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We review why theThomas rotationis a crucial facet of special relativity, that is just as
fundamental, and just as “unintuitive” and “paradoxical,” as such traditional effects as length
contraction, time dilation, and the ambiguity of simultaneity. We show how this phenomenon can
be quite naturally introduced and investigated in the context of a typical introductory course on
special relativity, in a way that is appropriate for, and completely accessible to, undergraduate
students. We also demonstrate, in a more advanced section aimed at the graduate student studying
the Dirac equation and relativistic quantum field theory, that careful consideration of the Thomas
rotation will become vital as modern experiments in particle physics continue to move from
unpolarized to polarized cross sections. 2@b1 American Association of Physics Teachers.
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[. INTRODUCTION were quite surprised.” At the heart of the Thomas pre-
cession lies the fact that a Lorentz transformation with

Recently, a number of the current authors have reviewed velocity v, followed by a second one with velocity,
how aspects of relativistic quantum mechanics can be appre- i g different direction does not lead to the same inertial
ciated from the point of view of relativisticlassical me- frame as one single Lorentz transformation with the

chanics._ In Ref. 1, the Foldy—Wouth_uysen transformation velocity v,+V,. (It took Pauli a few weeks before he
was reviewed, where it was emphasized that many of the grasped Thomas’s poijt.

operators of the Dirac equation become, after transformation,
completely recognizable from the point of view of classicallt seems remarkable—but, according to the above account,
physics. In Ref. 2, the Feynman—Stueckelberg formulatioindeniable—that neither Einstein nor Pauli came across the
of antiparticles was reviewed, entirely within the domain of Thomas rotation before 1925. However, the effect we now
classical mechanics, and it was emphasized that one camll the Thomas rotation was known before Thomas’s paper.
make good sense of antiparticle motion without needing tol'he early history has been traced by Unbar.
resort to quantum mechanical arguments. Now, most textbooks on special relativity follow the ex-
In extending these ideas to the domain of quantum fieldraordinarily clear exposition of the theory given by Einstein
theory, we have found that there is a third aspect of classicah his seminal paper. Unfortunately, this has meant that little
relativistic mechanics that is of crucial theoretical and prac-or no attention has usually been given to the “Thomas ef-
tical importance, but which rates scarcely a mention in mosfect,” which has generally been relegated to a brief mention
textbooks on special relativity: thEhomas rotation(In the  in textbooks on quantum mechanics and atomic structure. As
case of a continuous evolution of infinitesimal rotations, thisfar as we are aware, the best treatment of the Thamas
effect is usually referred to as the Thoma®cessionbut  cessionin a textbook still in print is arguably that contained
here we are mainly concerned with the more general case @ Jackson’s book on classical electrodynaniids.similar
a single finite rotation) Historically, the relative obscurity of ~ discussion is given in Goldstefrwho emphasizes the com-
this effect can, perhaps, be traced to the fact that the speciglexity of the general calculations. This complexity is inhib-
theory of relativity was two decades old before Thomasiting to both the writers and the readers of the textbooks.
made his discovery. Pais’s summary of ev&igsnstructive: That the Thomas rotation, or precession, still puzzles stu-
Twenty years latefafter his seminal 1905 paper on  dents and their teachers can be discerned from the pages of
special relativity, Einstein heard something about the  this journal. In Question #57, MacKeowasks *... is said to
Lorentz group that greatly surprised him. It happened introduce a velocity independent constant factor. Can any
while he was in Leiden. In October 1925 George Eu- simple, convincing, argument be given for this?” Urftand
gene Uhlenbeck and Samuel Goudsmit had discovered Goedeck® have countered the complexity by introducing
the spin of the electron and thereby explained the oc- new formalisms, a “weakly associative-commutative
currence of the alkali doublets, but for a brief period it  groupoid” by Ungar, and the tetrad formalism by Goedecke.
appeared that the magnitude of the doublet splitting did While they offer useful insights, and emphasize the Thomas
not come out correctly. Then Llewellyn Thomas sup- rotation, they are not well suited to the introductory course.
plied the missing factor, 2, now known as the Thomas Muller® (in the Appendix and Philpott® (to introduce the
factor. Uhlenbeck told me that he did not understand a main point of his papérive derivations of the Thomas pre-
word of Thomas’s work when it first came out. ‘l re-  cession which are related to the present one. But we believe
member that, when | first heard about it, it seemed un- that the straightforward treatment below, and its emphasis on
believable that a relativistic effect could give a factor of ~ Thomasrotation, offers conceptual and pedagogical advan-
2 instead of something of ordefc ... . Even the cog- tages which make it suitable to an introductory course.
noscenti of the relativity theoryEinstein included! In this paper, we show how an instructive, elementary, and

837 Am. J. Phys69 (8), August 2001 http://ojps.aip.org/ajp/ © 2001 American Association of Physics Teachers 837



intriguing discussion of the Thomas rotation can be “grafted v y —yw 0 0 ¢

on” to any standard introductory course on special relativity.

As a prerequisite we assume nothing more than the standard | X' | _[ ~Y 7 0 0} x 3)
expression for a Lorentz boost along thaxis of a system of y' 0 0 1 0o|\Yy

coordinates. For simplicity, we also make use of the energy— z' 0 o o 1 \z

momentum four-vector, as well as matrix multiplication, al-
though such references could be deleted if thought necessary;q ga|| denote the matrix that effects this boost by velocity
albeit at the expense of rendering the algebra a little Iesg in the x direction asB,(v):

transparent(The widespread availability of calculators and xes

computer programs capable of matrix multiplication means

that the complexities of the following calculations can be Y v 00
drasticallyminimizedby the use of matrix notation—leaving —yv y 00
more time for the contemplation of the physical resiilts. Bu(v)= 0 0 1 ol 4)
These preliminaries are covered in Sec. Il.

In Sec. I, we show how these simple building blocks can 0 0 01

be put together to create a sequence of intriguing and com- L o .
pletely counterintuitive “paradoxes.” This material could be Clearly, a boost by velocity in they direction or in thez
presented almost verbatim in any introductory course on spélirection would be effected by

cial relativity.

Section IV provides full solutions and explanations of y 0 —yw O
these elementary Thomas rotation “paradoxes,” and general 1 0 0
expressions are derived for the Thomas rotation in arbitrary By(v)= '
cases. v 0 v O

In Sec. V, we provide a further “paradox” in the context 0 0 0 1
of the polarization properties of the scattering of a Dirac (5)
particle. This example is more advanced, in that it presumes y 0 0 —wy
familiarity with at least an introductory level of quantum 0 1 0 0
field theory; and thus it would not usually be appropriate for g (v)=
an introductory course on special relativity. On the other z 0 0 1 0
hand, this example is arguably much meractically impor- —y 0 0 y

tant than the others, in that it shows that real-life calculations
of scattering cross sections can be completely erroneous ifhe energy-momentum four-vector
due regard is not taken of this subtle facet of relativistic

kine&natics. Section VI provides a full solution of this “para- E

dol):(inally, Sec. VIl summarizes our conclusions. pt= S; , (6)
p?

II. PRELIMINARIES will play a key role in our analysis. A particle of mass at

rest in a system of coordinates, hassm and p=0. If we
In this section we review those features of special relativhoost our system of coordinates by the velocity in the x
ity that we would assume to have been taught in an introducdirection (so that, relative to this new system of coordinates,

tory course before the discussion of Thomas rotation, to sehe particle has velocity-v in the x direction, then the
the scene and to establish our notation. application ofB,(—v) yields
X

Throughout this paper, we shall use a “naturalized” set of

units, in whichc=1. To convert any expression to S| units, y yw 0 0
. 2 E m my
one need simply repladeby ct,v by v/c,E by E/c4, andp ; 0 0
by p/c. (Boldface denotes a three-vecidn Secs. V and VI S I A 0 _[ my
we shall also use units in whidh=1. pY 0O 0 1 0|0 0
The Lorentz transformation from a fran&with coordi- p* o 0 0 1 0 0

nates(t,x,y,2, to a frameS’, moving with respect t&with a
velocity v along thex axis, in which the coordinates are This implies that thex velocity of the particle can be “ex-
(t',x",y'",z"), is tracted” from the componentg* of its four-momentum by
computing the ratig*/E. Since thex direction is arbitrary,
t'=y(t—vx), x'=y(x—vt), y'=y, z'=z, (1) the immediate generalization to a particle moving with ve-
locity v in any direction is

where
V= E (7)
1 E
y= . (2 . " .
1-v To obtain the law for the composition of two velocities
v, and v, in the same direction, we may simply apply
This transformation, written in matrix notation, is B,(—v,) followed by B,(—v,) to a particle at rest:
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m My, y2(1+v,05) Having thus verified the action of our “thrusters” in the
0 My, 7201+ 05) andy directions, by means of thesgs _four boosts, let us now
By(—v,)By(—v1) o= 0 . (8  try another test maneuver, by mixing the order of these
0 0 boosts. Namely, Iet. us appB,(vo), follgwed by By(vo),
thenB,(—v,), and finallyB,(—v,). Again, we expect that
(In this and subsequent equations we shall take it to be urthe star will be at rest, relative to tlinterprise at the end of
derstood that the four components of the column vector refethe maneuver. However, if we perform the calculations, then
to the components of the four-momenty®n using(7), Eq.  (after some algebjave find

(8) yields
Ul+ (%] m
Ux:1+ ’ (9) B — — O
U1U2 y( UO) Bx( UO) By(UO)Bx(UO) 0
namely, the standard result. It will be noted that the same 0
result would have been obtained if we had applied 5
B,(—v,) first andB,(—v,) second: boosts in the same di- m+m(yo+1)(yo—1)
rection commute. B my2(yo—1)vg a1
| = mye(vo— (= ¥+ vo+r Do |
0

[ll. SOME ELEMENTARY THOMAS ROTATION

“PARADOXES” Something has gone wrong! Instead of ending up with the

Let us now apply the results obtained in Sec. Il to someStar at rest, we find that it is now “drifting.” What has hap-

?
hypothetical maneuvers of théSS Enterpriseinder impulse pened? . .
pz&er. In the following, the system gf coordinateg being One can repeat and check the algebraic calculations above

considered is that of an observer on board the bridge of th8S Many times and in as many ways as one wishes; but the
Enterprise result (11) is not a computational error. We can check its

Let us assume that tHenterprisebegins at rest relative to self-consistency by noting that, for any four-momentum of a

some particular star. We ignore gravitational effects, so tha\gart'dfa of massn, the identitypp,=E*—p?=m? should

if the Enterprisewere to not fire any thrusters, then it would P€ Satisfied—as itindeed is for the components listed n

remain at rest relative to the star. Moreovgr, if one simply .changes the order of the final two
Let us now apply a boost to thHenterpriseby some ve- P0OSts in(11), then one finds

locity vg in the x direction, and follow it by a boost by the

velocity —vg, again in thex direction. We expect that the

net effect on the velocity of thEnterprisewould be zero: it _ —

would move in thex direg/tion during Ft)he maneuvéby what Bx(~00)By(~v0)By(v0)By(vo)

distance is of no interest to us hgrbut at the end of the

maneuver it would again be at rest relative to the star. We

can confirm this by considering the effect of applyBgdv) which would be unlikely to be true had we made any trivial

and thenB,(—v,) on, say, the components of the four- rror in computing any of the boost matrices.

o oo 3
oo o3

momentum of the star, as observed from Ewerprise If Let us therefore try to find out where our intuition has led
the star has the mass, then a straightforward calculation Us astray in the calculatiofl1), by breaking it down into
verifies that smaller parts. We already know what happens to the compo-

nents of the four-momentum of a particle, originally at rest,

m m when we subject our system of coordinates to a single Lor-
0 0 entz boost, so let us consider instead the effect of the first
Bx(—v0)Bx(vo)| o | = o |- two boosts in(11), namely,B,(vo) followed by B,(vo). If
0 0 we stop our calculation at this point, we find
and indeed,(—v)By(vo) =1, wherel is the identity ma- m my2
trix. [In performing these calculations, and those that follow, 0 — My
it is useful to replace even powerswof wherever they occur, By(v0)Bx(vo) ol= 9. (12
by means of the identity 0 - mgovo
UZE - —, (10) . L .
Y Now, since we have boosted tEmterprisein the positivex

and positivey directions, we expect that the star will be
moving (relative to theEnterprisg with a negative velocity
in the x andy directions; and this is borne out by the result

which can be derived from the definitiq@).] We can per-
form the same maneuver in tlyedirection: namely,

m m (12). However, we are surprised to find that tkeandy

0 0 velocitiesare not equal despite us boosting thEnterprise
By(—vo)By(wo)| o | =| o | by the same velocity, in each direction! Indeed, making

0 0 use of relation(7) with the component¢l12) of p#, we find

that the components of the three-velocity of the star, relative
andB,(—vo)By(vo)=1, again as expected. to the Enterprise are given by
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Vo m MYoY1
Ux=— ", Uy=—Up. (13 0 — Mven
Yo Yoo
Byw0Bwo)| o | =| —myere
Thus, the secondy) boost has been fully effective—but it 0 0 il

has, in the process, reduced the velocity of the fisboost.
Let us put this unexpected asymmetry to one side, foLet us now adjusv; so that the overall velocity has equal
the moment, and return to our first perplexmg result, name'ycomponents in the andy directions(as was our 0rigina|

the nonzero velocity represented by EGl). We have jntention). We can do this by ensuring that and pY are
found that the application d8,(vo) and thenBy(vo) to the  equal—namely, by insisting that

Enterpriseleads to the star having the velocity components
(13) (relative to theEnterprisg. Let us now consider the Y1U1=Vo-

final two boosts in Eq(11), namely,By(—v,) followed by  After some algebra, one finds that this is satisfied for
By(—vo). Instead of applying them after the first two boosts,

let us instead apply them to thwiginal Enterprise which _ Yovo B V2y5-1 1
was at rest relative to the star. The effect of these two boosts V1~ 2y2-1' 1= Yo (17)
on the components of the four-momentum of the star, in this 0
modified scenario, would be so that
m my2 m my2ys—1
0 MygUg 0 _ —Mygug
By(—v0)B(—v0)| o | =| my2u, | (14 Byw1)Bx(wol| o [ =1 _my,
0 0 0 0
leading to the velocity components _Let us now apply a boost by velocity, in the negativex
direction:
Vo
U=, Uy=Up. (15 m
Yo 0
. ) . By(—v,)B B
Thus, comparing13) and (15), we find that applyingB, (~v2)By(v1)B(vo)| g
(—vo) and thenB,(—uv,) results in the exact opposite ve- 0
locity to that obtained by applyinB,(v,) and thenBy(vo). 5
i _ My2(V2y5— 1~ yovov2)
(We would, of course, expect that thigould be the case 0
but, given the problems we are having, it is essential to en-  _ —mys( yovo—vzx/Zyg—l)
sure that we do not make intuitive assumptions without test- —Myevo

ing them mathematically. 0
We now find that our original result, Eq11), has not
been clarified in the least. For we have shown that our seWe can use this third boost to reduce theomponent of the
guence of four boosts can be broken down into a boost byelocity to zero by choosing
the velocity componentd 3) (let us, for definiteness, refer to

this three-velocity as,,), followed by a boost by the veloc- = Yolo
B _ . .y 2— U1 —F—,
ity components(15) (namely, —v,,). But surely Einstein’s /27(2)—1

very derivation of the Lorentz transformation guarantees us
that a boost by any velocity, followed by a boost by-v,  vyielding
must return us to the original inertial frame? How, then, can

we make any sense of the res(ilt), which seems to imply rg rno70
that Bu(—v1)By(v1)Bx(vo)| o | =| _mym,
B(—Vyy) B(Vyy) # 172 (16 0 0

Let us, again, put this problem to one side, and instead tr¢inally, it is evident that we can apply the fourth boost by the
the following tack: What if we were to perform four boosts, original velocityv, in the negativey direction, resulting in
again in the+x, +y, —x, and—y directions, respectively,

but now adjusting the magnitude of each boost velocity so as m m

to maintain some sort of control over the resultant overall o | O

velocity? Let us again start with a boost by veloaityin the By(—v0)Bx(—v1)By(v1)By(vo) ol~ |l o

positivex direction: 0 0
m myg We finally seem to have found a sequence of four boosts, in
0 —Mygug the +x, +y, —x, and —vy directions, respectively, that re-

Bx(vo) ol~ 0 . turns theEnterpriseto a state of rest relative to the star at the
0 0 end of the maneuver: namely, the sequence of boosts
By(_vO) Bx(_vl)By(v 1) BX(UO) (18)

We now apply a boost by some velocity (not equal ta )
in the positivey direction: together with the relatioi17) betweerv,; andvg.
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Let us now go back in time to our origin&nterprise at  shuttlecraft defines a direction in spagke x direction, in
rest relative to the nearby star. The crew of theterprise  the original inertial framg that was subject to the rotation.
had noted that there was a shuttlecraft, of mags moving We can obtain a clearer view of this rotation if we com-
with velocity v in the positivex direction; in other words, Pute not the components of the four-moment(d), but
the components of its four-momentum, relative to Erger- ~ rather the entire matrix18) that is applicable taarbitrary

prise were four-vectors in the original frame:
Mgys By(_UO)Bx(_Ul) By(Ul)Bx(UO)
MgysU
D= sz)’s s| (19) 1 0 0 0
0 0 V2y3-1 yi-1 0
2 - 2
What happens to the components of the four-momentum of _ Yo Yo _ (22)
the shuttlecraft after the sequence of bod$&? We would yé— 1 \/Zyé— 1
expect that they—like those of the star—would be un- 0 2 2 0
changed. However, if we perform the calculations, we find Yo Yo
that 0 0 0 1
Mgy, The 2X 2 matrix in the middle of this result is an orthogonal
MgYsUs transformation, resulting in a rotation of the axes of xhey
By(—v0)Bx(—v1)By(v1)Byx(vo) 0 plane by an angle
0 2
vo—1
9= —arctan) ———| . (22
MsYs 2’y3— 1

[ 2 2
MsYsUsV270 19'0 . (200  In the nonrelativistic limit, the magnitude af approaches
Msysvs(1=1/%p) v?rad (i.e., v?/c? in conventional units and so is com-
0 pletely negligible for terrestrial application&ven if vg is

boosts(18) has left the velocity of the star unchanged, rela-fotation angle amounts to a mere 0.004 argskcthe ul-

shuttlecraft. this particular sequence of boosts.

But how can this be possible? Defining thedirection of the Thomas rotation, however,
requires some care. Let us consider the above sequence of
boosts from the point of view of an inertial observer, jetti-
soned from theEnterprise before the sequence of boosts

IV. SOLUTIONS TO THE ELEMENTARY commenced, wheemainedat rest relative to the stdand
“PARADOXES” the distant “fixed stars) throughout the procedure. Relative
to this fixed observer, thEnterprise’svelocity rotated in the

Let us now discover the fallacies contained in the “para-direction+x— +y. The velocity of the shuttlecrafas seen

doxes” described above. We shall begin by unraveling oulhy the Enterprisewas rotated in this same direction. This
chain of arguments, starting with the final “paradox,” and means that, relative to the fixed observer, the axes of the
working our way back to the first. By this stage, the reasongnterprisés coordinate system rotated in toppositedirec-

for each “paradox” will be clear. We shall complete this tion to its orbital rotation, as indicated by the minus sign in
section by listing general expressions for the Thomas rotagq. (22). This is a general feature of the Thomas rotation.
tion in arbitrary cases. . Nonrelativistic physics has conditioned us to assume that

We begin with the resul20) for the final four-momentum  Cartesian coordinate systems can be defined in space, in such

of the shuttlecraft. We were SUfprlSEd to find that it dlffereda way that all inertial observers “agree” on the directions of
from the four-momentuni19) of the shuttlecraft prior to the the axes. The Thomas rotation demonstrates that this as-
sequence of boosts. However, on closer inspection, we fingumption requires an operational definition, as Einstein
that the result is not total chaos. In particular, #rergyof  showed was necessary to clarify our understanding of the
the shuttlecraft has not ChanQEd. ThiS, in turn, |mp||eS that It%hysms of re|ativity_ For examp|e1 say that obsenrdede-
speedis also unchanged—in other words, the final velocityfines a set of Cartesian axes. If obserBes at rest relative
has the same magnitude as the original velocity,ibbas  to A thenB can align her axes to “agree” with those Af If
been rotated in spaceWe can confirm this by using observerA remains at rest, but observiis boosted to some
Pythagoras’s theorem to find the resultant of the componentgnite velocity relative toA, by one boost or by a sequence of
vy andv, in (20); and we indeed find that its magnitude is booststhen the resultant orientation of 8axes depends on
simply vg, the original speed of the shuttlecraft. the particular sequence of boosts usddsuch boosts are at

This rotation of the spatial axes is what we know as theall times in the same directiofrelative toA, say, then it is

Thomas rotationIt almost always occurs when we apply a meaningful to say thaB’s axes are still aligned witi&'s, in
sequence of noncollinear boosts that returns us to an inertighe sense that if we apply any sequence of boosBsttat is
frame that is at rest relative to the original frame. This rota-at all times collinear with this direction, that returBgo rest
tion had no net effect on the four-momentum of the starwith respect toA, then their axes will be found to still point
because the star was at rest—the “spatial” components of itth the same directions. On the other han® if, at any two
four-momentum vanished; in contrast, the motion of thetimes, subject to boosts idifferent directions, then a se-
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guence of boosts bringing back to rest relative té will, in we have no choice but to observe this object moving with
general, lead tdB finding her axes rotated relative &8s  velocity —v, in the y direction. This same argument must
(unless the sequence of boosts “backtracked” precisely thapply to any object in the original frame which had no ve-
original sequencge locity in they direction.

To discuss the general case we need the expression for aThe reduction in the velocity by they boost seems coun-
(simple) boost by velocity]v| in the direction ofv. We can terintuitive, but a little thought makes sense of it. We know,
obtain it most simply by noting that our original boost trans-from Einstein’s ingenious arguments, that lengths of rods
formation along thex axis, B,(v) of Eq. (4), is an archetypi- perpendicular to a velocity vector are unchanged by the rela-
cal simple boost. If we rewrit®,(v) in three-covariant no- tive motion. But lengths are nothing more than differences in
tation (i.e., in terms of three-vectors and three-vectorpositions; and positions are themselves the spatial compo-
operations, rather than individual compongntthhen we nents of the four-vectok”. Thus, taking into account the
know from vector analysis that the result will be the boostuniversality of Lorentz covariance, Einstein’s arguments im-
we require forv in an arbitrary direction. It is now straight- ply that, forany four-vector, the spatial components perpen-

forward to verify that dicular to the boost velocity are unchanged by the boost, as
2 can be verified from Eq(23). But the spatial momentum
= yt—p(v-x), X =X—ytv+ (VX)V, (23) components are simply the spatial components of the four-
y+1 vector p#; therefore,p* and p? must be unaltered by &

: : _ . : boost. And, indeed, the result2) shows us that th& mo-
is equivalent to(4) for v=(v,0,0); and thus(23) is the ' ' .
simple boost operatiolB(v) that we are seeking(lt is a mentum of the stawas unchanged by the second boost: it

straightforward calculation to confirm that the component of' emained—myov,. Rather, thenergyof the star increased

x in the direction ofv satisfies the usual Lorentz transforma- (du€ to its newy velocity); and hence, by Eq(7), its x
velocity decreasedTo have an object maintain its momen-

tion: Lo = Lo
tum, but lose velocity, is nonrelativistically counterintuitive;
vex! yveX but one can make sense of it by remembering that all veloci-
v v yut, ties must remain smaller than that of light, and so for a large

enough boost in thg direction, any original velocity in thg
and that the components afnormal to the velocity are  direction must be “quenched’(although not its momen-
unchanged: tum!).

This asymmetry tells us that the noncommutativity of two
noncollinear boosts is more complicated than is widely ap-
since the component afor x’ in the direction ofv does not  preciated: One not only finds a relative Thomas rotation be-
contribute to the cross productVritten out in matrix form, tween the two resulting frames, but furthermée resulting

VXX =VXX,

we have frames are not even moving with the same velodityis is
the source of the result expressed in BEdl). There we con-
Y — YUx Yy R sidered a sequence of four boosts which we naively expected
2,2 2 2 to return us to our initial state of motion. However, the first
Uy Y UxUy Y UxUz . .
—Yux 1+ ) 1 ) two boosts do not combine to give a pure Lorentz boost, but
Y Y Y rather involve a Thomas rotation. This rotation is not com-

B(v)= yZUXUy 721,)2/ 720yvz . pensated by the later boosts—indeed, therefigtaer rota-
— YUy 1+ —~— tion in the same direction. Thus, we should not be surprised

+1 + +1 . L
Y r+l Y ) that the sequence of four boosts gives the counterintuitive
_ Y240, )/ZvyvZ yzvz result of Eq.(11).
YUz y+1 y+1 y+1 This fundamental asymmetry is “hidden” in many intro-

ductory accounts of the addition of noncollinear velocities,
(24 by means of a judicious mixing of aactive transformation

for one velocity(i.e., the object is considered to be boosted,
A sequence of two such boosts, which are in different direcwith we as observers being kept at yasigether with gpas-
tions, is not a simple boost, but is rather a combination of aive transformation for the othefi.e., we as observers are
rotation and a simple boost. If we considgfv,) followed being boosteq rather than two successive passive transfor-
by B(v,), and denote the velocity of the boost implied by themations as used in this paper. This “tric_k” gives the illusion
composite transformation ag,, then the mathematical ex- Of a greater degree of symmetry than is generally the case.

pression of this observation is that (Einstein’s seminal 1905 paper used this “trigk”
All of these various points must be kept in mind if one
B(v2)B(v1) =B(Vi)R(Vy,V2), wishes to analyze Thomas rotations in full generality. Any

. . . . “closed” sequence of finite boosis.e., that returns us to a
whgre R(v1,V2) is a spatial rotation, depending on the ve- frame at resqt relative to the original frajneill, in general,
locities v, andv, . . - result in a Thomas rotation. Any such closed sequence may
Let us now return to the "unexpected asymmetry™ in the be broken down into a succession of closed sequences, each
result(13), namely, the fact that a boost by the veloaiyin  ¢onsisting of three boosts, in the same way that any arbitrary
the x direction, followed by a boost by, in they direction,  polygon (not necessarily planpcan be broken down into a
leads tov,#v, relative to the original frame of reference. “triangular mesh” by the addition of internal edges. Thus,
We can understand the resulf= —uv, by the following ar-  the basic “building block” of a finite Thomas rotation is a
gument: Imagine that, after theboost, there is an object that sequence of three pure boosts: the first two are arbitrary, and
is observed to be at rest. Applying tlgeboost to ourselves, the third must be chosen so as to make the sequence
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“closed.” The first two velocities, then, determine the Tho-
mas rotation for this “building block.” Complicating such
calculations, however, is the fact that the “sumy’, of two
arbitrary velocitiesv; andv, is, in the general case, quite a
complicated function of the first two velocities:
\Y; —;v+ v+y—§(v Vo)V (25
12 Yo (1+VyVs) 1T Y2V2 vyt 1 1°V2)Vao (.

[We can clearly see here the asymmetry between the two

velocitiesv; andv,; it is only if v; andv, are collinear that

produces the usual formu(8) for the relativistic addition of
velocities, as a short calculation shoWwEhe expression for
the Thomas rotation is, in turn, even more complicated. Let
us assume that we have an arbitrary three-vector our
initial frame. After the sequence of pure boo$gv,),
B(v,), andB(—V,,), the three-vector is rotated to

, Y17Y2(VXV2) Xr—Q
:r s
14+ y1y2(1+Vivy)

(263

(25 becomes symmetrical under their interchange, and rewhere

Q (1 Dyt D)

Y2(Y5— 1) (V1T )V + y3(12— 1) (VorT )Vo— 293 y3(V1oVo) (V1T )V,

(26b)

(Again, Q has no particular symmetry under the interchangeour discussion above that the direction of the Thomas rota-

of v; andv,.) It can be verified, after some algebra, that
r'2=r2, j.e., thatr’ is indeed simply a rotation afin three-
space. Ifv, is small (but v, arbitrarily large, then the ex-
pressionQ of Eq. (26b) is of orderv%, and hence is negli-
gible in the context of Eq(269. If we are considering the
continuous Thomagrecessionthen we can set;=v and
V,= 6V,. Then, to quantities of first order, E(R5) yields

V= Vipo— V1= &/2_ (V'é\/z)v.

Thus, if dv, is perpendicular to the velocity, then v

= 06V,; but if dv, is parallel tov, then one must take into
account the fact that the velocity must remain smaller tha
that of light. On the other hand, in all cases we ha¥esv
=VvXV,, so that Eq(269 yields, to first order,

Y

Sr=r —r=m(v><é\/)><r, (27)

tion of the axesis opposite to the rotation af relative to
these axes, we therefore find that we have proved the follow-
ing remarkable theorentor any ultrarelativistic object, the
Thomas rotation is equal and opposite to the orbital rotation
This theorem explains why we obtained a rotation angle of
90° for our sequence of four boosts in the ultrarelativistic
limit. For we can think of anyfinite boost as simply a se-
quence of infinitesimal boosts in the same direction. For our
first (+x) boost, we simply boosted thenterprise’svelocity
to ultrarelativistic speeds. The secondty) boost was de-
signed to bring theEnterprisés velocity around to a 45°
angle between thetx and +y directions; and the third

r(—x) boost to bring it around another 45° to they direc-

tion. The final (~y) boost was antiparallel to this velocity,
and simply brought thdenterpriseback to rest. Thus, the
velocity of the Enterprise relative to a fixed observer, was
rotated by 90° at ultrarelativistic speeds; and hence, by the
above theorem, the Thomas rotation is just 90°, which is

which is the standard expression for the Thomas precessionwhat we found by elementary means above.

[To compare with Jackson’s result following hi§1.117,
note that ourdv is his AB, and that ourvXév is, in his
notation, BXAB=yBXB.]

If we now consider the ultrarelativistic limit of Eq27),

then we find something remarkable. This limit may be takenV. AN ADVANCED “PARADOX": POLARIZATION

to be defined by the relations
V-6v—0, (28

the latter two of which simply reflect the fact that the veloc-
ity is at all times almost the speed of light, atitence that
any changesVv to the velocityv must be perpendicular ta

In this limit, Eq. (27) becomes

ST — (VX 6V) Xr. (29

Consider, now, the expressiawXév)Xv. By a standard
three-vector identity, we have

(VX 8V) XV=V2SV— (V-6V)V,

which, on account of the relation&8), tells us that, in the
ultrarelativistic limit,

SV— (VX SV) Xv. (30
Comparing(29) and(30), we thus find that andv are being

y—0, V2—>:]_7

rotated by the same amount about the same axis. Recalling
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PROPERTIES OF SCATTERING EVENTS

Let us now consider a more advanced situation: the calcu-
lation of a polarized cross section in quantum field theory.
For simplicity, let us consider the scattering of a Dirac elec-
tron by the(idealized fixed Coulomb field of an infinitely
heavy, pointlike nucleus. For definiteness, we shall follow
the notation and conventions employed in the introductory
textbook by Mandl and Shalt.In any frame for which the
scattered electron momentumh has the same magnitude as
the incident momenturp (i.e., for which the electron’s en-
ergy is unchanged by the scattenintpe fully polarized cross
section is given

do me)\? )
m = E |Mrs|
rs
me ? T 2
=|5-] [Us(PHALQ)u(p)I%, (3D)
Costedfaal. 843



wherem s the mass and- e the charge of the electrom, 0 T

is the Feynman amplitude for the procegssp’—p is the o 1
momentum transferA.(q) is the “external” electromag- U(p)=csf _. (p*+ipY) | - (39
netic field(i.e., the Coulomb field of the nucleuis momen- 2 7

tum space, and.=A.v,, wherey, are the Dirac gamma C2p

matrices not to be confused with the facterdefined in Eq.  For our particular caseE=3m, soc;=v2 and c,=1/4m.
(2)]. The indicesr ands(=1,2) label the two possible spin For the incident electron we therefore have

states of the incident and scattered electron, respectively.

Let us first calculate all of the polarized cross sections for 2 0
the following scenario. We choose an inertial frame in which Uy(p)= i 0 Uy(p)= i 2
the nucleus is at rest, so tfat P=2 | wRP=Eo g
-1 -1
o
e = (4 x|’ 0.0.9. and for the scattered electron we have
which under a Fourier transform yields 2\ T o\T
Ze W) 11 0 Tp') 1( 2
_ u = — , u = —
Ag(Q)_(WvOyQO), 1 p ‘/2 -1 2 p ‘/2 -1
-1 1

whereZeis the charge of the nucleus. We then have ) .
Let us now compute the cross-secti@?). The quantity

( do ) :(ZmaZ)zm(p,) o, (p)|? 32 ug(p") ¥°u,(p) is equal to 2 for no spin flip in the direction

dQ’/ [q|* stBY ' (i.e., foru; with uq, or foru, with u,), and is equal tar1
] ] for spin flip in thez direction (i.e., foru; with u,, or foru,

where a=e?/4 is the fine-structure constant. Let us con- with uy). We thus find that

sider the case when the incident electron has velocity com-

ponents do ; a?7? do i) = a?Z?
be?  bs0 oy 42 Q,(no spin flip= TomZ’ —dQ,(spln Ip)_mm .
X 3 y ’ z 3 (36)
and the scattered electron has velocity components , i )
, , To obtain the unpolarized cross section, we average over the
vy=+35 vy=0, v,=+5 initial spin states and sum over the final spin states in the
so that the electron is being scattered by 90° in the standard way. This results in
plane. From Eq(2) we find thaty=3, so that the incident (.
and scattered four-momenta have the components a0’ (unpolarized= Z Z (dQ’)
3m 3m q ” q
—2m 2m _ Yo Loy GO
pl= 0 , p'H= o |- a0 (no spin fI|p)+dQ, (spin flip)
2m 2m 5a%72
and |g/|=4m. Now, the positive-energy spin—momentum ~ 64m*

eigenstates are, in the Dirac—Pauli representation of th

. . . e can compare this result with the standard Mott scattering
Dirac matrices, given by

formulal!
é (1) 99 Mott) (2)® [1— 02 sirR(6/2)]
oy WMot)= — 775 [1—v~SsI ,
ui(p)=c, Cop? . Uy(p)=cCy eo(p—ipY) | ° dQ 4E%p*sint(012)
co(p*+ipY) —Cyp° by noting that, for our cased=90° so#/2=45° and hence
(33) Sir? (012) = 1/2; v?=8/9; andE =3m; which yields precisely
the same result:
where
do 97 vott) = 5a%Z?
E+m 1 ; ———
“=\NTm Erm . bam

We may therefore be confident that we have not made any
whereu; (u,) is the spin-up(spin-dowr) eigenstate relative elementary mistakes in calculating the polarized cross-
to thez direction. The conjugate bispinor eigenstates, in thissections(36).
representation, are consequently Let us now compute these cross sections from the point of
view of a different inertial frame. Specifically, let us view the

T
1 process from an inertial frame which moves along the posi-
Uy(p)=c 0 tive z axis with velocity 2/3 relative to the inertial frame used
! ! —Cop* ' above. ApplyingB,(2/3) to the components ¢f* andp’#,
Co(—p*+ipY) we find
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3m m\5 0o \T
—-2m —-2m 1 1+ \/g
B.(2/3) = , Uy(p')= ————
0 0 2 5 ,
om 0 Va@+y5) |
3m m\5 (37) We now find that the quantityig(p’) y°u,(p) is unity for no
spin flip in the z direction, but vanishes for spin flip. The
2m 2m A .
B,(2/3) o | = 0 , guantityug(p’) y*u,(p), on the other hand, vanishes for no
spin flip, but has the value-2 for spin flip. Inserting these
2m 0 values into expressio(88), we find that
so that, from the point of view of this new frame, the elec- do . 9a%72
tron travels in the negative-direction with energyE qq (no spin flip= =57,
=m\/5 and speed 2/5, and is then reflected elastically to 272 (39)
o

travel in the positivex direction with the same energy and g (spin flip) =
speed. We also need to boost the components of the four- dQ’ P D= 2om?:

Ak
potentialAy : We've struck another disaster! The coefficients 9/320 and

1/20 in(39) look nothing at all like the values 1/16 and 1/64

Ze i
Bl — _ that we found in(36). But we have merely performed the
B2/9Ac(@) \/§|q|2(3’0'0’ 2), samecalculation in two different inertial frames! How on
Earth could the value of the cross section—which can be
so that the equivalent expression (@2) for the polarized directly related to the number of particles that would be ex-
cross section is pected to be measured in an appropriately configured
) experiment—depend on an arbitrary choice of theoretical
do | (2maZ) 130L(p')7°u.(p) viewpoint? For example, if we prepare a beam of incident
dQ’/ o 5|qg|* sSiP)yUAp electrons so that they are completely polarized inzb@ec-

o tion, and filter the scattered electrons so that only those po-
+2Ug(p) Y"ur(p)]?. (38) larized in thez direction are detected, then what would the

W d. i | d ‘ n cross section ber?Z2/16m? or 9¢2Z%/320m?? There cannot
(We would, in general, need to transform the argunteas "\ gitferent answers!

well as the component&Z under a Lorentz transformation.  ope might, at first glance, suspect that some trivial mis-

However, if we defineq“=p’#—p*, then in the original take or oversight has been made. However, the calculations
frame|q|®= —qg*q, because®=0, i.e., the electron energy above can be checked; they do not contain any arithmetical
is conserved. Sincg*q, is a Lorentz scalar, then we find errors. Failing this, one might then suspect that we have not
that|qg|? is invariant in any frame in which the electron en- taken into account the transformation of the solid angle dif-
ergy is conserved—as is the case in the frame we have déerentiald(Q)’ under a Lorentz boost. However, if one checks
fined above. Finally, from Eq.(34) we find that, using the the derivation of the first of the relationg31), then one
boosted momentum valug87), the constants, andc, are  finds that it holds true irany elastic scattering of a single
given by particle from an “external” field—essentially, the other ki-
nematical factors happen to “cancel out” in this special
1+ \/g 1 class of scattering events.
ci= . Cp= , There is, of course, a simple way to confirm or refute any
2 m(1+ \/g) suspicion one might have about the veracity of the results
(39): One need simply combine them to find tinepolarized
so that for the incident electron we have cross section. Surely, any trivial errors made in obtaining the
results (39) would (in all but the most contrived of situa-
1+ \/E tions) render the unpolarized combination similarly errone-
1 0 ous. But we are now flabbergasted to find that

Uy (p) = ———= ,
V2(1+/5) _O 320t 3= 16+ 6a= o4

2 Thus, even though we have obtained two sets of irreconcil-
0 ably contradictory polarized cross sections, we find that their
1 unpolarized combinations agree complet@nd agree with
1+15 the standard Mott formuja

Up(p)= ———=| _ S
/2(1+ \/g) 2 What is going on?

0

and for the scattered electron we have VI. SOLUTION TO THE POLARIZATION

1+ \/g T “PARADOX"
1
U(p)= —— 0 , Let us now use the general discussion of Sec. IV to un-
\ /2(1+ \/g) 0 derstand the polarization “paradox” of the previous section.

-2 The key flaw in the arguments presented above is the de-
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scription “polarized in thez direction.” We have not speci- O+ 0

fied whose z direction is being usethe second calculation 0037 —sin
is simpler, in this regard, because the electron’s final velocity MDD = @
is collinear with its initial velocity(i.e., it is in the same _ 07 O+ rs rs
direction, but has the opposite sensghus, it is consistent sin—- CoS%-

for us to define “thez direction” to be ourz axis, since all

boosts to the electron’s frames of reference are collinear. We

can, say, prepare an electron polarized inzldgection, and /|| cONCLUSIONS
measure only those scattered electrons polarized iz the

rection, without ambiguity. _ We have shown how the Thomas rotation of relativistic
The first calculation, on the other hand, is more subtle. INyechanics can be introduced, and its “paradoxical” nature
using the standard expressid8S) and(35), we are(implic-  giscussed, at quite an introductory level; that resolving such
ily) applying one single Lorentz boost from our frame of «naradoxes” is not overly difficult; and that a general ex-
reference to the initial electron’s frame, and another 5'n9|%ression for arbitrary Thomas rotations can be obtained with-
Lorentz boost from our frame to the scattere.d electron’syyt excessive effort. We have also shown how this general
frame. These two boosts, however, are not collinear; and syt connects up with standard textbook accounts of the
our description of events is different from how teéectron jnfinitesimal Thomas precession. We have endeavored to
would describe mattersBy giving the electron apparently show that the ramifications of such effects are deep, and
human powers, we are of course imagining an observer tra\yndamental, and that they may also be of immediate practi-

eling along with the electronin effect, the electron’s very 5| importance in the analysis and interpretation of relativis-
rest frame isThomas rotatedby the scattering event, relative ¢ polarized scattering experiments.

to us. For example, imagine that the electron state does not | the interests of keeping this discussion at an introduc-
get spin-flipped, as determined by the electron itself. Fromgry jevel, we have refrained from using more advanced the-
our point of view, however, the direction of polarization of gretical concepts to explain or analyze the Thomas rotation
the electron has changed! _ more elegantly or concisely. For example, group-theoretical
The lesson of this example is clear. If one has need t¢nethods are hinted at in the above derivations, but are not
calculate relativistic polarized cross sections explicitly, andmade explicit(See, for example, Ref. 5 for a thorough treat-
if the incident and scattered momenta of the particles inment in these termsBoosts can be viewed as simply “ro-
volved are not absolutely collinedand in most practical tations” between space and time; and since two rotations
experiments they are nothen one must be extremely cau- apoyt different spatial axes do not, in general, commute, then
tious about how one defines the spins or polarizations of thgne would(rightly) presume that two boosts in different di-
particles involved. In particular, kinematical and semiclassiyections do not commute either; this is another path to the
cal arguments must be examined in fine detail, to ensure thatyomas rotation. Alternatively, one may make use of the
the nonrelativistic concept of universality of orientation hasconcept of parallel transport—more familiar in the general
not been inappropriately applied. theory of relativity, but equally applicable to boosts or accel-
Finally, we may use expressior@5) and (26) to re-  erations in flat space—time—to arrive at the Thomas rotation
analyze these polarized cross-section calculatmuentita-  py yet another patl? We believe that all of these more
tively. If we setv, to be the initial electron velocity, namely, apstract views of the Thomas rotation do, in fact, augment,
(—2/3,0,2/3, then it is straightforward to verify that a boost rather than detract from, the elementary nature and beauty of
by v,=(12/13,0,0) results in the correct final electron veloc-the effect as described here.
ity of v,,=(2/3,0,2/3). If one setsto be, say(0, 0, 1, then,
after some calculation, one finds that=(4/5,0,3/5). Thus,
the electron’s rest frame has been Thomas-rotated by a
angle 6r=arctan(4/3)=53° in thez—x plane. If we now list ACKNOWLEDGMENTS
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CONNECTIONS

Most scientists glance at a mathematical formula and see awesome complexity, and ma
the brain that first derived it. Like priests, some then seek to retain the mysteries. The awe
aimed, but nevertheless not quite the correct response. There should be awe reserved
original discoverer, for few have the power to discover new continents, or even islands, of k
edge. There should be delight, not awe, for the reconfirmation that the human brain is s
brilliant instrument that it can make light of darkness. But most important of all, there shou
realization that a connection and a simplicity have been exposed. The connection is the fo
which bundles several knowns together, and shows that they account for another know
simplicity is the reduction of the concepts that the new relation implies, although this is
interpreted as a complexity.

P. W. Atkins, “The Limitless Power of Science,” iNature’s Imagination—The Frontiers of Scientific Visi@dited by
John Cornwell(Oxford University Press, New York, 1985
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