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We develop a relativistic velocity space callegidity spacerom the single assumption of Lorentz
invariance, and use it to visualize and calculate effects resulting from the successive application of
non-collinear Lorentz boosts. In particular, we show how rapidity space provides a geometric
approach to Wigner rotation and Thomas precession in the same way that space—time provides a
geometrical approach to kinematic effects in special relativity2084 American Association of Physics
Teachers.
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[. INTRODUCTION Perhaps the most intriguing approach to constructing a
) relativistic velocity space was mentioned in the 1950s by
The most commonly used Lorentz transformation relateg andau and LifshitZ! They begin an exercise for the reader
an inertial frameS to an inertial frameS’ moving with a  py noting that given two non-collinear relativistic velocities
velocity v along thex axis of S. If this Lorentz transforma- 5 ands +dg, the relative velocityds can be considered as a
tion also preserves the orientation of the spatial axesaifd  line element in a three-dimensional velocity space in which
leaves the sign of its time component unchan@gslis usu-  each point is specified by the azimuthal and polar angles of
ally the casg then it is called aboost In some cases an gnq a radial coordinate equal to a functionwotalled the

inertial frameS' is obtained from an inertial fram® by two  rapjdity. Landau and Lifshitz then ask the reader to show
successiveboosts. If the two successive boosts are nonthat this relativistic velocity space is non-Euclidean, with a

collinear then, contrary to what one might expect, the singlenyperbolic geometry.

Lorentz transformation relatin§ to S' is not a pure boost, Landau and Lifshitz do not reference the origin of this
but rather is the product of a boost and a rotation. The unexexercise, so it is not clear if they discovered the velocity
pected rotation was discovered by Thomas 1926, and  space themselves or are drawing upon work published pre-
derived thirteen years later by Wignen his seminal article  viously in the Russian literature. Both P&dli and
on representations of the Lorentz group. If successive norRosenfeld® credit a paper written in Russian by the Croatian
collinear boosts return the spatial origin 8f to the spatial mathematician Varik as the first place in which relativistic
origin of S, then all of the Thomas—Wigner rotations along velocity addition was related to the analog of vector addition
the way combine to produce a net rotationSfwith respect  in a hyperbolic space. Pauli cites four additional articles
to S called theThomas precessiott® (also written in Russiarby Varigak, published between 1910
Thomas precession is an essential part of quantum cours@gd 1919, and Rosenfeld notes that Vakisummarized and
discussing relativistic corrections to the Hamiltonian of a€xpanded upon his work in a bogkritten in Russiappub-
hydrogen atom because it changes the non-relativistic forfished in 1924. Rosenfeld cites only two references to work
of the spin—orbit term by a factor of one-half. Rather thanon this subject which appeared after 1924, both of which are
derive this result, however, some texts state it without givingpooks written in Russian, published in 1963 and 1965.
any reference$,some state it and reference only Thomas’ Given this history, it seems likely that Landau and Lif-
original article!® while others state it and appeal to the Dirac shitz’s text was the first written in English to mention a rela-
equation for its justification!*? tivistic velocity space with hyperbolic geometry. Indeed, in
The few texts and journal articles which do derive Thomasl997, when Araving showed how the Thomas—Wigner ro-
precession often use mathematics that is somewhdation and Thomas precession had properties identical to
sophisticated® such as infinitesimal generators of the Lor- those of areas in a hyperbolic space, he credited this discov-
entz groug’ “a weakly associative-commutative group- ery to “the crucial hint... from Landau and Lifshitz... .” More
oid,” ** “gyrogroups and gyrovector spaces>the Gibbs recently, Criado and Alanfd chose a hyperboloid in space—
method for adding finite rotatiort§,holonomy group trans- time to represent a relativistic velocity space, which they
formations and Clifford—Dirac algebfd, the tetrad mapped onto a unit disk with hyperbolic geometoalled
formalism®® Fermi—Walker transpoff or unboosted the Poincare disk. They then drew on results from non-
Fermi—Walker frame&® Although several texts do present Euclidean geometry, such as the law of cosines and the equa-
straightforward algebraic derivations, they are long andions of geodesics in a hyperbolic space, to show how certain
somewhat tedious® Because many relativistic effects are properties of hyperbolic triangles correspond to certain prop-
easier to derive and understand when treated geometricalbrties of relativistic velocities and velocity addition.
in space—time, we wondered if there was a relativistic veloc- The interesting results in Refs. 24 and 25 are not readily
ity space in which Thomas precessi@nd other effects in- accessible to many physicists because they assume a famil-
volving successive non-collinear boogstsould be treated iarity with formulas and theorems from non-Euclidean ge-
geometrically and in this way also made easier to underemetry. Furthermore, although these articles make the con-
stand. nection between relativistic velocity addition and hyperbolic
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geometry compelling, neither explains this connection noithe spatial axes and leaves the sign of the time component

develops it systematically from first principles. unchanged. If the boost is in thedirection, then the trans-
The purpose of this paper is to derive a relativistic velocityformation equations are

space(called rapidity space from first principles, and to

demonstrate how it provides a geometric approach to solving x'=y(x=vt), (3a)
problems involving the relativistic addition of non-collinear y' =y, (3b)
velocities and successive, non-collinear, Lorentz boosts. The

development is self-contained and assumes no previous Zz'=z, (39
knowledge of hyperbolic geometry. We begin with the single

requirement of Lorentz invariance and construct rapidity — {— 7( t— v_);) (3d)
space using an approach that parallels the one used to estab- c

lish the geometry of space—time. We find that just as many . e T .
kinematic effects in special relativity are more easily and)omh y=1/ 1-v / c.In Wha.‘t follows, we restrict oqrselve_s
to space—times with one time and two spatial dimensions

elegantly understood once the space—time metric because this is sufficient for understanding the most common
ds?=dx?+dy?—c?dt? (1)  cases of Thomas rotation and precession.

is establishedin a space—time with two spatial and one time 0" convenience, |9(12X,2X%T/2y, xs=ct, and f=v/c.
dimension, so too are many aspects of the addition of non-Using this notation;y=(1— )", and Eq.(3) becomes
collinear bqosts more easily understood once the rapidity X} y 0 —vB X1

space metric !

X 1= 0 1 0 Xz |. (4)

(dx+dy?) ) X3 —y8 0 y | \Xs

2

ds?=

. . . If we let x represent the column matrix on the right-hand
is establishedwith x andy related to the usual components gjge of Eq.(4), then the lengti{norm) squared of can be
of velocity, as defined in Sec.)VIn particular, once the main  expressed as

properties of rapidity space have been developed, exact ex-

pressions for the Thomas—Wigner rotation and Thomas pre- 1.0 0

cession can be found geometrically. Furthermore, working in +x3—x2=xT| 0 1 0 |x=xTGx. (5)
rapidity space allows various qualitative aspects of these ef-

fects to be deduced geometrically, some of which are more 0 0 -1

difficult to prove with algebraic equations alone. Indeed, We\ore genera”y, any linear transformatiok is a Lorentz

have found relativistic velocityrapidity) space to be as use- transformation if and only if it leaves the space—time metric
ful for understanding the relativistic addition of non-collinear

velocities and Lorentz boosts as space—time has been for x'Gx' =xTGx (6)
understanding kinematic effects in special relativity. invariant for allx, or equivalently, if and only if

As mentioned above, this paper derives a two-dimensional T
(2D) relativistic velocity spacécalled rapidity spagefrom A'GA=GC. 7

the single assumption of Lorentz invariance. Although devel-

oping the material in this way is logically satisfying, and haslll. RELATIVISTIC VELOCITY ADDITION AND

the additional benefit of unifyingand occasionally correct- THE RAPIDITY

ing) results presented previously, it does make the paper

rather long. Those who would rather bypass the derivations The rapidity ¢ of a boostg is defined as

and proofs, and simply accept that there is a relativistic ve-

locity space whose metric is given by E@9¢ and whose ¢=arctanhg. (8)
geodesics are the ones described at the end of Sec. VI, caip g

proceed directly to the applications presented in Sec. VII. '

Sections 11-VI present the proofs and derivations needed to  8=tanhe, (93
establish the relativistic velocity space and its properties, — cosh 9%b
while Sec. VIl is included for those interested in how some ¥~ 03 . (9b)
of what is presented here is expressed using group theory, g=sinhd. (90)

guaternions, spinors, etc. _ L
Using the rapidity allows Lorentz boosts to be expressed

in two alternative and interesting ways. In the first, if we

Il. NOTATION AND BACKGROUND substitute the rapidity into Ed4), we obtain

Consider two inertial frameS and S’ whose origins are Xé cosh¢ 0 —sinh¢ X1
coincident whent=t'=0, and whosex and x’ axes are Xy | = 0 1 0 Xz |, (10
aligned.(Two inertial frames related in this way are said to X3 —sinh¢ 0 coshg X3

be in thestandard configurationand it is easy to show that o o )
the linearity of Lorentz transformations always makes thiswhich illustrates that the rapidity can be interpreted as an

choice possible for any two inertial fram&sandS'.%) As ~ imaginary rotation angle in space—time. .
mentioned in Sec. |, a non-trivial Lorentz transformation, A Second way of expressing Lorentz boosts is found by

from Sto an inertial frameS’ moving with a velocityy with introducing the new coordinates, »), with
respect taS is called a boost if it preserves the orientation of E=X3tXq, N=X3—Xq. (17
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If we use these coordinates, E@0) can be expressed simply =i+ ot . (199

as . .
Thus, the rapidity provides an easy way to express the rela-

§=e"%, (128 tivistic sum ofn collinear velocities whem=2.

7' =ey (12b) Note that using the Lorentz transformation, ﬂq2) al-
' lows us to express Eq19) in another useful forni If we

For future reference, note that H42) also can be written in  combine Eqs(12b) and(13b), we have

the form

s 1+
) 1— B e’ = m (20)
§'=(y—vB)é= 1+B§ (133
Using this relation in Eq(19e we find that
1+8 e?=e%1e%2 .. (21

n'=(y+vyB)n= 1—g" (13b)
which implies that

Thfg and » coordinate axes lie on the light cone>.(2+ y? 1+8 1+B,\ 1+ B, 1+,
=*ct) and transform into themselves under this type of = .
Lorentz boost. Expressed another way, these axes are eigen- 1-5 1=B1/\1= 5o 1=Bn
vectors of the boost in Eq10) with real eigenvalueg™®  Equation(22) provides a surprisingly easy way to find the
which, as can be seen from Eq$2) and(13), are simply the  resultantg of the relativistic sum oh collinear boosts.
blue- and redshift factors in the relativistic Doppler effétt.

The rapidity is most commonly used to simplify the addi-
tion of collinear relativistic velocities. As is well known, the
relativistic addition of two collinear velocities; and v, V. RAPIDITY SPACE
gives a resultantcollinean velocity v with magnitude

(22

In this section we derive a 2D relativistic velocity space,
vituy Bit+ B2 called rapidity space, directly from the three-dimensional
U 1 0,10 TP 17 5B, (149 (3D) space-time of special relativitythat is, from the
o o space—time W|th two spatial and one time dlmensml’nwe
dition of n collinear velocities is not obvious. However, if we square of the line element for this space—time is
reexpress Eq(14) using the rapidity, we find that

fiig ds?=(dxy) %+ (dx,)2— (dxg)2. (23
¢=arctanh8:arctanl61j—2). (15  We choose this particular form afs> because in the;=0
BBz plane, it reduces to the usual Euclidean relation
Using the identity déz(dxl)zﬂdxz)z. (24)
1 [1+«a . . . .
arctanhw= —In (16) Suppose we fix ourselves in one inertial frame and con-
1-a sider another with the same space—time origin but moving
we have with a velocity v relative to the first. The spatial origin of
this second frame appears to us as following a straight line
b= I (1+B1)(1+8;) a7 (x(0.y(1)=ut, where p/c)<1.Thus s trajectory is a line
(1-B)(1-85)" emanating from the origin and lying within the light cone.
Thus This line also can be described n coordinates as the one
148 1+,3 formed by all the scalar multiples of the vectgs, (), where
b= —In ! + 2 (189  B=ulc. If we turn this statement around, we can say that
1=5 1=52 every straight line through the origin that lies within the light
— arctanhg, + arctanhs, (18h cone represents the trajectory of the origin of some inertial

frame traveling with a velocity relative to the fixed inertial
=1t ¢s. (180  frame represented by the space—time.
If we express the sum of two collinear velocities in the _Another way of describing all the straight lines through

form of Eq.(18) rather than in the usual form of EQL4) the the origin and within the light cone is to note that each can
be viewed as thej axis of some inertial frame obtained
relativistic sum ofn collinear veIocmesBl,,Bz, . ,8n is eas-

ily shown to have magnitudg, with from the original &;,x5,X3) frame by a unique boost. Be-
cause eachx; axis corresponds to one particular velocity
¢=arctanh8 (193 (and vice versp we can create a model of velocity space by
GBI+ B) (1 Bn) choosing one point from eack; axis. The set of all such
(1 B)(1=B,) (1= B, (19  points is a velocity space because each point in it represents

a unique velocity, and because all velocitjéS/vith magni-

_1 1+8; 1+, tude 8<1 will be represented.
_El 1- B, * l 1- 8, (199 There are several natural ways to construct a relativistic
velocity space from the set of points defined in the previous
=arctanhB; +---+arctanhg, (19d  paragraph. For example, we could start with all the points
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space—time and the space-time metric. In that case, the
space—time metric is developed from the physical require-

ment that the speed of light is independent of the motion of

the source and is the same in all inertial frames. The math-
ematical statement of this property=(ct)?, implies that

x> +y?—(ct)*=0, (25)
and leads to interpreting the quantity
x?+y%—(ct)? (26)

as the square of a distance in a 3D space—time where Lorentz
transformations are represented by linear coordinate transfor-
mations A satisfying Eq.(7). Thus, rather than choosira
priori the nature of space—time, a physical invariance is used
to deduce a metric that determines its mathematical proper-
ties.

We use this same approach to deduce the geometry of a
relativistic velocity space. We note that Lorentz transforma-
tions acting on space—time also act on the set of rays inside
the light cone emanating from the origin, and that each of
these rays has a one-to-one correspondence with a rapidity.
Thus, the invariance of the space—time metric @§) under
Lorentz transformations can be used to define a metric on the
rays (or rapidities that also is Lorentz invariant.

Fig. 1. N”le tEVFt’erbo'Oid f"g‘ld tK'e“(‘Of, S?mt“'ta”etity m?]de'sf of rapidi;y To find this metric, first note that because we are choosing

space. Note that an 0OSsIble time axIs Intersects eacnh surface exactly onge, . : PH . .

sg the point of interysgction can be used to represent that axis. Part{)f tr(]ige points in rapldlty space to Corresponq to ra.ys. inside the
light cone has been removed to make the figure easier to understand. '_gh,t Cone_ that emanate from the Space__“me, origin, the met-
ric in rapidity space should be expressible in terms of the

space—time coordinates. That is, there should be functions
f;,; such that the line element squared in rapidity space can
be expressed in the form

lying in the planexz=1 and inside the light cone; alterna-
tively, we could start with all the points lying on the hyper-

boloid with x3>0. 3
As shown in Fig. 1. the first choice is th@multaneity dszz_z fi j(X1,X2,%3)dxdXx; . (27)
plane %=1 for an observer in the inertial frame represented hi=1

by our space—time, while the second is the set of all pointgjowever, because any two points on the same ray in space—
for which the proper timer=1. The first choice results in a time specify the same rapidity, the line element in rapidity
velocity space known as the Klein model, which is not thespace must be the same regardless of which space—time
best choice for our purposes because angles in this model gwints on the ray we choose. Thus, for anywe require

not appear like Euclidean anglébat is, the Klein model is

not conformail). The reason we would like a conformal ds?(Xq,Xz,X3) = dS*(AXq, A Xz, A X3). (28)
model is that the relativistic addition of non-collinear veloci- ; 42 2 2

ties, the Thomas—Wigner rotation and the Thomas precem_—rhe spatie bt|me formls’=dxq + dx; — dx; does not have
sion, are built on understanding angles between successi IS property because

boosts, so only those spaces in which angles behave like ds?(Ax;,AX,,\X3)=A2dS%(X;,X5,X3). (29
Euclidean angles can be expected to offer the geometric in- ) ) ) )
sight we seek. However, we can obtain @s? with the property given in Eq.

The second choice, of all the points that lie on the hyper{(28) by using a simple but clever trick: first take the loga-
boloid of revolution, does result in a conformal velocity fithm of both sides of Eq29) (which changes the multipli-
space and is in fact the one chosen in Ref. 25. This choice igation by\? into the addition of In\?), and then differentiate
both reasonable and convenient because the metric on thiso that the In? term disappeais
space and the geometric properties that follow from it are More formally, the space—time inner product,
well known to mathematicians. However, few of us are good
at judging angles on a curved surface. a(X,y)=—=X-Y==X1Y1~Xy2+ X3Y3, (30

So how do we motivate or justify choosing one modelis positive for rays within the light cone, and has the property
over another? Given that we are free to choose any surface
created by any method of choosing one point from esch A(N1X,N2Y) =N 1hog(X,Y). (3D
axis, why choose the hyperboloid? How do we know theregy taking the logarithm of both sides, we find
isn't some other way of choosing a point from eachaxis
that will lead to an even more convenient or appropriate  MA(A X, Azy)=INAy+InAz+Inq(xy). (32)
model of velocity space? _ Finally, if we take the differential of both sides with respect

Rather than trying to justify one chmgg over ano.ther after andy, we obtain
the fact, we construct a model of relativistic velocity space
from first principles by following the method used to derive d,dy Ing(X1x,A2y) =d,d, Inq(x,y). (33
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In this way we are led to look for a rapidity space metric conformal®? We note that a metric will be conformal if it is
whose inner product has the form a multiple of the Euclidean metric, even if the multiplicative

factor varies from point to point. Thus, E¢4) will be a

ddy In(=x-y) conformal metric if cross terms likéx,dx, are not present.
=d,d,[In(X3y3—X1Y1—=X2Y2)] (34  To this end, we look for a surfaag for which
X3dyz— X dy; —Xzdy> 9'%(r*-g?% ( 99’)2
~d 35 = T 1-) = 4
X Xayz—X1y1— X2y 39 r r 0, (459
=(x-y) [ (dx-dy)(x-y) = (x-dy)(y-dx)]. (36)  which implies that
Settingx=y we see that the line element squared in this  g’(g’r—2g)+r=0. (45h)

relativistic velocity space should have the form L ) . )
One way to solve this first-order non-linear differential

— -2 2
ds?=K(x-x) [ (dx- dx)(x-x) = (x-dx)?], (87)  equation forg is to look for solutions of the form
whereK is an arbitrary constant. — A2
Recall that even though the line element in E§7) is g=Ar+Brec. (46
expressed in terms of space—time coordinates, it also is kwe substitute this form fog into Eq.(45b), we find thatg
function of the rays inside the light cone and through thewill be a solution if the coefficient&\, B, andC satisfy the

origin on which those space—time points lie. conditions
As mentioned previously, in order to better visualize the
geometry that follows fromis? in Eq. (37), we may choose 2AB=0, (479
as a model of relativistic velocity space any surface that in- B2+4AC=1 (47
tersects each ray in exactly one point. If such a surface is '
expressed as 2BC=0. (470
X3=0(X1,X2), (39 One set of coefficients that satisfies these conditions is
then by substituting this expression foy into Eq.(37), we  =*3, C==*3 andB=0, in which cas&
can express the metric in terms of the two coordinajesnd 1472
X2 _ _ _ 9=*|— (48)
Although we have great freedom in selecting the function

g, several judicious choices will greatly simplify our model. Therefore, we can use E¢8) in Eq. (44) and find that
First, because Lorentz transformations include rotations, and
because we seek a metric that is invariant under Lorentz
transformations, it is natural to choose a surface that has
rotational symmetry. Thus, we require that

4K
Xa=9(x) T+ (D) =g(r). (39) =(m)<dx§+dx§>, (49b)

To find dx; in terms ofx, andx,, we apply the chain rule to
Eq. (39), giving

o|s2=(r—fz—gz (dx¢+dx3) (493

which implies that

g’ 2= 2 \? 2 2
dx3=T(x1dx1+x2dx2), (40 ds*= 1—r2 (dxg+dx3). (490
with Note that because we prefer distances in velocity space to be
d non-negative and real, we have chogen —1 in Eq.(490.
g'= d_g (42) The surface described by E@8) is
r
1+r2  1+xi+x3
Because X3=g= = , (50)
—X-X=X2—x2—x3=g%—r2 2 2
: 3T X T X=07 I, (42)

which is a paraboloid of revolution about tixg axis with
vertex atx;=X,=0 andxz;=1/2. The paraboloid also goes
ds?=K(g?~r?) (g~ dx§—dx5)(g*~r?) through points withr2=x2+x3=1 andxs= 1, which are on

— (XadXg— X10%; — X,dX0)2]. (43) the light cone. Not only does the paraboloid touch the light

_ cone atrr =1, but the light cone is tangent to the paraboloid at
If we use Eqs(39) and(40) in Eq. (43) and do some algebra, this point because

we can rewrite Eq(37) as

we find that X
, A(ct) d d[1+r
g9'%(r’=g% — —(ct ‘ = =1, (51
ds’= =g (dx2+dx3)—K — A(r) |, ar (Y _,odrlo2 )] ) 6D
"2 2 which is exactly the slope of the light cone.
+(1_ ﬂ) (M) (44) As shown in Fig. 2, each ray emanating from the origin
r r—g and inside the light conéwith the exception of thex; axis)

Although there is still much freedom in our choice of the intersects the paraboloid twice: once below the digk 1
surfaceg, we now impose our desire to have a model that isand once above it. Because we only need a single point from
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is much easier to work in the space obtained by projecting
this paraboloid onto thexg,x,) plane by the projection
(X1,X2,X3)—(X1,X5) shown in Fig. 3.

The space created by this projection is a unit disk with the
metric in EQ.(490), and is known to mathematicians as the
Poincaredisk Although both the Poincarand hyperboloid
models are conformalthe first in two dimensions and the
second in threg the Poincarenodel is superior for building
intuition about the Thomas—Wigner rotation and Thomas
precession because it can be drawn in two dimensions, which
makes line segments and angles easier to visualize.

As we shall see, the distance from the origin to any point
on the Poincaralisk [as determined by the line element in
Eqg. (490)] is just the rapidity associated with that point,
which is why we refer to this disk as rapidity spateBe-
cause points on the edge of the disk are defined by the pro-
jection of points on the intersection of the paraboloid and the
light cone, they represent velocities with speedc. We
shall see that these points are an infifR@incarg distance
away from any point inside the disk, reflecting the fact that
speeds can approach but never reach the speed of light.

To simplify the notation, we rename the coordinates on the
disk x(=x;) andy(=x,). We identify the physical signifi-
cance of the distance of any point from the origin by

evaluating®
Fig. 2. The paraboloid model. Because each non-vertical time axis intersects R R 2
the paraboloid in two points, the lower point is chosen as its representation ~ S= f ds= j ( 1— rz) \/dX2+ dy2 (539
in this model. 0 0
R 2
=f = Jdr?+r2de? (53b)
o\ 1—
each ray to create a velocity space, we only use that part of
the paraboloid that is below the digthat is, points on the Rl 2
paraboloid withx;<1), as shown in Fig. 3. = fo 1—r2)dr (530
Finally, note that the line element squared given in Eq.
(490 can be expressed in plane polar coordinates as 1+R
2 =In| —]|, (530
1-R
ds?= 5| (dr2+r2de?). (52
1-r which implies that
V. VELOCITY SPACE, RAPIDITY SPACE, AND THE s=2arctantR. (54)
POINCARE DISK However a point on the disk whose radial coordinatdis

_ [32 2 H H 2
Although the paraboloid of revolution derived in Sec. IV — ? +b corrgspopds to the spgce—ﬂme PO"";'“(' (a
is a valid model of relativistic velocity space, in most cases itT P“+1)/2), which lies on the ray in space—time with slope

ct (1+ R?)/2

R R =
which implies that
c 1+R? 56
2R 2 tanks/2)
> ﬁ: 2= ’ (57)
D (Xq,%0,X3) 1+R° 1+tanhs/2)tanh(s/2)
B=tanh(s/2+ s/2)=tanhs. (58

We thus conclude that th@oincaredistance s of any point
from the origin is

s=arctanhB=¢ (the rapidity. (59

Fig. 3. Possible time axes correspond to their unique points of intersection . L
with the lower part of the paraboloid, which then correspond by downward \_Ne can further clarify the nature Qf rapidity space by re-
orthogonal projection to unique points in the Poincaisk. lating its coordinatesx,y) to the Euclidean velocity compo-
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nentsv, andv,. First, note that a pointq(y) on the disk formal property of rapidity space can be seen explicitly by
corresponds to a pointx(y, (1+r?)/2) on the paraboloid, noting that if arctan(,/v,) is the angle made by a velocity
which means that vectorv with the horizontal axis in real space, then, using
Eq. (60), we have

2 2
Bx=\777z|%  By=|72]Y (60) v
© o\l Tl arctancy = arctarf. = 0, (69)
and Ux X
2 which means that the angle ﬁfin real space is the same as
B= W)r (61)  the angled in rapidity space. This property of rapidity space

is what makes it so useful for understanding the Thomas—
Equations(60) and (61) give 8 (and its componentsn  Wigner rotation and Thomas precession.

terms of any radial coordinate (and its components To

find the inverse relatiofthat is, ther associated with a given

B), we first solve Eq(61) for the magnitude of: VI. GEODESICS IN RAPIDITY SPACE

2 —

pro—2r+p=0, 62 We need to understand one more aspect of rapidity space
1-J1-42 before we can use it to investigate the relativistic addition of

r= T (63 non-collinear velocities and boosts. When we boost from one

inertial frame traveling with a velocity; to another travel-

v—1 ing with a velocityv,, we pass through the minimum num-

r= W (64) ber of velocities whose speeds are greater thaand less

v th . in th dratic f lab thanv,. The corresponding path in rapidity space between
(We use only the negative root in the quadratic formula bey,e noints representing these velocities is the shortest one

causer <1). We substitute E(64) in Eq. (60) and use the \yhich by definition, is the geodesic connecting them.

identity, Hence, to study successive non-collinear boosts, we need to
B2 identify the geodesics in rapidity space. We shall see that
Y2 —1=——=(yp)? (65  these geodesics are straight lines if the origive point rep-
1-8 resenting zero velocijyis one of the values taken on during
to find the boost. In all other cases the geodesics are not straight
lines but rather are the arcs of circles. Following these arcs
),3 (663 from one point in rapidity space to another will bring out

X! most of the interesting features of relativistic velocity addi-

tion, successive Lorentz boosts, Thomas—Wigner rotations,
B (66b) and Thom_as precess_ion. _ _

v We begin by showing that any geodesic that includes the
origin of rapidity space is a straight line. Our proof parallels
the traditional one showing that the shortest distance be-
tween two points in a Euclidean plane is a straight line, and

B- (67)  is accomplished by finding the path of minimum distance
connecting two points on the disk. The length of any path

From Eq.(66) we see that the coordinate in rapidity connecting the origin and a poin&(B) in rapidity space is

space is proportional t@, and they coordinate is propor- (AB) aB) 2
tional to B,. The proportionality factor in both cases is j ds:J ( Jdr2+r2de? (703
( (

y+1

. . 1-r?
vI(y+1), which goes to unity as—c and to 1/2 a 0.0) 0.0)
—0. Thus, in the limit a3 — 0, the line element squared in R[ 2
rapidity spacdEq. (490)] reduces to zf (1 2| V1+ r¢'%dr, (70b)
o\ 1—

ds*=(dBy)*+(dBy)?, (68)

. i . / . with R=+/AZ+BZ, and
which, of course, is the line element squared of the usual
Euclidean non-relativistic velocity space. o de (71)

To summarize, we have shown that requiring the velocity ~dr’
space metric to be invariant under Lorentz transformations )
leads to a model of relativistic velocity space that can bdf We use the Euler—Lagrange equation, we know that the
represented either as a paraboloid of revolution with its verlntegral in Eq.(70b) will be an extremum when
tex atx;=x,=0x3=3 and top edge at;=1, or as a unit 2
disk with the metric given in Eq490. In this paper we refer - (1—r2) \/1+r20’2}
to this (Poincare disk as rapidity space because the distancea
from the origin to any point on the disk is its rapidity. Note d o
that from the definition of rapidity, it is easy to see thatany ~ — g+ —,{ —2/V1l+ r2g'2
. T ' rog’ |\1—r
point on the edge of the disk is infinitely far from any point
in the disk. Also, any point in rapidity space is related to theThe first term on the left-hand side is zero, so E&®) re-
components of any velocity by Eg&60) and(66). The con-  duces to

=0. (72
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d ¢
dr 06’

o T <o, 73

which implies that

d 2 r2e’ 0 24

ar| | 1= vz 7
and

2 o =h(6’ 75

1_r2 \/W_ ( ) ( )

If we square both sides of E¢r5) and rearrange the terms,
we findh?(Aré+Br4+Cr2+1)=4r%9'2, with A, B, andC
functions of#’. In order for this equation to be satisfied for
all r, includingr=0, h(#") must be zero. Hence, from Eq.
(75) we see tha®¥’ also must be zero, and thusis a con-
stant whenever =0 lies on the path. Therefore, any geode-Fig. 4. Geodesics through the vertex of the paraboloid are formed by inter-
sic in rapidity space that includes the origin is a straight line sections of the paraboloid and vertical planes. These project to Euclidean-
as shown in Fig. 6. straight lines through the origin in the Poincanedel.
Next we derive the geodesics in rapidity space that do not
include the origin. Because the rapidity space metric is Lor-
entz invariant by construction, Lorentz transformations must T 1
send geodesics to geodesics. Thus, we can obtain a geodesic 0<COS‘9<COSZ— A (76)
that does not include the origin by applying the same boost
to every point on a geodesic that does include the originOn the other hand, if we express the normal to the plane as
Rather than doing this directly, it is easier to obtain the final(a,b,1), then any pointX;,x,,X3) on the plane satisfies
geodesic geometrically by projecting back and forth between
the disk and the paraboloid. In this approach, we first iden-  (&B1)-(X1,X2,X3) =0, (77

tify the geodesics on the paraboloid that correspond to geayr ax, +bx,+x3=0. However, Eq(76) tells us that
desics through the origin of the disk. We then apply the same

boost to every point on one of these geodesics on the parabo- cosh (a,b,1)- (0,0,1)< 1 79
loid. Finally, we project the Lorentz transformed geodesic on T 22 A
the paraboloid onto the disk and find the equation that de- at+b™rl V2
scribes it. which implies thata?+b%+1>v2 and a?>+b?>1. We

We already have proven that any geodesic that includethus conclude that the plane shown in Fig. 5 is specified by
the origin of the disk is a straight line. If we project one of B . 2, 12
these straight lines back up to the paraboloid, we see that it @1 PXe+X3=0 with a®+b*>1. (79
corresponds to a parabola through the vertex of the parabo-
loid, as shown in Fig. 4. Thus, any suglertically orientedl
parabola is a geodesic. Equivalently, any one of thesti-
cally oriented parabolas can be regarded as the curve
formed at the intersection of the paraboloid and the plane
defined by two axegj; andxj, each of which has a point on
the paraboloids’ geodesic.

If we now perform the same pure boost on every frame
represented by a point on a parabola passing through the
vertex of the paraboloid, we obtain a new geodesic that does
not include the vertex. Because boosts are linear transforma-
tions, planes through the origin transform into other planes
through the origin. Thus, the new geodesic can be described
as the curve created by the intersection of the paraboloid and
the new plane formed by the boosteg and x; axes, as
shown in Fig. 5. If we project this curve onto the disk, we
can find the equation of an arbitrary geode@a the disk
that does not include the origin.

Because the boosted;, and x5 axes define the plane
whose intersection with the paraboloid determines the new
geodesic, this plane must lie within the light cone. It follows Fig. 5. All geodesics on the paraboloid are formed by its intersection with

that'there is a norma| to the plane making an arfghéth the  pjanes through the origin. These project downward onto circular arcs, or-
original X5 axis, with 7/2> 6> 7/4: thogonal to the unit disk, in the Poincameodel.
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Because any such plane can be obtained by boosting the
appropriatexs andxj, we conclude that planes of the form
in Eqg. (79) determine all the geodesics on the paraboloid.

That is, a curve is a geodesic if and only if it lies on the o,
intersection of the paraboloid and any plane including the
origin. @, G, O
Our main interest is in the points shown in Fig. 5 that lie A=
on the intersection of the plane and the paraboloid. Any point
on the paraboloid satisfies E(O),
1+x2+x%3 s %
Xg=——% (80)

If we combine Eq(80) with Eqg. (79), we see that points on

the curve formed at the intersection of the plane and theig. 6. Three geodesics in rapidity space and a non-Euclidean triangle. The
paraboloid(that is, points on a geodesic on the paraboloidgeodesics are labeled d5 and the angles of intersection as.

that do not pass through its verjesatisfy

X3+x5+1

(a2+b?>1) (81) To do this, we note that any point on both the edge of the
2 L

disk and on the geodesic satisfies both E§2) and (83),
and by adding these two equations together we find

2 2 _
(X, +a)2+ (X, +b)2=a2+b2—1>0. 82) 2x°+2ax+2y-+2by=0, (90)

If we project back down onto the disk as shown in Fig. 5, X(x+a)+y(y+b)=0, (D
we see that any geodesic that does not include the origin is X y+b
the arc of a circle centered at—@,—b) with radius BT (92
Ja?+b?—1. Note that the center of any of these circles ) .
always lies outside of the unit disk becawser b>>1, and @S required. Note that this argument can be reversed to show

that any point &,b) outside of the unit disk is the center of that any circular arc orthogonal to the unit circle at their

a circle on which some geodesic inside the disk lies. Also,pomts of intersection is a geodeslc. .
The main results of this section are the following. As

because andb can be positive or negative, it doesn't really shown in Figs. 4 and 6, geodesics through the origin of ra-

matter whether we denote the center of the circle bya( pidity space are straight lingén the Euclidean sengeand
—b) or (a,b). _ o any straight line through the rapidity space origin is a geo-
Finally, we can prove that the circles derived in E82)  desic.
are perpendicular to the edge of the disk at their points of Ag shown in Figs. 5 and 6, geodesics in rapidity space
intersection. We recall from Sec. V that points on the disk ar€yhich do not include the origin are arcs of circles whose
denoted by X,y), points on the edge of the disk satisfy  centers lie outside the disk and are perpendicular to the edge
x2+y2=1 (83) of the disk at their points of intersection. Conversely, any
' point outside the disk is the center of some circular arc
and points on a geodesic on the disk satisfy within the disk that is a geodesic. As Fig. 6 shows, the new
feature is that rapidity space contains geodesics that are not
2 2_,/2 2_
(x+a)"+(y+b)"=a"+b"—1. (84) “straight” in the Euclidean sense. One way to understand
By taking the differential of EqS(83) and (84), we obtain these curved geodesics is to note that the metric of £3p)
tells us that segments near the edge of the disk are much

_axl_bX2=

which implies that

2x dx+2y dy=0, (85 |onger than they appear, so the shortest path between two
2(x+a)dx+2(y+b)dy=0 (86) points near the disks’ edge must be bowed inward rather than
' straight.
which can be rewritten as
dy X @ VIl. APPLICATIONS
“=_Z 8
dx y Now that we have found the Lorentz invariant metric and

d x+a geodesics in rapidity space, we can investigate the relativistic
ay__ - (88)  addition of velocities and the various consequences of suc-
dx  y+b cessive non-collinear Lorentz boosts.

Equation(87) gives the slope of the tangent to any point on 5 Qualitative results

the edge of the disk, and E@88) gives the slope of the

tangent to any point on the geodesic. To prove that the geo- Before deriving quantitative expressions for the Thomas—
desic is perpendicular to the edge of the disk at their point ofVigner rotation and Thomas precession, we first discuss re-
intersection, we must show that these two tangents are pesults that can be deduced geometrically without the use of

pendicular to each other; that is, that any equations.
Velocities are represented by points in rapidity space. A
X ﬂ (89) boost from one velocity to another is represented in rapidity
y x+a’ space by the geodesic connecting them. Because a pure boost
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Fig. 7. The first boost along the geodedig. Fig. 9. The third boost along the geodedig .

doesn't involve any rotation of the reference frame being A boost that does not include the zero velocity frame cor-
boosted, the coordinate axes representing the boost in rapitesponds to a geodesic in rapidity space that does not include
ity space maintain a fixed angle with respect to the geodesithe rapidity space origin. As we proved in Sec. VI, this geo-
they follow, as shown in Fig. 7. When coordinate axes main<desic lies on the arc of a circle whose center is outside the
tain a fixed angle with a geodesic as they move along it frondisk. As shown in Fig. 8, cross hairs moving along this type
one point to another, they are said to undegpgaallel trans-  of geodesic maintain their orientation with respect to it.
port. The most familiar example of parallel transport occursTherefore, cross hairs moving back to the origin along a
in non-relativistic velocity space, in which all the geodesicsclosed path that includes orier more of these geodesics
are straight lines. will be rotated with respect to their initial orientation. An
We begin by considering a set of collinear boosts in reakexample of this rotation is shown in Fig. 9. Suppose we
space. If we assume this set contains the zero velocity framépost from rest to a velocity along thex axis (in real
then the first boost is represented in rapidity space by a segpace. Then we perform a non-collinear boost from a frame
ment of a straight line geodesic that includes the rapiditywith velocity v to a frame with velocityy’, and finally, we
space origin. Without any loss of generality, we take thatyoost from a frame with velocity’ back to the original rest
direction as the horizontal axis in both real and rapidityframe. If we look at the corresponding points in rapidity
space. Because straight lines through the origin of rapiditpace as shown in Fig. 9, we see that the frame obtained at
space are geodesics, each collinear boost is represented byh@ end of these three boosts is rotated with respect to the one
segment of the sam@orizona) line. If we represent a coor- - that stayed at the origin. This rotation is the Thomas—Wigner
dinate system in rapidity space by two small perpendiculafotation, which we denote by TWR, and the geometry of
lines (cros; hairs centered on the point of interest, then aSrapidity space shows that the TWR is in the clockwiisega-
shown in Fig. 7, when we boost from one velocity to anotheryjye) direction when a frame is moving in rapidity space in
the orientation of the cross hairs remains fixed with respecie counterclockwisépositive direction (and vice versa
to the geodesic connecting them. Thus, the orientation of the |t ais0 is easy to see that there is an upper limit on the
cross hairs is unchanged no matter how many collineai\R angle. Without any loss of generality, suppose we first
boosts it unde_rgoe_s because, in .each case, it is moving alongost along the axis (in real spackto a frame whose speed
the same straight line geodesic in rapidity space. is very close to the speed of light. There is no orientation
Furthermore, because the distarias measured with the  cpange of the boosted frame because the geodesic it follows
rapidity space metrjcrom the origin to any pointin rapidity iy rapidity space is a straight line. If we next perform a
space is the rapidity of that point, we see that when succe$jon_collinear boost to a speed even closer to the speed of

sive boosts are collinear, the corresponding rapidities ad ght, which makes an angle slightly less thamwith the x

and subtract like ordinary numbers. Thus, rapidity space pro;,; N : ; :
vides an easy geometrical way to obtain E49e and to axis, then as shown in Fig. 10, the geodesic representing this

prove that frames boosted in the same direction do not rotatséecond boost will lie on the arc of a circle thatis perpendicu-

with respect to each other. Working in rapidity space also
provides an easy proof that no matter how many collinear
velocities are added together, the magnitude of their sum
always will be less than the speed of light.

Fig. 10. When a second boost is applied at an angle approaehwith the
first, the Thomas—Wigner rotation angle approaches its maximum value of
Fig. 8. The second boost along the geoddsic .
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Fig. 11. All of these non-Euclidean triangles have the same two base angles, Fig. 12. Polygonal approximations to curved paths in rapidity space.
but the smaller a triangle is, the closer it is to appearing Euclidean.

tance from the rapidity space origjrand will increase with-
) . . out bound as this speed approaches the speed of light, as

lar to the edge of the diskvherev =c) at its two points of  ghown in Fig. 12.
intgrsection. In the limit that both speeds approach the speed \we also can use the geometry of rapidity space to show
of light and the angle between the boosts approaehele  that non-collinear, relativistic boosts are aléa general
arc representing the second boost approaches a half circlgon-commutative. Suppose we first boost a reference frame
Thus, the change in orientation of a reference frame follow+gm speed zero to a speed close to the speed of light, and
ing the arc approachesr. Consequently, any Thomas-— then hoost the frame through a second non-collinear velocity.
Wigner rotation angle has an upper limit of and the limit  From the rapidity space diagram in Fig. 13, it is clear that we
of  is approached only when the two boosts involved havey;jj| end up at a completely different point if we do the same
speeds very close to the speed of light and are almost 0ppP@mosts in reverse order. However, if we look closely at the
site to each other. In all other cases the TWR angle will anp|d|ty space diagram, we see that a|though the two result-
less thanr. ] ant velocities are represented by different points in rapidity

On the other hand, if we perform the same two non-space, they both are the satnapidity spacgdistance from
collinear boosts as before, but now give each a nontne rapidity space origin. Consequently, they both have the
relativistic speed g<1), then as shown in Fig. 11, even same rapidityand hence spegdbut not the same direction.
though the geodesic representing the second boost still liephe result that the final speed resulting from two successive
on the arc of a circle, that arc is indistinguishable from anon-collinear boosts is independent of the order in which the
straight line because it is located near the rapidity space orboosts are applied is usually proved by a somewhat long
gin. Therefore, when the boost speeds are non-relativistiaigebraic calculatiof®
there is essentially no rotation of the frame in following the  Finally, it is easy to see that the sum of any number of
two geodesics. non-collinear relativistic velocities always results in a veloc-

Next consider a reference frame in real space undergoingy whose magnitude is less than the speed of light. Although
circular motion in the counterclockwig@ositive) direction  obvious when viewed on a rapidity space diagram, the cor-
with a constant, non-relativistic speed. Classically, this SitUTesponding algebraic proof is somewhat complex.
ation is treated by representing it as the limiting case of a set ] ) )
of small, non-collinear boosts. That is, circular motion is B. Relation of the Thomas-Wigner rotation to the
approximated as motion along a polygon with an ever inJapidity space triangle
creasing number of sidesf. Because the boosts _invoIved all ecause angles in rapidity space behave exactly like
have the same non-relativistic speed, all the circular arcgngies in Euclidean space, it is relatively easy to quantify the
representing them in rapidity space are essentially indistin-
guishable from straight lines. Hence, as long as the speed of
the frame in circular motion is non-relativistic, it undergoes
essentially no change in orientation upon its return to the

origin (as we would expett o
Now suppose the reference frame undergoing circular mo- o

tion has a constant speed that is relativistic. The geodesics in 0

rapidity space that form the polygon are now small arcs that %

lie on circles whose intersection with the edge of the disk is a/

orthogonal, as shown in Fig. 12. Consequently, the frame o

being boosted undergoes a definite change in orientation with

each boost. Thus, when the reference frame returns to its

starting point, it will have undergone a clockwiggegative

rotation with respect to its initial orientation. This sum of all

the rotations experienced along the way is the Thomas pre-

cession. Furthermore, we see from the geometry of rapidity

space that the amount of rotation will be a function of therig. 13. Two boosts, with corresponding rapiditigsin non-parallel direc-
speed of the circular motiofthat is, the rapidity space dis- tions, do not commute. In both cases, the angle between the boasts is
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arguments of Sec. VIIA. As shown in Fig. 6, the angles To apply Green’s theorem in rapidity space, we first must
between the boosts awe;, a,, and a,. The straight line find explicit expressions for each integrand. To do this, recall
geodesic making an angle; with the horizontal axis is that

called®;, and the other two geodesics abg and®,. The 4

length(rapidity) of the segment of the geodesix; represent- dszzm(dx2+ dy?)=h2dx?+hady?, (96)

ing each boost is denoted Iy . We see in Fig. 7 that when

we boost from the origin alond,, there is no change in the and

orientation of the cross hairs. As shown in Fig. 8, when we 2
boost anngCIJZ_, the x axis of the cross ha|_rs mamtam; its dg_(l— )dxAiJr dy]. (97)
angle m— a4 with respect tod, becauseb, is a geodesic. r

Finally, as shown in Fig. 9, b°95t'”9 _bac_k to_ the (_)rlgln_alongFrom Eq.(97), we find that the area element in Cartesian and
®,, thex axis (_)f the cross hairs maintains its orlentatlt_)n Ofplane polar coordinates is

(7— aq) — ap With respect to the geodesie;. Thus, as Fig.

2
1—r2

9 shows, when the coordinate system returns to the rapidity do— 2 d 2 d 99
space origin, itsx axis will have rotated from its initial ori- 7T 1 =2 X 1—r2 Y
entation in_ the cloc_kwise(negative) direction by the 5 2 , 12
Thomas—Wigner rotation angle _ ( . 2) dx dy= ( . 2) Cdrdo. ©9)
TWR=—[7—(a;+ az+ a3)]. (93 - !
Note that if the two rapiditiegb, and ¢, are smalkthat is, We also can give a more informal derivation of E§9).

if the speeds they represent are non-relativistthen as Because the me;tric E¢7) i_s conformal, it is_ Iocally_a mul-
shown in Fig. 11, the figure formed by the segments of th&uple of the Euclidean metri¢even though this multiple var-

three geodesic®, is indistinguishable from a Euclidean tri- €S from point to point Therefore, we expect the area ele-
angle (because in this case;+ a,+as~m) and, as ex ment also to be a multiple of the Euclidean area element,
1 2 37 ) :

; v 2\y2
pected, the TWR angle is essentially zero. On the other han%‘l‘,’]'th the multiplying factor equal to (2/(2r))", because

if the two rapiditiess, and ¢, are large, then the resulting the area is the product of the infinitesimal length in each of

TWR angle can approach the upper limitzafas previously e two orthogonal directions and each length is the Euclid-
discussed ean length multiplied by the factor 2/¢ir?).

The absolute value of the right-hand side of E2@) is To evaluate the integral on the right-hand side of @&),

known to mathematicians as the “angular defect,” because ifve need to EXpress the curl anéjédot product in the coordi-
is a measure of how much the sum of the angles inside jates of rapidity space. From Boasve have

triangle differs from the corresponding sum in ordinary Eu- .
clidean spacéw). The theorem that the angular defect of aVXF-A= ohe
triangle is equal to its area is proven in hyperbolic geometry 172
courses. Rather than simply invoking this result, we can es- (1—r2>2 P

1% J
— (haF2) = —=(h;Fy) (1009

X ay

D=2 ; S . ! 2 d 2
tablish it from first principles. Even if we had no previous = — —2) Fy}— —[(—2) Fx}-
knowledge of hyperbolic geometry, we might suspect that 2 ) ox[\1-r ay[\1-r
the area enclosed by the rapidity space triangle is propor- (100b
tional to the TWR angle, because our method for finding theBecause Green's theorem is true for any vediorit holds
TWR angle involves traveling around a closed path and sum- ) - . A ] i
ming up the angular change along the way. This sum correfor the particular vectoF = —yi+xj. For this choice, the
sponds to evaluating an integral of the form right-hand side of Eq(100b reduces to 1.
Thus, whenF = —yi+Xxj, Green’s theorem becomes

jg deé. (94)

¢ AreaS)= 3@ F.d§, (101
An integral like (94) appears in Green’s theorem, which re- c
L\EI‘JS_S diamn(;rrltseiggaall Eg?eingniggzgdbiutrr:/aet tgu?\?e'n\tﬁgrﬁ:)\?vvglg\}vﬁhere the area enclosed by the closed c@vis calculated
that the integral Eq(94) is actually the left-hand side of Using the rap|d|ty spgce area glement m)' If we subsii-
Green’s theorem for a particular choice of the integrand, andute our choice foiF into the right-hand side of Eq101),
that this choice makes the right-hand side of Green’s theoree find

equal to the area enclosed by the curve. 2
We begin by writing Green’s theorem as 3§ F.dg= #; (—y’i\-f-x’j).(ﬁ (dx?+dy])
C C —r
35 ﬁ-dézf f VXF-fdo, (95) (1029
C
s 2
= i(ﬁ)“ dy—y dx). (102b

where C signifies any closed2D) curve traversed in the
counterclockwise directiorf) is the unit vector normal to the  Therefore, Eq(101) can be written as
plane of this curve(according to the right-hand ryleX

; 2 . 2
stands for the region enclosed by the curve, & any AreaS)= é ( ) x dv—v dx). 103
vector defined on rapidity space. A2) c\1-r? (xdy=ydx (103
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2
(W)(X dy—-ydx)=—dw (110
Using EQq.(110 in the integral in Eq(103), we see that the
integral in Eq.(103) is zero on the straight lines through the
origin, while on the other geodesic, it(® within a sign) the
angular extent of the geodesic segment about its center.

If we look at Fig. 14, we see that the two radii of the circle
centered atd,b) together with the two sides of the triangle
which are straight lines, form a four-sided figuteat is, a
Euclidean quadrilateralBecause the sum of the angles in a
Euclidean quadrilateral is72°® we have that

Fig. 14. The non-Euclidean area of a non-Euclidean triangle is equal to its 2 7= a5+ | a1+ z +ot+| at+ = (1119
angular defectr— (o, + ay+ az)=w. 2 2
=(a1taytaz)totm, (111b
We now show that the right-hand side of Ej03) is equal S

to an integral of the form given in Eq94). Letr and 4 be which implies that
the usual plane polar coordinates measured from the center ,— 7 (4, + a,+ as). (112
of the disk. In terms of these coordinates,

x=r cosd, dx=—rsin@do+drcosé, (1043 Therefore, the area enclosed by the triangle is

y=rsing, dy=rcosfdg-+drsiné. (104b Area(s) = — f‘”Zdw: ledw (1133
We substitute these coordinates into EfP3) and find that ©1 ®2

x dy—y dx=r?dé, (105 — 71— (ay+ ay+ az) = —(TWR). (113b
which implies that Note that because we have proven that the area of our special

2r? triangle is just the angular sweep of its one curved side, it is
AreaX)= ﬁ 12|40 (106 easy to prove that the area of any geodesic-sided polygon is

the sum of the angular sweeps of its sidabout their vari-

By looking at the hyperbolic triangle in Fig. 14 represent-ous centers of curvature
ing the three boosts, we see that two of the three sides are We have thus proved the main result of this section, that
straight lines emanating from the origin, which means thathe negative of the Thomas—Wigner rotation is equal to both
dd=0 for these geodesic segments. Consequently, the intéhe (rapidity spacg area enclosed by the rapidity space tri-
gral along each of these segments makes no contribution ®ngle and the angular defeget minus the sum of the interior
the path integral. Therefore, only the integral over the curvedingles of the rapidity space trianglé\lthough we have de-
geodesic contributes to the right-hand side of B§6). We rived thls result from first principles, it was pointed out by
can evaluate this integral by changing it from one in terms ofAravind?* and later discussed in a slightly different context
the polar coordinates (§) measured from the center of the by Criado and Alamg>
disk to an integral in terms of coordinates measured from the Although the resulf113D is interesting in its own right, it

center @,b) of the circle on which the curved arc lig¢see
Fig. 14. If a?+b?—1 is the radius of this circle and the

corresponding angular coordinaefined as positive in the
counterclockwise direction then the desired coordinate

transformation is

x=a— a2+ b2—1 cosw, (1073
y=b—+aZ+b?—1 sinw. (107h
After some algebra, we find that
2 1
1-r2~ 1—(a2+b?)++a?+b?—1(acosw+bsinw)’
(108
and
x dy—y dx=—[1—(a?+b?)+aZ+b’—1
X (acosw+bsinw)]dw. (109

If we use Eqs(108 and(109 in the integrand of Eq.103),
we conclude that
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also suggests that another way to evaluate and compare
Thomas—Wigner rotations is to look at the areas of the cor-
responding triangles in rapidity space. Although possible in
principle, in practice this is not very easy to do because areas
in rapidity space depend on where they are located, and thus
are not readily compared using our Euclidean-trained eyes.
More specifically, as Eq(490 for the area elementlo
shows, although two regions in different parts of rapidity
space may appear to have the same area to our Euclidean-
trained eyes, the area of the one closest to the edge of the
disk is larger.

C. Various equations for the Thomas-Wigner rotation
angle

We now are in a position to derive the various expressions
for the Thomas—Wigner rotation angle that have appeared in
the literature. Because most of these expressions are for the
magnitude of the TWR, we can use E¢$03) and (113 to
write
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D. Applying the Thomas precession in quantum theory

2
|TWR|=‘ 3§ (W)(X dy—y dx) (1149

it

Most derivations of the relativistic correction to the spin—
orbit term in the Hamiltonian for a hydrogen atom relate the
[(FxdF)- R| (114b time rate of change of the electron’s sp.in vector.in its instan-

taneous rest frame to the corresponding rate in the(dab
proton’s rest frame?® Because any instantaneous rest frame

B 2r2 |\ | (FxdP)-k of the electron is obtained from the previous instantaneous

B jg 1—r2 r2 (1149 rest frame by a non-collinear Lorentz boost, the transforma-
) tion back to the lab frame will include Thomas—Wigner ro-

If we use Eqs(64) and(65), we find that tations. The rate at which the Thomas—Wigner rotations oc-
2r2 cur is the rate given in Eq119). There are several excellent
1-2=7" 1. (1195 derivations of the correct form of the relativistic correction to

the spin—orbit ternisee, for example, Refs. 3, 4, or Ref)42
Equation(67) can then be used to show that for any infini- and Eq.(119 is used in all of them.
tesimal segment of the path, Some authof8 claim the factor of 2 that comes from in-
cluding the Thomas precession in the spin—orbit term results
from the electron’s rest frame precessing through one com-
plete cycle each time it completes one revolution around the
. ) proton. However, as Eq$120 and (124) show, this inter-
which means that Eq1149 can be rewritten as pretation is incorrect because the number of rotations com-
oxdo pleted during each revolution is variable, and tends to infin-

2 (117 ity asv—c.

(oxdv)-k
02

(Fxdr)-k|
|

' (116

TWRI= § (7-1)

Equation(117) can be re-expressed in various forms. ForE. A special case of Thomas precession

example, if we call the integrandy, then The Thomas precession of an object is the sum of all the

y—1 Thomas—Wigner rotations it undergoes when it completes
dxy=—|vxdy| (1188  one closed planar orbit. To see this explicitly, consider the
v simple example of an object moving in a circle with a con-
y—1 stant speed. If we use the area element given in(&9), the
=—vz—|v x aldt. (118b expression for the magnitude of the Thomas precession for
this case is
Hence, . 2n (R 4
d -1 TPZJ f ﬁrdrde (1213
d—)t(=yv 5% 4. (119 o Jo(1=r%)
R 4r
Equation (1183 is the expression for the Thomas—Wigner =27Tfo mdr. (121b

rotation angle given in Ref. 5, p. 289 and Ref. 6, p. 178.

Several interesting physical properties can be deducede can evaluate this integral by changing the integration
from Eq.(117). First, the right-hand side tends to zero in theyariable tou= (1—r?). After some algebra, we find
non-relativistic limit, showing that in this limit the Thomas— 5
Wigner rotation vanishes. Second, as-»c, the Thomas— |TP|=477( R ) (122
Wigner rotation angle increases without bound, as we de- 1-R?)
duced in Sec. VII A using the geometry of rapidity space. :

Third, the Thomas—Wigner rotation is a purely kinematicBy using Eq.(119), we see that

effect because it is independent of the dynamics causing the R? vy—1

acceleration. In other words, it not only occurs for charged 1-R2] - "2 (123

particles moving in electromagnetic fields, but also can occur

for elementary particles accelerated by nuclear forcemd  Which means that

for masses accelerated by gravitational fields. TP =27 (y—1). (124)
If we multiply the right-hand side of Eq(119 by (y

+1)/(y+1) and use the identity given in E¢5), we find  Note that if the object moves around the circle in the clock-
that) (1) ¥y 9 ®5) wise (negative direction, then the Thomas precession is in

the oppositgpositive) direction after one revolution around

2 the circular path. This result also is derived in Ref. 6, p. 179.

d . d -1)|. d
4 VIIl. MATHEMATICAL CONNECTIONS AND

which is the expression for the angular speed of theaAl TERNATIVE EQUATIONS FOR THE
Thomas—Wigner rotation given in Ref. 5, p. 290, Ref. 40, p.THOMAS —WIGNER ROTATION
554, and Ref. 6, p. 179. Because it is the angular velocity of
the Thomas—Wigner rotation that enters into the calculation The purpose of this section is to give a brief discussion of
of the Thomas precession, it is this quantity that appears ithe relation between the results presented in this paper and
the relativistic correction to the spin—orbit term in the Hamil- Mobius transformations, spinors, the gro®i,(C), and
tonian for a hydrogen atom. models of the hyperbolic plane. The only new physical result

: (120

w
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is Eq. (146), which expresses the Thomas—Wigner rotation Another special type of Lorentz transformation that is easy
angle in terms of the rapidities that give rise to it and theto analyze is a spatial rotation. It is not difficult to see that a
angle between their corresponding boosts. Equaticto) counterclockwise spatial rotation by an angledoproduces
also can be obtained geometrically in rapidity space; it is justhe map of the disk

easier to derive in the present context.

i 612
We have shown that rapidity space and the actions of Lor- 4,5/ —gif7— e_zj—%_, (131
entz transformations on it provide valuable insight into the Oz+e

Thomas—Wigner rotation and the Thomas precession. A'\'/vhich is again a Mbius transformation.

though our presentation has not required an actual algebraic Given any Mdius transformatiore— (az-+b)/(cz+d)

expression for the action of Lorentz transformations on ra- . . S hee
pidity space, it is natural to ask for one. Once we have thisWlth a, b, ¢, d normalized so thaad—bc=1, we may

. . . . b .
expression, it will be easy to relate Lorentz transformationSSociaté’ with it the matrix €g) of determinant 1. The
to certain Mdius transformationdiinear fractional transfor- €omposition of two Mbius transformations corresponds to

mations, and then to the spinor map betweSit,(C) and multiplication of the corresponding matrices, and an inverse
the Loréntz group. transformation corresponds to the inverse matrix. Thus the

boost and rotation are associated with matrices

W2 i
A. Lorentz transformations of rapidity space cos 2 sin 2

B = 1
To see how the Lorentz transformation of Et0) (a boost 2 . hd) hf
in the positivex direction with rapidity ¢) acts on a point —sin 2 cos 2
(x,y) in the Poincaredisk, let (x,y,(x_2+y2+ 1)/2) denote w (132
the point on the paraboloid that projects to this point in the R(0)= e
disk (see Fig. 3 If we apply the boost to this vector, we 0 eif2)
obtain which both have the rather special form,
. x2+y2+1
(coshg)x—sinh¢p| ———— a B
2 M(a.B)=|— _]|, (133
B «
2py2i1 | Y ' vy
Ty . X2+y2+1 for complex numbersy and g with ea— BB=1. Further-
2 —(sinh¢)x+ coshg Y more, for any such matrixM(a,8) with 6, =arg(@)

+arg(@)+m, 60,=arg(@)—arg@B)—m, and ¢ such that

(129 h/2) =|a| and sinh ¢/2) = h
which we then need to rescale so that it lies on the parabo(EOS ¢/2) =|a]| and sinh ¢/2) =| 5|, we have

loid. Some rather messy algebra shows the correct scaling M(a,B)=R(6;)By(¢$)R(6,). (139
factor is Thus the matrices arising from boosts and rotations generate
coshg+1 ) coshgp—1 -1 all matrices of the form in Eq133).
)\:(T —(sinh¢)x+ T(XZJFYZ) , In fact, the Mdius transformations associated with matri-
(126) ces of t.he form in Eq.(133 are known to bg ,all' the
o Lo (orientation-preservingconformal maps of the Poincadéisk
and thus the boost maps points in the Poinctis& by to itself*® Because every Lorentz transformatifan (2
24y2+1 +1)-dimensional spadenust give rise to a conformal map
X x"\ )\((cosh(ﬁ)x—sinh(ﬁ(T)) of the disk, and every such conformal map arises from a
y — y') ' product of two rotations and a bod3{, then not only do all
Ay the conformal maps arise from Lorentz transformations, but

(127 also every Lorentz transformation is a product of at most two

Equation (127) can be expressed in a surprisingly simplerotations and a boost in thedirection.
way if we use complex notation to denote points in the disk.

If we let z=x+iy, and set B. The upper half-plane model
coshg+1 1) The transformation associated with
a=\——5 = coshi, (128 1
1 [

- _<' 1)
b= /0 sinh?, a9

maps the disk conformally onto the set of poiats x+iy
the action of the boost becomes with y>0, and results in the upper half-plane model. The
conformal transformations of this model are the Bl
257 = ) (130  transformations corresponding tox2 real matrices of de-
bz+a terminant 1, that is, to the groupL,(R), because
Thgs, vyhgn we use (_:omplex notation to label points on_the 1 i\[fa B\/1 i\t
Poincaredisk, the action of the boost can be expressed ina |~ )(_ _) ( _ ) (135
i 1/\g a)\i 1
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ranges througtsSL,(R) as «, B range through all complex 1) b,
numbers withaa— BB=1. COShE B sthe
Thus Lorentz transformationgon (2+ 1)-dimensional R(0)Bx(¢)R(—0)=
. b b
spacé correspond to elements BfL,(RR), and the action of a —sinh—e™! cosh—
Lorentz transformation on rapidity space is simply the action 2 2
of the corresponding Maius transformation on the upper (138

half-plane model. Therefore, as shown in Figs. 7 and 8, a boost with a rapidity

of ¢4 in thex direction, followed by a boost of rapidity, in
the 6= m— « direction, corresponds to
C. Extension to three spatial dimensions and the spinor

map R(6)Bx(¢2)R(— 6)By( 1)
Although our discussion has. . been limited to cosh@ —sinh@e‘”
(2+1)-dimensions for ease of exposition, all the work car- 2 2
ries over in a fairly straightforward way to = by b,
(3+1)-dimensiongor more. A higher dimensional parabo- —sinh—e ' cosh——
loid within the light cone leads to a conformal model of 2 2
rapidity space, which is now the interior of a unit ball. The b1 b,
metric is given b§® cosh=-  —sinh=
X . 139
2=y A+ dy? + 42 136 ~sinh?  cosh: -
_(1—x2—y2—22)2( X y ) (136 2 2

and the geodesics are arcs of circles that intersect the bound-On the other hand, any Lorentz transformation in the di-
ing sphere orthogonally. Within the ball, the surfaces formed €ction of w; can be expressed as the product of a boost
by pieces of spheres centered outside the unit ball whicfR(®@1)Bx(¢3)R(— w1) in the w, direction followed by a ro-
intersect the unit sphere orthogonally should be thought of ation through an angle, . Expressing these operations with
“planar,” because geodesics remain inside them. Any ofmatrices, we have

these surfaces can be mapjibd a conformal transformation

of the ball to itself to a disk bounded by the equator of the ~ R(w2)(R(@1)Bx(¢3)R(—w1)). (140

ball. The geometry of such a disk arising from its embeddin - o )

in the ball is the same as the geometry developed here for tﬁ@ the specific case shown in Figs. 6, is the Thomas—

Poincaredisk. Wigner rotation angle and, is the anglea;. Thus, the
Finally, in addition to the ball model, there is an upper product in Eq.(139 must equal the product in E¢4140)

half-space model composed of pointsiA where the third ~Which, when expressed in matrix form, is

coordinate is positive. Although points in it cannot be natu-

rally identified by complex numbers—it is after all three- coshﬁ —sinhﬁe“"l
dimensional—they can be identified with certain quaterniong e'2/? 0 2 2
X+iy+jz, wherez>0. The(orientation-preservingconfor- e 0202 b b
mal transformations of this space are identified with matrices —sinh— e 1e1 cosh—
in SL,(C), where the matrix35) acts by’ 2 2 (141
X+iy+jz—>(a(x+iy +jz)+b)(c(x+iy+jz)+d) . If we solve forw, by equating the upper left entries of Egs.
(137 (139 and(141), we find
The correspondence of Lorentz transformations, which give o b2 b1 b,
rise to conformal transformations of the model, to elements ~w>=2 ar cosh7 cosh7+smh7smh7e :
of SL,(C) is usually called the spinor m4p. (1423
_ _ w,=2 arg{ 1+tanhﬁtanh@ el 9) . (142h
D. More useful forms of the Thomas-Wigner rotation 2 2
Because we have identified the matliy(¢) with a boost Equation(142D is an algebraic formula for the Thomas—

of rapidity ¢ in the x direction and the matriR(6) with a  Wigner rotationw, resulting from a boost with rapidity, in
spatial rotation through an ang(see Sec. VIII A, we can  the x direction followed by a boost with rapiditg, in the
derive a relatively simple equation for the Thomas—Wignerf= = — a4 direction (as shown in Figs. 7 and)8Note that
rotation produced by two successive, non-collinear, boosts.Eq. (142b readily produces the qualitative results we de-
As is easily proved, a pure boost with rapidigyin the  rived in Sec. VII A. For example, it shows that the Thomas—
direction of 6 can be obtained by first rotating throughd, Wigner rotation will take on values betweens and 7, and
then applying ax-boost of¢, and then rotating back bg: If ~ will approach its largest value when both velocities are near
we express these three operations by matrices, we have c¢ and# is nears. Equation(142b also shows that the mag-
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nitude of the Thomas—Wigner rotation is the same regardlesaCKNOWLEDGMENTS

of the order in which the boosis, and ¢, are applied.

We end this section by noting that the method used to We would like to thank Professor Elizabeth Allman and

derive Eq.(142b also can be used to find the rapidify and

Professor Matthew Qe for their generous and expert help

the anglexs, and to derive the equations given in Ref. 24 for with the figures. We also would like to thank the referees for
tan(,/2), coshgs, and tany,. For example, if we equate the bringing several interesting articles to our attention, and for
real and imaginary parts of the upper left entries of Eqspointing out that Eq(142h can be rewritten in the simpler

(139 and(141), we find
b1 ®2 b1 ®2

w2 o . .
Cc0S—- cosh— = cosh— cosh— + sinh— sinh—- cos¥,

2 2 2 2 2 2
(143
and
. Wy b2 R 7
sm7 cosh7 = smh7 smh7 siné. (144
If we divide Eq.(144) by Eq.(143), we obtain
w3
tan7
B sinh( ¢1/2)sinh( ¢,/2)sin 6
~ cosh ¢1/2)cost ¢,/2) + sinh ¢1/2)sinh ¢,/2)cose’
(145

which is Eq.(2) in Ref. 24. If we divide the numerator and

denominator of Eq(145 by sinh{$,/2)sinh({,/2), we obtain
the simpler expressiéh
Wy sing

tan7 T Cosh+D’

(140

The coefficientD can be written as

[ coshey/2) [ coshe,/2
| sinhg,/2/\ sinh¢p,/2

(147

e?2+1
ef2—1

ef1+1
efi-1

, (148

which, from Eg.(20), is simply a ratio involving Doppler
blueshift factors. Alternatively, if we use Eq&l28), (129),
and (9b) in Eq. (147, we see that

')/2+1

D=\/(71+1 .
y1i—1/\y—1

Equation(146), together with either Eq148) or (149), is the

(149

form of Eq. (146).
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