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We develop a relativistic velocity space calledrapidity spacefrom the single assumption of Lorentz
invariance, and use it to visualize and calculate effects resulting from the successive application of
non-collinear Lorentz boosts. In particular, we show how rapidity space provides a geometric
approach to Wigner rotation and Thomas precession in the same way that space–time provides a
geometrical approach to kinematic effects in special relativity. ©2004 American Association of Physics
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I. INTRODUCTION

The most commonly used Lorentz transformation rela
an inertial frameS to an inertial frameS8 moving with a
velocity vW along thex axis of S. If this Lorentz transforma-
tion also preserves the orientation of the spatial axes ofS and
leaves the sign of its time component unchanged~as is usu-
ally the case!, then it is called aboost. In some cases an
inertial frameS8 is obtained from an inertial frameS by two
successiveboosts. If the two successive boosts are n
collinear then, contrary to what one might expect, the sin
Lorentz transformation relatingS to S8 is not a pure boost
but rather is the product of a boost and a rotation. The un
pected rotation was discovered by Thomas1 in 1926, and
derived thirteen years later by Wigner2 in his seminal article
on representations of the Lorentz group. If successive n
collinear boosts return the spatial origin ofS8 to the spatial
origin of S, then all of the Thomas–Wigner rotations alon
the way combine to produce a net rotation ofS8 with respect
to S called theThomas precession.3–8

Thomas precession is an essential part of quantum cou
discussing relativistic corrections to the Hamiltonian of
hydrogen atom because it changes the non-relativistic f
of the spin–orbit term by a factor of one-half. Rather th
derive this result, however, some texts state it without giv
any references,9 some state it and reference only Thoma
original article,10 while others state it and appeal to the Dir
equation for its justification.11,12

The few texts and journal articles which do derive Thom
precession often use mathematics that is somew
sophisticated,13 such as infinitesimal generators of the Lo
entz group,4 ‘‘a weakly associative-commutative group
oid,’’ 14 ‘‘gyrogroups and gyrovector spaces,’’15 the Gibbs
method for adding finite rotations,16 holonomy group trans-
formations and Clifford–Dirac algebra,17 the tetrad
formalism,18 Fermi–Walker transport,19 or unboosted
Fermi–Walker frames.20 Although several texts do prese
straightforward algebraic derivations, they are long a
somewhat tedious.5,6 Because many relativistic effects a
easier to derive and understand when treated geometri
in space–time, we wondered if there was a relativistic vel
ity space in which Thomas precession~and other effects in-
volving successive non-collinear boosts! could be treated
geometrically and in this way also made easier to und
stand.
943 Am. J. Phys.72 ~7!, July 2004 http://aapt.org/ajp
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Perhaps the most intriguing approach to constructin
relativistic velocity space was mentioned in the 1950s
Landau and Lifshitz.21 They begin an exercise for the read
by noting that given two non-collinear relativistic velocitie
vW andvW 1dvW , the relative velocitydvW can be considered as
line element in a three-dimensional velocity space in wh
each point is specified by the azimuthal and polar anglesvW
and a radial coordinate equal to a function ofv called the
rapidity. Landau and Lifshitz then ask the reader to sh
that this relativistic velocity space is non-Euclidean, with
hyperbolic geometry.

Landau and Lifshitz do not reference the origin of th
exercise, so it is not clear if they discovered the veloc
space themselves or are drawing upon work published
viously in the Russian literature. Both Pauli22 and
Rosenfeld23 credit a paper written in Russian by the Croati
mathematician Varic¸ak as the first place in which relativisti
velocity addition was related to the analog of vector addit
in a hyperbolic space. Pauli cites four additional artic
~also written in Russian! by Variçak, published between 191
and 1919, and Rosenfeld notes that Varic¸ak summarized and
expanded upon his work in a book~written in Russian! pub-
lished in 1924. Rosenfeld cites only two references to w
on this subject which appeared after 1924, both of which
books written in Russian, published in 1963 and 1965.

Given this history, it seems likely that Landau and L
shitz’s text was the first written in English to mention a re
tivistic velocity space with hyperbolic geometry. Indeed,
1997, when Aravind24 showed how the Thomas–Wigner ro
tation and Thomas precession had properties identica
those of areas in a hyperbolic space, he credited this dis
ery to ‘‘the crucial hint... from Landau and Lifshitz... .’’ More
recently, Criado and Alamo25 chose a hyperboloid in space
time to represent a relativistic velocity space, which th
mapped onto a unit disk with hyperbolic geometry~called
the Poincaré disk!. They then drew on results from non
Euclidean geometry, such as the law of cosines and the e
tions of geodesics in a hyperbolic space, to show how cer
properties of hyperbolic triangles correspond to certain pr
erties of relativistic velocities and velocity addition.

The interesting results in Refs. 24 and 25 are not rea
accessible to many physicists because they assume a f
iarity with formulas and theorems from non-Euclidean g
ometry. Furthermore, although these articles make the c
nection between relativistic velocity addition and hyperbo
943© 2004 American Association of Physics Teachers
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geometry compelling, neither explains this connection
develops it systematically from first principles.

The purpose of this paper is to derive a relativistic veloc
space~called rapidity space! from first principles, and to
demonstrate how it provides a geometric approach to solv
problems involving the relativistic addition of non-colline
velocities and successive, non-collinear, Lorentz boosts.
development is self-contained and assumes no prev
knowledge of hyperbolic geometry. We begin with the sing
requirement of Lorentz invariance and construct rapid
space using an approach that parallels the one used to e
lish the geometry of space–time. We find that just as m
kinematic effects in special relativity are more easily a
elegantly understood once the space–time metric

ds25dx21dy22c2dt2 ~1!

is established~in a space–time with two spatial and one tim
dimension!, so too are many aspects of the addition of no
collinear boosts more easily understood once the rapi
space metric

ds25S 2

12x22y2D 2

~dx21dy2! ~2!

is established~with x andy related to the usual componen
of velocity, as defined in Sec. V!. In particular, once the main
properties of rapidity space have been developed, exac
pressions for the Thomas–Wigner rotation and Thomas
cession can be found geometrically. Furthermore, working
rapidity space allows various qualitative aspects of these
fects to be deduced geometrically, some of which are m
difficult to prove with algebraic equations alone. Indeed,
have found relativistic velocity~rapidity! space to be as use
ful for understanding the relativistic addition of non-colline
velocities and Lorentz boosts as space–time has been
understanding kinematic effects in special relativity.

As mentioned above, this paper derives a two-dimensio
~2D! relativistic velocity space~called rapidity space! from
the single assumption of Lorentz invariance. Although dev
oping the material in this way is logically satisfying, and h
the additional benefit of unifying~and occasionally correct
ing! results presented previously, it does make the pa
rather long. Those who would rather bypass the derivati
and proofs, and simply accept that there is a relativistic
locity space whose metric is given by Eq.~49c! and whose
geodesics are the ones described at the end of Sec. VI
proceed directly to the applications presented in Sec.
Sections II–VI present the proofs and derivations neede
establish the relativistic velocity space and its propert
while Sec. VIII is included for those interested in how som
of what is presented here is expressed using group the
quaternions, spinors, etc.

II. NOTATION AND BACKGROUND

Consider two inertial framesS and S8 whose origins are
coincident whent5t850, and whosex and x8 axes are
aligned.~Two inertial frames related in this way are said
be in thestandard configuration, and it is easy to show tha
the linearity of Lorentz transformations always makes t
choice possible for any two inertial framesS andS8.26! As
mentioned in Sec. I, a non-trivial Lorentz transformati
from S to an inertial frameS8 moving with a velocityvW with
respect toS is called a boost if it preserves the orientation
944 Am. J. Phys., Vol. 72, No. 7, July 2004
r

g

he
us

y
tab-
y

-
ty

x-
e-
n
f-

re
e

for

al

l-

er
s
-

an
I.
to
s,

ry,

s

f

the spatial axes and leaves the sign of the time compo
unchanged. If the boost is in thex direction, then the trans
formation equations are

x85g~x2vt !, ~3a!

y85y, ~3b!

z85z, ~3c!

t85gS t2
vx

c2 D , ~3d!

with g51/A12v2/c2. In what follows, we restrict ourselve
to space–times with one time and two spatial dimensi
because this is sufficient for understanding the most comm
cases of Thomas rotation and precession.27

For convenience, letx15x, x25y, x35ct, andb5v/c.
Using this notation,g5(12b2)21/2, and Eq.~3! becomes

S x18

x28

x38
D 5S g 0 2gb

0 1 0

2gb 0 g
D S x1

x2

x3

D . ~4!

If we let x represent the column matrix on the right-ha
side of Eq.~4!, then the length~norm! squared ofx can be
expressed as

x1
21x2

32x3
25xTS 1 0 0

0 1 0

0 0 21
D x5xTGx. ~5!

More generally, any linear transformationL is a Lorentz
transformation if and only if it leaves the space–time met

x8Gx85xTGx ~6!

invariant for allx, or equivalently, if and only if

LTGL5G. ~7!

III. RELATIVISTIC VELOCITY ADDITION AND
THE RAPIDITY

The rapidity f of a boostbW is defined as

f[arctanhb. ~8!

Thus,

b5tanhf, ~9a!

g5coshf, ~9b!

gb5sinhf. ~9c!

Using the rapidity allows Lorentz boosts to be express
in two alternative and interesting ways. In the first, if w
substitute the rapidity into Eq.~4!, we obtain

S x18

x28

x38
D 5S coshf 0 2sinhf

0 1 0

2sinhf 0 coshf
D S x1

x2

x3

D , ~10!

which illustrates that the rapidity can be interpreted as
imaginary rotation angle in space–time.

A second way of expressing Lorentz boosts is found
introducing the new coordinates~j, h!, with28

j[x31x1 , h[x32x1 . ~11!
944John A. Rhodes and Mark D. Semon
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If we use these coordinates, Eq.~10! can be expressed simpl
as

j85e2fj, ~12a!

h85efh. ~12b!

For future reference, note that Eq.~12! also can be written in
the form

j85~g2gb!j5A12b

11b
j, ~13a!

h85~g1gb!h5A11b

12b
h. ~13b!

The j andh coordinate axes lie on the light cone (Ax21y2

56ct) and transform into themselves under this type
Lorentz boost. Expressed another way, these axes are e
vectors of the boost in Eq.~10! with real eigenvaluese6f

which, as can be seen from Eqs.~12! and~13!, are simply the
blue- and redshift factors in the relativistic Doppler effect29

The rapidity is most commonly used to simplify the add
tion of collinear relativistic velocities. As is well known, th
relativistic addition of two collinear velocitiesvW 1 and vW 2

gives a resultant~collinear! velocity vW with magnitude

v5
v11v2

11~v1v2 /c2!
⇔b5

b11b2

11b1b2
. ~14!

The correct generalization of Eq.~14! to the relativistic ad-
dition of n collinear velocities is not obvious. However, if w
reexpress Eq.~14! using the rapidity, we find that

f5arctanhb5arctanhS b11b2

11b1b2
D . ~15!

Using the identity

arctanha5
1

2
lnS 11a

12a D , ~16!

we have

f5
1

2
ln

~11b1!~11b2!

~12b1!~12b2!
. ~17!

Thus,

f5
1

2
lnS 11b1

12b1
D1

1

2
lnS 11b2

12b2
D ~18a!

5arctanhb11arctanhb2 ~18b!

5f11f2 . ~18c!

If we express the sum of two collinear velocities in t
form of Eq.~18! rather than in the usual form of Eq.~14!, the
relativistic sum ofn collinear velocitiesbW 1 ,bW 2 ,...,bW n is eas-
ily shown to have magnitudeb, with

f5arctanhb ~19a!

5
1

2
ln

~11b1!~11b2!¯~11bn!

~12b1!~12b2!¯~12bn!
~19b!

5
1

2
lnS 11b1

12b1
D1¯1

1

2
lnS 11bn

12bn
D ~19c!

5arctanhb11¯1arctanhbn ~19d!
945 Am. J. Phys., Vol. 72, No. 7, July 2004
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Thus, the rapidity provides an easy way to express the r
tivistic sum ofn collinear velocities whenn>2.

Note that using the Lorentz transformation, Eq.~12!, al-
lows us to express Eq.~19! in another useful form.30 If we
combine Eqs.~12b! and ~13b!, we have

ef5A11b

12b
. ~20!

Using this relation in Eq.~19e! we find that

ef5ef1ef2
¯efn, ~21!

which implies that

S 11b

12b D5S 11b1

12b1
D S 11b2

12b2
D¯S 11bn

12bn
D . ~22!

Equation~22! provides a surprisingly easy way to find th
resultantb of the relativistic sum ofn collinear boosts.

IV. RAPIDITY SPACE

In this section we derive a 2D relativistic velocity spac
called rapidity space, directly from the three-dimension
~3D! space–time of special relativity~that is, from the
space–time with two spatial and one time dimension!. If we
use the coordinatesx1 , x2 , and x3 defined in Sec. II, the
square of the line element for this space–time is

ds25~dx1!21~dx2!22~dx3!2. ~23!

We choose this particular form ofds2 because in thex350
plane, it reduces to the usual Euclidean relation

dsE
25~dx1!21~dx2!2. ~24!

Suppose we fix ourselves in one inertial frame and c
sider another with the same space–time origin but mov
with a velocity vW relative to the first. The spatial origin o
this second frame appears to us as following a straight
(x(t),y(t))5vW t, where (v/c),1. Thus its trajectory is a line
emanating from the origin and lying within the light con
This line also can be described inxi coordinates as the on

formed by all the scalar multiples of the vector (bW ,1), where

bW 5vW /c. If we turn this statement around, we can say th
every straight line through the origin that lies within the lig
cone represents the trajectory of the origin of some iner
frame traveling with a velocityvW relative to the fixed inertial
frame represented by the space–time.

Another way of describing all the straight lines throug
the origin and within the light cone is to note that each c
be viewed as thex38 axis of some inertial frame obtaine
from the original (x1 ,x2 ,x3) frame by a unique boost. Be
cause eachx38 axis corresponds to one particular veloci
~and vice versa!, we can create a model of velocity space
choosing one point from eachx38 axis. The set of all such
points is a velocity space because each point in it repres
a unique velocity, and because all velocitiesbW with magni-
tudeb,1 will be represented.

There are several natural ways to construct a relativi
velocity space from the set of points defined in the previo
paragraph. For example, we could start with all the poi
945John A. Rhodes and Mark D. Semon
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lying in the planex351 and inside the light cone; alterna
tively, we could start with all the points lying on the hype
boloid with x3.0.

As shown in Fig. 1. the first choice is thesimultaneity
plane x351 for an observer in the inertial frame represen
by our space–time, while the second is the set of all po
for which the proper timet51. The first choice results in a
velocity space known as the Klein model, which is not t
best choice for our purposes because angles in this mod
not appear like Euclidean angles~that is, the Klein model is
not conformal31!. The reason we would like a conforma
model is that the relativistic addition of non-collinear veloc
ties, the Thomas–Wigner rotation and the Thomas pre
sion, are built on understanding angles between succes
boosts, so only those spaces in which angles behave
Euclidean angles can be expected to offer the geometric
sight we seek.

The second choice, of all the points that lie on the hyp
boloid of revolution, does result in a conformal veloci
space and is in fact the one chosen in Ref. 25. This choic
both reasonable and convenient because the metric on
space and the geometric properties that follow from it
well known to mathematicians. However, few of us are go
at judging angles on a curved surface.

So how do we motivate or justify choosing one mod
over another? Given that we are free to choose any sur
created by any method of choosing one point from eachx38
axis, why choose the hyperboloid? How do we know th
isn’t some other way of choosing a point from eachx38 axis
that will lead to an even more convenient or appropri
model of velocity space?

Rather than trying to justify one choice over another af
the fact, we construct a model of relativistic velocity spa
from first principles by following the method used to deri

Fig. 1. The hyperboloid and Klein~or simultaneity! models of rapidity
space. Note that any possible time axis intersects each surface exactly
so the point of intersection can be used to represent that axis. Part o
light cone has been removed to make the figure easier to understand.
946 Am. J. Phys., Vol. 72, No. 7, July 2004
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space–time and the space–time metric. In that case,
space–time metric is developed from the physical requ
ment that the speed of light is independent of the motion
the source and is the same in all inertial frames. The ma
ematical statement of this property,r 25(ct)2, implies that

x21y22~ct!250, ~25!

and leads to interpreting the quantity

x21y22~ct!2 ~26!

as the square of a distance in a 3D space–time where Lor
transformations are represented by linear coordinate trans
mationsL satisfying Eq.~7!. Thus, rather than choosinga
priori the nature of space–time, a physical invariance is u
to deduce a metric that determines its mathematical pro
ties.

We use this same approach to deduce the geometry
relativistic velocity space. We note that Lorentz transform
tions acting on space–time also act on the set of rays in
the light cone emanating from the origin, and that each
these rays has a one-to-one correspondence with a rap
Thus, the invariance of the space–time metric Eq.~23! under
Lorentz transformations can be used to define a metric on
rays ~or rapidities! that also is Lorentz invariant.

To find this metric, first note that because we are choos
the points in rapidity space to correspond to rays inside
light cone that emanate from the space–time origin, the m
ric in rapidity space should be expressible in terms of
space–time coordinates. That is, there should be funct
f i , j such that the line element squared in rapidity space
be expressed in the form

ds25 (
i , j 51

3

f i , j~x1 ,x2 ,x3!dxidxj . ~27!

However, because any two points on the same ray in spa
time specify the same rapidity, the line element in rapid
space must be the same regardless of which space–
points on the ray we choose. Thus, for anyl, we require

ds2~x1 ,x2 ,x3!5ds2~lx1 ,lx2 ,lx3!. ~28!

The space–time formds25dx1
21dx2

22dx3
2 does not have

this property because

ds2~lx1 ,lx2 ,lx3!5l2ds2~x1 ,x2 ,x3!. ~29!

However, we can obtain ads2 with the property given in Eq.
~28! by using a simple but clever trick: first take the log
rithm of both sides of Eq.~29! ~which changes the multipli-
cation byl2 into the addition of lnl2), and then differentiate
~so that the lnl2 term disappears!.

More formally, the space–time inner product,

q~x,y!52x•y52x1y12x2y21x3y3 , ~30!

is positive for rays within the light cone, and has the prope

q~l1x,l2y!5l1l2q~x,y!. ~31!

By taking the logarithm of both sides, we find

ln q~l1x,l2y!5 ln l11 ln l21 ln q~x,y!. ~32!

Finally, if we take the differential of both sides with respe
to x andy, we obtain

dxdy ln q~l1x,l2y!5dxdy ln q~x,y!. ~33!

ce,
he
946John A. Rhodes and Mark D. Semon
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In this way we are led to look for a rapidity space met
whose inner product has the form

dxdy ln~2x•y!

5dxdy@ ln~x3y32x1y12x2y2!# ~34!

5dxFx3dy32x1dy12x2dy2

x3y32x1y12x2y2
G ~35!

5~x•y!22@~dx•dy!~x•y!2~x•dy!~y•dx!#. ~36!

Setting x5y we see that the line element squared in t
relativistic velocity space should have the form

ds25K~x•x!22@~dx•dx!~x•x!2~x•dx!2#, ~37!

whereK is an arbitrary constant.
Recall that even though the line element in Eq.~37! is

expressed in terms of space–time coordinates, it also
function of the rays inside the light cone and through
origin on which those space–time points lie.

As mentioned previously, in order to better visualize t
geometry that follows fromds2 in Eq. ~37!, we may choose
as a model of relativistic velocity space any surface that
tersects each ray in exactly one point. If such a surfac
expressed as

x35g~x1 ,x2!, ~38!

then by substituting this expression forx3 into Eq. ~37!, we
can express the metric in terms of the two coordinatesx1 and
x2 .

Although we have great freedom in selecting the funct
g, several judicious choices will greatly simplify our mode
First, because Lorentz transformations include rotations,
because we seek a metric that is invariant under Lore
transformations, it is natural to choose a surface that
rotational symmetry. Thus, we require that

x35g~A~x1!21~x2!2![g~r !. ~39!

To find dx3 in terms ofx1 andx2 , we apply the chain rule to
Eq. ~39!, giving

dx35
g8

r
~x1dx11x2dx2!, ~40!

with

g8[
dg

dr
. ~41!

Because

2x•x5x3
22x1

22x2
25g22r 2, ~42!

we can rewrite Eq.~37! as

ds25K~g22r 2!22@~dx3
22dx1

22dx2
2!~g22r 2!

2~x3dx32x1dx12x2dx2!2#. ~43!

If we use Eqs.~39! and~40! in Eq. ~43! and do some algebra
we find that

ds25F K

r 22g2G~dx1
21dx2

2!2KFg82~r 22g2!

r 2

1S 12
gg8

r D 2G S x1dx11x2dx2

r 22g2 D 2

. ~44!

Although there is still much freedom in our choice of th
surfaceg, we now impose our desire to have a model tha
947 Am. J. Phys., Vol. 72, No. 7, July 2004
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conformal.32 We note that a metric will be conformal if it is
a multiple of the Euclidean metric, even if the multiplicativ
factor varies from point to point. Thus, Eq.~44! will be a
conformal metric if cross terms likedx1dx2 are not present.
To this end, we look for a surfaceg for which

g82~r 22g2!

r 2 1S 12
gg8

r D 2

50, ~45a!

which implies that

g8~g8r 22g!1r 50. ~45b!

One way to solve this first-order non-linear differenti
equation forg is to look for solutions of the form

g5Ar21Br1C. ~46!

If we substitute this form forg into Eq.~45b!, we find thatg
will be a solution if the coefficientsA, B, andC satisfy the
conditions

2AB50, ~47a!

B214AC51, ~47b!

2BC50. ~47c!

One set of coefficients that satisfies these conditions iA
56 1

2, C56 1
2, andB50, in which case33

g56S 11r 2

2 D . ~48!

Therefore, we can use Eq.~48! in Eq. ~44! and find that

ds25S K

r 22g2D ~dx1
21dx2

2! ~49a!

5S 4K

2r 22r 421D ~dx1
21dx2

2!, ~49b!

which implies that

ds25S 2

12r 2D 2

~dx1
21dx2

2!. ~49c!

Note that because we prefer distances in velocity space t
non-negative and real, we have chosenK521 in Eq. ~49c!.

The surface described by Eq.~48! is

x3[g5
11r 2

2
5

11x1
21x2

2

2
, ~50!

which is a paraboloid of revolution about thex3 axis with
vertex atx15x250 andx351/2. The paraboloid also goe
through points withr 25x1

21x2
251 andx351, which are on

the light cone. Not only does the paraboloid touch the lig
cone atr 51, but the light cone is tangent to the paraboloid
this point because

D~ct!

D~r !
U

r 51

→ d

dr
~ct!U

r 51

5
d

dr S 11r 2

2 D U
r 51

51, ~51!

which is exactly the slope of the light cone.
As shown in Fig. 2, each ray emanating from the orig

and inside the light cone~with the exception of thex3 axis!
intersects the paraboloid twice: once below the diskx351
and once above it. Because we only need a single point f
947John A. Rhodes and Mark D. Semon
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each ray to create a velocity space, we only use that pa
the paraboloid that is below the disk~that is, points on the
paraboloid withx3,1), as shown in Fig. 3.

Finally, note that the line element squared given in E
~49c! can be expressed in plane polar coordinates as

ds25S 2

12r 2D 2

~dr21r 2du2!. ~52!

V. VELOCITY SPACE, RAPIDITY SPACE, AND THE
POINCARÉ DISK

Although the paraboloid of revolution derived in Sec.
is a valid model of relativistic velocity space, in most case

Fig. 2. The paraboloid model. Because each non-vertical time axis inter
the paraboloid in two points, the lower point is chosen as its representa
in this model.

Fig. 3. Possible time axes correspond to their unique points of interse
with the lower part of the paraboloid, which then correspond by downw
orthogonal projection to unique points in the Poincare´ disk.
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is much easier to work in the space obtained by project
this paraboloid onto the (x1 ,x2) plane by the projection
(x1 ,x2 ,x3)°(x1 ,x2) shown in Fig. 3.

The space created by this projection is a unit disk with
metric in Eq.~49c!, and is known to mathematicians as th
Poincarédisk. Although both the Poincare´ and hyperboloid
models are conformal~the first in two dimensions and th
second in three!, the Poincare´ model is superior for building
intuition about the Thomas–Wigner rotation and Thom
precession because it can be drawn in two dimensions, w
makes line segments and angles easier to visualize.

As we shall see, the distance from the origin to any po
on the Poincare´ disk @as determined by the line element
Eq. ~49c!# is just the rapidity associated with that poin
which is why we refer to this disk as rapidity space.34 Be-
cause points on the edge of the disk are defined by the
jection of points on the intersection of the paraboloid and
light cone, they represent velocities with speedv5c. We
shall see that these points are an infinite~Poincare´! distance
away from any point inside the disk, reflecting the fact th
speeds can approach but never reach the speed of light

To simplify the notation, we rename the coordinates on
disk x([x1) and y([x2). We identify the physical signifi-
cance of the distances of any point from the origin by
evaluating35

s5E
0

R

ds5E
0

RS 2

12r 2DAdx21dy2 ~53a!

5E
0

RS 2

12r 2DAdr21r 2du2 ~53b!

5E
0

RS 2

12r 2Ddr ~53c!

5 lnS 11R

12RD , ~53d!

which implies that

s52 arctanhR. ~54!

However a point on the disk whose radial coordinate isR
5Aa21b2 corresponds to the space–time point (a,b, (a2

1b211)/2), which lies on the ray in space–time with slop

ct

R
5

~11R2!/2

R
, ~55!

which implies that

c

v
5

11R2

2R
, ~56!

b5
2R

11R2 5
2 tanh~s/2!

11tanh~s/2!tanh~s/2!
, ~57!

b5tanh~s/21s/2!5tanhs. ~58!

We thus conclude that the~Poincare´ distance! s of any point
from the origin is

s5arctanhb5f ~ the rapidity!. ~59!

We can further clarify the nature of rapidity space by r
lating its coordinates (x,y) to the Euclidean velocity compo

cts
on

on
d
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nentsvx and vy . First, note that a point (x,y) on the disk
corresponds to a point (x,y, (11r 2)/2) on the paraboloid,
which means that

bx5S 2

11r 2D x, by5S 2

11r 2D y, ~60!

and

b5S 2

11r 2D r . ~61!

Equations~60! and ~61! give b ~and its components! in
terms of any radial coordinater ~and its components!. To
find the inverse relation~that is, ther associated with a given
b!, we first solve Eq.~61! for the magnitude ofr :

br 222r 1b50, ~62!

r 5
12A12b2

b
, ~63!

r 5
g21

gb
. ~64!

~We use only the negative root in the quadratic formula
causer ,1). We substitute Eq.~64! in Eq. ~60! and use the
identity,

g2215
b2

12b2 5~gb!2, ~65!

to find

x5S 11r 2

2 Dbx5S g

g11Dbx , ~66a!

y5S 11r 2

2 Dby5S g

g11Dby , ~66b!

and

r 5S g

g11Db. ~67!

From Eq. ~66! we see that thex coordinate in rapidity
space is proportional tobx and they coordinate is propor-
tional to by . The proportionality factor in both cases
g/(g11), which goes to unity asv→c and to 1/2 asv
→0. Thus, in the limit asv→0, the line element squared i
rapidity space@Eq. ~49c!# reduces to

ds25~dbx!
21~dby!2, ~68!

which, of course, is the line element squared of the us
Euclidean non-relativistic velocity space.

To summarize, we have shown that requiring the veloc
space metric to be invariant under Lorentz transformati
leads to a model of relativistic velocity space that can
represented either as a paraboloid of revolution with its v
tex at x15x250,x35 1

2 and top edge atx351, or as a unit
disk with the metric given in Eq.~49c!. In this paper we refer
to this ~Poincare´! disk as rapidity space because the dista
from the origin to any point on the disk is its rapidity. No
that from the definition of rapidity, it is easy to see that a
point on the edge of the disk is infinitely far from any poi
in the disk. Also, any point in rapidity space is related to t
components of any velocity by Eqs.~60! and~66!. The con-
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formal property of rapidity space can be seen explicitly
noting that if arctan(vy /vx) is the angle made by a velocit
vector vW with the horizontal axis in real space, then, usi
Eq. ~60!, we have

arctan
vy

vx
5arctan

y

x
5u, ~69!

which means that the angle ofbW in real space is the same a
the angleu in rapidity space. This property of rapidity spac
is what makes it so useful for understanding the Thoma
Wigner rotation and Thomas precession.

VI. GEODESICS IN RAPIDITY SPACE

We need to understand one more aspect of rapidity sp
before we can use it to investigate the relativistic addition
non-collinear velocities and boosts. When we boost from o
inertial frame traveling with a velocityvW 1 to another travel-
ing with a velocityvW 2 , we pass through the minimum num
ber of velocities whose speeds are greater thanv1 and less
than v2 . The corresponding path in rapidity space betwe
the points representing these velocities is the shortest
which, by definition, is the geodesic connecting the
Hence, to study successive non-collinear boosts, we nee
identify the geodesics in rapidity space. We shall see t
these geodesics are straight lines if the origin~the point rep-
resenting zero velocity! is one of the values taken on durin
the boost. In all other cases the geodesics are not stra
lines but rather are the arcs of circles. Following these a
from one point in rapidity space to another will bring o
most of the interesting features of relativistic velocity ad
tion, successive Lorentz boosts, Thomas–Wigner rotatio
and Thomas precession.

We begin by showing that any geodesic that includes
origin of rapidity space is a straight line. Our proof paralle
the traditional one showing that the shortest distance
tween two points in a Euclidean plane is a straight line, a
is accomplished by finding the path of minimum distan
connecting two points on the disk. The length of any pa
connecting the origin and a point (A,B) in rapidity space is

E
(0,0)

(A,B)

ds5E
(0,0)

(A,B)S 2

12r 2DAdr21r 2du2 ~70a!

5E
0

RS 2

12r 2DA11r 2u82dr, ~70b!

with R5AA21B2, and

u8[
du

dr
. ~71!

If we use the Euler–Lagrange equation, we know that
integral in Eq.~70b! will be an extremum when

]

]u F S 2

12r 2DA11r 2u82G
2

d

dr

]

]u8 F S 2

12r 2DA11r 2u82G50. ~72!

The first term on the left-hand side is zero, so Eq.~72! re-
duces to
949John A. Rhodes and Mark D. Semon
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dr

]

]u8 F S 2

12r 2DA11r 2u82G50, ~73!

which implies that

d

dr F S 2

12r 2D r 2u8

A11r 2u82G50, ~74!

and

S 2

12r 2D r 2u8

A11r 2u82
5h~u8!. ~75!

If we square both sides of Eq.~75! and rearrange the terms
we findh2(Ar61Br41Cr211)54r 4u82, with A, B, andC
functions ofu8. In order for this equation to be satisfied fo
all r , including r 50, h(u8) must be zero. Hence, from Eq
~75! we see thatu8 also must be zero, and thusu is a con-
stant wheneverr 50 lies on the path. Therefore, any geod
sic in rapidity space that includes the origin is a straight li
as shown in Fig. 6.

Next we derive the geodesics in rapidity space that do
include the origin. Because the rapidity space metric is L
entz invariant by construction, Lorentz transformations m
send geodesics to geodesics. Thus, we can obtain a geo
that does not include the origin by applying the same bo
to every point on a geodesic that does include the orig
Rather than doing this directly, it is easier to obtain the fi
geodesic geometrically by projecting back and forth betw
the disk and the paraboloid. In this approach, we first id
tify the geodesics on the paraboloid that correspond to g
desics through the origin of the disk. We then apply the sa
boost to every point on one of these geodesics on the par
loid. Finally, we project the Lorentz transformed geodesic
the paraboloid onto the disk and find the equation that
scribes it.

We already have proven that any geodesic that inclu
the origin of the disk is a straight line. If we project one
these straight lines back up to the paraboloid, we see th
corresponds to a parabola through the vertex of the par
loid, as shown in Fig. 4. Thus, any such~vertically oriented!
parabola is a geodesic. Equivalently, any one of these~verti-
cally oriented! parabolas can be regarded as the cu
formed at the intersection of the paraboloid and the pl
defined by two axesx38 andx39 , each of which has a point o
the paraboloids’ geodesic.

If we now perform the same pure boost on every fra
represented by a point on a parabola passing through
vertex of the paraboloid, we obtain a new geodesic that d
not include the vertex. Because boosts are linear transfor
tions, planes through the origin transform into other plan
through the origin. Thus, the new geodesic can be descr
as the curve created by the intersection of the paraboloid
the new plane formed by the boostedx38 and x39 axes, as
shown in Fig. 5. If we project this curve onto the disk, w
can find the equation of an arbitrary geodesic~on the disk!
that does not include the origin.

Because the boostedx38 and x39 axes define the plan
whose intersection with the paraboloid determines the n
geodesic, this plane must lie within the light cone. It follow
that there is a normal to the plane making an angleu with the
original x3 axis, withp/2.u.p/4:
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0,cosu,cos
p

4
5

1

&
. ~76!

On the other hand, if we express the normal to the plane
(a,b,1), then any point (x1 ,x2 ,x3) on the plane satisfies

~a,b,1!•~x1 ,x2 ,x3!50, ~77!

or ax11bx21x350. However, Eq.~76! tells us that

cosu5
~a,b,1!•~0,0,1!

Aa21b211
,

1

&
, ~78!

which implies thatAa21b211.& and a21b2.1. We
thus conclude that the plane shown in Fig. 5 is specified

ax11bx21x350 with a21b2.1. ~79!

Fig. 4. Geodesics through the vertex of the paraboloid are formed by in
sections of the paraboloid and vertical planes. These project to Euclid
straight lines through the origin in the Poincare´ model.

Fig. 5. All geodesics on the paraboloid are formed by its intersection w
planes through the origin. These project downward onto circular arcs
thogonal to the unit disk, in the Poincare´ model.
950John A. Rhodes and Mark D. Semon
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Because any such plane can be obtained by boosting
appropriatex38 andx39 , we conclude that planes of the form
in Eq. ~79! determine all the geodesics on the parabolo
That is, a curve is a geodesic if and only if it lies on t
intersection of the paraboloid and any plane including
origin.

Our main interest is in the points shown in Fig. 5 that
on the intersection of the plane and the paraboloid. Any po
on the paraboloid satisfies Eq.~50!,

x35
11x1

21x2
2

2
. ~80!

If we combine Eq.~80! with Eq. ~79!, we see that points on
the curve formed at the intersection of the plane and
paraboloid~that is, points on a geodesic on the parabol
that do not pass through its vertex! satisfy

2ax12bx25
x1

21x2
211

2
~a21b2.1!, ~81!

which implies that

~x11a!21~x21b!25a21b221.0. ~82!

If we project back down onto the disk as shown in Fig.
we see that any geodesic that does not include the orig
the arc of a circle centered at (2a,2b) with radius
Aa21b221. Note that the center of any of these circl
always lies outside of the unit disk becausea21b2.1, and
that any point (a,b) outside of the unit disk is the center o
a circle on which some geodesic inside the disk lies. Al
becausea andb can be positive or negative, it doesn’t real
matter whether we denote the center of the circle by (2a,
2b) or (a,b).

Finally, we can prove that the circles derived in Eq.~82!
are perpendicular to the edge of the disk at their points
intersection. We recall from Sec. V that points on the disk
denoted by (x,y), points on the edge of the disk satisfy

x21y251, ~83!

and points on a geodesic on the disk satisfy

~x1a!21~y1b!25a21b221. ~84!

By taking the differential of Eqs.~83! and ~84!, we obtain

2x dx12y dy50, ~85!

2~x1a!dx12~y1b!dy50, ~86!

which can be rewritten as

dy

dx
52

x

y
, ~87!

dy

dx
52

x1a

y1b
. ~88!

Equation~87! gives the slope of the tangent to any point
the edge of the disk, and Eq.~88! gives the slope of the
tangent to any point on the geodesic. To prove that the g
desic is perpendicular to the edge of the disk at their poin
intersection, we must show that these two tangents are
pendicular to each other; that is, that

2
x

y
5

y1b

x1a
. ~89!
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To do this, we note that any point on both the edge of
disk and on the geodesic satisfies both Eqs.~82! and ~83!,
and by adding these two equations together we find

2x212ax12y212by50, ~90!

x~x1a!1y~y1b!50, ~91!

2
x

y
5

y1b

x1a
, ~92!

as required. Note that this argument can be reversed to s
that any circular arc orthogonal to the unit circle at th
points of intersection is a geodesic.

The main results of this section are the following. A
shown in Figs. 4 and 6, geodesics through the origin of
pidity space are straight lines~in the Euclidean sense!, and
any straight line through the rapidity space origin is a ge
desic.

As shown in Figs. 5 and 6, geodesics in rapidity spa
which do not include the origin are arcs of circles who
centers lie outside the disk and are perpendicular to the e
of the disk at their points of intersection. Conversely, a
point outside the disk is the center of some circular
within the disk that is a geodesic. As Fig. 6 shows, the n
feature is that rapidity space contains geodesics that are
‘‘straight’’ in the Euclidean sense. One way to understa
these curved geodesics is to note that the metric of Eq.~49c!
tells us that segments near the edge of the disk are m
longer than they appear, so the shortest path between
points near the disks’ edge must be bowed inward rather t
straight.

VII. APPLICATIONS

Now that we have found the Lorentz invariant metric a
geodesics in rapidity space, we can investigate the relativ
addition of velocities and the various consequences of s
cessive non-collinear Lorentz boosts.

A. Qualitative results

Before deriving quantitative expressions for the Thoma
Wigner rotation and Thomas precession, we first discuss
sults that can be deduced geometrically without the use
any equations.

Velocities are represented by points in rapidity space
boost from one velocity to another is represented in rapid
space by the geodesic connecting them. Because a pure

Fig. 6. Three geodesics in rapidity space and a non-Euclidean triangle.
geodesics are labeled asF i and the angles of intersection asa i .
951John A. Rhodes and Mark D. Semon
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doesn’t involve any rotation of the reference frame be
boosted, the coordinate axes representing the boost in ra
ity space maintain a fixed angle with respect to the geod
they follow, as shown in Fig. 7. When coordinate axes ma
tain a fixed angle with a geodesic as they move along it fr
one point to another, they are said to undergoparallel trans-
port. The most familiar example of parallel transport occu
in non-relativistic velocity space, in which all the geodes
are straight lines.

We begin by considering a set of collinear boosts in r
space. If we assume this set contains the zero velocity fra
then the first boost is represented in rapidity space by a
ment of a straight line geodesic that includes the rapid
space origin. Without any loss of generality, we take t
direction as the horizontal axis in both real and rapid
space. Because straight lines through the origin of rapi
space are geodesics, each collinear boost is represented
segment of the same~horizonal! line. If we represent a coor
dinate system in rapidity space by two small perpendicu
lines ~cross hairs! centered on the point of interest, then
shown in Fig. 7, when we boost from one velocity to anoth
the orientation of the cross hairs remains fixed with resp
to the geodesic connecting them. Thus, the orientation of
cross hairs is unchanged no matter how many collin
boosts it undergoes because, in each case, it is moving a
the same straight line geodesic in rapidity space.

Furthermore, because the distance~as measured with the
rapidity space metric! from the origin to any point in rapidity
space is the rapidity of that point, we see that when suc
sive boosts are collinear, the corresponding rapidities
and subtract like ordinary numbers. Thus, rapidity space p
vides an easy geometrical way to obtain Eq.~19e! and to
prove that frames boosted in the same direction do not ro
with respect to each other. Working in rapidity space a
provides an easy proof that no matter how many collin
velocities are added together, the magnitude of their s
always will be less than the speed of light.

Fig. 8. The second boost along the geodesicF2 .

Fig. 7. The first boost along the geodesicF1 .
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A boost that does not include the zero velocity frame c
responds to a geodesic in rapidity space that does not inc
the rapidity space origin. As we proved in Sec. VI, this ge
desic lies on the arc of a circle whose center is outside
disk. As shown in Fig. 8, cross hairs moving along this ty
of geodesic maintain their orientation with respect to
Therefore, cross hairs moving back to the origin along
closed path that includes one~or more! of these geodesics
will be rotated with respect to their initial orientation. A
example of this rotation is shown in Fig. 9. Suppose
boost from rest to a velocityvW along thex axis ~in real
space!. Then we perform a non-collinear boost from a fram
with velocity vW to a frame with velocityvW 8, and finally, we
boost from a frame with velocityvW 8 back to the original rest
frame. If we look at the corresponding points in rapidi
space as shown in Fig. 9, we see that the frame obtaine
the end of these three boosts is rotated with respect to the
that stayed at the origin. This rotation is the Thomas–Wig
rotation, which we denote by TWR, and the geometry
rapidity space shows that the TWR is in the clockwise~nega-
tive! direction when a frame is moving in rapidity space
the counterclockwise~positive! direction ~and vice versa!.

It also is easy to see that there is an upper limit on
TWR angle. Without any loss of generality, suppose we fi
boost along thex axis ~in real space! to a frame whose spee
is very close to the speed of light. There is no orientat
change of the boosted frame because the geodesic it fol
in rapidity space is a straight line. If we next perform
non-collinear boost to a speed even closer to the spee
light, which makes an angle slightly less thanp with the x
axis, then as shown in Fig. 10, the geodesic representing
second boost will lie on the arc of a circle that is perpendi

Fig. 9. The third boost along the geodesicF3 .

Fig. 10. When a second boost is applied at an angle approachingp with the
first, the Thomas–Wigner rotation angle approaches its maximum valu
p.
952John A. Rhodes and Mark D. Semon
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lar to the edge of the disk~wherev5c) at its two points of
intersection. In the limit that both speeds approach the sp
of light and the angle between the boosts approachesp, the
arc representing the second boost approaches a half c
Thus, the change in orientation of a reference frame follo
ing the arc approachesp. Consequently, any Thomas
Wigner rotation angle has an upper limit ofp, and the limit
of p is approached only when the two boosts involved ha
speeds very close to the speed of light and are almost o
site to each other. In all other cases the TWR angle will
less thanp.

On the other hand, if we perform the same two no
collinear boosts as before, but now give each a n
relativistic speed (b!1), then as shown in Fig. 11, eve
though the geodesic representing the second boost still
on the arc of a circle, that arc is indistinguishable from
straight line because it is located near the rapidity space
gin. Therefore, when the boost speeds are non-relativi
there is essentially no rotation of the frame in following t
two geodesics.

Next consider a reference frame in real space underg
circular motion in the counterclockwise~positive! direction
with a constant, non-relativistic speed. Classically, this s
ation is treated by representing it as the limiting case of a
of small, non-collinear boosts. That is, circular motion
approximated as motion along a polygon with an ever
creasing number of sides. Because the boosts involved
have the same non-relativistic speed, all the circular a
representing them in rapidity space are essentially indis
guishable from straight lines. Hence, as long as the spee
the frame in circular motion is non-relativistic, it undergo
essentially no change in orientation upon its return to
origin ~as we would expect!.

Now suppose the reference frame undergoing circular
tion has a constant speed that is relativistic. The geodesic
rapidity space that form the polygon are now small arcs t
lie on circles whose intersection with the edge of the disk
orthogonal, as shown in Fig. 12. Consequently, the fra
being boosted undergoes a definite change in orientation
each boost. Thus, when the reference frame returns to
starting point, it will have undergone a clockwise~negative!
rotation with respect to its initial orientation. This sum of a
the rotations experienced along the way is the Thomas
cession. Furthermore, we see from the geometry of rapi
space that the amount of rotation will be a function of t
speed of the circular motion~that is, the rapidity space dis

Fig. 11. All of these non-Euclidean triangles have the same two base an
but the smaller a triangle is, the closer it is to appearing Euclidean.
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tance from the rapidity space origin!, and will increase with-
out bound as this speed approaches the speed of ligh
shown in Fig. 12.

We also can use the geometry of rapidity space to sh
that non-collinear, relativistic boosts are also~in general!
non-commutative. Suppose we first boost a reference fra
from speed zero to a speed close to the speed of light,
then boost the frame through a second non-collinear velo
From the rapidity space diagram in Fig. 13, it is clear that
will end up at a completely different point if we do the sam
boosts in reverse order. However, if we look closely at
rapidity space diagram, we see that although the two res
ant velocities are represented by different points in rapid
space, they both are the same~rapidity space! distance from
the rapidity space origin. Consequently, they both have
same rapidity~and hence speed!, but not the same direction
The result that the final speed resulting from two success
non-collinear boosts is independent of the order in which
boosts are applied is usually proved by a somewhat l
algebraic calculation.36

Finally, it is easy to see that the sum of any number
non-collinear relativistic velocities always results in a velo
ity whose magnitude is less than the speed of light. Althou
obvious when viewed on a rapidity space diagram, the c
responding algebraic proof is somewhat complex.

B. Relation of the Thomas–Wigner rotation to the
rapidity space triangle

Because angles in rapidity space behave exactly
angles in Euclidean space, it is relatively easy to quantify

es, Fig. 12. Polygonal approximations to curved paths in rapidity space

Fig. 13. Two boosts, with corresponding rapiditiesf i in non-parallel direc-
tions, do not commute. In both cases, the angle between the boosts isa.
953John A. Rhodes and Mark D. Semon
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arguments of Sec. VII A. As shown in Fig. 6, the angl
between the boosts area3 , a1 , and a2 . The straight line
geodesic making an anglea3 with the horizontal axis is
calledF3 , and the other two geodesics areF1 andF2 . The
length~rapidity! of the segment of the geodesicF i represent-
ing each boost is denoted byf i . We see in Fig. 7 that when
we boost from the origin alongF1 , there is no change in th
orientation of the cross hairs. As shown in Fig. 8, when
boost alongF2 , the x axis of the cross hairs maintains i
anglep2a1 with respect toF2 becauseF2 is a geodesic.
Finally, as shown in Fig. 9, boosting back to the origin alo
F3 , thex axis of the cross hairs maintains its orientation
(p2a1)2a2 with respect to the geodesicF3 . Thus, as Fig.
9 shows, when the coordinate system returns to the rap
space origin, itsx axis will have rotated from its initial ori-
entation in the clockwise~negative! direction by the
Thomas–Wigner rotation angle

TWR52@p2~a11a21a3!#. ~93!

Note that if the two rapiditiesf1 andf2 are small~that is,
if the speeds they represent are non-relativistic!, then as
shown in Fig. 11, the figure formed by the segments of
three geodesicsF i is indistinguishable from a Euclidean tr
angle ~because in this casea11a21a3'p) and, as ex-
pected, the TWR angle is essentially zero. On the other h
if the two rapiditiesf1 andf2 are large, then the resultin
TWR angle can approach the upper limit ofp, as previously
discussed.

The absolute value of the right-hand side of Eq.~93! is
known to mathematicians as the ‘‘angular defect,’’ becaus
is a measure of how much the sum of the angles insid
triangle differs from the corresponding sum in ordinary E
clidean space~p!. The theorem that the angular defect of
triangle is equal to its area is proven in hyperbolic geome
courses. Rather than simply invoking this result, we can
tablish it from first principles. Even if we had no previou
knowledge of hyperbolic geometry, we might suspect t
the area enclosed by the rapidity space triangle is pro
tional to the TWR angle, because our method for finding
TWR angle involves traveling around a closed path and s
ming up the angular change along the way. This sum co
sponds to evaluating an integral of the form

R
C
du. ~94!

An integral like ~94! appears in Green’s theorem, which r
lates an integral around a closed curve to an integral over
two-dimensional area enclosed by that curve. We now sh
that the integral Eq.~94! is actually the left-hand side o
Green’s theorem for a particular choice of the integrand,
that this choice makes the right-hand side of Green’s theo
equal to the area enclosed by the curve.

We begin by writing Green’s theorem as

R
C
FW •dsW5E E

S

¹3FW •n̂ds, ~95!

where C signifies any closed~2D! curve traversed in the
counterclockwise direction,n̂ is the unit vector normal to the
plane of this curve~according to the right-hand rule!, S

stands for the region enclosed by the curve, andFW is any
vector defined on rapidity space.
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To apply Green’s theorem in rapidity space, we first m
find explicit expressions for each integrand. To do this, rec
that

ds25
4

~12r 2!2 ~dx21dy2!5h1
2dx21h2

2dy2, ~96!

and

dsW5S 2

12r 2Ddx î1S 2

12r 2Ddy ĵ. ~97!

From Eq.~97!, we find that the area element in Cartesian a
plane polar coordinates is

ds5F S 2

12r 2DdxGF S 2

12r 2DdyG , ~98!

5S 2

12r 2D 2

dx dy5S 2

12r 2D 2

r dr du. ~99!

We also can give a more informal derivation of Eq.~99!.
Because the metric Eq.~97! is conformal, it is locally a mul-
tiple of the Euclidean metric~even though this multiple var
ies from point to point!. Therefore, we expect the area el
ment also to be a multiple of the Euclidean area eleme
with the multiplying factor equal to (2/(12r 2))2, because
the area is the product of the infinitesimal length in each
the two orthogonal directions and each length is the Euc
ean length multiplied by the factor 2/(12r 2).

To evaluate the integral on the right-hand side of Eq.~95!,
we need to express the curl and dot product in the coo
nates of rapidity space. From Boas37 we have

¹3FW •n̂5
1

h1h2
F ]

]x
~h2F2!2

]

]y
~h1F1!G ~100a!

5S 12r 2

2 D 2 ]

]x F S 2

12r 2DFyG2
]

]y F S 2

12r 2DFxG .
~100b!

Because Green’s theorem is true for any vectorFW , it holds

for the particular vectorFW 52y î1x ĵ . For this choice, the
right-hand side of Eq.~100b! reduces to 1.

Thus, whenFW 52y î1x ĵ , Green’s theorem becomes

Area~S!5 R
C
FW •dsW, ~101!

where the area enclosed by the closed curveC is calculated
using the rapidity space area element Eq.~99!. If we substi-
tute our choice forFW into the right-hand side of Eq.~101!,
we find

R
C
FW •dsW5 R

C
~2y î1x ĵ !•S 2

12r 2D ~dx î1dy ĵ!

~102a!

5 R
C
S 2

12r 2D ~x dy2y dx!. ~102b!

Therefore, Eq.~101! can be written as

Area~S!5 R
C
S 2

12r 2D ~x dy2y dx!. ~103!
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We now show that the right-hand side of Eq.~103! is equal
to an integral of the form given in Eq.~94!. Let r andu be
the usual plane polar coordinates measured from the ce
of the disk. In terms of these coordinates,

x5r cosu, dx52r sinu du1dr cosu, ~104a!

y5r sinu, dy5r cosu du1dr sinu. ~104b!

We substitute these coordinates into Eq.~103! and find that

x dy2y dx5r 2du, ~105!

which implies that

Area~S!5 R
C
S 2r 2

12r 2Ddu. ~106!

By looking at the hyperbolic triangle in Fig. 14 represen
ing the three boosts, we see that two of the three sides
straight lines emanating from the origin, which means t
du50 for these geodesic segments. Consequently, the
gral along each of these segments makes no contributio
the path integral. Therefore, only the integral over the cur
geodesic contributes to the right-hand side of Eq.~106!. We
can evaluate this integral by changing it from one in terms
the polar coordinates (r ,u) measured from the center of th
disk to an integral in terms of coordinates measured from
center (a,b) of the circle on which the curved arc lies~see
Fig. 14!. If Aa21b221 is the radius of this circle andv the
corresponding angular coordinate~defined as positive in the
counterclockwise direction!, then the desired coordinat
transformation is

x5a2Aa21b221 cosv, ~107a!

y5b2Aa21b221 sinv. ~107b!

After some algebra, we find that

2

12r 2 5
1

12~a21b2!1Aa21b221~a cosv1b sinv!
,

~108!

and

x dy2y dx52@12~a21b2!1Aa21b221

3~a cosv1b sinv!#dv. ~109!

If we use Eqs.~108! and~109! in the integrand of Eq.~103!,
we conclude that

Fig. 14. The non-Euclidean area of a non-Euclidean triangle is equal t
angular defectp2(a11a21a3)5v.
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S 2

12r 2D ~x dy2y dx!52dv. ~110!

Using Eq.~110! in the integral in Eq.~103!, we see that the
integral in Eq.~103! is zero on the straight lines through th
origin, while on the other geodesic, it is~to within a sign! the
angular extent of the geodesic segment about its center.

If we look at Fig. 14, we see that the two radii of the circ
centered at (a,b) together with the two sides of the triang
which are straight lines, form a four-sided figure~that is, a
Euclidean quadrilateral!. Because the sum of the angles in
Euclidean quadrilateral is 2p,38 we have that

2p5a31S a11
p

2 D1v1S a21
p

2 D ~111a!

5~a11a21a3!1v1p, ~111b!

which implies that

v5p2~a11a21a3!. ~112!

Therefore, the area enclosed by the triangle is

Area~S!52E
v1

v2
dv5E

v2

v1
dv ~113a!

5p2~a11a21a3!52~TWR!. ~113b!

Note that because we have proven that the area of our sp
triangle is just the angular sweep of its one curved side,
easy to prove that the area of any geodesic-sided polygo
the sum of the angular sweeps of its sides~about their vari-
ous centers of curvature!.

We have thus proved the main result of this section, t
the negative of the Thomas–Wigner rotation is equal to b
the ~rapidity space! area enclosed by the rapidity space t
angle and the angular defect~p minus the sum of the interio
angles of the rapidity space triangle!. Although we have de-
rived this result from first principles, it was pointed out b
Aravind,24 and later discussed in a slightly different conte
by Criado and Alamo.25

Although the result~113b! is interesting in its own right, it
also suggests that another way to evaluate and com
Thomas–Wigner rotations is to look at the areas of the c
responding triangles in rapidity space. Although possible
principle, in practice this is not very easy to do because ar
in rapidity space depend on where they are located, and
are not readily compared using our Euclidean-trained ey
More specifically, as Eq.~49c! for the area elementds
shows, although two regions in different parts of rapid
space may appear to have the same area to our Euclid
trained eyes, the area of the one closest to the edge o
disk is larger.

C. Various equations for the Thomas–Wigner rotation
angle

We now are in a position to derive the various expressi
for the Thomas–Wigner rotation angle that have appeare
the literature. Because most of these expressions are fo
magnitude of the TWR, we can use Eqs.~103! and ~113! to
write

its
955John A. Rhodes and Mark D. Semon
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uTWRu5U R S 2

12r 2D ~x dy2y dx!U ~114a!

5 R S 2

12r 2D u~rW3drW !• k̂u ~114b!

5 R S 2r 2

12r 2DU ~rW3drW !• k̂

r 2 U. ~114c!

If we use Eqs.~64! and ~65!, we find that

2r 2

12r 2 5g21. ~115!

Equation~67! can then be used to show that for any infin
tesimal segment of the path,

U~rW3drW !• k̂

r 2 U5U~vW 3dvW !• k̂

v2 U, ~116!

which means that Eq.~114c! can be rewritten as

uTWRu5 R
C
~g21!UvW 3dvW

v2 U. ~117!

Equation~117! can be re-expressed in various forms. F
example, if we call the integranddx, then

dx5
g21

v2 uvW 3dvW u ~118a!

5
g21

v2 uvW 3aW udt. ~118b!

Hence,

dx

dt
5

g21

v2 uvW 3aW u. ~119!

Equation ~118a! is the expression for the Thomas–Wign
rotation angle given in Ref. 5, p. 289 and Ref. 6, p. 178.

Several interesting physical properties can be dedu
from Eq.~117!. First, the right-hand side tends to zero in t
non-relativistic limit, showing that in this limit the Thomas
Wigner rotation vanishes. Second, asv→c, the Thomas–
Wigner rotation angle increases without bound, as we
duced in Sec. VII A using the geometry of rapidity spac
Third, the Thomas–Wigner rotation is a purely kinema
effect because it is independent of the dynamics causing
acceleration. In other words, it not only occurs for charg
particles moving in electromagnetic fields, but also can oc
for elementary particles accelerated by nuclear forces,39 and
for masses accelerated by gravitational fields.

If we multiply the right-hand side of Eq.~119! by (g
11)/(g11) and use the identity given in Eq.~65!, we find
that

v5
dx

dt
5

g2

g11
UbW 3

dbW

dt
U5 ~g21!

b2 UbW 3
dbW

dt
U, ~120!

which is the expression for the angular speed of
Thomas–Wigner rotation given in Ref. 5, p. 290, Ref. 40,
554, and Ref. 6, p. 179. Because it is the angular velocity
the Thomas–Wigner rotation that enters into the calcula
of the Thomas precession, it is this quantity that appear
the relativistic correction to the spin–orbit term in the Ham
tonian for a hydrogen atom.
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D. Applying the Thomas precession in quantum theory

Most derivations of the relativistic correction to the spin
orbit term in the Hamiltonian for a hydrogen atom relate t
time rate of change of the electron’s spin vector in its inst
taneous rest frame to the corresponding rate in the lab~or
proton’s rest! frame.40 Because any instantaneous rest fra
of the electron is obtained from the previous instantane
rest frame by a non-collinear Lorentz boost, the transform
tion back to the lab frame will include Thomas–Wigner r
tations. The rate at which the Thomas–Wigner rotations
cur is the rate given in Eq.~119!. There are several excellen
derivations of the correct form of the relativistic correction
the spin–orbit term~see, for example, Refs. 3, 4, or Ref. 42!,
and Eq.~119! is used in all of them.

Some authors43 claim the factor of 2 that comes from in
cluding the Thomas precession in the spin–orbit term res
from the electron’s rest frame precessing through one c
plete cycle each time it completes one revolution around
proton. However, as Eqs.~120! and ~124! show, this inter-
pretation is incorrect because the number of rotations c
pleted during each revolution is variable, and tends to in
ity as v→c.

E. A special case of Thomas precession

The Thomas precession of an object is the sum of all
Thomas–Wigner rotations it undergoes when it comple
one closed planar orbit. To see this explicitly, consider
simple example of an object moving in a circle with a co
stant speed. If we use the area element given in Eq.~99!, the
expression for the magnitude of the Thomas precession
this case is

uTPu5E
0

2pE
0

R 4

~12r 2!2 r dr du ~121a!

52pE
0

R 4r

~12r 2!2 dr. ~121b!

We can evaluate this integral by changing the integrat
variable tou5(12r 2). After some algebra, we find

uTPu54pS R2

12R2D . ~122!

By using Eq.~115!, we see that

S R2

12R2D5
g21

2
, ~123!

which means that

uTPu52p~g21!. ~124!

Note that if the object moves around the circle in the cloc
wise ~negative! direction, then the Thomas precession is
the opposite~positive! direction after one revolution aroun
the circular path. This result also is derived in Ref. 6, p. 1

VIII. MATHEMATICAL CONNECTIONS AND
ALTERNATIVE EQUATIONS FOR THE
THOMAS –WIGNER ROTATION

The purpose of this section is to give a brief discussion
the relation between the results presented in this paper
Möbius transformations, spinors, the groupSL2(C), and
models of the hyperbolic plane. The only new physical res
956John A. Rhodes and Mark D. Semon
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is Eq. ~146!, which expresses the Thomas–Wigner rotat
angle in terms of the rapidities that give rise to it and t
angle between their corresponding boosts. Equation~146!
also can be obtained geometrically in rapidity space; it is
easier to derive in the present context.

We have shown that rapidity space and the actions of L
entz transformations on it provide valuable insight into t
Thomas–Wigner rotation and the Thomas precession.
though our presentation has not required an actual algeb
expression for the action of Lorentz transformations on
pidity space, it is natural to ask for one. Once we have
expression, it will be easy to relate Lorentz transformatio
to certain Möbius transformations~linear fractional transfor-
mations!, and then to the spinor map betweenSL2(C) and
the Lorentz group.

A. Lorentz transformations of rapidity space

To see how the Lorentz transformation of Eq.~10! ~a boost
in the positivex direction with rapidityf! acts on a point
(x,y) in the Poincare´ disk, let (x,y,(x21y211)/2) denote
the point on the paraboloid that projects to this point in
disk ~see Fig. 3!. If we apply the boost to this vector, w
obtain

S x

y

x21y211

2

D °S ~coshf!x2sinhfS x21y211

2 D
y

2~sinhf!x1coshfS x21y211

2 D D ,

~125!
which we then need to rescale so that it lies on the para
loid. Some rather messy algebra shows the correct sca
factor is

l5S coshf11

2
2~sinhf!x1

coshf21

2
~x21y2! D 21

,

~126!

and thus the boost maps points in the Poincare´ disk by

S x
yD°S x8

y8 D5S lS ~coshf!x2sinhfS x21y211

2 D D
ly

D .

~127!

Equation ~127! can be expressed in a surprisingly simp
way if we use complex notation to denote points in the di
If we let z5x1 iy , and set

a5Acoshf11

2
5cosh

f

2
, ~128!

b52Acoshf21

2
52sinh

f

2
, ~129!

the action of the boost becomes

z°z85
az1b

bz1a
. ~130!

Thus, when we use complex notation to label points on
Poincare´ disk, the action of the boost can be expressed i
particularly simple way as a Mo¨bius transformation.
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Another special type of Lorentz transformation that is ea
to analyze is a spatial rotation. It is not difficult to see tha
counterclockwise spatial rotation by an angle ofu produces
the map of the disk

z°z85eiuz5
eiu/2z10

0z1e2 iu/2 , ~131!

which is again a Mo¨bius transformation.
Given any Möbius transformationz° (az1b)/(cz1d),

with a, b, c, d normalized so thatad2bc51, we may
associate44 with it the matrix (c

a
d
b) of determinant 1. The

composition of two Mo¨bius transformations corresponds
multiplication of the corresponding matrices, and an inve
transformation corresponds to the inverse matrix. Thus
boost and rotation are associated with matrices

Bx~f!5S cosh
f

2
2sinh

f

2

2sinh
f

2
cosh

f

2

D ,

~132!

R~u!5S eiu/2 0

0 e2 iu/2D ,

which both have the rather special form,

M ~a,b!5S a b

b̄ ā D , ~133!

for complex numbersa and b with aā2bb̄51. Further-
more, for any such matrixM (a,b) with u1 5arg(a)
1arg(b)1p, u25arg(a)2arg(b)2p, and f such that
cosh (f/2) 5uau and sinh (f/2) 5ubu, we have

M ~a,b!5R~u1!Bx~f!R~u2!. ~134!

Thus the matrices arising from boosts and rotations gene
all matrices of the form in Eq.~133!.

In fact, the Möbius transformations associated with mat
ces of the form in Eq.~133! are known to be all the
~orientation-preserving! conformal maps of the Poincare´ disk
to itself.45 Because every Lorentz transformation@on (2
11)-dimensional space# must give rise to a conformal ma
of the disk, and every such conformal map arises from
product of two rotations and a boostBx , then not only do all
the conformal maps arise from Lorentz transformations,
also every Lorentz transformation is a product of at most t
rotations and a boost in thex direction.

B. The upper half-plane model

The transformation associated with

1

&
S 1 i

i 1D
maps the disk conformally onto the set of pointsz5x1 iy
with y.0, and results in the upper half-plane model. T
conformal transformations of this model are the Mo¨bius
transformations corresponding to 232 real matrices of de-
terminant 1, that is, to the groupSL2(R), because

S 1 i

i 1D S a b

b̄ ā D S 1 i

i 1D 21

~135!
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ranges throughSL2(R) as a, b range through all complex

numbers withaā2bb̄51.
Thus Lorentz transformations@on (211)-dimensional

space# correspond to elements ofSL2(R), and the action of a
Lorentz transformation on rapidity space is simply the act
of the corresponding Mo¨bius transformation on the uppe
half-plane model.

C. Extension to three spatial dimensions and the spinor
map

Although our discussion has been limited
(211)-dimensions for ease of exposition, all the work c
ries over in a fairly straightforward way to
(311)-dimensions~or more!. A higher dimensional parabo
loid within the light cone leads to a conformal model
rapidity space, which is now the interior of a unit ball. Th
metric is given by46

ds25
4

~12x22y22z2!2 ~dx21dy21dz2!, ~136!

and the geodesics are arcs of circles that intersect the bo
ing sphere orthogonally. Within the ball, the surfaces form
by pieces of spheres centered outside the unit ball wh
intersect the unit sphere orthogonally should be thought o
‘‘planar,’’ because geodesics remain inside them. Any
these surfaces can be mapped~by a conformal transformation
of the ball to itself! to a disk bounded by the equator of th
ball. The geometry of such a disk arising from its embedd
in the ball is the same as the geometry developed here fo
Poincare´ disk.

Finally, in addition to the ball model, there is an upp
half-space model composed of points inR3 where the third
coordinate is positive. Although points in it cannot be na
rally identified by complex numbers—it is after all thre
dimensional—they can be identified with certain quaternio
x1 iy1 jz, wherez.0. The~orientation-preserving! confor-
mal transformations of this space are identified with matri
in SL2(C), where the matrix (c

a
d
b) acts by47

x1 iy1 jz°~a~x1 iy1 jz!1b!~c~x1 iy1 jz!1d!21.
~137!

The correspondence of Lorentz transformations, which g
rise to conformal transformations of the model, to eleme
of SL2(C) is usually called the spinor map.48

D. More useful forms of the Thomas–Wigner rotation

Because we have identified the matrixBx(f) with a boost
of rapidity f in the x direction and the matrixR(u) with a
spatial rotation through an angleu ~see Sec. VIII A!, we can
derive a relatively simple equation for the Thomas–Wign
rotation produced by two successive, non-collinear, boos

As is easily proved, a pure boost with rapidityf in the
direction ofu can be obtained by first rotating through2u,
then applying anx-boost off, and then rotating back byu. If
we express these three operations by matrices, we have
958 Am. J. Phys., Vol. 72, No. 7, July 2004
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R~u!Bx~f!R~2u!5S cosh
f

2
2sinh

f

2
eiu

2sinh
f

2
e2 iu cosh

f

2

D .

~138!

Therefore, as shown in Figs. 7 and 8, a boost with a rapid
of f1 in thex direction, followed by a boost of rapidityf2 in
the u5p2a1 direction, corresponds to

R~u!Bx~f2!R~2u!Bx~f1!

5S cosh
f2

2
2sinh

f2

2
eiu

2sinh
f2

2
e2 iu cosh

f2

2

D
3S cosh

f1

2
2sinh

f1

2

2sinh
f1

2
cosh

f1

2

D . ~139!

On the other hand, any Lorentz transformation in the
rection of v1 can be expressed as the product of a bo
R(v1)Bx(f3)R(2v1) in thev1 direction followed by a ro-
tation through an anglev2 . Expressing these operations wi
matrices, we have

R~v2!~R~v1!Bx~f3!R~2v1!!. ~140!

In the specific case shown in Figs. 6–8,v2 is the Thomas–
Wigner rotation angle andv1 is the anglea3 . Thus, the
product in Eq.~139! must equal the product in Eq.~140!
which, when expressed in matrix form, is

S eiv2/2 0

0 e2 iv2/2D S cosh
f3

2
2sinh

f3

2
eiv1

2sinh
f3

2
e2 iv1 cosh

f3

2

D .

~141!

If we solve forv2 by equating the upper left entries of Eq
~139! and ~141!, we find

v252 argS cosh
f1

2
cosh

f2

2
1sinh

f1

2
sinh

f2

2
eiuD ,

~142a!

v252 argS 11tanh
f1

2
tanh

f2

2
eiuD . ~142b!

Equation~142b! is an algebraic formula for the Thomas
Wigner rotationv2 resulting from a boost with rapidityf1 in
the x direction followed by a boost with rapidityf2 in the
u5p2a1 direction ~as shown in Figs. 7 and 8!. Note that
Eq. ~142b! readily produces the qualitative results we d
rived in Sec. VII A. For example, it shows that the Thoma
Wigner rotation will take on values between2p andp, and
will approach its largest value when both velocities are n
c andu is nearp. Equation~142b! also shows that the mag
958John A. Rhodes and Mark D. Semon
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nitude of the Thomas–Wigner rotation is the same regard
of the order in which the boostsf1 andf2 are applied.

We end this section by noting that the method used
derive Eq.~142b! also can be used to find the rapidityf3 and
the anglea3 , and to derive the equations given in Ref. 24 f
tan(v2/2), coshf3, and tana3. For example, if we equate th
real and imaginary parts of the upper left entries of E
~139! and ~141!, we find

cos
v2

2
cosh

f2

2
5cosh

f1

2
cosh

f2

2
1sinh

f1

2
sinh

f2

2
cosu,

~143!

and

sin
v2

2
cosh

f2

2
5sinh

f1

2
sinh

f2

2
sinu. ~144!

If we divide Eq.~144! by Eq. ~143!, we obtain

tan
v2

2

5
sinh~f1/2!sinh~f2/2!sinu

cosh~f1/2!cosh~f2/2!1sinh~f1/2!sinh~f2/2!cosu
,

~145!

which is Eq.~2! in Ref. 24. If we divide the numerator an
denominator of Eq.~145! by sinh(f1/2)sinh(f2/2), we obtain
the simpler expression29

tan
v2

2
5

sinu

cosu1D
. ~146!

The coefficientD can be written as

D5S coshf1/2

sinhf1/2D S coshf2/2

sinhf2/2D ~147!

5S ef111

ef121D S ef211

ef221D , ~148!

which, from Eq.~20!, is simply a ratio involving Doppler
blueshift factors. Alternatively, if we use Eqs.~128!, ~129!,
and ~9b! in Eq. ~147!, we see that

D5AS g111

g121D S g211

g221D . ~149!

Equation~146!, together with either Eq.~148! or ~149!, is the
simplest expression we have seen for the Thomas–Wig
rotation anglev2 .

IX. SUMMARY

We have presented a self-contained derivation of a rela
istic velocity space called rapidity space. We then dem
strated how this space can be used to visualize and calc
various effects resulting from the successive application
non-collinear Lorentz boosts and the relativistic addition
non-collinear velocities. In particular, we showed how rap
ity space provides a geometric approach to the Thom
Wigner rotation and the Thomas precession, and how it
fers both qualitative and quantitative insight into these~and
other! effects.
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