,BT-B+ !
7.~ k€ Ko, 0B < @)
Only one problem now remains: unboosting the rest frame
magnetic field B, and re-expressing it in terms of lab fields.
From Egs. (110) and (111), we can find the rest frame B in
terms of lab fields E; and B;,

B=F*’v=(E0/\EL)*'V+(E0/\BL)'V. (122)
Recalling the formula (59) for B, and by=v=HE;+V),

(120)

(121)

V+E0E B=B
y+1 o A

=—vye(Ey,V,E )+ yB, —

BT-B=( n+

po) V(V-B,). (123)

Inserting this in (121), and using the cross product notation
for lab-spatial vectors, we get

do
— =ykoX

Y
ar i VB

BL_VXEL_

72

7 VXA}. (124)

The equation for the spin representative o has in (124)
reached almost its most practical form. All that remains is to
convert the proper time derivative o to a lab time derivative
vdo/dT and to express the relative acceleration A in terms
of lab fields E; and B;. Assuming, as for the BMT Eq.
(118), that the translational motion of the particle is given
sufficiently accurately by the Lorentz force, then ma=eF-v,
or in terms of lab frame vectors,

m(AEq+V1+ ¥’A) = e[ Eg/A\E, — (E¢/\B.)*]- ¥(Eo+ V),

‘ (125)
from which, since y=—a-Ey=—¢E,-F-v/m,
myA=e(E.—V(V-E; )+ e(Ey,V,By.)). (126)
When this is substituted in (124), we get
do e g g 0%
d_T_ ; O'X‘(——I'F )BL (E— m VXE;
Y (&
o (5— 1)V(V-BL)], 127)

which is Thomas’s equation.’

To compare with the practical Eq. (127) for &, the sim-
plest theoretical equation for this vector is, from (107) and
(113),

dF
dr

The unboosted F—W frame plays the role in the lab of the
F-W frame itself in the rest space.

However convenient for calculations (127) may be, it must
be remembered that its solution is not the spin vector S, but
its representative . The former can be generated from the
latter by the inverse of (104)

—— =BT.&(v,u,B)=«e(E,y,o,BT-B). (128)
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S=B-o (129)
either in terms of boost frame components

$=B-(¢"E,)=0"b,, (130)
or by using the explicit form (59) for B to get

S= 72 (+1 +Ey(yo-V). (131)

The spin equations of the present section have all been
various versions of the theoretically simple equation (113),
the equation for the case of an external electromagnetic field.
If radiation reaction is taken into account the theory is much
more complicated. An equation for this case was derived'? as
a generalization of (115):

dsS
E-V(a'S)=€(V,IL,[B+b]), (132)
where
2dp 2 dp 2 da
337 3% VR
) du 4 [da 133
B LA Pt (133)

Equivalent equations in yet more complicated notations (as
measured by their lengths) have been derived by Bhabha'*

and by van Weert.! If the proper time derivatives are evalu-
ated in terms of derivatives with respect to the F-W frame
the equatlon simplifies considerably. With S=S7f, and

p=ufsf, , one gets

d’s dsf
dr  dr
E(V,[L, B+3 d7'3 3 (a-a) Ffm .

(134)

The simplification highlights the significance of the F-W
frame.

X. SPINNING ELECTRON IN A UNIFORM
MAGNETIC FIELD

The spinning electron in a uniform magnetic field is an
attractive example in which to study various systems of basis
vectors. The example is completely solvable and, being a
sanitised version of several g—2 experiments, it is physi-
cally relevant. (More realistic experlmental details are de-
scribed in experimental review papers)

In the absence of an electric field in the lab, the electro-
magnetic field dyadic F for a constant and uniform lab mag-
netic field, directed along the lab z axis, is

F=_(E0/\BL)*=_BL(E()/\E3)*=BLE1/\E2. (135)

The translational equation of motion for an electron (mass m,
charge e<<0) in such a field, assuming that the effects of
radiation reaction, spin, and quantum mechanics may all be

neglected, is once again taken to be
ma=eF-v, (136)

Decomposing with respect to the lab’s time axis,

v=yE;+V), and (136) becomes
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my(Eg+V)+my*A=eyB, €E,,V,E;). (137)
A solution of (137) requires =0 and
A=— eBL €(Ey,E;,V). (138)
ym

The simplest solution of (138) is given by uniform motion on
a circle in a plane parallel to the xy plane of the lab. Take the
center of the circle as spatial origin. As a displacement from
the spacetime origin the electron’s worldline is

2=TE,+R(T), V=dR/dT. (139)

For uniform anticlockwise circular motion about E; with lab
angular velocity € (the scalar ) is lab angle with respect to
lab time),

V=Q€(E0,E3,R). (140)
This gives a solution of (136) if
eBL
l=——=(>0). (141)
my
From (139),
= dz = a1 E 142
V= E = ‘J; ( 0+V), ( )
and v.v=—1if
r 2y - 172 2_ O2p2
—=y=(1-V?)"12  V2=Q2R? (143)
dr
Then,
a= y’A= Y’ O e(Ey E;, V). (144)

The worldline is completely solvable in this case because of
the simple external field and the neglect, in (136), of a num-
ber of (thankfully small) dynamical complications.

With the electron traveling uniformly on a lab circle at
angular velocity {1, it is useful to introduce a co-rotating
basis R,,:

R;=cos QTE, +sin QTE,
R,=—sin QTE +cos OTE,
R3=E3, R0=E0.

Assuming the electron is on the positive x axis at T=0, then
for all T it remains on the R, axis and

v=y(Ro+ VRy) (146)
—QVy’R,. (147)

The dyadic R=7"R,®E, which generates R,=R-E,
satisfies

Qz=R-R’= - yOR,AR, = — yQE,AE,

(145)

(148)
and

R,=Qg R (149)
Note the minus sign associated with the anticlockwise rota-
tion about E,, and the factor y arising from the 7 derivative.

The unboosted Fermi-Walker frame rotates in the opposite
sense to the R, frame. By (94) and (70),
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3
: Y
Fﬂ':-’;/—“l'—l (EO/\G(EO ,A,V))* * F,u.

=—Qy(y—1)(E/\E3)* -‘F,
=yQ(y—1)(E;AE,)-F,. (150)

This represents a clockwise rotation about E; at an angular
velocity, with respect to lab time, of {(y—1). It should be
recalled that this frame is the lab representative of the ‘‘non-
rotating”” F—W frame. If B; were zero, but the electron was
forced to pursue the same orbit without putting a torque on
the spin, the representative of the nonrotating spin would be
at rest in the F, frame. The rotation ceases in the nonrelativ-
istic limit, as y—1.

Turning to the electron’s rest frames, the boosted basis
generated from E,, by

(V+E)®(v+Ey)
y+1 it
(151)

is the one we have been working with in earlier sections, but
an even more useful one is that reached by a boost from R, :

b,=B-E,=| 7—-2v®Eg+

r,=B-R,=B-R-E,. (152)
Explicitly, it is given by
r,=v, r=R;, =Ry
(153)
R2+ (V+R0) ¥(Ry+VRy).

Because the two rest frame bases, b, and r,, are derived
by the same linear boost from the lab frames EH and R , the
former pair are related to each other by the same rotation as
the latter pair. Hence, ry=by=v, r;=b;, and (with T=y7)

r;=b; cos yQd7+b, sin yr
r,=—b, sin yQ7+b, cos Y. (154)

The explicit expressions for the boost basis b, in terms of
the inertial basis E, will not be needed but are included for
the sake of completeness. The two frames must coincide in
the nonrelativistic limit, when V—0, y—1.

by= yEq+ yV(—E; sin yQ27+E; cos ¥ 1),
b;=E,(1+[y—1]sin®> yQ7)
—E,(y—1)sin vQ7 cos yQ7—VyE, sin ¥} 7,
b,=E,(1+[y—1]cos® yQ7)
—E;(y—1)sin yQ 7 cos yQ 7+ VyE, cos ).
(6$he 7 derivative of b, is given by b ={;b,,, where, by

1
Q V/\a+ _— (EO )/\a

(= YV AN (—QVY’ry)

=vAa— yQ(y—1)r;Ar;.
To get ), we can use (152) and (149):
t,=Q,r,=B-R,+B-R,=Q,r,+B-Qx-B-r,

1
=v/\a+ prec

(155)
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Therefore, using (148) and (155),

Q,=0,+B-(— yQR,/AR,)-B'=vAa— y*QrAr,.
(156)

The derivation used the general formula (63) but could
equally well have proceeded directly from the explicit defi-
nition of r,, .

For the idealized physical situation we are considering the
r,, frame is the most useful of the constructable rest frames.
From it, we can derive the F—W frame by using (84):

d’f

—'(Q/ QO ) f Q'yzrl/\rz‘fﬂ. (157)
The F—W frame rotates clockwise around r;=E; with an-
gular velocity (here a 7 rate) Q9 with respect to the

r,-frame. There is no need to write the explicit formulae.
Alternatively, the F—W frame can be obtained by boosting
F, [which can itself be constructed from (150)]

For the rotation of the (classmal) electron spin, the equa-
tions of Sec. IX apply. It is perhaps simplest first to write
down the equations for the lab representative o of the spin S.
For easy comparisons all time derivatives are written with
respect to proper time.

In the present case, Thomas’ equation, (127), is equivalent
to

9 _o E,x 158
27 =7 13X O, (158)

1+'y(§—1

representing an anticlockwise rotation of the spin represen-
tative about E; when the square bracket is positive.

Using (150), the equation for spin motion with respect to
the unboosted F—W frame is

4o 4o iy 1E —ayExe
= 22 T~ DEsX0=0y S EsXo. (159
This is also an anticlockwise rotation but with respect to a
frame which itself is rotating clockwise with respect to the
fixed lab frame.

The rotation with respect to the R,, frame is particularly
interesting because it involves an angular velocity propor-
tional to (g/2—1), thus effectively proportional to the
anomalous magnetic moment. Using (148) and (158),

dRa' do

dr _dr E;xo.

- QyE; X a'—Q'yz(——l (160)

This equation, or its boosted form, is the basis for many
experimental measurements of the magnetic moment
anomaly for electrons and muons.'®

The spin vector itself is generated from o by a boost
S=B-@a, so corresponding to the different forms

o=o0gR,=0fF,=0%E,, (161)
there are forms for S:
S=ogxr,=off,=ogb, (162)

Each of the Eqgs. (158), (159), and (160) can be boosted to a

rest frame equation. For example, from the last,
d’s

. *Qyz(—-l)e(v r;,S),

(163)
where in fact the rotation axis in the rest frame is still E;=r;.
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XI. FINITE WIGNER ROTATION

The methods of the previous sections can be used to ana-
lyze the relations between discrete inertial frames. The need
for this occurs in the general addition-of-velocities formula
(which is used in relativistic polarization analysis'®), and
also in Wigner’s construction of irreducible representations
of the Poincaré group (see, for example, Ref. 19).

Suppose a free particle worldline / has v as its unit future-
pointing spacetime velocity vector and that the relative ve-
locity with respect to an inertial frame K (the lab) is V. Then,

v=yE;+V), E;-V=0, (164)

A second worldline !’ has spacetime velocity v’ and relative
velocity V' with respect to K,

V=9 (Eg+V'), E,-V'=0, (165)

Let B(Ey—v) be the boost that carries the lab basis to a
basis for a frame K, at rest for the worldline /; it is com-
pletely fixed by the fact that it carries E, to v. Similarly,
B(Ey—v') carries the lab basis to a basis for the rest frame
Kv’ of [ ! .

To get the relation between K, and K,» we consider the
product of three boosts

R=B(v'—Ej)-B(v—v')-B(Ej—>v).

Y= "Eo'v.

,ylz_EO_vI

(166)

The product carries a basis to a basis, and carries E; to itself.
Therefore, R is a spatial rotation in the lab. The boosts to K,
and to K/, are related by

B(Ey—v')-R=B(v—v')-B(E;—vV). (167)

(The finite Wigner rotation R that appears here is just the
counterpart of the continuous Thomas precession of the un-
boosted frame F,, .)

Before calculating explicitly the product of the three
boosts, it is helpful to prepare by considering the general
form of a rotation dyadic. A rotation is determined by an
axis, an angle less than 7, and a sense. (Rotations of 7 can
be treated as limits.) The vectors in the plane orthogonal to
the axis are rotated into each other. Suppose a unit vector x
in the plane is rotated into y. Then, as may easily be checked,
the appropriate rotation dyadic is

(xA\y) - (x\y)

ROesy)=7=xA\y+ =~

(168)

(There is a similar formula with the wedge product for a
boost.) If the angle between x and y is ¢<, and m,n are
two orthogonal unit vectors in the plane with the same sense
as x,y, then

R(x—>y)= n—sin ¢ém/\n
+(1-cos ¢)(m/\n)-(m/\n). (169)

From (169), we see that the antisymmetric part of the ro-
tation dyadic R determines it unambiguously. This fact is
very helpful while interpreting the result of the product of
the three boosts (166). After some calculation, one finds

b
R=7=—(¥'V)/A(yV)
1
+ - [(YVINOVILY VIA(V)], (170)
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where a=(1+y)(1+9')(1+T) and b=1+y+y'+T
with

=-v-vV'=yy' (1-V-V)=yy (1-VV’ cos x)
(171)

in terms of the angle y<<r between V' and V. Comparing
second terms and third terms in (169) and (170), we get

b
sin ¢=— (y'V")(yV)sin x
and (172)
1
1—cos ¢p= Z (y'V'yV)? sin® y,

from which
b2
cos p+1= — (173)
The rotation R is by an angle ¢ from V' towards V. The
angle ¢ is called the Wigner angle.

As an application of the three boosts formula we can re-
consider the nonrotating rest frames for an accelerating par-
ticle. As in Sec. V, the Fermi—Walker frame fM(T) is defined
by differential equations that require the instantaneous angu-
lar velocity with respect to the rest space to vanish. The
representative F, in the lab of the Fermi—Walker frame is
constructed by “‘unboosting’” (or boosting back to the lab)
F,=B(v—>E)-f,. The surprising fact is that the frame F,
rotates in the lab.

If the spacetime velocities at successive proper times 7and
7+ &7 (or, as measured in the lab at the particle, at times T
and T+ 6T) are v and v' as in (164) and (165), then

F (T)=B(v—>Ey) -f,(7),
and
F (T+6T)= B(v'—E,) .7+ 67). (174)

The requirement that the Fermi—Walker frame should not
rotate in the interval 7 to 7+ &7 may be expressed

f.(7+67)=B(v—>v')-f,(7), (175)

since an infinitesimal boost is nonrotating. These relations
lead immediately to

F,(T+ 8T)=B(v'—Eg)-B(v—>V')-B(Eg—>v) - F,(T)
=R-F,(T). (176)

For the present case V' =V+8TA, and to zero order Y=y,
I'=1, so the rotation dyadic, to first order, is

b
R=7n— - (Y VOIN(yV)=n— —;?—1— ANVST. (177)

Hence,
oF,, 72
ﬁ =— m (A/\V) 'F/.L

,yZ
=m(AXV)XF,‘=wr><F#, (178)

in agreement with (99).
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THE INTERPRETATION OF QUANTUM MECHANICS

How does it come about then, that great scientists such as Einstein, Schrodinger, and De
Broglie are nevertheless dissatisfied with the situation? Of course, all these objections are levelled
not against the correctness of the formulae, but against their interpretation. Two closely knitted
points of view are to be distinguished: the question of determinism and the question of reality.

Max Born, ‘‘The statistical interpretation of quantum mechanics’’ (Nobel Lecture, December 11, 1954, reprinted in Nobel
Lectures, Physics, Vol. 3, 1942-1962, Elsevier Amsterdam, 1964).
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