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The role of the Thomas precession in the dynamic formation of the electric field lines of a moving
charged particle is demonstrated. A simple derivation of the Thomas precession formula is given,
based only on the Lorentz contraction of moving bodies. A simple and physically appealing
construction is developed for determining points on a field line. Field line diagrams are generated
and discussed. These diagrams vividly reveal the existence and magnitude of the Thomas
precession. © 1996 American Association of Physics Teachers.

L. INTRODUCTION

The Thomas precession is one of those subtle counterin-
tuitive consequences of special relativity whose existence
students often find initially quite difficult to accept. Standard
discussions'™ often involve fairly advanced concepts and
techniques which tend to encourage the belief that the Tho-
mas precession is an esoteric phenomenon whose origin and
significance is hard to grasp. It will be shown here that the
Thomas precession can be understood very simply in terms
of the well-known Lorentz contraction of a moving body.
Furthermore, its influence is manifested in and can easily be
seen in plots of the electric field lines of a moving charged
particle. The first of these insights is not new, but is included
for completeness. An alternative simple derivation of the
Thomas precession can be found in the appendix of Muller’s
paper.’

This paper extends the work of Purcell,® Tsien,” and
others.®? It provides a simple description of the mechanism
by which the field lines are formed and explicitly reveals the
role of the Thomas precession in their formation. A straight-
forward, intuitive derivation of the Thomas precession for-
mula is given in Sec. II. This is followed, in Sec. III, by
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discussion and further development of a simple picture of the
dynamical formation of the electric field lines of a moving
charged particle. Section IV is devoted to the display and
discussion of field lines for a charged particle undergoing
uniform motion in a circle. These results directly illustrate
the effect of the Thomas precession in a manner that needs
no mathematics to appreciate. The insight achieved in this
analysis is summarized in Sec. V.

II. THOMAS PRECESSION FORMULA

Imagine three inertial reference frames, Sg, S, and S,
such that §; and $, are moving at velocities B and B+ 438,
respectively, relative to S, where B=v/c. We will be spe-
cifically interested in the limit §8<1, so that frames §; and
S, are moving nonrelativistically with respect to one another.
Imagine a line of posts fixed in S, running parallel to 8 and
another line running parallel to 8+ 88. With no loss of gen-
erality, we may choose the x axis in S, parallel to 8 and the
y axis such that 88 lies in the xy plane.

Figure 1 shows the situation as seen in each of the three
reference frames. In frame S, the two lines of posts are at
rest and separated by a small angle &6. In frames S; and S,
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Fig. 1. Objects as seen in three different reference frames arranged to show
how the Thomas precession arises. See text for explanation.

the posts are moving in the directions indicated by the re-
versed velocity arrows. By virtue of the Lorentz contraction,
the moving patterns are foreshortened along their respective
directions of travel. The angle between the two lines is there-
fore increased by the relativistic factor y=1/(1—8%)"2. The
small difference in y between frames S, and S, is not im-
portant here because 60 is already a first-order small quan-
tity. The line A B, is parallel to AyB and the line A,C, is
parallel to AgC. As a result, the lines of posts are tilted in
S, relative to their orientation in S;. This rotation is the
essence of the Thomas precession, as will now be explained.

First, we must understand that observers in S regard the
orientations of the axes in frames S, and S, as being parallel
to their own. A Lorentz boost from S, to §; will clearly keep
the x and y axes parallel. However, the boost from S, to S,
must be handled more carefully. If the new axes are to be
regarded as parallel to those in S, the angle between the x,
axis and the reversed velocity vector in S, must be the same
as the angle between the x, axis and the velocity vector in
S¢. Thus, in order for S, to be oriented parallel to S, in this
sense, the line A,C, must make an angle 60 with the O,x,
axis and the whole pattern of posts will be tilted at an angle
—(y—1)86 in S, relative to its orientation in S, .

Recall that frames S; and S, are assumed to be moving
nonrelativistically with respect to one another. Observers in
S, believe that the moving pattern of posts has the same
orientation in both frames. Therefore, a boost without rota-
tion from §, into S, brings a line that is parallel to A B, into
one that is parallel to line A,B,. Viewed from S, this boost
results in a rotation through angle §8,=—(y—1)86.

The Thomas precession refers to the relativistic precession
that arises when a body is continuously boosted parallel to
itself through a sequence of instantaneous rest frames. Define
the precession angular velocity as

doy do

Fig. 2. Geometry used to construct a field line—one-dimensional motion.
See text for explanation.
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Fig. 3. Geometry used to construct a field line—two-dimensional motion.
The inset shows angles as seen in the particle’s instantaneous rest frame. See
text for explanation.

From the geometry as seen in S, we can also easily obtain
the following well-known vector expression;

wr=—(y—1)Bx B /8% 2

All quantities in these expressions are as measured in frame
So-

I1I. THE LIENARD-WIECHERT ELECTRIC FIELD

Purcell® has developed an appealing picture of the mecha-
nism by which the electric field lines of a moving charged
particle are formed, based on the Lorentz invariance of elec-
tric charge. Using simple arguments, he is able to show that
the electric field lines of a point charge moving with constant
velocity are deflected away from the direction of motion just
as though they were embedded in a medium that suffers the
standard Lorentz contraction. By invoking the finite speed of
propagation of the ‘‘information’’ contained in the field
lines, he is also able to treat cases in which the particle
undergoes bursts of acceleration. Field lines produced during
different phases of constant velocity motion are linked up by
invoking symmetry and flux conservation arguments. These
arguments can be extended to treat a charge that is being
continuously accelerated in one dimension.

To create a picture of the field lines of an accelerated
charged particle, imagine that it is continuously shooting out
a pattern of field lines that spread out from its instantaneous
position at the speed of light. The field lines at some given
time, ¢, can be constructed by joining up the information
generated during each earlier instant of the motion. At some
earlier time, ¢ — 7, the particle was at its ‘‘retarded position,’’
R(t,7); see Fig. 2. Corresponding to this retarded position
there is an ‘‘imputed present position,”” I(¢,7), which is the
position that the particle would presently occupy if it had
traveled at a constant velocity v determined by the instanta-
neous velocity at the retarded time. Since the particle may be
undergoing acceleration, I(#,7), is not generally the same as
the actual present position, P(t).

In order to locate a point, F, on a given field line, we need
to determine the angle ¢ and the distance r from I, or the
angle a to combine with the known distance ¢ 7 from R. The
angle ¢ can be found by assuming that the corresponding
angle ¢’ in the particle’s instantaneous rest frame (IRF) is
constant. We shall call this constant angle, different for each
field line, xy. Then ¢ is obtained from the relation

R, J. Philpott 553



tan =1y tan ¢’ (3)

which results simply from the Lorentz contraction effect.
Since the distances RF and RI are already known, the rest of
the calculation is just geometry. Alternatively, Tsien’ has
given the convenient formula

12
tan{ a/2) = ( m) tan( ¢’ /2) 4)

which enables a to be found directly.

The above picture has been developed® using flux and
symmetry arguments, the latter of which is no longer avail-
able when the velocity and acceleration are not collinear. It is
not at all certain, a priori, whether the above picture can be
extended to the more general situation. Although the above
construction always yields a point on some field line, it is not
immediately clear that each such point lies on the same field
line. When they are connected together, the result is there-
fore not necessarily a field line.

There are two problems to be resolved. First, can this ap-
pealing picture of the formation of the electric field lines be
extended to the more general situation wherein the velocity
and the acceleration of the moving charge are not collinear?
Second, if it can be so extended, how does one determine the
angle ¢ such that successive points lie on a single field line?
In the following, we shall restrict our attention to motion
confined to a plane and to the electric field lines seen in that
plane.

Tsien’ generates field lines by deriving and analytically
integrating an appropriate differential equation for them,
hence avoiding the first problem that needs to be resolved
here. He suggests that the initial angle of a field line can be
fixed relative to the particle’s present instantaneous velocity.
However, this suggestion leads to the unacceptable conse-
quence that the orientation of the field pattern of a slowly
moving charged particle rotates as the direction of the parti-
cle’s motion changes. Stoner’ assumes that the above picture
is valid. He further assumes that, as it is being generated, a
given field line subtends a constant angle with a line in the
particle’s IRF, which line is held parallel to the stationary
observer’s x axis.

An alternative possibility, which we propose and demon-
strate here, is that a given field line subtends a constant angle
with a line that is held fixed in the particle’s IRF. If this
alternative prescription is correct, the Thomas precession im-
plies that the field line is generated in a frame that is rotating
relative to the laboratory observer’s frame. This rotation will
be directly observable as a qualitative difference in the pat-
tern of field lines produced.

Our proposed generalized construction is illustrated in Fig.
3. Points R, I, P, and F have the same significance as before.
The main difference is that we have to introduce new angles
that were not required before. These are illustrated in the
inset to the right. Angle xq is again the constant angle that
defines a given field line. Angle @ gives the direction of the
velocity vector, v relative to the laboratory x axis, angle & is
the corresponding angle in the particle’s IRF and 8y is the
angle between the two x axes that results from the Thomas
precession. This angle can be computed from wy as follows:

0r(1) = f " op(t)dr". 5)

to

Here, t, is an arbitrary constant that fixes a time when the
two x axes are parallel to one another.
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Fig. 4. A field line for a charged particle at point P, showing various con-
struction details. The particle is moving at a constant speed such that y=1.5
around the circular track below and to the right of the center of the diagram.
See text for explanation.

The desired angle ¢’ is now given by ¢’ =y,—6 where
¢ = 6—0;. Thus we obtain the simple result

@' =xot+0r— 6. (6)

The rest of the construction is done using Eq. (3) or (4) and
standard geometry. As one locates each point on a given field
line, all quantities in these equations are to be evaluated at
the appropriate retarded time, ¢— 7.

The above construction embodies a surprisingly simple,
intuitive picture of the formation of the electric field lines of
a moving charged particle. But we have not yet proven that it
is correct. Fortunately, a detailed algebraic analysis is not
necessary. Towards the end of his paper, Tsien shows that a
formula of this structure will indeed reproduce a field line.
What we have added here is a simple physical interpretation
of that result with specific emphasis on the role of the Tho-
mas precession in it. An independent algebraic analysis, al-
ready completed before Tsien’s result was discovered, con-
firms it.

IV. UNIFORM MOTION IN A CIRCLE

The above results can be nicely illustrated by the field
lines of a charged particle that is undergoing uniform circular
motion on a track of radius p. In this case, df/dt=v/p=w is
a constant. Hence, w7 is also constant and the integral in Eq.
(5) can be immediately evaluated to give

Or(t—7)=—(y=Dw(t—1-t)). ()

In this case, also, all the physics that we are interested in can
be seen in each field line. It is therefore advantageous to
display just one field line at a time. In the detailed results that
follow, we set c=1, p=1, and ¢t=t¢,=0. These choices en-
sure that @ vanishes at P.

Figure 4 shows a field line computed for y=1.5, along
with some of the construction details described in Sec. III.
The field line itself was computed by direct numerical inte-
gration using the Liénard—Wiechert field as given in stan-
dard texts.'®!! The numbered points on the field line were
obtained using Egs. (3) and (4), along with x,=0 and appro-
priate geometry. Of course, we really need to use only one of
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y—units

Fig. 5. A broader view of the same field line shown in Fig. 4. The effect of
the Thomas precession is readily apparent in this figure. See text for expla-
nation.

these equations because each yields the same set of points.
The proposed construction is again verified by the fact that
the individual numbered points lie on the field line. In sub-
sequent calculations, we have used the construction to create
the entire field line and have only occasionally verified it by
numerical integration.

The circle below and to the right of the center of the figure
represents the track along which the particle is moving in an
anticlockwise sense. The numbered positions on the track
label (but are not equal to) uniformly increasing values of the
retardation, 7. The path followed by the particle’s imputed
present position (IPP) is shown as a dashed line. A specific

u-units

o
x-units

Fig. 6. A field line for a charged particle moving at a speed such that y=4.
See text for explanation.
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Fig. 7. A field line for a charged particle moving at a speed such that
y=1,01. This field line has x,=45°. The thickness of the pattern is caused
by the oscillatory nature of the field line. The shaded area is a line formed
by the same construction technique as a field line, but omitting the Thomas
precession angle.

example of the construction is also shown, where labels R
and F have been substituted for the label 5. Since the particle
is, at this retarded moment, moving down and to the left, the
barred angle ¢ and a are actually 360°—-¢ and 360°—a,
respectively.

Each small arrow extending from the labeled points on the
particle’s track gives the direction of x axis in the particle’s
IRF at that point. Because of the Thomas precession, these
directions rotate in a clockwise sense at half the rate at which
the particle’s velocity vector is rotating. The center of the
kink in the field line (see points 5-8) occurs when the direc-
tion of the field line in the particle’s IRF is parallel to the
particle’s velocity vector. Since this particular field line has
Xo=0, its direction in the particle’s IRF is always parallel to
the arrow. It is now easy to see that a kink will arise centered
near position 6 on the track. Another incipient kink is cen-
tered near position 1. Because of the Thomas precession,
these kinks do not all occur at the same angular position. In
fact, the angle traversed by the field line between kinks is
(1-1/%)360°. When y=1.5, as we have here, this angle is
120°.

Figure 5 shows a broader view of the same field line. The
dashed line now represents the locus of points reached by
light signals emitted tangentially forwards from retarded
points on the particle’s track. Each turn of the dashed spiral
represents a full period of the particle’s motion along the
track. The twisting of the field line around the particle’s track
is governed by the Thomas precession angular velocity, wr.
Thus there are y—1 turns of the field line during each period
of the particle’s motion. Kinks in the field line are formed at
points where it crosses the dashed line. At these points, in-
dependent of the starting angle, y,, we have a@=0 and the
direction of the field line in the particle’s IRF is parallel to
the particle’s velocity vector. The rate of occurrence of these
crossing points is governed by w— w;. Hence there are y
kinks in the field line for each period of the particle’s mo-

R. J. Philpott 555



tion. When y=1.5, the field line makes one turn around the
track during every two periods and there are three equally
spaced kinks for each turn of the field line.

Figure 6 is a similar plot made for y=4. Now the field line
makes y—1=3 turns and y=4 kinks during each period of
the particle’s motion. Note the eccentric nature of the field
line’s spiral, caused by the particle’s motion along its track.
These field lines are already quite complex. One can only
marvel at the convoluted intricacy of the field pattern when y
reaches up into the thousands!

The opposite extreme occurs when the particle is moving
relatively slowly. Figure 7 shows a field line for a particle
having y=1.01 (8=0.140). Here the field line requires 100
cycles to complete one turn, producing 101 kinks while do-
ing so. The distance traveled by light during this time is
easily found to be 4476 length units. The gray area in Fig. 7
is a line calculated by the same construction method as a
field line, but omitting the Thomas precession angle. This
line does not form a spiral around the particle’s track.

V. CONCLUSION

In this paper we have emphasized the role of the Thomas
precession on the dynamic formation of the electric field
lines of a moving charged particle. A simple derivation of
the Thomas precession has been given, based only on the
Lorentz contraction of moving bodies. Extending the work of
Purcell® and Tsien,” a simple and physically appealing con-
struction has been developed for determining points on a
field line.

The particle continuously shoots out field line information
in fixed directions in its instantaneous rest frame. This infor-
mation moves away from the particle at the speed of light. At
any given instant of time field lines can be formed by com-
bining the information emitted at earlier times. A field line so
constructed appears distorted in a fixed reference frame not
only because the emission point is continuously changing,
but also because the information has to be mapped from the
particle’s IRF into the fixed laboratory frame. The mapping
explicitly involves the Lorentz contraction effect, Eq. (3) or
(4) and the Thomas precession, Egs. (1), (5), and (6).

This work has been illustrated by several diagrams giving
the detailed geometry of field lines generated by a changed
particle undergoing uniform motion in a circle. These dia-
grams show in a very graphic way the influence of the Tho-
mas precession on the field lines. Field lines can be formed
by integrating the Liénard—Wiechert field equations without
any reference to relativistic effects. The existence of the Tho-
mas precession is then directly seen in the twisting of the
field lines around the particle’s track. The rate of precession
can be determined by analyzing the geometry of the field
lines. It shows up both in the number of turns made by the
field line during each period of the particle’s motion and in
the number of kinks formed during the same period.

It is not a priori obvious that a simple construction, based
only a relativistic transformations, will be able to reproduce
so elusive a quantity as an electric field line. It is a tribute to
the relativistic consistency of electromagnetic theory that
such a construction is possible at all.
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done about the pothooks today?))

POTHOOKS

I became interested in trying to devise new experimental methods for investigating the physics
of elementary particles in 1950, not long after the new ((strange particles)) had been discovered in
cosmic rays. In those days a rather small number of these particles had been observed, and they
were still called {(V-particles)) or {{pothooks)) because of their unusual appearance in the cloud
chamber photographs. In fact, I remember that when 1 left the California Institute of Technology
in 1949 after finishing my doctoral research on cosmic radiation under the direction of Professor
Carl D. Anderson, there was written at the top of his blackboard the question: ((What have we

Donald A. Glaser, ‘‘Elementary particles and bubble chambers”* (Nobel Lecture, December 12, 1960, reprinted in Nobe!
Lectures, Physics, Vol. 3, 1942-1962, Elsevier Amsterdam, 1964).
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