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Inertial frames of reference and nonrotating frames of reference are discussed. Using geometric
algebra as the principal mathematical tool, the Thomas precession of torque-free gyroscopes in
special relativity is then derived in an exact fashion in two different ways. First, the equations of
Fermi—Walker transport are employed to derive expressions for the precession; second, a
torque-free reference frame is compared to one in which the coordinate axes are forced by torques
to remain parallel to a fixed direction. The precession of a freely falling gyroscope in a gravitational
field concludes the paper. © 1996 American Association of Physics Teachers.

L. INTRODUCTION

Classical mechanics depends for its existence on our
primitive notions of space and time and mass and their defi-
nitions and description in the conceptual foundation known
as ““Newton’s laws”’. A reference frame is also a primitive
element of these laws but is really undefined beyond imag-
ining it as a set of three mutually perpendicular axes moving
and spinning arbitrarily about relative to other such reference
frames. ‘

Of the several principles needed as a foundation for clas-
sical and relativistic particle mechanics, that most essential
to our present concern is Newton’s 1st law, the one in which
inertial reference frames are supposedly defined. This law is
contentious™” and has had physicists debating its meaning
for centuries. A version I would like to suggest is the follow-
ing:

Consider the statements: (a) An object is being observed
from an inertial reference frame; (b) the object has a constant
velocity; (c) the object is subject to no net force. Newton’s
1st law is then: If any two of the statements (a), (b), or (c) are
true, then so is the third. This is circular reasoning of a sort,
and very deliberately so, for inertial reference frames cannot
be defined on the basis of more primative concepts. As Mis-
ner, Thorne, and Wheeler so ably and emphatically put it:
‘““Here and elsewhere in science, as stressed not least by
Henri Poincaré, that view is out of date which used to say,
‘Define your terms before you proceed.” All the laws and
theories of physics ... have this deep and subtle character,
that they both define the concepts they use and make state-
ments about these concepts.””

Now what about rotation?

The physical concept of a reference frame, or triad of mu-
tually perpendicular unit three-vectors {¢;, i=1,2,3} (where
the caret denotes a unit three-vector) that is not rotating rela-
tive to inertial reference frames is mathematically described
by the following: The reference frame is not rotating if and
only if

dé;
ar - (1.1
This is physically expressed by attaching the triad to torque-

free gyroscopes. If the triad is rotating then there is an angu-
lar velocity e such that relative to an inertial reference frame

de; .
—— =wX e,- .

ar 1.2
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This, of course, is not a separate law, but part of the ge-
ometry, part of the kinematics, like velocity, and accelera-
tion. Torque-free gyroscopes are essential to this physical
description (replacing the formerly essential, but vague,
““fixed stars’’). We define their behavior to be simple on the
basis of our experience and use them in our fundamental
concepts.

In space-time a reference frame, or tetrad of mutually or-
thogonal unit four-vectors {y,, u=0,12,3}, where
Yo Vo= My=diag(1,—1,—1,—1), with c=1, is inertial (that
is, nonrotating and in free fall) if and only if

Du_

a7 0, (1.3)

where 7is the reference frame’s proper time, with the spatial
axes again imagined to be attached to torque-free gyro-
scopes. We are thus led to agree with Brehme:* ‘A frame is
inertial if and only if the geometry of its space-time is
Minkowskian.”’ ’

A tetrad {«,} arbitrarily moving in space-time has the four
velocity

U=xy=U"y,, (1.4

with U-U=1, and if the spatial part of the tetrad {«,} is not
rotating, that is, if it is attached to torque-free g4yroscopes,
then it is said to be Fermi—Walker transported” along its
worldline which is expressed by

dx
—t =k, UA-«, AU=x,-(UNA),

T (1.5)

where A=dU/d7, and in its instantaneous rest frame we
have U=(1,0) and A =(0,a) where a is the proper three ac-
celeration, and where the product ‘/\”’ is defined in the next
section. We have, as required,

dKO

ar - (1.6)
and

dKi

Fr 1.7)

the latter expressed in its instantaneous rest frame, showing
no rotation there.

~ In this paper I will use these fundamental and simple con-
cepts to investigate the subtle effects that ensue when one
wishes to keep pointing in a ‘‘fixed” direction while other-
wise moving about arbitrarily. We define a fixed direction to
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be that given by a torque-free gyroscope’s spin axis. It turns
out that such a direction wanders away from that defined in a
reference frame relative to which the gyroscope is in general
accelerated. ‘“Thomas precession’” is the name given to the
phenomenon in special relativity, a relativistic effect known
for about 70 years.” And even a gyroscope freely falling in a
gravitational field described by general relativity moves
away from pointing constantly in a direction fixed by a co-
ordinate system attached to a gravitating object. Further, an-
gular momentum is the source of a gravitational field which
augments this precessional motion to an extent that may now
be on the verge of being measurable.

The approach that will be used to obtain the well-known
results of relativistic Thomas precessional motion will rely
on methods employed first by Rastall® and Hestenes,” and
will be exact in that a manifestly covariant four-vector
method that relies on Hestene’s geometric algebra®!! will be
employed that is far more elegant, simple and powerful than
the awkward index methods frequently employed in relativ-
ity, especially general relativity where the (approximate)
derivation herein presented is made as simple as possible.
Four-vector equations are above all clear, without ambiguity
and make it possible to express results in familiar and nec-
essary three-vector form in any frame of reference. The
mathematical formalism employed will first be described
briefly and necessarily incompletely: There should be no
need to repeat the many able and easilgr accessible accounts
given in this journal'! and elsewhere.'>!3

II. SPACE, SPACE-TIME, AND ITS COVARIANT
DESCRIPTION

‘Given a vector space of three or four dimensions an asso-
ciative ‘‘geometric’’ product is defined between vectors a
and b by

ab=%ab+ba)+Xab—ba)
=a-b+a/\b
=b-a~-b/\a, 21

which defines the usual scalar product and the ‘‘wedge’’
product a/\b. Given a basis {e;} of three dimensional space,
“multivectors’> of only the following types can be con-
structed:

scalar—1

vector—eé;

bivector or pseudovector—&;/\&;=ie(i#j#k).

(2.2)

where i commutes with all other elements, and, given a basis
{7,} of four dimensional space-time, the following multivec-
tors exist:

pseudoscalar—e,/\e,/\e&;=i(ii=—1),

scalar—1

vector—7y,

bivector— 7,/ \ ¥, (4 # v)

trivector or pseudovector—7,/\y,/\ vy
=YsYoWFEVENF )

pseudoscalar—y,\ Y1 Ay, \y3=ys5(ysys=—1),  (2.3)

1198 Am. J. Phys., Vol. 64, No. 9, September 1996

where s anti-commutes with vectors. With the standard
metrics

and

Yo Yo~ Tuv (25)
it follows that

i=ys (2.6)
and

&=7/"\Y="Yi%- 2.7)

That is, vectors (and pseudovectors) in three-space are bivec-
tors in space-time.
It is seen that

dlA(i dKiKg (dKi)
—0: = w—

ar " ar 28)
where {iq} are the unit three-vectors that are the basis for
three-vectors in the instantaneous (inertial) rest frame of
{x,}. Here Hestenes’ ‘‘wedge’’ product for four-vectors®

ANB=3(AB—BA) (2.9)
and an identical definition for three-vectors, with!*
axXb=—ia/\b (2.10)

i=ys=e€63=Y)717273,

which have been essential in relating the four-vectors of a
tetrad to the three-vectors of its instantaneous rest frame.

Equation (2.7) is the key to reducing expressions written
covariantly in four-vector symbolism to three-vector expres-
sions in any given reference frame. For example, if P=mU
is an object’s four-momentum, then its ordinary three-
momentum in the reference frame {y,} is simply

p=PAy,, (2.11)

which, when applied to a spacelike four-vector S (S§-S=—1)
fixed in a rotating reference frame, gives

dS/\ _ds_ N
Z '}’0—;1_7_"0 S,

so the angular velocity e is automatically given. This result
is our prime calculational tool in what follows.

Any mapping of an orthonormal tetrad {y,} into another
{7,} is called a Lorentz transformation. In general the refer-
ence frame {7’} will be moving and rotating relative to {}. A
restricted Lorentz transformation’” is one in which the spatial
axes of {7/} remain parallel to those of {y}, and this is de-
scribed by

(2.12)

¥,=Ly,L™", (2.13)
where®1?
L=(1+ vy /121 + ¥4 o) 1'% (2.14)

with L ! being given by a similar expression, but with y and
¥ exchanged. To see that the spatial axes remain parallel we
orient the 1-axis in the direction of the boost and calculate

y1= 1+ y70) vi(1+ ¥%70)/(...)=(ayetby)/(...)
(2.15)

and
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Yé,3= Y23 (2.16)

where a and b are scalars, so there is no rotation of the
spatial axes in the boost. As the boost changes in time and
direction, however, there will be a spatial rotation: this is
Thomas precession.

III. SPIN AND THOMAS PRECESSION

In a reference frame {KF}, itself arbitrarily moving with
respect to an inertial reference frame {v,}, let there be an
object spinning in the fixed direction §=s'k;, so the compo-
nents s' are constant. In covariant four-vector notation we
express this spin four-vector as §=s'x;=S*y, with

S-§=-1, §-U=0, (3.1)

where U= ko= U*"y,, is the spinning object’s four velocity.
In general terms the spin vector satisfies

43 S-Q ! $Q-Qs8
dr " 72 )
where ) is a bivector.!® Since a three-vector or a pseudo-
three-vector in ordinary space is a bivector in space-time, as
shown in (2.7), we can write

(3.2)

(3.3)

and we obtain, on projecting (3.2) onto the three-space in its
instantaneous rest frame

ds
ar

Q= Ysw

1
Nicg=75 [(S- D)Ko~ ro(S-2)]

=— = y;(wS—Sw) = WXS§, 3.4

2
which we now know describes how a unit spin three-vector
changes with proper time.

In an arbitrary inertial reference frame where the spin vec-
tor is $=(§,8), and satisfies, if it is Fermi—Walker trans-
ported along its worldline as in (1.5), that is, if it is a torque-
free gyroscope,

5 _ US-A
:l—’; - T, (3'5 )
where U=(y,) is the gyroscope’s four-velocity,

y=(1—v?"Y* (which must not be confused with four-
vectors y,) and where A=dU/dr. The three-vector part of
this is
ds .
¥ 5 == (=), (36)

where S-U has been evaluated in the instantaneous rest
frame of the arbitrarily moving gyroscope. If we solve for
S=$5/|S| instead we find
S (%4 5 .
Frin B (SXv)XS,
which is exact but which looks nothing at all like the usual
expression given for Thomas precession.

Now consider a circular orbit of radius r in the x—y plane

at constant angular speed Q=v/r, where the position vector
would be given by

(3.7)

r=r(x cosvﬂt+§' sin Q7). (3.8)
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Note that there is no precession if S=z, that is, if S is per-
pendicular to v and a; therefore without loss of generality we
can set S=X, and we find, after time averaging over one orbit
(where (cosi)=(sin2)=1/2, {cos sin)=0),

ds y
ar o\ 2V
thus giving the well-known approximate result that the spin

vector’s direction precesses backward against the direction
of motion at the Thomas precession rate of

A

XS (3.9

(3.10)

It is important to remember that this is the low speed first
approximation to the precession. For related discussions of
Thomas precession see Refs. 17-21. For especially clear and
simple derivations of the approximate result see Refs. 22, 23.

wr~—3vXa.

IV. THOMAS PRECESSION II

A more elegant and physically appealing description of
this precessional motion is to be considered now, a method
based on one first used by Rastall.®

Consider two reference frames moving arbitrarily to-
gether: the orthonormal tetrad {m,} has its spatial axes at-
tached to torque-free gyroscopes, but the tetrad {«,} is mov-
ing in such a way that it is always connected to the inertial
frame {,} by a restricted Lorentz transformation of the type
considered earlier. That is, the spatial axes of {K”} are always
parallel to those of {,}. A unit torque-free spin vector fixed
in {m,} is to be compared with one fixed in {«,}; the former
is Fermi—Walker transported while the latter is not. The lat-
ter spin vector is given by J=j'k;, with j*=const. Now,
since ‘

K,L=L‘y#L_1, 4.1)
we have

dl  jidk; . . .

= = LL™ 'k;— ki, LL™Y), 4.2)
where

L=(1+x9%)/[2(1+ Ko ¥0)1"2. (4.3)
We find

LL™'=AN(yo+ ko) [2(1+ 70" ko), (4.4)
where |

dU  dx,
mb b= 4.5)

is the four-acceleration. We now project this changing spin
four-vector into the three-space of its instantaneous rest

frame to find the precession. The following exact result is
obtained:

INKke=~[T-Ayo/\ko=J - YA AKJ/(1+7).  (4.6)
In the instantaneous rest frame we have

J-A=-j, a, 4.7)
and

AN\ky=2a,. 4.8)

What follows now is a somewhat subtle consideration: All
three-vectors must be in the same three-space, namely that of
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the instantaneous rest frame, or that of {K”}. Let the three-
velocity components of the moving tetrad {«,} relative to the
inertial reference frame {y,} be v', then —v=—v'k; is the
velocity of the frame {y,} relative to {«,}. Therefore

Yo/ \Kko=— YV (4.9)
and

T yo=—j (= W)=%-v (4.10)
and we finally have

TN ko=[y/(1+ y)1(vXag)| Xjo- (4.11)

This is the precession of the gyroscope fixed in the reference
frame {«,} relative to the torque-free gyroscope fixed in
{m,}. Therefore the torque-free gyroscope will appear to pre-
cess relative to fixed-direction coordinate axes at the Thomas
precession rate

or=—[y/(1+7y)]vXa,

~—1/2vXa for v<l. (4.12)

It is crucial to realize here that a, is the proper acceleration
and that —v is the velocity of an inertial reference frame
relative to which the moving gyroscope is to be observed,
and both are three vectors in the gyroscope’s instantaneous
rest frame.

V. PRECESSION IN A GRAVITATIONAL FIELD

The method of the preceeding section is especially well
suited for describing a spinning torque-free gyroscope in free
fall in a gravitational field described by general relativity.
The four-velocity U of an object in free fall satisfies the
simplest of descriptions:

dU__0
d_T_ b

where 7 is the object’s proper time, so that Fermi—Walker
transport of the four-vector of an object that is in free fall and
not rotating with respect to spatial axes satisfies a similar
equation. Therefore a spin four-vector S of a freely falling
torque free gyroscope satisfies

(5.1)

ds

d—T=0 (5.2)
and

S-U=0 (5.3)

and we can also assume that the gyroscope’s spin satisfies,
without loss of generality,

S-S$=-1. (5.4)

As in the previous section let {w,} be a freely falling ref-
erence frame with the spatial axes attached to torque-free
gyroscopes. Then

dm,

ar 0

as {m,}isa (local) inertial reference frame. We may set
S=S'x; (5.6)

with S*=constant. Now let {x,} be a reference frame falling
with {7}, but one that always has its spatial axes parallel to
those of a reference frame {7,} that is fixed in a gravitational

(5.5)
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field. Note that all three tetrads remain orthonormal at all
times. We have

d Kg -0

e (5.7)
because k= is the four velocity of the freely falling gy-
roscope. Since the spatial axes of {«,} and {y,} remain par-
allel at all times, they are related by a restricted Lorentz
transformation:

k,=Lvy,L", (5.8)
where
L=(1+koyo)/[2(1+ k¢ y0)]"2 (5.9)

Let J=J iKi, Ji=constant, be a spacelike four-vector (J-J
=-—1) fixed in {«,}. We have

W _ L dy

o a (5.10)
and

#,=LL 'k, — K, LL™'+Ly, L1 (5.11)

If we substitute Eq. (5.9) into (5.11) we find (5.7) follows
immediately for p=0.

The gravitational field must now be introduced. A set of
coordinates x* fixed in the gravitational field generates a
coordinate basis {e,} that satisfies the formal definition

e,=d,x, (5.12)
where x is a space-time event, and where aﬂ=¢9/¢9x“, with
€, e, =8uy (5.13)
and
2_
ds*=g,, dx* dx* (5.14)

as usual. Because of (5.12) many authors?*?

identify e,
parametrized by the proper time 7 we have

today simply

with the directional derivative ‘gg' Along a path

(5.15)

where I' are the usual Christoffel symbols and where
U= ky=(dx"/dT)e, is the four-velocity.
A rotating mass has the gravitational field*’

S —TA Lv
e, =, x"\,

ds’=f* dt*—g* dr’+h; dx' dt, (5.16)
where, in the first nonzero approximation,

fP~(1+24),

gi=(1-2¢), (5.17)

where ¢¢=—M/r is the gravitational potential (in units with
G =1), and if the mass is rotating about the +x~ =z axis, we
have

hy=—4yH/r’, h3=0,

where H is the rotating mass’s angular momentum.
The coordinate basis {e,} and the orthonormal basis {y,}
are readily related:

hy=+4xH/r?, (5.18)

eo~fvo
e~gvi+hiYo (5.19)
to lowest order, and
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yo~f ey,
yi~g! (5.20)
where f, g~1, where undifferentiated, and |df,dg|<1,

|r;|<1. To evaluate d Y,/d 7 we need to calculate the Christ-
offel symbols. Using the Lagrangian

1
e;—zhieq,

F=f21*— g* (") + h;ix! (5.21)
and the equations

d 0% 0%

— ——— =0 (5.22)

dr ox*  x*

all of the nonzero Christoffel symbols are readily found from
the geodesic equation:

oox A . Yy
X' +T0, x4 xv=0,

To;=dif=Tto, (5.23)
F;k= jgaik+ 0kg611_ 3,g5,k .
With these we find
Yo= 9 vi— {djhi— ik ) y; (5.24)
and
¥i=yol -1 = #(0;hj— ;h;) i+ 0,85 v;— 9,84 y; .
(5.25)

From this last result we have

Lyl Nko=- ;—(a,-hj— ajhi)icj— (vXVg)Xk; (5.26)
since

Lyl "N ko= Ko/ \ky=0. (5.27)

What remains is very similar to the last section. The gyro-
scope fixed in {«,} precesses according to

o Nkg = ‘m Nxy (5.28)
dr dr ’

which is, finally,
ﬂ/\K0= vX lVf—Vg)—l(VXh) Xj.  (5.29)
ar 2 4

This, recall, is the gyroscope fixed in {«,}, whose spatial
axes are constrained by appropriate torques to remain paral-
lel to those of {y,}, a reference frame fixed in the gravita-
tional field. Therefore the freely falling, torque-free gyro-
scope appears to precess in the opposite direction, with the
angular velocity w:

w=—3vyXV@+iVxh. (5.30)

Note that the spatial metric g contributes twice as much to
the precession rate as the time component f. Note also that
the source of gravity in the second term is angular momen-
tum.

For an orbit in the equatorial plane the precessional angu-
lar velocity becomes

3GM GH

= - — XA— 7
w ) :2?2"7 r ;3?2, (531)
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where all dimensional constants have been restored, and
where, again, H is the Earth’s angular momentum, the result
first obtained by Schiff.?®*?° In a low earth orbit, for example,
the first term is two orders of magnitude greater than the
second, and indicates a precession rate of about 10 arcsec-
onds per year. The direction of precession is in the direction
of the orbit, so is opposite to Thomas precession (which does
not exist here as there is no proper acceleration or nongravi-
tational forces).

1t will be most interesting to see if the $600 million Grav-
ity Probe B orbiting gyroscope,30 scheduled to be sent aloft
in a few years, will be able to accurately measure these tiny
angles, thereby putting general relativity to its most severe
test to date.
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