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It  & shown how a consistent kinematic resolution of Ehrenfest's paradox may be 
given in accordance with the special theory of  relativity. Some statements by T. 
E. Phipps, Jr., connected with these matters, are commented upon. Problems 
connected with the relation between stress and strain are solved by a manifestly 
covariant formulation of  Hooke's law. 

1. INTRODUCTION 

T. E. Phipps, Jr. has recently (1) commented on Ehrenfest's paradox. (2) His 
statements are interesting, although, in my opinion, somewhat misleading. 
The importance of the topic treated--is the special theory of relativity able 
to describe accelerated motion of extended bodies in a logically consistent 
way?--makes it necessary to give the matters a renewed discussion. 

In this paper I will comment on some statements by Phipps, trying to 
clarify how the questions he raises are treated according to special relativity. 
A consistent special-relativistic resolution of Ehrenfest's paradox will be 
formulated including a manifestly covariant formulation of Hooke's law of 
elasticity. 

It has been stressed by Phipps that the logical order of the development 
of physics is: first get kinematics right, and then go on to dynamics. ~3) 
Kinematics is defined as the science of pure motion, c o n s i d e r e d  a p a r t  f r o m  

causes .  Now Phipps writes: "So defined, a kinematics of extended structures 
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that is (1) logically consistent and (2) of physical pedigree--i.e., capable of 
preserving the physical connectedness of stress and strain--does not 
currently exist." 

Below I will show that the kinematics of special relativity is both 
logically consistent and of physical pedigree, in the sense of Phipps. 

2. IS THE LORENTZ CONTRACTION UNIVERSAL? 

Central in the discussion of Phipps is the relativistic concept "Lorentz 
contraction." Phipps writes: "With the advent of the Ehrenfest paradox it 
became apparent on logical grounds that the Lorentz contraction could not 
occur universally." This is shown by the following consideration: Where a 
circular disk of solid material is set into rotation about its center (considered 
at rest in an inertial frame S) the Lorentz transformation, applied locally to 
each portion of the disk, requires that (a) lengths transverse to the relative 
motion (as measured in S) transform invariantly, so the disk radius at all 
times retains a constant length in S, and (b) lengths parallel to relative 
motion contract, so that the disk rim should begin to contract in S upon the 
onset of rotation. If the material of the disk is ideally uniform, there is in 
principle no weakest place where its structural integrity can first fail in 
consequence of such alleged azimuthal shrinkage. Hence a Lorentz 
contraction of the rime cannot occur in S--ergo the Lorentz contraction is 
not universal." 

In the special theory of relativity the term "Lorentz contraction" has the 
following meaning. Let an object be at rest in the inertial frame S'. The 
frame S moves with velocity v relative to S'. If the distance in the v direction 
between two points on the object, as measured in S', is I', then the distance 
between the two points, as measured by simultaneity in S, is l =  
l'(1 - v2/c2) 1/2. That l < l' is referred to as the Lorentz contraction, 

The definitional part here is the specification that the length of a body is 
measured by simultaneity in the reference frame of the observer. Then it 
follows universally, as a consequence of the postulates of special relativity, 
that l is Lorentz contracted relatively to l'. In this connection an important 
observation was already made by Planck in 1910. He writes~4): "Der Satz, 
dass das Volumen eines mit der Geschwindigkeit q bewegten K6rpers einem 
ruhenden Beobachter im Verh/iltnis (e 2 -  q2)1/2: c kleiner erscheint als einem 
mit der Geschwindigkeit q mitbewegten Beobachter, muss wohl 
unterschieden werden von dem anderen Satz, dass das Volumen eines 
K6rpers sich im Verh/iltnis (e 2 _q2)1/2: c verkleinert, wenn er yon der 
Geschwindigkeit 0 auf die Geschwindigkeit q gebracht wird. Ersterer Satz ist 
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eine der Grundforderungen der Relativit~itstheorie, letzterer Satz aber is 
unrichting, wenigstens in dieser Allgemeinheit. ''2 

As applied to the situation considered by Phipps the term "Lorentz 
contraction" concerns the relation between the length l of an azimuthal disk 
segment, as measured in the rest frame of the axis, and the length t' of the 
segment as measured by a comoving observer. They are connected by 
l =  l '(1 - r~co2/c~) 1/2, where r is the distance of the segment from the axis 
and o) is the angular velocity of the disk. 

I now turn to the question: in what cases does a body which is put into 
motion, get a contraction equal to the Lorentz contraction corresponding to 
its instantaneous velocity? 

The answer to this question is: when the acceleration program is such 
that the rest length of every part of the body remains constant. So in 
connection with giving motion to a body the Lorentz contraction is not  
universal. The contraction of a body depends upon the acceleration program 
that it undergoes. Only in the special case of unchanging rest length does the 
body get a Lorentz contraction as measured in the in i t ia l  rest frame of the 
body. 

3. KINEMATICAL RESOLUTION OF EHRENFEST'S P A R A D O X  (5-8) 

In order not to confuse the kinematical discussion with dynamical 
aspects, I here consider the movement of incoherent dust (no forces between 
the particles) in a circular pipe. 

Ehrenfest formulated his paradox as follows. (2} Let r' be the radius of 
the rotating disk, as observed in the inertial rest frame S of the axis, and r be 
the radius of the disk when it is at rest. Then r' must fulfill the following two 
requirements: 

1. The periphery of the disk must be Lorentz contracted: 2zcr' < 2zcr. 

2. Since a radial line is moving normally to its direction, it is not 
Lorentz contracted: r' = r. 

Assume that the dust consists of n points moving after each other in the 
pipe along the circular path. One is to realize an acceleration program so 
that rest distance between all neighboring particles remains constant. Then 

2 The statement, that the volume of  a body, with velocity q, as observed by an observer at rest, 
is less in the ratio ( c  2 - q2)V2:  c, than as measured by a comoving observer with velocity q, 
must be clearly distinguished from another statement, that the volume of a body gets less in 
the ratio (c 2 -  q2)l/~: c, when it is brought from a state of rest to a velocity q. The first 
statement is one of the fundamental requirements of the theory of relativity, while the latter 
statement is in general, erroneous. 

825/11/7/8/1-9 



626 Gron 

for all pairs of neighboring particles, the two particles have to be accelerated 
simultaneously as observed in their instantaneous inertial rest frame S'. A 
Lorentz transformation from S' to S shows that, as observed in S, the front 
point is accelerated dt = 7(cor2/e 2) dO' earlier than the rear point. Going 
around the pipe one finds that the point n - 1 is to be accelerated at a time 
ndt earlier than the point n, while at the same time it should be accelerated 
dt later than the point n. So it appears that due to the relativity of 
simultaneity the acceleration program that wouM realize an angular 
acceleration of the dust, while keeping the rest length between neighboring 
particles constant, represents kinematieally self-contradicting boundary 
conditions. This means that the motion corresponding to the condition given 
in point (1) of Ehrenfest cannot be realized according to the special 
relativistic kinematics. This is the kinematical resolution of Ehrenfest's 
paradox. 

4. DYNAMICAL CONSIDERATIONS 

Phipps <1) has formulated a somewhat broader interpretation of the 
problem than what usually goes under the name "Ehrenfest's paradox," and 
which was solved kinematically above. He points out that one wants 
kinematics to be of "physical pedigree," implying that stress and strain 
should bear some reasonable relationship to one another. 

The problem formulated by Phipps is the following: "We must view as 
physically anomalous the claim that an observer in S who measures no 
azimuthal strain (i.e., no change in the disk circumference) can measure an 
azimuthal stress. Yet, if we deny the reality of Herglotz stresses, we have an 
equally anomalous situation in which the rim riding observer measures 
azimuthal strain without azimuthal stress. Either way--with or without the 
Herglotz stress hypothesis--we encounter a nonphysical divorcement of 
stress from strain; so the situation is physically anomalous." 

The proper relativistic way of getting rid of this "anomaly" is to give a 
manifestly covariant formulation of Hooke's law of elasticity. (8~ This may be 
done as follows. 

Let the position four-vector X , ,  ¢t = 1, 2, 3, 4 describe one end, say the 
front end, of a body relative to the opposite (back) end of the same body, 
when the body is stress free. In other words, X ,  gives the equilibrium 
position of the body's front end. The position four-vector x u gives the 
position of the front end of the body relative to its back end, when the body 
is stressed. 

In the rest frame S' of the body the four-strain is given by 

L~, = (Ix, l~, t~, O) = (x' - -X' ,  y '  -- Y', z' -- Z' ,  O) (1) 
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Assume S is moving relative to S' with a velocity v in the (negative) x- 
direction. A Lorentz-transformation from S' to S then gives for the 
components of the four-strain, as referred to S 

(7l" l'y,l' -V l'), 7= (l_v2/e2)-l/2 (2) L. = , z,Y c 

Length is defined as the spatial distance between two points on the (moving) 
object, measured by simultaneity in the rest frame of the observer. From this 
definition and the Lorentz transformation of coordinates follow 

/x = y- ' /~,  g = g ,  Iz=l'z (3) 

The usual strain-components are identified with Ix, ty, and Is. Solving with 
respect to l~, t~, and l'z, and substituting into Eq. (2) gives 

Lu = (y2lx, ly, t~, y2 ~ lx) (4) 

Let F .  be the Minkowski four-force acting on a body giving it a strain L . .  
In this connection F .  will be called four-stress. The components of the four- 
stress are given by 

F . = y  , f ~ , f z , T f  x (5) 

where fx, fy, and f~ are the components of the ordinary three-vector stress 
giving rise to the strain. 

Hooke's law may now be given the following covariant formulation: 

F. = kL. (6) 

where k is a scalar called the elastic constant. Substitution from Eqs. (3) and 
(5) into Eq. (6) gives 

y , f y , f z ,T f  x =k  ?,2lx, Iy,I~,y2 Ix (7) 

or the component equations 

fx=kflx, fy=ky-lly, f~=ky-ll~ (8) 

According to the definitions given above the strain and stress 
components are proportional to the spatial components of spacelike four- 
vectors. If a four-vector is spacelike in one system, it is so in all systems. 
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There is no system in which the spatial component of a spacelike four-vector 
vanishes. The definitions adopted here, therefore, make the existence of both 
stress and strain Lorentz invariant. In every inertial frame the existence of 
stress is a accompanied by a nonvanishing strain and vice verse. 

We now consider a rotating elastic disk. Let the disk get an isotropic 
angular acceleration. Then all points of the periphery have identical motion, 
as observed in S. If the acceleration is given to the disk by several tangential 
blows on n points around the periphery, then these blows must be given to 
all points simultaneously, as measured in S. A Lorentz transformation to the 
rest frame S'  of two neighboring points, with angular distance dO, then 
shows that the front point is accelerated at a point of time tit' = 7(o.)r2/c 2) dO 
earlier than the rear point. Accordingly, the rest length of the element 
increases. So the periphery is strained, even if its length as observed in S 
remains constant. The rest length of the periphery is increased by 
/ ' = 2 7 r ( y - 1 ) r ,  relative to its length when the disk was nonrotating. 
According to Eq. (3) then strain of the periphery is l = y-11' = 2ny-l(y - 1)r. 
From Eq. (8) follows that a tangential stress fx = kylx = k 2 n ( y -  1)r builds 
up in the disk, as its angular velocity increases. This is just the 
Herglotz-Dewan-Beran c9-1°) stress associated with the transformation of a 
body from a state of rest to a state of motion, while the length of the body, 
as measured in the initial inertial rest frame S of the body, is kept constant. 

It should be noted that this stress has a purely kinematical origin, in the 
sense that it is a consequence of the relativity of simultaneity for the special 
acceleration program that the points of the disk are assumed to follow. If the 
Galilean kinematics were correct, an identical program would not imply any 
azimuthal stresses in the disk. 

5. METRIC STANDARDS 

Phipps formulates two definitions of a metric standard: 

"Definition A. A metric standard is any extended material structure 
that invariably and precisely undergoes the Lorentz contraction in the 
direction of its motion relative to any inertial system (as measured by 
Einstein's prescriptions), 

Definition B. A metric standard is any extended material structure 
that in acquiring arbitrary states of relative motion never undergoes any 
change in its internal energy state." 

He then states: "Most relativists would accept Definition B, because 
they would consider it equivalent to definition A. However, we shall show 



SpeeiaI-Relativ|stie Resolution of Ehrenfest's Paradox 6 2 9  

that it is not equivalent. Instead, if Definition B is taken as the physically 
fundamental one, it will be shown that the title question can be answered in 
the negative: A metric standard does not undergo the Lorentz contraction." 

In order to demonstrate the shortcoming of Definition A Phipps 
considers the accelerative transfer of standards. He writes: "If  a Lorentz 
contraction of the structure occurs near the onset of motion, this can result 
only from initial differences in the externally applied distributed forces. Such 
differences have to be carefully and by free choice engineered by the 
experimenter at rest in S. Not nature, but the experimenter, has to implement 
the Lorentz contraction. Definition A implies a departure in principle from 
Newtonian behavior even at the lowest finite speeds (cf. the 
Herglotz-Noether theorem, which denies a Born rigid body the option to 
change its state of rotation); so, consistently with that definition, there is no 
possibility to recover classical rigid-body kinematics as a contained limiting 
case of Einstein's kinematics. Moreover, any attempt to view Definition A as 
equivalent to Definition B implies that differential force applications to 
different portions of a structure beget no change in the internal energy state 
of that structure--a claim that appears physically incorrect, and is clearly so 
in the Newtonian regime near the onset of motion. For such reasons 
Definition A is rejected here." 

Firstly, I will show that Definition A is in conformity with the existence 
of classical rigid-body kinematics as a contained limiting case of Einstein 
kinematics. 

As to the fact that special relativistic kinematics forbids a Born rigid 
angular acceleration of a disk, it was shown above that this is due to the 
relativity of simultaneity. The observable effect connected with this result is 
the increased rest length, for example, of a thread along the periphery, as its 
angular velocity increases. This effect is of second order in (rco/e), which 
does not exclude Newtonian rigid-body kinematics as a contained limiting 
case of Einstein's kinematics. 

We now consider the rectilinear acceleration of metric standards. As 
stated by Phipps, the forces J'a and J'b at the rear end and the front end, 
respectively, of an accelerated metric standard (Definition A), as measured 
in an inertial frame, are different. I have shown (11) that their difference, as 
measured in their instantaneous inertial rest frame, is 

- = (gLo/c2)?; (9) 

where g is the rest acceleration of the origin and L o is the rest length of the 
rod. Since (at the start of the motion) 

V ~ g L  0 
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the difference may also be written 

Like most other relativistic effects this, too, is of second order in (v/c). But 
because of v's dependence upon L 0 it is a first-order effect in the distance 
between the points of attack of the forces. This shows that the Newtonian 
description of extended, accelerated bodies is contained in the relativistic 
descrition, as the limit for small velocities and for bodies of small extension. 
By "small extension" is meant linear dimensions small compared to (c:/g). 

Now let us discuss a consequence of regarding Definition A as 
equivalent to Definition B: that the differential force applications to different 
portions of a structure (Eq. 9) give no change in the internal energy state of 
that structure. Phipps is of the opinion that this must be incorrect, "and 
clearly so in the Newtonian regime near the onset of motion." 

In this connection it is important to observe that the forces applied to 
the accelerated metric standard are different as measured in an instan- 
taneous, inertial rest frame of the rod. It is shown in Ref. 11 that a transfor- 
mation to the permanent, accelerated rest frame R of the rod gives the result 
that the applied forces are position independent in R. 

Taking the principle of equivalence into account we immediately see 
that this result must be correct. By that principle the measurements in R are 
equivalent to those obtained at the surface of the earth with a rod standing 
vertically at rest on the surface. The situation is obviously static with no 
change in the internal energy state of the rod. 

The reason for the differential forces, as measured in an inertial frame, 
is that the velocity of the rod changes in such a frame, which implies a 
changing Lorentz contraction, and correspondingly different accelerations for 
the different points of the rod. As mentioned earlier, the effect is of second 
order in (v/c). 

Without further arguments I may state that in special relativity 
Definition A is equivalent to Definition B. A metric standard will undergo a 
Lorentz contraction in accordance with its observed instantaneous velocity, 
whether Definition A or B is taken as a point of departure. 

6. CONCLUSION 

Questions connected with the description of accelerated motion of 
extended bodies have been treated within the frame of special relativity. We 
have seen that in this theory there exists a purely kinematical resolution of 
Ehrenfest's paradox. The relativity of simultaneity plays an essential roIe in 
this resolution. 
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In order to obtain a proper connection between stress and strain 
Hooke 's  law has been given a manifestly covariant formulation. 

The acceleration of  metric standards, defined as rods undergoing 
Lorentz contractions, has been considered. Problems stated by Phipps, that 
seemed to imply that metric standards so defined were inconsistent with 
classical rigid-body kinematics as a contained limiting case of  Einstein's 
kinematics, were solved, demonstrating the consistency of  conventional 
theory. 
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