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We review why theThomas rotationis a crucial facet of special relativity, that is just as
fundamental, and just as ‘‘unintuitive’’ and ‘‘paradoxical,’’ as such traditional effects as length
contraction, time dilation, and the ambiguity of simultaneity. We show how this phenomenon can
be quite naturally introduced and investigated in the context of a typical introductory course on
special relativity, in a way that is appropriate for, and completely accessible to, undergraduate
students. We also demonstrate, in a more advanced section aimed at the graduate student studying
the Dirac equation and relativistic quantum field theory, that careful consideration of the Thomas
rotation will become vital as modern experiments in particle physics continue to move from
unpolarized to polarized cross sections. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

Recently, a number of the current authors have review
how aspects of relativistic quantum mechanics can be ap
ciated from the point of view of relativisticclassical me-
chanics. In Ref. 1, the Foldy–Wouthuysen transformat
was reviewed, where it was emphasized that many of
operators of the Dirac equation become, after transformat
completely recognizable from the point of view of classic
physics. In Ref. 2, the Feynman–Stueckelberg formulat
of antiparticles was reviewed, entirely within the domain
classical mechanics, and it was emphasized that one
make good sense of antiparticle motion without needing
resort to quantum mechanical arguments.

In extending these ideas to the domain of quantum fi
theory, we have found that there is a third aspect of class
relativistic mechanics that is of crucial theoretical and pr
tical importance, but which rates scarcely a mention in m
textbooks on special relativity: theThomas rotation. ~In the
case of a continuous evolution of infinitesimal rotations, t
effect is usually referred to as the Thomasprecession; but
here we are mainly concerned with the more general cas
a single,finite rotation.! Historically, the relative obscurity o
this effect can, perhaps, be traced to the fact that the sp
theory of relativity was two decades old before Thom
made his discovery. Pais’s summary of events3 is instructive:

Twenty years later@after his seminal 1905 paper on
special relativity#, Einstein heard something about the
Lorentz group that greatly surprised him. It happened
while he was in Leiden. In October 1925 George Eu-
gene Uhlenbeck and Samuel Goudsmit had discovere
the spin of the electron and thereby explained the oc
currence of the alkali doublets, but for a brief period it
appeared that the magnitude of the doublet splitting did
not come out correctly. Then Llewellyn Thomas sup-
plied the missing factor, 2, now known as the Thomas
factor. Uhlenbeck told me that he did not understand a
word of Thomas’s work when it first came out. ‘I re-
member that, when I first heard about it, it seemed un-
believable that a relativistic effect could give a factor of
2 instead of something of orderv/c . . . . Even the cog-
noscenti of the relativity theory~Einstein included!!
837 Am. J. Phys.69 ~8!, August 2001 http://ojps.aip.org/
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were quite surprised.’ At the heart of the Thomas pre-
cession lies the fact that a Lorentz transformation with
velocity v1 followed by a second one with velocityv2
in a different direction does not lead to the same inertial
frame as one single Lorentz transformation with the
velocity v11v2 . ~It took Pauli a few weeks before he
grasped Thomas’s point.!

It seems remarkable—but, according to the above acco
undeniable—that neither Einstein nor Pauli came across
Thomas rotation before 1925. However, the effect we n
call the Thomas rotation was known before Thomas’s pap
The early history has been traced by Ungar.4

Now, most textbooks on special relativity follow the e
traordinarily clear exposition of the theory given by Einste
in his seminal paper. Unfortunately, this has meant that li
or no attention has usually been given to the ‘‘Thomas
fect,’’ which has generally been relegated to a brief ment
in textbooks on quantum mechanics and atomic structure
far as we are aware, the best treatment of the Thomaspre-
cessionin a textbook still in print is arguably that containe
in Jackson’s book on classical electrodynamics.5 A similar
discussion is given in Goldstein,6 who emphasizes the com
plexity of the general calculations. This complexity is inhi
iting to both the writers and the readers of the textbooks

That the Thomas rotation, or precession, still puzzles s
dents and their teachers can be discerned from the pag
this journal. In Question #57, MacKeown7 asks ‘‘... is said to
introduce a velocity independent constant factor. Can
simple, convincing, argument be given for this?’’ Ungar4 and
Goedecke8 have countered the complexity by introducin
new formalisms, a ‘‘weakly associative-commutativ
groupoid’’ by Ungar, and the tetrad formalism by Goedec
While they offer useful insights, and emphasize the Thom
rotation, they are not well suited to the introductory cour
Muller9 ~in the Appendix! and Philpott10 ~to introduce the
main point of his paper! give derivations of the Thomas pre
cession which are related to the present one. But we bel
that the straightforward treatment below, and its emphasis
Thomasrotation, offers conceptual and pedagogical adva
tages which make it suitable to an introductory course.

In this paper, we show how an instructive, elementary, a
837ajp/ © 2001 American Association of Physics Teachers
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intriguing discussion of the Thomas rotation can be ‘‘graft
on’’ to any standard introductory course on special relativ
As a prerequisite we assume nothing more than the stan
expression for a Lorentz boost along thex axis of a system of
coordinates. For simplicity, we also make use of the energ
momentum four-vector, as well as matrix multiplication, a
though such references could be deleted if thought neces
albeit at the expense of rendering the algebra a little
transparent.~The widespread availability of calculators an
computer programs capable of matrix multiplication mea
that the complexities of the following calculations can
drasticallyminimizedby the use of matrix notation—leavin
more time for the contemplation of the physical result!
These preliminaries are covered in Sec. II.

In Sec. III, we show how these simple building blocks c
be put together to create a sequence of intriguing and c
pletely counterintuitive ‘‘paradoxes.’’ This material could b
presented almost verbatim in any introductory course on s
cial relativity.

Section IV provides full solutions and explanations
these elementary Thomas rotation ‘‘paradoxes,’’ and gen
expressions are derived for the Thomas rotation in arbitr
cases.

In Sec. V, we provide a further ‘‘paradox’’ in the conte
of the polarization properties of the scattering of a Dir
particle. This example is more advanced, in that it presum
familiarity with at least an introductory level of quantu
field theory; and thus it would not usually be appropriate
an introductory course on special relativity. On the oth
hand, this example is arguably much morepractically impor-
tant than the others, in that it shows that real-life calculatio
of scattering cross sections can be completely erroneou
due regard is not taken of this subtle facet of relativis
kinematics. Section VI provides a full solution of this ‘‘para
dox.’’

Finally, Sec. VII summarizes our conclusions.

II. PRELIMINARIES

In this section we review those features of special rela
ity that we would assume to have been taught in an introd
tory course before the discussion of Thomas rotation, to
the scene and to establish our notation.

Throughout this paper, we shall use a ‘‘naturalized’’ set
units, in whichc51. To convert any expression to SI unit
one need simply replacet by ct,v by v/c,E by E/c2, andp
by p/c. ~Boldface denotes a three-vector.! In Secs. V and VI
we shall also use units in which\51.

The Lorentz transformation from a frameS with coordi-
nates~t,x,y,z!, to a frameS8, moving with respect toSwith a
velocity v along thex axis, in which the coordinates ar
(t8,x8,y8,z8), is

t85g~ t2vx!, x85g~x2vt !, y85y, z85z, ~1!

where

g[
1

A12v2
. ~2!

This transformation, written in matrix notation, is
838 Am. J. Phys., Vol. 69, No. 8, August 2001
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S t8
x8
y8
z8

D 5S g 2gv 0 0

2gv g 0 0

0 0 1 0

0 0 0 1

D S t
x
y
z
D . ~3!

We shall denote the matrix that effects this boost by veloc
v in the x direction asBx(v):

Bx~v ![S g 2gv 0 0

2gv g 0 0

0 0 1 0

0 0 0 1

D . ~4!

Clearly, a boost by velocityv in the y direction or in thez
direction would be effected by

By~v ![S g 0 2gv 0

0 1 0 0

2gv 0 g 0

0 0 0 1

D ,

~5!

Bz~v ![S g 0 0 2gv

0 1 0 0

0 0 1 0

2gv 0 0 g

D .

The energy–momentum four-vector,

pm5S E
px

py

pz
D , ~6!

will play a key role in our analysis. A particle of massm, at
rest in a system of coordinates, hasE5m and p50. If we
boost our system of coordinates by the velocity2v in the x
direction~so that, relative to this new system of coordinat
the particle has velocity1v in the x direction!, then the
application ofBx(2v) yields

S E
px

py

pz
D 5S g gv 0 0

gv g 0 0

0 0 1 0

0 0 0 1

D S m
0
0
0
D 5S mg

mgv
0
0
D .

This implies that thex velocity of the particle can be ‘‘ex-
tracted’’ from the componentspm of its four-momentum by
computing the ratiopx/E. Since thex direction is arbitrary,
the immediate generalization to a particle moving with v
locity v in any direction is

v5
p

E
. ~7!

To obtain the law for the composition of two velocitie
v1 and v2 in the same direction, we may simply app
Bx(2v1) followed by Bx(2v2) to a particle at rest:
838Costellaet al.
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Bx~2v2!Bx~2v1!S m
0
0
0
D 5S mg1g2~11v1v2!

mg1g2~v11v2!

0
0

D . ~8!

~In this and subsequent equations we shall take it to be
derstood that the four components of the column vector r
to the components of the four-momentum.! On using~7!, Eq.
~8! yields

vx5
v11v2

11v1v2
, ~9!

namely, the standard result. It will be noted that the sa
result would have been obtained if we had appl
Bx(2v2) first andBx(2v1) second: boosts in the same d
rection commute.

III. SOME ELEMENTARY THOMAS ROTATION
‘‘PARADOXES’’

Let us now apply the results obtained in Sec. II to so
hypothetical maneuvers of theUSS Enterpriseunder impulse
power. In the following, the system of coordinates bei
considered is that of an observer on board the bridge of
Enterprise.

Let us assume that theEnterprisebegins at rest relative to
some particular star. We ignore gravitational effects, so
if the Enterprisewere to not fire any thrusters, then it wou
remain at rest relative to the star.

Let us now apply a boost to theEnterpriseby some ve-
locity v0 in the x direction, and follow it by a boost by the
velocity 2v0 , again in thex direction. We expect that the
net effect on the velocity of theEnterprisewould be zero: it
would move in thex direction during the maneuver~by what
distance is of no interest to us here!, but at the end of the
maneuver it would again be at rest relative to the star.
can confirm this by considering the effect of applyingBx(v0)
and thenBx(2v0) on, say, the components of the fou
momentum of the star, as observed from theEnterprise. If
the star has the massm, then a straightforward calculatio
verifies that

Bx~2v0!Bx~v0!S m
0
0
0
D 5S m

0
0
0
D ,

and indeedBx(2v0)Bx(v0)5I , whereI is the identity ma-
trix. @In performing these calculations, and those that follo
it is useful to replace even powers ofv, wherever they occur
by means of the identity

v2[12
1

g2 , ~10!

which can be derived from the definition~2!.# We can per-
form the same maneuver in they direction: namely,

By~2v0!By~v0!S m
0
0
0
D 5S m

0
0
0
D ,

andBy(2v0)By(v0)5I , again as expected.
839 Am. J. Phys., Vol. 69, No. 8, August 2001
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Having thus verified the action of our ‘‘thrusters’’ in thex
andy directions, by means of these four boosts, let us n
try another test maneuver, by mixing the order of the
boosts. Namely, let us applyBx(v0), followed by By(v0),
thenBx(2v0), and finallyBy(2v0). Again, we expect that
the star will be at rest, relative to theEnterprise, at the end of
the maneuver. However, if we perform the calculations, th
~after some algebra! we find

By~2v0!Bx~2v0!By~v0!Bx~v0!S m
0
0
0
D

5S m1m~g011!~g021!3

mg0
2~g021!v0

2mg0~g021!~2g0
21g011!v0

0
D . ~11!

Something has gone wrong! Instead of ending up with
star at rest, we find that it is now ‘‘drifting.’’ What has hap
pened?

One can repeat and check the algebraic calculations ab
as many times and in as many ways as one wishes; bu
result ~11! is not a computational error. We can check
self-consistency by noting that, for any four-momentum o
particle of massm, the identitypmpm[E22p25m2 should
be satisfied—as it indeed is for the components listed in~11!.
Moreover, if one simply changes the order of the final tw
boosts in~11!, then one finds

Bx~2v0!By~2v0!By~v0!Bx~v0!S m
0
0
0
D 5S m

0
0
0
D ,

which would be unlikely to be true had we made any triv
error in computing any of the boost matrices.

Let us therefore try to find out where our intuition has l
us astray in the calculation~11!, by breaking it down into
smaller parts. We already know what happens to the com
nents of the four-momentum of a particle, originally at re
when we subject our system of coordinates to a single L
entz boost, so let us consider instead the effect of the
two boosts in~11!, namely,Bx(v0) followed by By(v0). If
we stop our calculation at this point, we find

By~v0!Bx~v0!S m
0
0
0
D 5S mg0

2

2mg0v0

2mg0
2v0

0
D . ~12!

Now, since we have boosted theEnterprisein the positive-x
and positive-y directions, we expect that the star will b
moving ~relative to theEnterprise! with a negative velocity
in the x andy directions; and this is borne out by the resu
~12!. However, we are surprised to find that thex and y
velocitiesare not equal, despite us boosting theEnterprise
by the same velocityv0 in each direction! Indeed, making
use of relation~7! with the components~12! of pm, we find
that the components of the three-velocity of the star, rela
to theEnterprise, are given by
839Costellaet al.
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vx52
v0

g0
, vy52v0 . ~13!

Thus, the second~y! boost has been fully effective—but
has, in the process, reduced the velocity of the first~x! boost.

Let us put this unexpected asymmetry to one side,
the moment, and return to our first perplexing result, nam
the nonzero velocity represented by Eq.~11!. We have
found that the application ofBx(v0) and thenBy(v0) to the
Enterpriseleads to the star having the velocity compone
~13! ~relative to theEnterprise!. Let us now consider the
final two boosts in Eq.~11!, namely,Bx(2v0) followed by
By(2v0). Instead of applying them after the first two boos
let us instead apply them to theoriginal Enterprise, which
was at rest relative to the star. The effect of these two bo
on the components of the four-momentum of the star, in
modified scenario, would be

By~2v0!Bx~2v0!S m
0
0
0
D 5S mg0

2

mg0v0

mg0
2v0

0
D , ~14!

leading to the velocity components

vx5
v0

g0
, vy5v0 . ~15!

Thus, comparing~13! and ~15!, we find that applyingBx

(2v0) and thenBy(2v0) results in the exact opposite ve
locity to that obtained by applyingBx(v0) and thenBy(v0).
~We would, of course, expect that thiswould be the case—
but, given the problems we are having, it is essential to
sure that we do not make intuitive assumptions without te
ing them mathematically.!

We now find that our original result, Eq.~11!, has not
been clarified in the least. For we have shown that our
quence of four boosts can be broken down into a boos
the velocity components~13! ~let us, for definiteness, refer t
this three-velocity asvxy!, followed by a boost by the veloc
ity components~15! ~namely,2vxy!. But surely Einstein’s
very derivation of the Lorentz transformation guarantees
that a boost by any velocityv, followed by a boost by2v,
must return us to the original inertial frame? How, then, c
we make any sense of the result~11!, which seems to imply
that

B~2vxy!B~vxy!ÞI? ~16!

Let us, again, put this problem to one side, and instead
the following tack: What if we were to perform four boost
again in the1x, 1y, 2x, and2y directions, respectively
but now adjusting the magnitude of each boost velocity so
to maintain some sort of control over the resultant ove
velocity? Let us again start with a boost by velocityv0 in the
positive-x direction:

Bx~v0!S m
0
0
0
D 5S mg0

2mg0v0

0
0

D .

We now apply a boost by some velocityv1 ~not equal tov0!
in the positive-y direction:
840 Am. J. Phys., Vol. 69, No. 8, August 2001
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By~v1!Bx~v0!S m
0
0
0
D 5S mg0g1

2mg0v0

2mg0g1v1

0
D .

Let us now adjustv1 so that the overall velocity has equ
components in thex and y directions~as was our original
intention!. We can do this by ensuring thatpx and py are
equal—namely, by insisting that

g1v15v0 .

After some algebra, one finds that this is satisfied for

v15
g0v0

A2g0
221

, g15
A2g0

221

g0
, ~17!

so that

By~v1!Bx~v0!S m
0
0
0
D 5S mA2g0

221
2mg0v0

2mg0v0

0
D .

Let us now apply a boost by velocityv2 in the negative-x
direction:

Bx~2v2!By~v1!Bx~v0!S m
0
0
0
D

5S mg2~A2g0
2212g0v0v2!

2mg2~g0v02v2A2g0
221!

2mg0v0

0

D .

We can use this third boost to reduce thex component of the
velocity to zero by choosing

v25v15
g0v0

A2g0
221

,

yielding

Bx~2v1!By~v1!Bx~v0!S m
0
0
0
D 5S mg0

0
2mg0v0

0
D .

Finally, it is evident that we can apply the fourth boost by t
original velocityv0 in the negative-y direction, resulting in

By~2v0!Bx~2v1!By~v1!Bx~v0!S m
0
0
0
D 5S m

0
0
0
D .

We finally seem to have found a sequence of four boosts
the 1x, 1y, 2x, and2y directions, respectively, that re
turns theEnterpriseto a state of rest relative to the star at t
end of the maneuver: namely, the sequence of boosts

By~2v0!Bx~2v1!By~v1!Bx~v0! ~18!

together with the relation~17! betweenv1 andv0 .
840Costellaet al.
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Let us now go back in time to our originalEnterprise, at
rest relative to the nearby star. The crew of theEnterprise
had noted that there was a shuttlecraft, of massms , moving
with velocity vs in the positive-x direction; in other words,
the components of its four-momentum, relative to theEnter-
prise, were

pm5S msgs

msgsvs

0
0

D . ~19!

What happens to the components of the four-momentum
the shuttlecraft after the sequence of boosts~18!? We would
expect that they—like those of the star—would be u
changed. However, if we perform the calculations, we fi
that

By~2v0!Bx~2v1!By~v1!Bx~v0!S msgs

msgsvs

0
0

D
5S msgs

msgsvsA2g0
221/g0

2

msgsvs~121/g0
2!

0

D . ~20!

We can’t seem to take a trick! Even though the sequenc
boosts~18! has left the velocity of the star unchanged, re
tive to the Enterprise, it has changedthe velocity of the
shuttlecraft.

But how can this be possible?

IV. SOLUTIONS TO THE ELEMENTARY
‘‘PARADOXES’’

Let us now discover the fallacies contained in the ‘‘pa
doxes’’ described above. We shall begin by unraveling
chain of arguments, starting with the final ‘‘paradox,’’ an
working our way back to the first. By this stage, the reas
for each ‘‘paradox’’ will be clear. We shall complete th
section by listing general expressions for the Thomas r
tion in arbitrary cases.

We begin with the result~20! for the final four-momentum
of the shuttlecraft. We were surprised to find that it differ
from the four-momentum~19! of the shuttlecraft prior to the
sequence of boosts. However, on closer inspection, we
that the result is not total chaos. In particular, theenergyof
the shuttlecraft has not changed. This, in turn, implies tha
speedis also unchanged—in other words, the final veloc
has the same magnitude as the original velocity, butit has
been rotated in space. We can confirm this by using
Pythagoras’s theorem to find the resultant of the compon
vx andvy in ~20!; and we indeed find that its magnitude
simply vs , the original speed of the shuttlecraft.

This rotation of the spatial axes is what we know as
Thomas rotation. It almost always occurs when we apply
sequence of noncollinear boosts that returns us to an ine
frame that is at rest relative to the original frame. This ro
tion had no net effect on the four-momentum of the st
because the star was at rest—the ‘‘spatial’’ components o
four-momentum vanished; in contrast, the motion of t
841 Am. J. Phys., Vol. 69, No. 8, August 2001
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shuttlecraft defines a direction in space~the x direction, in
the original inertial frame!, that was subject to the rotation

We can obtain a clearer view of this rotation if we com
pute not the components of the four-momentum~20!, but
rather the entire matrix~18! that is applicable toarbitrary
four-vectors in the original frame:

By~2v0!Bx~2v1!By~v1!Bx~v0!

5S 1 0 0 0

0
A2g0

221

g0
2 2

g0
221

g0
2 0

0
g0

221

g0
2

A2g0
221

g0
2 0

0 0 0 1

D . ~21!

The 232 matrix in the middle of this result is an orthogon
transformation, resulting in a rotation of the axes of thex–y
plane by an angle

u52arctanS g0
221

A2g0
221

D . ~22!

In the nonrelativistic limit, the magnitude ofu approaches
v2 rad ~i.e., v2/c2 in conventional units!, and so is com-
pletely negligible for terrestrial applications.~Even if v0 is
set to the Earth’s orbital velocity around the Sun, the Thom
rotation angle amounts to a mere 0.004 arcsec.! In the ul-
trarelativistic limit, on the other hand,u approaches290° for
this particular sequence of boosts.

Defining thedirection of the Thomas rotation, howeve
requires some care. Let us consider the above sequenc
boosts from the point of view of an inertial observer, jet
soned from theEnterprise before the sequence of boos
commenced, whoremainedat rest relative to the star~and
the distant ‘‘fixed stars’’! throughout the procedure. Relativ
to this fixed observer, theEnterprise’svelocity rotated in the
direction1x→1y. The velocity of the shuttlecraft,as seen
by the Enterprise, was rotated in this same direction. Th
means that, relative to the fixed observer, the axes of
Enterprise’s coordinate system rotated in theoppositedirec-
tion to its orbital rotation, as indicated by the minus sign
Eq. ~22!. This is a general feature of the Thomas rotation

Nonrelativistic physics has conditioned us to assume
Cartesian coordinate systems can be defined in space, in
a way that all inertial observers ‘‘agree’’ on the directions
the axes. The Thomas rotation demonstrates that this
sumption requires an operational definition, as Einst
showed was necessary to clarify our understanding of
physics of relativity. For example, say that observerA de-
fines a set of Cartesian axes. If observerB is at rest relative
to A, thenB can align her axes to ‘‘agree’’ with those ofA. If
observerA remains at rest, but observerB is boosted to some
finite velocity relative toA, by one boost or by a sequence
boosts,then the resultant orientation of B’s axes depends on
the particular sequence of boosts used. If such boosts are a
all times in the same direction~relative toA, say!, then it is
meaningful to say thatB’s axes are still aligned withA’s, in
the sense that if we apply any sequence of boosts toB that is
at all times collinear with this direction, that returnsB to rest
with respect toA, then their axes will be found to still poin
in the same directions. On the other hand, ifB is, at any two
times, subject to boosts indifferent directions, then a se
841Costellaet al.
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quence of boosts bringingB back to rest relative toA will, in
general, lead toB finding her axes rotated relative toA’s
~unless the sequence of boosts ‘‘backtracked’’ precisely
original sequence!.

To discuss the general case we need the expression
~simple! boost by velocityuvu in the direction ofv. We can
obtain it most simply by noting that our original boost tran
formation along thex axis,Bx(v) of Eq. ~4!, is an archetypi-
cal simple boost. If we rewriteBx(v) in three-covariant no-
tation ~i.e., in terms of three-vectors and three-vec
operations, rather than individual components!, then we
know from vector analysis that the result will be the boo
we require forv in an arbitrary direction. It is now straight
forward to verify that5

t85gt2g~v"x!, x85x2gtv1
g2

g11
~v"x!v, ~23!

is equivalent to~4! for v5(v,0,0); and thus~23! is the
simple boost operationB(v) that we are seeking.~It is a
straightforward calculation to confirm that the component
x in the direction ofv satisfies the usual Lorentz transform
tion:

v"x8

v
5

gv"x

v
2gvt,

and that the components ofx normal to the velocityv are
unchanged:

vÃx85vÃx,

since the component ofx or x8 in the direction ofv does not
contribute to the cross product.! Written out in matrix form,
we have

B~v!5S g 2gvx 2gvy 2gvz

2gvx 11
g2vx

2

g11

g2vxvy

g11

g2vxvz

g11

2gvy
g2vxvy

g11
11

g2vy
2

g11

g2vyvz

g11

2gvz
g2vxvz

g11

g2vyvz

g11
11

g2vz
2

g11

D .

~24!

A sequence of two such boosts, which are in different dir
tions, is not a simple boost, but is rather a combination o
rotation and a simple boost. If we considerB(v1) followed
by B(v2), and denote the velocity of the boost implied by t
composite transformation asv12, then the mathematical ex
pression of this observation is that

B~v2!B~v1!5B~v12!R~v1 ,v2!,

whereR(v1 ,v2) is a spatial rotation, depending on the v
locities v1 andv2 .

Let us now return to the ‘‘unexpected asymmetry’’ in th
result~13!, namely, the fact that a boost by the velocityv0 in
the x direction, followed by a boost byv0 in the y direction,
leads tovxÞvy relative to the original frame of reference
We can understand the resultvy52v0 by the following ar-
gument: Imagine that, after thex boost, there is an object tha
is observed to be at rest. Applying they boost to ourselves
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we have no choice but to observe this object moving w
velocity 2v0 in the y direction. This same argument mu
apply to any object in the original frame which had no v
locity in the y direction.

The reduction in thex velocity by they boost seems coun
terintuitive, but a little thought makes sense of it. We kno
from Einstein’s ingenious arguments, that lengths of ro
perpendicular to a velocity vector are unchanged by the r
tive motion. But lengths are nothing more than differences
positions; and positions are themselves the spatial com
nents of the four-vectorxm. Thus, taking into account the
universality of Lorentz covariance, Einstein’s arguments i
ply that, forany four-vector, the spatial components perpe
dicular to the boost velocity are unchanged by the boost
can be verified from Eq.~23!. But the spatial momentum
components are simply the spatial components of the fo
vector pm; therefore,px and pz must be unaltered by ay
boost. And, indeed, the result~12! shows us that thex mo-
mentum of the starwas unchanged by the second boost:
remained2mg0v0 . Rather, theenergyof the star increased
~due to its newy velocity!; and hence, by Eq.~7!, its x
velocity decreased. To have an object maintain its momen
tum, but lose velocity, is nonrelativistically counterintuitiv
but one can make sense of it by remembering that all vel
ties must remain smaller than that of light, and so for a la
enough boost in they direction, any original velocity in thex
direction must be ‘‘quenched’’~although not its momen-
tum!!.

This asymmetry tells us that the noncommutativity of tw
noncollinear boosts is more complicated than is widely
preciated: One not only finds a relative Thomas rotation
tween the two resulting frames, but furthermorethe resulting
frames are not even moving with the same velocity. This is
the source of the result expressed in Eq.~11!. There we con-
sidered a sequence of four boosts which we naively expe
to return us to our initial state of motion. However, the fir
two boosts do not combine to give a pure Lorentz boost,
rather involve a Thomas rotation. This rotation is not co
pensated by the later boosts—indeed, there is afurther rota-
tion in the same direction. Thus, we should not be surpri
that the sequence of four boosts gives the counterintui
result of Eq.~11!.

This fundamental asymmetry is ‘‘hidden’’ in many intro
ductory accounts of the addition of noncollinear velocitie
by means of a judicious mixing of anactive transformation
for one velocity~i.e., the object is considered to be booste
with we as observers being kept at rest! together with apas-
sive transformation for the other~i.e., we as observers ar
being boosted!, rather than two successive passive transf
mations as used in this paper. This ‘‘trick’’ gives the illusio
of a greater degree of symmetry than is generally the c
~Einstein’s seminal 1905 paper used this ‘‘trick’’!.

All of these various points must be kept in mind if on
wishes to analyze Thomas rotations in full generality. A
‘‘closed’’ sequence of finite boosts~i.e., that returns us to a
frame at rest relative to the original frame! will, in general,
result in a Thomas rotation. Any such closed sequence m
be broken down into a succession of closed sequences,
consisting of three boosts, in the same way that any arbit
polygon ~not necessarily planar! can be broken down into a
‘‘triangular mesh’’ by the addition of internal edges. Thu
the basic ‘‘building block’’ of a finite Thomas rotation is
sequence of three pure boosts: the first two are arbitrary,
the third must be chosen so as to make the seque
842Costellaet al.
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‘‘closed.’’ The first two velocities, then, determine the Th
mas rotation for this ‘‘building block.’’ Complicating such
calculations, however, is the fact that the ‘‘sum’’v12 of two
arbitrary velocitiesv1 andv2 is, in the general case, quite
complicated function of the first two velocities:

v125
1

g2~11v1"v2! H v11g2v21
g2

2

g211
~v1"v2!v2J . ~25!

@We can clearly see here the asymmetry between the
velocitiesv1 andv2 ; it is only if v1 andv2 are collinear that
~25! becomes symmetrical under their interchange, and
g
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produces the usual formula~9! for the relativistic addition of
velocities, as a short calculation shows.# The expression for
the Thomas rotation is, in turn, even more complicated.
us assume that we have an arbitrary three-vectorr in our
initial frame. After the sequence of pure boostsB(v1),
B(v2), andB(2v12), the three-vectorr is rotated to

r 85r1
g1g2~vÃv2!Ãr2Q

11g1g2~11v1"v2!
, ~26a!

where
Q[
g1

2~g2
221!~v1"r !v11g2

2~g1
221!~v2"r !v222g1

2g2
2~v1"v2!~v1"r !v2

~g111!~g211!
. ~26b!
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~Again, Q has no particular symmetry under the interchan
of v1 and v2 .! It can be verified, after some algebra, th
r 825r2, i.e., thatr 8 is indeed simply a rotation ofr in three-
space. Ifv2 is small ~but v1 arbitrarily large!, then the ex-
pressionQ of Eq. ~26b! is of orderv2

2, and hence is negli-
gible in the context of Eq.~26a!. If we are considering the
continuous Thomasprecession, then we can setv15v and
v25dv2 . Then, to quantities of first order, Eq.~25! yields

dv[v122v15dv22~v"dv2!v.

Thus, if dv2 is perpendicular to the velocityv, then dv
5dv2 ; but if dv2 is parallel tov, then one must take into
account the fact that the velocity must remain smaller th
that of light. On the other hand, in all cases we havevÃdv
5vÃdv2 , so that Eq.~26a! yields, to first order,

dr[r 82r5
g

g11
~vÃdv!Ãr , ~27!

which is the standard expression for the Thomas precess5

@To compare with Jackson’s result following his~11.117!,
note that ourdv is his Db, and that ourvÃdv is, in his
notation,bÃDb5gbÃdb.#

If we now consider the ultrarelativistic limit of Eq.~27!,
then we find something remarkable. This limit may be tak
to be defined by the relations

g→`, v2→1, v"dv→0, ~28!

the latter two of which simply reflect the fact that the velo
ity is at all times almost the speed of light, and~hence! that
any changesdv to the velocityv must be perpendicular tov.
In this limit, Eq. ~27! becomes

dr→~vÃdv!Ãr . ~29!

Consider, now, the expression~vÃdv!Ãv. By a standard
three-vector identity, we have

~vÃdv!Ãv[v2dv2~v"dv!v,

which, on account of the relations~28!, tells us that, in the
ultrarelativistic limit,

dv→~vÃdv!Ãv. ~30!

Comparing~29! and~30!, we thus find thatr andv are being
rotated by the same amount about the same axis. Reca
e
t

n

n.

n

ng

our discussion above that the direction of the Thomas ro
tion of the axes is opposite to the rotation ofr relative to
these axes, we therefore find that we have proved the foll
ing remarkable theorem:For any ultrarelativistic object, the
Thomas rotation is equal and opposite to the orbital rotatio.

This theorem explains why we obtained a rotation angle
90° for our sequence of four boosts in the ultrarelativis
limit. For we can think of anyfinite boost as simply a se
quence of infinitesimal boosts in the same direction. For
first (1x) boost, we simply boosted theEnterprise’svelocity
to ultrarelativistic speeds. The second (1y) boost was de-
signed to bring theEnterprise’s velocity around to a 45°
angle between the1x and 1y directions; and the third
(2x) boost to bring it around another 45° to the1y direc-
tion. The final (2y) boost was antiparallel to this velocity
and simply brought theEnterpriseback to rest. Thus, the
velocity of theEnterprise, relative to a fixed observer, wa
rotated by 90° at ultrarelativistic speeds; and hence, by
above theorem, the Thomas rotation is just 90°, which
what we found by elementary means above.

V. AN ADVANCED ‘‘PARADOX’’: POLARIZATION
PROPERTIES OF SCATTERING EVENTS

Let us now consider a more advanced situation: the ca
lation of a polarized cross section in quantum field theo
For simplicity, let us consider the scattering of a Dirac ele
tron by the~idealized! fixed Coulomb field of an infinitely
heavy, pointlike nucleus. For definiteness, we shall follo
the notation and conventions employed in the introduct
textbook by Mandl and Shaw.11 In any frame for which the
scattered electron momentump8 has the same magnitude a
the incident momentump ~i.e., for which the electron’s en
ergy is unchanged by the scattering!, the fully polarized cross
section is given by11

S ds

dV8D
rs

5S me

2p D 2

uMrsu2

5S me

2p D 2

uūs~p8!A” e~q!ur~p!u2, ~31!
843Costellaet al.
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wherem is the mass and2e the charge of the electron,Mrs
is the Feynman amplitude for the process,q[p82p is the
momentum transfer,Ae(q) is the ‘‘external’’ electromag-
netic field~i.e., the Coulomb field of the nucleus! in momen-
tum space, andA” e[Ae

mgm , wheregm are the Dirac gamma
matrices@not to be confused with the factorg defined in Eq.
~2!#. The indicesr ands(51,2) label the two possible spi
states of the incident and scattered electron, respectively

Let us first calculate all of the polarized cross sections
the following scenario. We choose an inertial frame in wh
the nucleus is at rest, so that11

Ae
m~x!5S Ze

4puxu
,0,0,0D ,

which under a Fourier transform yields

Ae
m~q!5S Ze

uqu2
,0,0,0D ,

whereZe is the charge of the nucleus. We then have11

S ds

dV8D
rs

5
~2maZ!2

uqu4
uūs~p8!g0ur~p!u2, ~32!

wherea[e2/4p is the fine-structure constant. Let us co
sider the case when the incident electron has velocity c
ponents

ux52 2
3, vy50, vz51 2

3,

and the scattered electron has velocity components

vx51 2
3 vy50, vz51 2

3,

so that the electron is being scattered by 90° in thez–x
plane. From Eq.~2! we find thatg53, so that the inciden
and scattered four-momenta have the components

pm5S 3m
22m

0
2m

D , p8m5S 3m
2m
0

2m
D ,

and uqu54m. Now, the positive-energy spin–momentu
eigenstates are, in the Dirac–Pauli representation of
Dirac matrices, given by11

u1~p!5c1S 1
0

c2pz

c2~px1 ipy!

D , u2~p!5c1S 0
1

c2~px2 ipy!

2c2pz
D ,

~33!

where

c1[AE1m

2m
, c2[

1

E1m
, ~34!

whereu1(u2) is the spin-up~spin-down! eigenstate relative
to thez direction. The conjugate bispinor eigenstates, in t
representation, are consequently

ū1~p!5c1S 1
0

2c2pz

c2~2px1 ipy!

D T

,
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ū2~p!5c1S 0
1

2c2~px1 ipy!

c2pz
D T

. ~35!

For our particular case,E53m, so c15& and c251/4m.
For the incident electron we therefore have

u1~p!5
1

& S 2
0
1

21
D , u2~p!5

1

& S 0
2

21
21

D ,

and for the scattered electron we have

ū1~p8!5
1

& S 2
0

21
21

D T

, ū2~p8!5
1

& S 0
2

21
1
D T

.

Let us now compute the cross-section~32!. The quantity
ūs(p8)g0ur(p) is equal to 2 for no spin flip in thez direction
~i.e., for ū1 with u1 , or for ū2 with u2!, and is equal to61
for spin flip in thez direction~i.e., for ū1 with u2 , or for ū2

with u1!. We thus find that

ds

dV8
~no spin flip!5

a2Z2

16m2 ,
ds

dV8
~spin flip!5

a2Z2

64m2 .

~36!

To obtain the unpolarized cross section, we average over
initial spin states and sum over the final spin states in
standard way. This results in

ds

dV8
~unpolarized![

1

2 (
r 51

2

(
s51

2 S ds

dV8D
rs

5
ds

dV8
~no spin flip!1

ds

dV8
~spin flip!

5
5a2Z2

64m2 .

We can compare this result with the standard Mott scatte
formula,11

ds

dV8
~Mott!5

~aZ!2

4E2v4 sin4~u/2!
@12v2 sin2~u/2!#,

by noting that, for our case,u590° sou/2545° and hence
sin2 (u/2)51/2; v258/9; andE53m; which yields precisely
the same result:

ds

dV8
~Mott!5

5a2Z2

64m2 .

We may therefore be confident that we have not made
elementary mistakes in calculating the polarized cro
sections~36!.

Let us now compute these cross sections from the poin
view of a different inertial frame. Specifically, let us view th
process from an inertial frame which moves along the po
tive z axis with velocity 2/3 relative to the inertial frame use
above. ApplyingBz(2/3) to the components ofpm andp8m,
we find
844Costellaet al.
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Bz~2/3!S 3m
22m

0
2m

D 5S mA5
22m

0
0

D ,

~37!

Bz~2/3!S 3m
2m
0

2m
D 5S mA5

2m
0
0
D ,

so that, from the point of view of this new frame, the ele
tron travels in the negative-x direction with energyE
5mA5 and speed 2/A5, and is then reflected elastically t
travel in the positive-x direction with the same energy an
speed. We also need to boost the components of the f
potentialAe

m :

Bz~2/3!Ae
m~q!5

Ze

A5uqu2
~3,0,0,22!,

so that the equivalent expression to~32! for the polarized
cross section is

S ds

dV8D
rs

5
~2maZ!2

5uqu4
u3ūs~p8!g0ur~p!

12ūs~p8!gzur~p!u2. ~38!

~We would, in general, need to transform the argumentq as
well as the componentsAe

m under a Lorentz transformation
However, if we defineqm[p8m2pm, then in the original
frame uqu252qmqm becauseq050, i.e., the electron energ
is conserved. Sinceqmqm is a Lorentz scalar, then we fin
that uqu2 is invariant in any frame in which the electron e
ergy is conserved—as is the case in the frame we have
fined above.! Finally, from Eq.~34! we find that, using the
boosted momentum values~37!, the constantsc1 andc2 are
given by

c15A11A5

2
, c25

1

m~11A5!
,

so that for the incident electron we have

u1~p!5
1

A2~11A5!
S 11A5

0
0

22

D ,

u2~p!5
1

A2~11A5!
S 0

11A5
22
0

D ,

and for the scattered electron we have

ū1~p8!5
1

A2~11A5!
S 11A5

0
0

22

D T

,
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u2~p8!5
1

A2~11A5!
S 0

11A5
22
0

D T

,

We now find that the quantityūs(p8)g0ur(p) is unity for no
spin flip in the z direction, but vanishes for spin flip. Th
quantity ūs(p8)gzur(p), on the other hand, vanishes for n
spin flip, but has the value62 for spin flip. Inserting these
values into expression~38!, we find that

ds

dV8
~no spin flip!5

9a2Z2

320m2 ,

~39!ds

dV8
~spin flip!5

a2Z2

20m2 .

We’ve struck another disaster! The coefficients 9/320 a
1/20 in ~39! look nothing at all like the values 1/16 and 1/6
that we found in~36!. But we have merely performed th
samecalculation in two different inertial frames! How o
Earth could the value of the cross section—which can
directly related to the number of particles that would be e
pected to be measured in an appropriately configu
experiment—depend on an arbitrary choice of theoret
viewpoint? For example, if we prepare a beam of incide
electrons so that they are completely polarized in thez direc-
tion, and filter the scattered electrons so that only those
larized in thez direction are detected, then what would th
cross section be:a2Z2/16m2 or 9a2Z2/320m2? There cannot
be two different answers!

One might, at first glance, suspect that some trivial m
take or oversight has been made. However, the calculat
above can be checked; they do not contain any arithme
errors. Failing this, one might then suspect that we have
taken into account the transformation of the solid angle d
ferentialdV8 under a Lorentz boost. However, if one chec
the derivation11 of the first of the relations~31!, then one
finds that it holds true inany elastic scattering of a single
particle from an ‘‘external’’ field—essentially, the other k
nematical factors happen to ‘‘cancel out’’ in this spec
class of scattering events.

There is, of course, a simple way to confirm or refute a
suspicion one might have about the veracity of the res
~39!: One need simply combine them to find theunpolarized
cross section. Surely, any trivial errors made in obtaining
results ~39! would ~in all but the most contrived of situa
tions! render the unpolarized combination similarly erron
ous. But we are now flabbergasted to find that

9
3201

1
205

1
161

1
645

5
64.

Thus, even though we have obtained two sets of irrecon
ably contradictory polarized cross sections, we find that th
unpolarized combinations agree completely~and agree with
the standard Mott formula!!

What is going on?

VI. SOLUTION TO THE POLARIZATION
‘‘PARADOX’’

Let us now use the general discussion of Sec. IV to
derstand the polarization ‘‘paradox’’ of the previous sectio
The key flaw in the arguments presented above is the
845Costellaet al.
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scription ‘‘polarized in thez direction.’’ We have not speci
fied whose z direction is being used!The second calculation
is simpler, in this regard, because the electron’s final velo
is collinear with its initial velocity~i.e., it is in the same
direction, but has the opposite sense!. Thus, it is consisten
for us to define ‘‘thez direction’’ to be ourz axis, since all
boosts to the electron’s frames of reference are collinear.
can, say, prepare an electron polarized in thez direction, and
measure only those scattered electrons polarized in thez di-
rection, without ambiguity.

The first calculation, on the other hand, is more subtle
using the standard expressions~33! and~35!, we are~implic-
itly ! applying one single Lorentz boost from our frame
reference to the initial electron’s frame, and another sin
Lorentz boost from our frame to the scattered electro
frame. These two boosts, however, are not collinear; and
our description of events is different from how theelectron
would describe matters.~By giving the electron apparentl
human powers, we are of course imagining an observer t
eling along with the electron.! In effect, the electron’s very
rest frame isThomas rotatedby the scattering event, relativ
to us. For example, imagine that the electron state does
get spin-flipped, as determined by the electron itself. Fr
our point of view, however, the direction of polarization o
the electron has changed!

The lesson of this example is clear. If one has need
calculate relativistic polarized cross sections explicitly, a
if the incident and scattered momenta of the particles
volved are not absolutely collinear~and in most practica
experiments they are not!, then one must be extremely ca
tious about how one defines the spins or polarizations of
particles involved. In particular, kinematical and semiclas
cal arguments must be examined in fine detail, to ensure
the nonrelativistic concept of universality of orientation h
not been inappropriately applied.

Finally, we may use expressions~25! and ~26! to re-
analyze these polarized cross-section calculationsquantita-
tively. If we setv1 to be the initial electron velocity, namely
~22/3,0,2/3!, then it is straightforward to verify that a boo
by v25(12/13,0,0) results in the correct final electron velo
ity of v125(2/3,0,2/3). If one setsr to be, say,~0, 0, 1!, then,
after some calculation, one finds thatr 85(4/5,0,3/5). Thus,
the electron’s rest frame has been Thomas-rotated by
angleuT5arctan(4/3)'53° in thez–x plane. If we now list
the matrix elements corresponding to the polarized Feynm
amplitudesfound in Sec. V~rather than the cross sections!,
then for the first and second frames of reference we fou
respectively,

Mrs
~1!5

2maZ

uqu2 S 2 21

1 2 D , Mrs
~2!5

2maZ

A5uqu2 S 3 24

4 3 D ,

where the rows in these matrices represent thez component
of the initial spin, and the columns thez component of the
final spin. To reconcile these Feynman amplitudes, we n
simply apply the Thomas rotation or its inverse to either
initial or the final spin state in the first frame of referenc
Remembering that spinors transform under rotations by h
angles, and noting that cos(uT /2)52/A5 and sin(uT /2)
51/A5, we finally obtain
846 Am. J. Phys., Vol. 69, No. 8, August 2001
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S cos
uT

2
2sin

uT

2

sin
uT

2
cos

uT

2

D Mrs
~1!5Mrs

~2! .

VII. CONCLUSIONS

We have shown how the Thomas rotation of relativis
mechanics can be introduced, and its ‘‘paradoxical’’ natu
discussed, at quite an introductory level; that resolving s
‘‘paradoxes’’ is not overly difficult; and that a general e
pression for arbitrary Thomas rotations can be obtained w
out excessive effort. We have also shown how this gen
result connects up with standard textbook accounts of
infinitesimal Thomas precession. We have endeavored
show that the ramifications of such effects are deep,
fundamental, and that they may also be of immediate pra
cal importance in the analysis and interpretation of relativ
tic polarized scattering experiments.

In the interests of keeping this discussion at an introd
tory level, we have refrained from using more advanced t
oretical concepts to explain or analyze the Thomas rota
more elegantly or concisely. For example, group-theoret
methods are hinted at in the above derivations, but are
made explicit.~See, for example, Ref. 5 for a thorough trea
ment in these terms.! Boosts can be viewed as simply ‘‘ro
tations’’ between space and time; and since two rotati
about different spatial axes do not, in general, commute, t
one would~rightly! presume that two boosts in different d
rections do not commute either; this is another path to
Thomas rotation. Alternatively, one may make use of
concept of parallel transport—more familiar in the gene
theory of relativity, but equally applicable to boosts or acc
erations in flat space–time—to arrive at the Thomas rota
by yet another path.12 We believe that all of these mor
abstract views of the Thomas rotation do, in fact, augme
rather than detract from, the elementary nature and beau
the effect as described here.
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realization that a connection and a simplicity have been exposed. The connection is the formula,
which bundles several knowns together, and shows that they account for another known. The
simplicity is the reduction of the concepts that the new relation implies, although this is often
interpreted as a complexity.
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