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A consistent relativistic kinematic description of a
rotating disk is given. The disk is described from the
point of view of an inertial observer momentarily at rest
relative to a point on the periphery of the disk, and as
observed in a coordinate system SS' rotating with the
disk. The kinematic resolution of Ehrenfest’s paradox is
stated. Also the following elements of the description are
analyzed: (a) the transformation of time from an iner-
tial system, where the axis of the disk is at rest, to
SS'; (b) the spatial geometry in SS'; and (c) the
velocity of light in SS'. The procedure for synchroniza-
tion of the coordinate clocks on the disk is stated
explicitly.

I. INTRODUCTION

Some writers talk of the special theory of relativity as
the theory which describes phenomena in flat space—time,
relative to inertial reference frames, in a Lorentz-
covariant way.'~® When this point of view is adopted, it
is implicitly understood as a consequence of the two
postulates of Einstein*:

(i) The same laws of electrodynamics and optics
will be valid for all frames of reference for which
the equations of mechanics hold good.

(ii) Light is always propagated in empty space
with a definite velocity ¢ that is independent of the
state of motion of the emitting body.

The first of these demands, in the description of
phenomena, a certain covariance between inertial sys-
tems. The second postulate fixes this as the Lorentz
covariance.

Such reasoning, however, was sound only before 1910,
when the notion of general covariance between arbitrary
systems of coordinates was not yet developed.® During
the next ten years, covariant operations—for example,
covariant differentiation—were defined, and it was recog-
nized that it is possible to formulate every classical (non-
quantum) theory in tensor form. Accordingly, we have a
receipt for formulating the theory in a generally covariant
way, independent of coordinates.

This has consequences for the region of applicability of
special relativity. By the method of successive inertial
systems® or by considerations of simplicity and kinematic
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consistency (see Sec. V A), one can associate a local
coordinate system with an accelerated observer. Now, us-
ing the principle of general covariance, which is a
mathematical restriction without physical contents, one
can transform the laws of phenomena in flat space-time,
formulated in an inertial system, to the coordinates of the
accelerated observer.” In this way special relativity can
deal with accelerated coordinate systems.5~1

Today one should say that the special theory of relativ-
ity is the theory which describes phenomena in flat
-space-time. Thus the description by accelerated observ-
ers, of which a frame of reference rotating with constant
angular velocity with respect to an inertial system is one
of the simplest examples, is included in special relativi-
ty.12

A description in terms of arbitrary coordinates implies
the use of arbitrary coordinate clocks and arbitrary coor-
dinate measuring rods. A consequence is that the velocity
of light is variable in such a description. Thus it is per-
fectly all right to have a variable velocity of light within
the special theory of relativity. However, one should not
confuse this coordinate light velocity with the constant
light velocity ¢ measured locally with standard clocks
synchronized by the Einstein convention.!® Such syn-
chronization is generally not possible around a closed
path.'* Thus the light velocity along a circle around the
axis in a rotating frame of reference cannot be equal to
c.15

In this article a consistent kinematic description of a
rotating disk is given within the framework of the special
theory of relativity, including the description of the spa-
tial geometry and the velocity of light by the observer
rotating with the disk.

II. THE ROTATING DISK

In a detailed work, Cavalleri'® gives a dynamical res-
olution of Ehrenfest’s paradox. Sama!” has recently
stated this paradox as given by Ehrenfest,'® and expressed
the opinion that ‘‘this paradox per se arises not from an
inconsistency in relativity, with which it is not actually
connected, but from an ambiguous use of notation.’’
Cavalleri,'® on the contrary, states in his summary; ‘It is
here shown that Ehrenfest’s paradox cannot be solved
from a purely kinematical point of view. It follows that
the relativistic kinematics for extended bodies is not gen-
erally self-consistent.”” If this statement is correct, it is a
very serious matter, because of a fact stated precisely by
Phipps!?: ‘‘That dynamics can exist without the founda-
tion of a logically consistent kinematics is absurd; for any
structures or motions that can occur for cause can be de-
scribed apart from causes—and that description is known
as kinematics. Kinematics is foundational (logically pre-
conditional) to physics. Physics should rest on its founda-
tions, not rescue them. The logical order of development
of physics is clear: first get kinematics right, then go on
to dynamics.”’

Thus we want here to proceed beyond the question of
notation, and a relativistic kinematic description of a
rotating disk is given. The disk is described in three
ways: (a) from the point of view of an inertial observer S
at rest relative to the axis of the disk; (b) as measured by
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an inertial observer S; momentarily at rest relative to a
point k on the periphery of the disk; and (c) as measured
in a coordinate system SS’ rotating with the disk. In this
way the nature of the seemingly kinematical inconsisten-
cies is made clear, and we see how a careful considera-
tion of the relativity of simultaneity is essential to the
kinematic resolution of Ehrenfest’s paradox.

The inertial systems associated with § and S, are des-
ignated SS and SS;, respectively. The accelerated ob-
server in S§', momentarily at rest relative to Sy, is desig-
nated S'.

ITII. DESCRIPTION BY INERTIAL OBSERVERS

This section does not deal with Ehrenfest’s paradox.
Instead a problem independently raised by Phipps (private
communication) concerning the measurements of the iner-
tial observer S, is analyzed. It demonstrates clearly the
essential role played by the relativity of simultaneity in
relativistic descriptions of rotating bodies.

A circular disk with radius R is rotating with angular
velocity @, and the periphery of the disk is marked with n
points, dividing it into n equal parts, each with length
27R/n as observed by S.

An inertial observer S, momentarily at rest with respect
to the kth element, will measure that it has a rest
length y27R/n, where y = (1 — %)™ 2, v = wR, B =v/c.
He observes that the center of the disk has velocity v, and
that the opposite element has a velocity 2v/(1 + 82).
Thus, as measured by him, it has a length
v(2y®* — 1) 22nR/n. This seems to indicate that S, will
measure a greater Lorentz contraction for the elements of
the circumference of the disk at the opposite side of it
than he measures for those on his side of the disk. A
tempting conclusion is that he does not measure ellipse
shape for the periphery of the disk.

Assume that in the laboratory a ring is drawn on the
table along the circumference of the disk. S; measures
this drawing as an ellipse with axis 2 R normal to the di-
rection of velocity and 2 R/y along the velocity direction.

According to the preceding statements, one must con-
clude that S;, is not measuring the same shape for the cir-
cumference of the disk as for the drawing which it just
covers. This result is obviously impossible.

The description of §;’s measurement of the drawing as
an ellipse is a direct consequence of the Lorentz contrac-
tion and is doubtless correct. Thus it is the description of
how S; measures the circumference of the disk that is in
error. The correct relativistic description is given below.

Fig. 1. The disk observed in §.
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Let P be a point on the periphery of the rotating disk,
as shown in Fig. 1. At time ¢ = 0, the radius vector from
the center of the disk to P makes an angle o with the x
axis as observed in SS. This event 4 then has the coordi-
nates

=0, x*(0)=-R(1-cosa), @)
y*(0)=R sina,

The inertial observer S moves with velocity v = @R in
the y direction observed by S. The origin in $S; passes
the origin in SS at time ¢ = ¢, = 0, and the axes of SS and
SS; are parallel. In SS), the event has coordinates

ty*=—yl/cHRsina, xA=x4, yA=yyh.  (2)

The observation of the disk by S, is by definition the
measurement of the positions of points on the disk, mea-
sured simultaneously in SS,. Thus we are interested in the
position of the point P at a given point of time in §S,,
say, at f; = 0. By transforming back to SS, we find that
this corresponds to a time

tB=y(w/c?)y,>. (3)
Now the spatial coordinates of P in SS are
xB=—R(1 -cosb), y®=Rsind, O=a+wtd. (4)
Transforming to S, and using (3) now gives
x,2=x8, ,%=(R/v)siné. (5)
Inserting this in (3) gives
wt®=p%sin(a + wt?). (6)

The coordinates of P at time t;, = 0 as measured by S, are
now determined by Eqgs. (5) and (6).

Let Q be a point on the drawn circle with coordinates
given by (1) as measured in SS. Then at f, = 0 in Sy its
coordinates are

x,=—=R(1 —cosa), y,=(R/y)sina. (7

Here the angle « is measured in SS. Owing to the Lorentz
contraction, the connection between o measured in SS
and the corresponding angle oy measured in SSg, is

sina = sina, /(1 - B2 cos®a,)!/?,

cosa = cosa,/y(1 — B cos’a,)! /2, 8)
Substituting this in Eq. (7) gives
x,=~R[1 - cosa,/y(1 = B? cos’a,)!/?],
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v, = R sina, /y(1 - B2 cos?ay)!/%

9)

This is the description of the drawing by S,. It is the equa-
tion of an ellipse with semiaxis R along the x; axis and
semiaxis R/y along the y) axis.

Using Egs. (5) and (6) together with (9), we are able to
give a comparison of the measurements by S, of the cir-
cumference of the disk and the drawing around it on the
table.

Let n = 16. Then the points on the periphery of the
disk all have an angular difference 22.5° measured in SS.
The broken circle in Fig. 2 and the points on this give the
periphery of the disk and the positions of the points at
time ¢t = 0 in S§. Also drawn in Fig. 2 is the ellipse giv-
en by Eq. (9): In SSj the 16 points are observed on the
ellipse with the same abscissas as in §S. This is not the
case with the points on the disk, however, owing to the
rotation of the disk. Their coordinates are given by Egs.
(5) and (6). The angle wt®, given by the transcendental
equation (6), was calculated numerically on an electronic
computing machine. The coordinates are then calculated
from Eq. (§), with the results shown in Fig. 2. The points
all have positions, measured at ¢, = 0 in S5, which coin-
cided with the drawing on the table. We can see that this

had to be the case since Eq. (5) gives, independently of
18,

(c, B+ R) + (vy,B ) =R% (10)

This equation describes a circle in the xg,yy, plane, and
thus the ellipse in the xi,y; plane. The lines in Fig. 2 are
drawn between the same points on the disk, measured at
t =0in SS and at ¢, = 0 in SS.

The result of this analysis is that the periphery of the
disk coincides with the drawing around it, observed both
in $§ and in $§;, for every velocity v <c.

We now calculate the path of the point P, observed by
Sk, and compare with the Newtonian result. In S§ the
point P describes a circle. Its coordinates at time ¢ are

x==[1-cos(wt)], y=Rsinlwt). (11)

The transformation to SS;, is

ty=Y[t = @/cW], xp=%, ypr=Y®-vit). (12)

Fig. 2. The connection be- , \
tween observations in §
and in S,. 8 =0.8.
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Thus the coordinates x; and y; of the point P, measured
by Sy, expressed by the time #;, measured in S5y, are

x,= = R(1 = cos {ywlt, + (v/c*e]}),
vy =R((1/¥)sin{yvw(t,+ (0/c?) y,] - wt,}). (13)

The corresponding nonrelativistic cycloid is
%y =—R[1-cos(wt)], ym=Rlsin(wt)-wt]. (14)

The curves given by Eqgs. (13) and (14) are drawn in Fig.
3

Let 6, be the angle between the radius vector from the
center of the disk to P and the x axis, measured in SS.
The function f{t,) is defined by

f(,)=tans,, (15)

where

f(tk) = ka(P) - yk(center )]/[xk(P) - x,;(center)]

= (1/7)tan{yw(t, + @/c®)v,]} (16)
by use of Egs. (13). Thus
tanf, = (1/¥)tane,
where
b =ywlt, + w/c?) ) (17)
The y; component of P’s velocity is
v =dy,/dt,==[(1 = cosp)/(1 =B cos¢p)lv  (18)

by differentiation of the second of Egs. (13). By using
(17), this can be written
v == {1+ tan?6)1 /2 41]

X[(1+7*tan?6,)/ 2+ 8%}y (19)

y Y
Ly x F—» x
Fig. 3. The path of the
point k as observed from
Sk. (a) Nonrelativistic;
(b) 3=10.8.
(@) (b) i
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with — for 0 <6, <#w/2, 3w/2 <6, <27, + for
/2 < 6, <3m/2. This velocity is O for 6, = 0, and it is
- /(1 + B?) for 6, = m.

The angular velocity of the radius from the center of
the disk to P is varying with 6, observed by S;. Dif-
ferentiation of Eqgs. (15) and (16) gives

do cos?0 VY
_49% _ 29 df _ COS°Y, vk
W= i, cos det cos0 <1+ = )w. (20)

Using Egs. (17) and (19) in (20), one gets

w,={(1 +7?tan?9,)*/? cos?s,

Xy [(1+y*tan?0,)! 28w (21)

with — for 0 <@, <w/2, 37w/2 <6, <2w, + for
/2 < 6; < 3m/2. The angular velocity has maximal value
w for 8, = 0 and minimal value [(1 - B/ + BZ)]w for
0, = m. Generally, the angular velocity w, is greater
when x(P) > — R than when x,(P) < —R. This is the
reason that the distance /,, between the points where P
touches the y, axis is greater than 27R, as shown in Fig.
3, in spite of the Lorentz contraction of the disk in the y,
direction measured by S,. The distance /, is given by the
value of 7, obtained by setting x; = 0 in the first of Egs.
(13). This gives

ywlt, + w/c*,]=21 or t,=21/yw~vy,/c’ (22)

By substitution into the second of Egs. (13), one obtains

l,=72nR. (23)

IV. KINEMATIC RESOLUTION OF EHRENFEST’S
PARADOX

We regard the circular rotating disk with » marks along
its periphery, as shown in Fig. 4. It is assumed that n is
so large that the distances between the marks on the
periphery are infinitesimally small. With each element be-
tween two marks there is associated an inertial observer
Sy such that the element is momentarily at rest as ob-
served by S;. We shall investigate whether it is kinemati-
cally possible that each mark gets a blow (a sudden ac-
celeration) such that the blows on each pair of marks are
observed simultaneously in the inertial system S§S, as-
sociated with the pair.

To investigate this, we associate emission of a light
pulse with each blow. With reference to Fig. 4, the
hypothetical situation is as follows. S, observes the events
1 and 2 simultaneously, S, observes the events 2 and 3
simultaneously, and so forth, continuing around the
periphery of the disk to S, observes the events n and 1
simultaneously. §; moves momentarily with the disk
halfway between the points where emissions 1 and 2 hap-
pen, S, halfway between 2 and 3, and so forth. All the
inertial observers S regard themselves as at rest.

Thus, if S, should say that the light signals 1 and 2 are
emitted simultaneously, he must receive them simulta-
neously. For that to happen, 1 must be emitted earlier than
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Fig. 4. The rotating disk
as observed in §. Only a
few of the points are
drawn in the figure.

2, as measured in the laboratory system SS,
moves from 1 towards 2.

Assume now that §; receives the signals 1 and 2 simul-
taneously, S; receives 2 and 3 simultaneously, and so
forth. This implies that, as measured in SS, emission 1
happens earlier than 2, 2 earlier than 3, and so forth, to
n-1 happens earlier than n. Thus, as measured in SS,
emission 1 happens earlier than n, but then it is impossi-
ble that S, receives the signals n and 1 simultaneously. §,
then does not observe that the emissions n and 1 happen
simultaneously.

The conclusion is that it is kinematically self-
contradicting to assume that the periphery gets blows on
all n points simultaneously as measured in the successive
inertial systems SSy, where the points k on the periphery
of the disk are momentarily at rest.

There is no corresponding problem if the light signals
are emitted simultaneously in the laboratory system SS.
Then all the inertial observers S, find that the signal
k + 1 was emitted a time (v/c?)2@R/n, v = wR earlier
than the signal k.

The reason that there is a problem by simultaneity in
the successive rest systems SS; and no problem at simul-
taneity in the laboratory system SS is that in the former
case one observer measures different points of time for
the event k, while in the latter case several observers S
measure that the events k and & + 1 in their local sur-
roundings happen at different points of time, which does
not imply any problem.

By definition a Born rigid motion of a body leaves
lengths unchanged, when measured in the body’s proper
frame. As made clear by Cavalleri and Spinelli?® and by
Newburgh,?! a Born rigid motion is not a material prop-
erty of the body, but the result of a specific program of
forces designed to set the body in motion without intro-
ducing stresses. The result of the analysis given above
shows that a transition of the disk from rest to rotational
motion, while it satisfies Born’s definition of rigidity, is a
kinematic impossibility. This is the kinematic resolution
of Ehrenfest’s paradox.

since S,

V. DESCRIPTION
SERVER

A. On the transformation of time

BY THE ROTATING OB-

Let S’ be an observer on the periphery of the disk,
rotating with it. He is not an inertial observer. Assume
that the measurements of § and S’ are connected with a
transformation that has the Lorentz transformation be-
tween S and the inertial observer S,, which is instanta-
neously at rest relative to §’, as limit for small w and large

d. Gron



R, such that the uniform rotation tends to a uniform trans-
lation.?272* Then if one regards events at n points on the
periphery of the disk, which happen simultaneously as
measured by S’, they happen at different points of time as
measured by §. This implies that an event & happens at
two different points of time, measured by S, which is im-
possible. A corresponding difficulty arises for events that
happen simultaneously as measured by S. Then one and the
same event is measured by S’ to happen at different
points of time-—again, an impossibility.

The conclusion is that events measured as simultaneous
by § must also be measured as simultaneous by S’. This
is attained by using the following transformation between
the coordinates of the observations of S and those of S':

ri=y, M=0-wt, t'=t (24)

As mentioned by Tangherlini®® and Atwater,?® this
transformation has a Galilean character. This is due to the
fact that angular velocity, as opposed to translational ve-
locity, is a quantity with an absolute value that can be
locally measured, both mechanically (by use of Fou-
ceault’s pendulum) and optically (Sagnac’s experi-
ment?’~3!). The transformation (24) is discussed by Beren-
da®? and Mgller.3® It implies that Einstein’s synchroniza-
tion convention cannot be used by mutual synchronization
of the clocks on the disk. The clocks on the disk indicate
always the same point of time as the clocks in an inertial
system where the center of the disk is at rest. This means
that the clocks on the disk are synchronized by means of
a time signal sent out from the center of the disk, with
the convention that a clock at a distance r from the center
of the disk, which receives a time signal, emitted at a
point of time ¢, is adjusted to readr + Az, where At is the
time used by the signal from the center of the disk to the
clock. The formula for the time interval At is deduced be-
low [Eq. (56)] to make the convention explicit.34

The line element on the rotating disk based on the
transformation (24) is3®

ds®=drt+ r* do" + 2wy do’ dt

- (1 = w’?/c?)ctat’. (25)
Now consider a standard clock inserted at rest on the disk

at a distance r from its center. The line element of the
time track of this clock is then given by

dst=- (1 - w¥%?/ct)ct dtt. (26)

The increase dr, in the time of the standard clock is given
by

dSz= - C2 d'roz. (27)
From Egs. (26) and (27) there follows
dry= (1~ w*?%/c?)!/ %4z, (28)

Thus a standard clock at a point on the disk goes slower
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than the coordinate clock on it.

During an angular increase of 27 for a radius on the
disk, the coordinate clock ages 2w/w like the laboratory
clock, while the standard clock ages (2u/w)
X (1 — w??c?)V2, This difference corresponds to the diffe-
rent aging of the resting and the traveling brother in the
twin paradox; the coordinate clock measures the aging of
the resting brother, and the standard clock measures the
aging of the traveling brother.

The slowing down of the standard clocks relative to the
coordinate clocks on the disk increases with r, according
to Eq. (28). Thus, events at different distances from the
center of the disk, measured as simultaneous on the coor-
dinate clocks, are not measured as simultaneous on the
standard clocks. Although the clocks in SS; are momen-
tarily at rest relative to those in SS’, they do not agree
with any of the two sets of clocks in §S' as to the simul-
taneity of events. This is due to the different synchroniza-
tion procedures for the clocks in S§” and in SS;; the latter
are synchronized by the Einstein convention.

B. Spatial geometry on the rotating disk

The spatial geometry on the rotating disk is charac-
terized by the differential spatial line element on it. Sev-
eral such line elements can be found, depending on the
measuring rods and the clocks used. In this sense the spa-
tial geometry on the disk has a conventional character.
However, the proper spatial line element do is of special
significance, since it defines a coordinate-independent spa-
tial geometry on the rotating disk. As shown by Mgller?¢
the element do is invariant under a transformation con-
necting two different coordinate systems inside the same
system of reference. The geometry characterized by this
proper spatial element is then the spatial geometry on the
rotating disk.

One can define the proper spatial line element by the
following operations. Use the radar method and measure
the time d7 taken by a light signal between emission and
absorption on a standard clock. The spatial line element
in the direction / between the clock and the reflector is
then given by

do,=3cdr. (29)

This equation, being a definition of do;, does not tell
anything about the velocity of light measured locally on
the disk. This question is treated in Sec. V C.

Let the clock and the reflector be placed on the same
radius on the disk with radial coordinates r and r + dr.
The four-dimensional line element between two events
connected with a light signal—that is, between the emis-
sion and the absorption—is zero. Using Eq. (25) for this
case gives

drt = (1 -wh?/ct)ctdt=0. (30)

The time interval between emission and absorption, mea-
sured on the coordinate clock, is then

_ 2dr
rT e = wir /A

dt (31)
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Using Eq. (28), one gets for the corresponding interval
measured on a standard clock

ar,=2dr/c. (32)

Substitution into Eq. (29) gives the radial proper spatial
line element

do, = dr. (33)

Now let the clock and the reflector be placed on the
same circle around the center of the disk, with angular
coordinates 6’ and 6’ +d6’. The time interval between
emission and absorption measured on the coordinate clock
is

2y do’

= c(l=-w’?/c?) "’

(34)

The corresponding interval measured on the standard
clock is

27 do’
= ol — w2 et (35)
Thus the tangential proper spatial line element is
do,= (1 = /ey % dor, (36)

From Egs. (33) and (36) it follows that the spatial
geometry on the disk is characterized by the proper spa-
tial line element

do’=adr’ + (1 = w¥?/c?y 'yt dor, (37)
It can be shown by using the above method that the
proper spatial line element is generally given by3”

dot= (g, - g1 gu/gu)dxt dx*, 1,k=1,2,3 (38)

where g, are the elements of the metric tensor. From Eq.
(25) one gets

g11=8n=1, gu=0, gu=wr/c,

gu=~ (1 -w¥?/c?). (39)

Substitution into Eq. (38) gives Eq. (37).

The fact that the proper spatial line element between
two points depends on the angular velocity w of the rotat-
ing disk illustrates the absolute or Galilean character of
angular velocity. It also shows that the disk cannot pass
from rest to rotation in such a way that both the radial
and the tangential proper spatial line elements remain un-
changed.38

We note that the spatial line element d/ obtained by
putting dt = O in Eq. (25),
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dl*=dr*+r* do?r?, (40)

is different from do. The line element (40) based on
simultaneity on the coordinate clocks—that is, on simul-
taneity on the laboratory clocks—characterizes Euclidean
of flat spatial geometry.

Equation (36) for the tangential spatial line element can
be written

do'=(1 - w¥%/ct)!/ 2 do, v, (41)

Thus on the rotating disk the angle d@’ is not measured as
the arc length divided by the radius.

From the second of Egs. (24), it follows that at a cer-
tain moment in time, measured on the coordinate clocks,
d0' = df. Accordingly, the angle around the periphery of
the disk, measured on it, is equal to 277. From Eq. (36) it
then follows that the circumference of the disk has the
proper length

0,=21R(1 - w’RY/c?y1/% (42)

From the first of Eqs. (24) and Eq. (42), it follows that
the ratio between the circumference of the disk and its
radius, measured on the disk, is

=211 - w?RY/c?)1/2, (43)

The observer S’ on the disk describes this by saying
that the geometry on the disk is non-Euclidian. As re-
marked by Arzelies,?® when we transfer the various
points of the disk onto an Euclidian plane, giving them
the coordinates of the system SS’, the result is as if the
measurements were being made with a meterstick, the
length of which varied with its orientation.

C. The velocity of light on the rotating disk

It is here shown that even locally the velocity of light
on the rotating disk is different from c.
The velocity of a particle is given by

w=do/dt. (44)

From Eq. (33) it follows that by radial movement the
velocity of a particle, measured on the rotating disk, is
given by

w, = dr/dt. (45)

The velocity of a photon is now found by putting ds = 0
in Eq. (25). By radial movement this gives

dr/dt= (1 = w’r*/c*) . (46)
Thus the velocity of light in the radial direction is
c,=(1=-w¥/c*) %, (47
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From Eq. (36) it follows that by tangential movement the
velocity of a particle is given by

=(1=-w¥?/c?)yY 2y a0 /dt. (48)

Equation (25) gives, for the velocity of a photon moving
in tangential direction,

rdf'/dt=c - wr. (49)
The velocity of light in tangential direction is then
=(1 =¥/ e - wr). (50)

Using the above method, one can easily deduce the
general formula for the velocity of light in the direction /,
expressed by the components g,, of the metric tensor.
From Eq. (38) one finds the invariant spatial line' element
in the direction /,

d0,=(g,,—g,42/g44)“2dx'. (51)

The velocity of a particle moving in the direction / in a
stationary field is

S (G

The line element between two points in space-time hav-
ing coordinates (x!, x*), (x' + dx!, x* + dx*) can be written

>1/2dx1 (52)

ot

ds?= g, (dx" )V + 2gpudxt dxt + gga(dx?). (53)

The light velocity in the direction / is given by putting
ds = 0 in Eq. (53), which leads to

dx’/dx4=g44/[(g,42—g,,g44)1/2+g,4]- (54)

Substitution into Eq. (52) gives the light velocity in the
direction /,

(- ge)'’?

44
;= Ce 55)
Vg (g gu—git) 1 (

It can be shown that this equation is in agreement with
the corresponding equation given by Mgller.3" Inserting
the values of g,, from Eq. (39) gives the two equations
(47) and (50).

The reason that the velocity of light is locally different
from c is that the clocks on the disk are not synchronized
by the Einstein convention, since this convention, if used
on the disk, would lead to a kinematic paradox as shown
in Sec. V A. Instead, they are synchronized by a time
signal emitted from the center of the disk. We are now
able to calculate the time taken for this to reach a circle
with radius r about the center. Using Eq. (47), we find*?
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:[(1/c)f()’d«r]a—wzrz/&)-“2

= (1/w)arcsin(wr/c). (56)

VI. CONCLUSION

The measurements of a rotating disk by an inertial ob-
server §, momentarily at rest relative to the disk and by
an accelerated observer S’ rotating with the disk are
examined. It is found that, although S, and S’ are
momentarily at rest relative to each other, their measure-
ments of the disk differ radically. S; observes a disk that
rolls. He measures an elliptical shape for the circumfer-
ence of the disk, and he finds that each point of it de-
scribes a cycloid-like path, while its center moves along a
straight line with constant velocity. S’ observes a disk at
rest, while the surroundings are rotating. He measures a
circular shape for the circumference of the disk.

It should be noted that the elliptical shape of the
periphery as measured by Sy is not equal to its appearance
as photographed by S;. After McCrea,*! Terrell,*? Pen-
rose,® and Weisskopf** drew attention to the difference
between observation by measurement and visual appear-
ance, much work was done on this topic. Recent investi-
gations and further references are found in the articles by
McGill*® and by Matthews and Lakshmanan.?® A photo-
graph of the periphery taken by S at the moment he is at
rest relative to the disk has a shape exhibited by Scott and
van Driel,*” while a photograph of the periphery taken by
S’ permanently at rest relative to the disk has circular
shape.

Nor do the observers S; and S’ agree as to the simul-
taneity of events. We regard the situation illustrated in
Fig. 4. Light signals 1 and 2 are emitted so that they
simultaneously reach the point where S; and §' stay. Both
S, and §' are regarding themselves as at rest and halfway
between the emission points of 1 and 2. Since S, mea-
sures the light velocity to be isotropic, he concludes that
events 1 and 2 happen simultaneously. This is not the
case for §'. He measures a greater light velocity in the
direction in which he observes that the surroundings ro-
tate than in the opposite direction [Eq. (50)]. Thus, light
from 2 moves towards him with greater velocity than
light from 1. Accordingly, light from 1 has taken a longer
time to reach him than light from 2. §' therefore con-
cludes that event 1 happens earlier than 2.

Assume that § and S’ measure that the » points on the
periphery of the rotating disk get simultaneous blows.
Then the inertial observers S, using clocks synchronized
by the Einstein convention, observe that the points k and
k + 1 in their local surroundings get blows at different
points of time. Now, the proper length of an accelerated
body is measured by inertial observers momentarily at
rest relative to the object, measuring its coordinates by
simultaneity on their clocks synchronized by the Einstein
convention. Thus an observer permanently at rest relative
to an accelerated body generally does not measure its
proper length, since his clocks need not be synchronized
in the above sense. With regard to the rotating disk, we
may conclude that the proper lengths of the elements on
the periphery change owing to accelerations which are
measured as simultaneous by §’. Moreover, it is shown in
Sec. IV that it is kinematically impossible to give the
points accelerations that leave the proper lengths of all the
elements of the periphery unchanged.
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It is found that §' on the disk observes a non-Euclidian
spatial geometry and a variable velocity of light. These
conclusions are arrived at within the framework of the
special theory of relativity by using a covariant formula-
tion of the equations.

The dynamic aspects concerning the relativistic descrip-
tion of a rotating disk are not touched on here. They are
treated by Clark,*® Cavalleri,'® Brotas,*® and McCrea.

The kinematic description of a rotating disk given
above does not suggest any nonlinear dependence of the
speed of a point on the disk, observed by S, upon the dis-
tance from its axis, as proposed by Hill,>! Rosen,>? and
Weinstein.?® This is in accordance with the results of a
recent experiment performed by Phipps.54
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