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The retardation of an elastic rotating ring is considered. Bates has formulated a paradox
indicating that as the ring slows down, unaccounted for elastic energy appears in the ring. I here
show that, due to the relativity of simultaneity, the amounts of work performed at the two ends of
asmall element of the ring, are unequal, as measured in the instantaneous inertial rest frame of the
element. So in addition to the work performed in order to stop the ring, some work is performed
which compresses the ring. This work, which vanishes if Galilean kinematics with absolute
simultaneity is used, fully accounts for the appearance of elastic energy in the ring.

I. INTRODUCTION

N.F. Bates has formulated the following paradox.' A
horizontal wheel with radius 7 rotates with angular velocity
wy, so that the velocity of the periphery, 7wy, is comparable
with the velocity of light ¢. The wheel is, for reasons of
illustration, considered as an elastic ring, consisting of
small springs with elastic constant k and rest length L,
When the ring rotates the springs are close to each other,
end to end, but without stress.

Arrangements are made to slowly draw off the kinetic
energy of the wheel to perform work until it has come to a
halt. As the wheel slows, the Lorentz contraction of the
springs reduces, and the available place appears to each
spring to be less than the place it needs to be stressfree.
Hooke’s law applies here, and the strain will entail elastic
potential energy.

Where does the energy come from? There should always
be some traceable transfer of energy, some “mechanism”
should be involved. In this case the tension of the springs
seems to be the result of the changing conditions of space as
observed by them.

I1. ELASTIC ENERGY ASSOCIATED WITH
DEWAN-BERAN STRESS

In the following I identify the “mechanism” responsible
for the compression of the springs, and show that thereis a
work associated with this “mechanism” giving rise to the
potential energy in the material when the ring has stopped.

In order to obtain conceptual clarity I assume that the
retardation of the ring’s rotational motion is obtained by
giving it lots of tangential blows at points infinitesimally
near to each other. In the limit of infinitely many blows per
unit distance and unit time, this simulates stopping the ring
by a frictional braking force.

This braking is required to be performed in an axisym-
metric way, as observed in the inertial restframe J of the
axis. So the braking is performed by groups of simulta-

tz Fig. 1. Asobserved in J the blows are simulta-
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neous blows all around the ring, as observed in J.

Now make a Lorentz transformation to the instantan-
eous inertial rest frame J ' of one of the springs, when the
angular velocity of the ring is w. With the axes chosen as
illustrated in Figs. 1 and 2, the Lorentz transformation of
time from J to J' gives

t; —ti =7llt, — 1) — (ro/)x, — x))], (1)
y=(1—-rw/c) "2

Since the blows are simultaneous in J, ¢; = ¢,. The result is
15 =17 = re/c)x, — x,). (2)

Since x, > x,, Eq. (2) gives ¢; <¢, which means that, as
observed in J ' blow 2 happens earlier than blow 1. As seen
from the direction of the blows, as illustrated in Fig. 2, this
results in a compression of the spring. When formulated in
these terms it appears that a Dewan—Beran stress is formed
in the spring.”?

If we think of the force as a continuous function of time,
the role of the relativity of simultaneity in explaining the
compression of the springs becomes somewhat more hid-
den. Instead the compression appears as due to the con-
straint that the endpoints of every spring have a constant
separation, during the deceleration of the disk, as observed
in J. In the instantaneous inertial frame J' one then ob-
serves that the endpoints of the spring are constrained to
move so that it is compressed during its deceleration.

Let us now calculate that part of the work performed on
a spring, which is associated with its compression, during
its deceleration to rest. Assume that the spring has an angu-
lar velocity w, and that a group of blows, simultaneous in J,
as described above, changes its angular velocity to w — dw.

From Eq. (2) the time difference between the blows as
observed in J ' is .

At' =1t} —t] = Yro/P)L, (3)

where L is the initial Lorentz contracted length,
L =y~ 'L, of the spring. If the velocity change as ob-
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served in J is 7 dw, it follows from the Lorentz transforma-
tion that the velocity change in J ' is

dv' = — y’rdo. 4)

During the time interval Az’ point 2 moves towards 1 with
this velocity, as observed inJ *. So the spring gets a compres-
sion

ds' =dv' At' = — PP/l do. (5)
Integration gives
s'=(vo— 7L, (6)

where 7, = (1 — Pod/c}) 2.
The work performed on the ring giving rise to this com-
pression is

Wi = fks' ds' = Lks?|%, , (7)
which by use of Eq. (6) gives
W oo = 1kL *yo — 1), (8)

or as expressed by the initial uncompressed rest length L,
of the spring:

Wi = WL3(1—y5 2 )

pot

This work, as calculated in the successive inertial rest
frames of the ring, gives the contribution to the ring’s rest
mass from the relativistic potential energy in it.

Expanding in powers of (rw,/c) and retaining only the
first term, gives

W ==(ray/2¢)*2kL}. (10)

This shows that the accumulation of potential energy in the
ring due to Dewan-Beran stresses is only a fourth-order
effect in v/c.

I11. CONCLUSION

The increase of potential energy in a rotating ring, con-
sisting of elastic springs, as it is slowed down has appeared
as a result of work done by forces compressing the springs,
and these forces have been explained as due to the accelera-
tion program and the relativity of simultaneity.
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Vertical oscillations of a hand-held Slinky spring are investigated. The equation of motion is
solved as a Fourier series for general starting conditions. However, it is shown that, for the natural
initial condition of dropping from rest, the equation may easily be integrated directly. The
resulting motion is periodic with the motion in each period described by a set of second-order
polynomials. Finally, the notion of effective mass for the Slinky is investigated.

I. INTRODUCTION

The purpose of this paper is to point out a possible pitfall
that may occur when demonstrating simple harmonic mo-
tion. Last semester I was lecturing to 260 beginning physics
students. When we came to simple harmonic motion, I
stood up on the demonstration table, held on to oneend of a
Slinky spring and let it oscillate vertically. This was to be
simple harmonic motion, but it isn’t. My previous impres-
sion had been that the lack of a large mass on the end of the
spring could be accounted for by a calculation of the effec-
tive mass of the spring. This effective mass would then be
used with the spring constant to determine the frequency of
the sinusoidal motion of the end of the Slinky. But, in fact,
the motion of the end is not even sinusoidal!

Many previous papers'~’ have investigated the problem
of correcting results for the realistic nonzero spring mass.
These have studied circular motion,"? general standing
waves without gravity,® loaded vertical oscillations,* and
oscillations of spiral (nonhelical) springs.” However, all of
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them restrict discussion of oscillations to single-frequency
sinusoidal motion.

In Sec. II, we review a simple effective mass calculation
for the condition in which a suspended mass is much larger
than the spring mass. The equations of motion, boundary
conditions, and methods of solution for the Slinky with no
suspended mass are presented in Sec. III. The specific ini-
tia] conditions of dropping the Slinky from rest are applied
in Sec. 1V, with the surprising result that the motion in each
period is described by a set of second-order polynomials in
the time and position variables. Finally, in Sec. V, an
expression is presented as a candidate for the effective mass
of an oscillating spring. ‘

I1. EFFECTIVE MASS

Consider a light spring with a large mass M attached to
the end. We wish to calculate the effect of the spring mass
m on the period 7. According to Halliday and Resnick,®

T =27{(M + m/3)/k]"?, (1)
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