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Abstract. A convention for light velocity as a function of the coordinates fixes the geometry 
of space-time; alternatively, a convention for geometry fixes light velocity. The latter type 
of convention permits the use of flat space-time, but global distances and time are given by 
non-holonomic expressions, which amounts to measuring such distances and times in terms 
of coordinate-dependent units. The relativity of rotation is discussed with the convention of 
flat space-time. Effects examined include the Thomas precession, the Ehrenfest paradox, 
the curvature of light rays relative to rotating universes (isolated systems) but not with 
respect to rotating local systems, the clock paradox for circular motion, the time difference 
measured in the Hafele-Keating experiment, the Sagnac effect (particularly how it disap- 
pears when a local rotating system is expanded to become a rotating universe), and the 
magnetic-type gravitational fields that arise in rotating frames of reference (for the 
convention of flat space-time). The necessity to distinguish between rotation of a local 
system (a disc) and rotation of a perfectly isolated system (a universe) is emphasized. 

1. Introduction 

Adopting the convention of flat space-time, which is always a valid option (Browne 
1976), it becomes necessary to consider not merely the motion of matter with respect to 
some chosen reference system, but also the motion of aether fluid. The latter motion 
will be non-holonomic, implying non-integrable radar distances which have to be 
interpreted in terms of the coordinate-dependent units first considered by Dicke 
(1962). Aspects of the relativity of rotation will be considered within this framework. 

Problems connected with the relativity of rotation still arouse considerable con- 
troversy, as shown by communications following remarks by Atwater (1970). Atwater 
drew attention to two problems. Firstly, would a scale on the circumference of a 
relativistically rotating transparent disc appear contracted relative to a similar scale on 
an underlying stationary disc when a light flash above the discs is used to obtain an 
instantaneous photograph of superimposed markings? Fitzgerald contraction of the 
circumference would imply asymmetry without proportional contraction of the radius 
(the Ehrenfest paradox); contraction of elements of the radius might be attributed to 
their accelerations. 

Secondly, the electromagnetic equations in a rotating frame of reference, when 
obtained from those in an inertial frame by a Galilean transformation of coordinates, 
ought not, in Atwater’s view, to be correct. General covariance permits any transfor- 
mation, but it does not demand that the velocity of light remain constant as happens 
after the Lorentz transformation. A holonomic coordinate transformation does not 
alter the geometry of space-time, which must therefore remain flat. But if the angular 

727 



728 P F Browne 

velocity is corrected by addition of the radius-dependent Thomas precession the 
transformation will be non-holonomic. 

The Thomas precession became a major consideration in the ensuing communica- 
tions (Marsh 1971, Weinstein 1971, Whitmire 1972a, b). Due to the Thomas preces- 
sion angular velocity becomes a function of radius o ( r ) ,  and questions discussed were 
how to reconcile this differential rotation with the elastic properties of specific media 
and whether the differential rotation can be directly measured. The relativistic 
mechanics of a rotating ring were examined by McCrea (1971) on the basis of the 
definition of rigidity given by Hogarth and McCrea (1952). Some interesting remarks 
on the rotation of rigid bodies in relativity theory have been made by Rosen (1947). 

The curvature of light rays relative to rotating frames of reference has been 
considered by Jennison and co-authors (Jennison 1963, Jennison 1964, Davies and 
Jennison 1975, Ashworth and Jennison 1976). One’s first reaction to this topic is 
curvature with respect to what? With the choice of Einstein’s space-time one cur- 
vilinear reference system is as good as another, so that implicitly the curvature is 
measured with respect to a Cartesian reference system in flat space-time. The choice of 
the latter reference system requires validation (Browne 1976). 

A fundamental consideration, to which only Post (1967) seems to have given 
recognition, is the necessity to distinguish between a rotating local system and a rotating 
universe, where a ‘universe’ is defined as the smallest perfectly isolated system 
consistent with Mach’s principle. A transformation of coordinates suffices to describe 
effects for the latter case, but not for the former case which is physically different. In 
other words, whether or not background matter rotates is physically significant. 

For bibliography up to 1966 see Arzelies (1966). 

2. Arbitrariness of geometry and aether motion 

Milne (1935) has emphasized that the only observations open to an observer at some 
world point (‘particle-observer’) are those which can be made with a natural clock and a 
goniometer (for measurement of the directions of outgoing and incoming light signals). 
The observer, in effect, finds himself in the situation of the astronomer. It is an illusion 
to think that rigid scale lengths or constant rate clocks can be transported from world 
point A to world point B, because ultimately the rigidity of the scales or the constancy of 
the clock rates can be determined only by radar-type experiments. 

The profmdity of Milne’s work, and its implications, have not been adequately 
appreciated. Inevitably a description of the natural world is based on an arbitrary 
convention. The convention may be one of two types; either the geometry of space- 
time is chosen arbitrarily, in which case the optical properties of the aether medium are 
determined, or the optical properties of the aether medium are chosen arbitrarily, in 
which case the geometry of space-time is determined. Classical physics is based on a 
convention of the former type, whilst Einstein’s general theory of relativity adopts a 
convention of the latter type. The simplest choice for geometry is the Euclidean 
geometry which obtains on flat space-time. Among the reference systems that are 
possible on flat space-time an inertial system I has special significance. The simplest 
choice for light propagation is to assume that the velocity of light is independent of 
direction and has the constant value c independently of the world point considered. In 
fact this is true only for a special reference system k, and of course I% belongs to a 
space-time curved in a very special manner. 
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Einstein proposed that the laws of physics should be covariant for transformations 
from fi to any other reference system R belonging to the same space-time. This permits 
general holonomic transformations of space and time coordinates, which are of the 
form: 

where a comma denotes partial differentiation with respect to i". 

holonomic transformations of the coordinates of the type 
The arbitrariness of geometry is expressed by extending covariance to non- 

Such a transformation introduces a reference system belonging to a different space- 
time. In particular, x * ~  might be Cartesian coordinates in flat space-time. The price 
paid for such a simplification is that global distances and times are given by non- 
integrable expressions, and must therefore be interpreted in terms of coordinate- 
dependent units for distance and time as originally suggested by Dicke (1962). 

The optical properties of the aether medium may be described either by assigning to 
the aether a refractive index tensor, or else, by giving the aether fluid a velocity field 
which may vary with time. In four dimensions the spatial reference points of a 
curvilinear system of coordinates (i.e. the points x' = constants, where i = 1,2 ,3)  move 
with respect to each other like particles of a fluid. The special significance of the 
reference system R is that the spatial reference points are at rest relative to the aether 
fluid. It is not surprising, therefore, that aether effects disappear from Einstein's theory. 
With respect to any other reference system R belonging to the same space-time the 
aether fluid will have holonomic motion and the velocity of light will no longer be 
constant. However, this is not a new physical situation. With respect to a reference 
system R* belonging to a different space-time, the aether fluid will have non-holonomic 
motion, and thi? will determine the coordinate dependence of the units. 

Not only is R a reference system at rest relative to the aether fluid, but it is a!so a 
reference system such that the gravitational field everywhere vanishes. With respect to 
any reference system other than I particles of matter have fictitious accelerations, and a 
compensating gravitational field is necessary to remove the inertial forces associated 
with the fictitious accelerations. Thus, attached to each non-inertial reference system is 
a compensating gravitational field. The idea behind Einstein's theory of gravitation is 
to achieve a reference system whose compensating gravitational field everywhere 
annuls the permanent gravitational field of the matter distribution. This unique 
reference system is 8; With respect to any other reference system R belonging to the 
same space-time as R there will arise what Moller (1972) calls a 'non-permanent' 
gravitational field. With respect to a reference system R* belonging to a different 
space-time there will arise a permanent gravitational field, and when R* becomes I this 
will be a Newtonian-type field. 

For gravitational field variables one is presented with several choices. One is the 
velocity field of the aether fluid (Browne 1976). Another would be the X*E appropriate 
for transformation from fi to R*; in this case, note that the addition to X*z of X*; has 
no physical significance (since it does not alter the geometry of space-time), and indeed 
might be regarded as a generalization of the gauge transformation. For use of X z  as 
field variables see for example Tupper (1971). 
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For a more detailed account of the above ideas see Browne (1976). They have been 
summarized here only in order to define the framework for discussion of relativistic 
effects associated with rotation. 

3. The principles of Mach and of general covariance 

When general curvilinear coordinates are introduced in four dimensions, the reference 
for motion can be visualized as an arbitrarily moving fluid, and indeed for the special 
system I? this fictitious fluid can be identified with the aether fluid. A consequence is 
that the accelerations of material particles are changed in an apparently arbitrary 
manner depending on the choice of coordinate system. Actually the arbitrary contribu- 
tion to the accelerations is annulled by a compensating gravitational field which is 
associated with each reference system. The source of this compensating field is matter 
of the universe in the large. The necessity to include the compensating field in a 
generally covariant description expresses that such a description is valid only for an 
inertially isolated system. Now according to Mach’s principle nothing less than a 
universe is inertially isolated; a ‘universe’ will be regarded as a perfectly isolated system 
by definition, although it may have a finite radius-the Hubble radius. The distinction 
between global and local principles of relativity has been made by Treder (1970). 
What is clear is that the reconciliation of the principle of general covariance with 
the principle of Mach, of so much concern to Einstein, lies simply in a restriction on the 
system which is capable of covariant description-a restriction which seems not to apply 
for special relativity. 

The principle of general covariance implies that physical situations which can be 
related to each other by a holonomic transformation of coordinates are physically 
indistinguishable. Let us divide our isolated system into a local system together with 
what might be described as ‘background matter’. Consider, then, the following four 
situations: (a)  stationary local system, stationary background matter; ( b )  rotating local 
system, rotating background matter; (c) rotating local system, stationary background 
matter; and ( d )  stationary local system, rotating background matter. Situations (a )  and 
(b )  can be related to each other by transformation to or from a rotating frame of 
reference, and hence they are physically indistiguishable. The same can be said for 
situations (c) or ( d ) .  But (a)  or ( b )  are different physical situations to (c) or ( d ) ,  and 
there are several phenomena by which they can be distinguished. 

Post (1967), for example, enumerates the following three distinctions. 
(i) ‘The Barnett experiment: rotating the magnetizable bar or rotating the frame of 

reference instead of the bar are clearly different operations from a physical point of 
view. Rotation of the bar gives magnetization; rotation of the frame of reference does 
not. 

(ii) The Oppenheimer paradox: rotating a charged spherical condenser or rotating 
the frame of reference instead of the condenser are physically different operations. 
Rotation of the condenser produces an external magnetic fieid; rotation of the frame of 
reference does not. 

(iii) The rotational Fresnel-Fizeau experiment (medium rotating, mirrors station- 
ary) and the Dufour-Prunier experiment (medium stationary, mirrors rotating) are 
physically not equivalent’. 

There is ample evidence, therefore, that experiments performed on some local 
system are influenced by whether or not background matter happens to be rotating 
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relative to one’s frame of reference. An example is the Sagnac effect, which provides a 
direct measure of the angular velocity of the local system relative to the background 
matter. What happens if the Sagnac experiment is done on a rotating universe rather 
than a rotating local system? Obviously there can be no phase change, since it does not 
matter if we transform to an inertial frame. How this happens is discussed in 0 9. 

4. The Thomas precession 

Let observer S ,  using axes X-Y,  view observer S‘ in uniform motion with velocity U 
along the positive X axis, and view also observer S” in uniform motion with velocity U 
along the positive Y axis. Then, if the axes used by S’ and by S are parallel in the view of 
S ,  they cannot be parallel in the view of either S’ or S. Thus, by the relativistic 
transformation of velocity S’ finds for the components of motion of S” the values, -U, 
u(l-u2/c2)’/2, 0, whereas S‘ finds for the components of motion of S’ the values, 
u(1- U ~ / C ~ ) ’ / ~ ,  -U, 0. Thus S‘ concludes that S moves with velocity w in a direction 
making angle 8’ with his X axis, where tan 8’= -(1 - U ~ / C ~ ) ” ~ ( U / U ) ,  whilst S con- 
cludes that s’ moves with velocity -w in a direction making angle 8” with his X” axis, 
where tan e”= -(1 - V ~ / C ~ ) - ’ / ~ ( U / U ) .  Since the direction of the relative velocity 
between S’ and S” is a reference direction it follows that the axes of S and S are no 
longer parallel in the view of S’, and also that the axes of S’ and S are no longer parallel in 
the view of S”. The difference between 8’ and 0’’ will be the relative orientation of the 
axes of S’ and of S”, namely 

With regard to the magnitude of the relative velocity of S’ and S” one finds 

w2=u2+v2-u2u2/c2. (4) 
Let us replace U by the infinitesimal du, so that 

d8 =U-* du[(l - U ~ / C ~ ) ’ / ~ -  13. 

If do is the velocity gained by acceleration a over time interval y dt, then du = 
yu- ’u  x a dt, in which case 

d e  u x a  u X a  y 
U T  = -- = -- (1- y ) = 7  - 

dt U 2  c l + y  

where y = (1 - U 2/c2)-1/2 and wT is the Thomas precession. 
When the motion is circular, we may put U = wr and dv = wzr dt, in which case 

(7) 0 - r  = (1 - y)w = w - 0 0  

where 

Thus, two angular velocities arise, wo and 0. oo is constant, but w is a function of r due 
to the Thomas precession. Note that mor + 00 as r+w, but wr+c as r + 03. 
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The Thomas precession, as is clear from its derivation and more particularly from 
the derivation given by Furry (1955), is part of the composite picture that is built up by 
Lorentz transformations from local comoving reference systems. In this respect it is 
analogous to the variation of mass with velocity, and it arises in the same situations. 

One way to visualize the Thomas precession is as follows. Consider a rotating disc, 
and introduce two frames of reference: (i) an inertial frame S with origin at the centre of 
rotation 0; and (ii) a frame S’ whose origin 0’ is fixed to the disc at radial distance rand 
which is freely pivoted about 0’. Let observers S and S’ orientate their axes with respect 
to the direction of a distant star. The vector 00’ rotates with angular velocity w with 
respect to the axes of S, but with wo relative to the axes of S’. Yet both sets of axes point 
continually to a distant star. Clearly S and S’ must disagree about what constitutes a 
revolution of 00’. S monitors successive transits of 0’ past a fixed marker, whilst S’ sees 
the marker plus the universe rotate about 0; if 0 precesses at the same time about 0’ 
then S and S’ can disagree about what constitutes a revolution of 00’. 

Another derivation of the relation between w(r) and wo follows from generalization 
of the relation o = iV X U into covariant form, where U is the velocity field of a rotating 
system (Hill 1946, Rosen 1947). The generalization is 

%U = ; (Uw;”  - 4;J = ;(up+, - 4J. (9) 
Adopting an inertial frame of reference and Cartesian coordinates 

U 1 = -U = woy U 2  = - -U2  = -@ox 

u4 = u 4  = (1 +w&2/c2)1/2. 
(10) 

u3 = - U 3  = 0 

The condition uAu” = 1 determines u4. In terms of these coordinates 

(11) 

U =wor v =wr (12) 
where w and wo are related as in (8). 

An experimental test for the differential rotation o ( r )  arising from the Thomas 
precession has been suggested by Weinstein (1971). The idea is simply to measure the 
angle between the directions of arrival of light signals at the centre of rotation 0 from 
sources fixed to a rotating disc at radii rl and r2. If the differential rotation is not 
accompanied by appropriate contraction of the disc, this angle should change monoton- 
ically with time. The contraction would have to reduce each radius r to r’ where r’ = r/y 
and dr’ = dr/y3. The distance of each source from 0 can be measured only by ‘radar 
ranging’. Thus the contraction would imply that the Euclidean radii are less than the 
radar radii, presumably because light rays are curved. We shall see that light rays are 
indeed curved when background matter of the universe rotates, but not when the 
rotating system is local. 

1 - 1  2 - 1  2 
U 1 2  = “ 0  w14=-zy wox w24=-$y way. 

Since U = v(1 - U ~ / C ~ ) - ’ / ~ ,  where U = ( u : + u : ) ” ~ ,  we obtain 

5. Curved light rays 

Consider the path of a light ray relative to a rotating system which may be either (i) a 
rotating isolated system or universe, or (ii) a rotating local system or disc. In order to 
measure the path of the light signal, we may suppose that it passes through a sequence of 
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slits which are fixed to the rotating system. The rotation is then stopped and the locus of 
slits examined by means of further light rays. Rotation of a universe can be stopped 
only by transforming to the co-rotating frame of reference, but rotation of the local disc 
can be stopped by means of an external couple. We consider a ray which passes through 
0 (figure 1). 

(0) \ b )  

Figure 1. Locus of slits attached to a rotating system in positions so as to transmit a light ray 
to the centre of rotation 0: ( a )  when background matter is stationary, and ( b )  when 
background matter co-rotates. 

Let successive slits be assigned polar coordinates (r, 4 )  and (r + Sr, + +a+). In the 
case of the rotating universe the second slit moves transverse distance r &#I with velocity 
wr whilst the light signal propagates arc distance 6s with velocity c. We can therefore 
write 

r d+/ds = wr/c. (13) 

On relating w to w o  by (8) and noting that ds2 = dr2+rZ  d+*, the polar equation (13) 
becomes 

r d4 ldr  = wor/c (14) 
which integrates to wor/c = + - 40, where +o is a constant. The locus of slits is therefore 
an Archimedes spiral. Because the rotating system is perfectly isolated, the principle of 
covariance can be used to infer that whatever positionings of the slits transmit the ray 
when the universe rotates must also transmit a ray when the universe is stationary; these 
two physical situations are in fact the same situation since they are related by a 
holonomic transformation of coordinates. The transformation, 4’ = + -mot  and r = cf, 
changes the Archimedes spiral into +’= 40, a straight line. 

In the case of a local rotating system, the positions of the slits must be such as to 
transmit a ray when the system rotates and background matter is stationary, and also 
when the system is stationary and background matter rotates (see 8 3). In fact the ray 
path is controlled primarily by the background matter, and therefore will be a straight 
line in the former situation and an Archimedes spiral in the latter situation. Clearly slits 
positioned in an Archimedes spiral relative to the local disc will transmit the ray for 
either situation. Note that this is a different physical situation to the rotating universe; 
relative to the rotating system the locus of slits now is an Archimedes spiral, whereas 
previously it was a straight line. 



734 P F Browne 

If we consider a ray that does not pass through the centre of rotation 0, but has 

(15) 

closest distance a to 0, then for stationary system and stationary background we have 

r cos 4 = a r sin 4 = cf. 

The Galilean transformation, 4’ = 4 - wof,  leads to 

c o ~ [ ~ ’ - w ~ ( r * - a ~ ) ~ / ~ / c ]  = a/r. (16) 

For a = 0 this reduces to an Archimedes spiral. We would expect (15) to apply to 
stationary background (whether or not the local system rotates) and (16) to apply to 
rotating background (whether or not the local system rotates). 

Jennison (1963) has obtained a circular ray path relative to a rotating system (he 
does not distinguish between local and isolated rotating systems). His argument is based 
on the angles of aberration for Lorentz observers at different radii, and his result is a 
circle rather than an Archimedes spiral because he fails to take account of the 
dependence of w on r. Using the aberration formula, cos 8’ = (cos 8 - p ) / (  1 - p cos 8) 
where p = wr/c, we see that a ray perpendicular to the motion for S’ (cos 8’ = 0) will not 
be perpendicular to the motion for S (cos 8 = p ) .  Its direction differs from the normal to 
the motion by angle 4, where sin 4 = p. The normal to the motion is just the radius 
vector, and hence the polar equation of the ray path is 

r d4/dr =tan 4 sin 4 = wr/c (17) 

from which is obtained 

If U were treated as constant (as does Jennison), integration of (18) yields wr/c  = sin 4. 
The polar equation for a circle of radius R with origin on the circle is r = 2 R  sin 4, so 
that the ray path is a circle of radius c /2w .  On the other hand, if wo is treated as 
constant, integration of (18) again yields the Archimedes spiral oor /c  = 4. 

6. Ehrenfest paradox 

Let two circular discs be free to rotate about a common axis. Suppose that the discs are 
made of a transparent plastic material, so that circular scales on the circumferences can 
be photographed using an emulsion immediately below the discs. When both discs are 
stationary markings on the identical scales appear superimposed on a photograph. If, 
however, one disc rotates relative to an inertial frame, whilst the other remains 
stationary, what now would an instantaneous photograph reveal? We may assume that 
the beam of light passing normally through both discs is obtained by collimating (by 
means of a lens) light from a point source of short duration on the axis (for example, a 
spark). Lorentz contraction of the circumference would introduce asymmetry without 
proportionate contraction of the radius. But how can one explain contraction of the 
radius-the Ehrenfest paradox? 

Length contraction in special relativity is a direct consequence of the relativity of 
simultaneity (as indeed are all relativistic effects). Let two metre sticks have relative 
velocity U in the direction of their lengths, and let observers Sand S’ be at rest relative to 
the respective sticks. Consider what would be the expectations of S and S’ for a 
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photograph of the superimposed scales, first without contraction of the moving scale 
and then with contraction. The records on the emulsion of superimposed scale 
markings some distance apart constitute two events. If the events are simultaneous for 
S they cannot be simultaneous for S‘ due to the constancy of light velocity. In fact the 
events occur a time 7’ apart, according to S‘ ,  where 

L ’ / 2  L’ /2  uL’/c2 
c - U  c + u  1 - u 2 / c 2  

= -- - - - 

L’ being the distance between the events according to S’. Thus, without recognition of 
the Lorentz contraction, the situation would be that S predicts equal lengths, but S’ 
predicts length L ’ +  UT’ as opposed to L’ for the moving stick, due to movement of the 
stick between the photographs. The photographs can reveal only one result, so here is a 
paradox. In order to resolve the paradox it is necessary for each observer to agree to 
contract by some factor f the scale which moves relative to him. Then S expects L for 
his own stick, and L/f for the other stick. S‘ expects L’ for his own stick and (L’+ u ~ ’ ) / f  
for the other stick. There is no contradiction if 

Llf = L’ (L’+ u 7 ’ ) / f  = L. (20) 

From (19) and (20) we readily deduce that f =  y, where y = (1 - ~ ~ / c ~ ) - ~ ’ ~ .  
In deciding whether or not to contract the circular scale on the circumference of a 

rotating disc it is crucial to know whether the superimposed scales can be photographed 
in such a manner as to permit the stationary and rotating observers to agree on the 
simultaneity of the recordings of different parts of the scales. This was not possible for 
uniform linear motion in the direction of the scales, but of course is possible for uniform 
linear motion normal to the scales. The pulse of light illuminating the scales may come 
from a spark on the axis above the scales after collimation by a lens. We have seen in 0 5 
that the observers will differ concerning the shape of light rays proceeding from the axis 
to the circumference (projecting ray paths onto the plane of the discs). Despite this 
effect-the curvature of rays for the rotating observer S’-both observers should agree 
that all portions of the superimposed scales are photographed simultaneously. The 
light transit time from the axis to a point on the circumference must be independent of 
the direction of the ray for S’ as well as S; this implies that the wavefronts for S’ are not 
normal to the rays, as happens for the extraordinary ray in birefringence. Since it is 
possible to photograph the superimposed scales in a manner which appears simultane- 
ous to both observers, it follows that the photograph will reveal no relative contraction 
of the scales. This is contrary to what is currently believed. 

Whilst there will be no relative contraction of the circular scales, in fact both scales 
will be equally contracted for the rotating observer S’ relative to their size for the inertial 
observer S. This will be quite clear from the discussion of the clock paradox for circular 
motion in § 7. 

The connection between the Lorentz contraction and the Penrose-Terre11 rotation 
of a two-dimensional object (Penrose 1959, Terre11 1959, McGilll968) is of interest for 
rotational motion. Consider, firstly, linear motion of a square in the direction of one 
side OX, and let an instantaneous photograph be taken using light travelling in the 
direction of a perpendicular side OY. Due to the finite transit time of light over the 
distance OY, the point 0 moves out of the way of a light signal from Y, allowing OY to 
be seen in projection; the projected length actually photographed is (u/c)L for side L. 
Due to Lorentz contraction the side OX appears on the photograph as (1 - u ’ / c ~ ) ’ / ~ L .  
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Interpreting the latter as a projection, we see that the object appears undistorted on the 
photograph, but rotated through angle a where sin a = u/c .  When we apply this 
argument to rotational motion of XOY, and when the rotating system is perfectly 
isolated (i.e. a universe), then the curvature of light rays causes the rotatingobject to be 
viewed from a slightly different perspective; the change in the angle of viewing is just 
sufficient to counteract the Penrose-Terre11 rotation (figure 2). The picture obtained 
now is simply OX = (1 - V ~ / C ~ ) ” ~ L .  due to Lorentz contraction (note that light transit 
times to Care  the same from 0 and from X) together with OY = (1 - U ~ / C ~ ) ” ~ L  due to 
the reduced phase velocity of light in the direction OY. For a local rotating system the 
Penrose-Terre11 rotation will not be counteracted in this way. 

Figure 2. Penrose-Terre11 rotation of object XOY rotating at radial distance r and viewed 
from the centre of rotation C when background matter rotates. OX = OY = L and OX‘ = 
OY‘ = ~ ( 1 -  w2r2/c2)”’ .  

7. The clock paradox for circular motion 

When accelerations (relative to an inertial frame) are permitted, it is possible for two 
clocks to start from coincidence and after performing different motions to return to 
coincidence. At a coincidence a comparison of clock readings is independent of the 
method of synchronization. The question therefore arises as to whether the clocks will 
record the same or different times between the two events. If the accelerations of the 
clocks differ, as will be true in general, then the different time dilation factors associated 
with the different motions should imply a time difference, but if this is the only effect to 
consider the observers who remain at rest relative to the respective clocks would differ 
concerning which goes slower-the clock paradox. The resolution of the clock paradox 
lies in the recognition of an additional effect, the change of clock rate with change of 
gravitational potential. 

7.1. Linear return motion of one clock 

Consider, in the first instance, the case where one clock remains at rest and the other 
performs linear return motion along the same path. The reversal of the motion at Q is 
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accomplished by uniform deceleration g lasting for time T, where g +CO and T+O 
consistently with gT = 2v.  At the initial event and also at the final event both clocks are 
coincident at P. Observer S is at rest relative to the clock which remains at P, whilst 
observer S‘ remains at rest relative to the clock which performs the return journey. The 
distance PQ equals x for S and x’  for S’. We may suppose that either observer can 
monitor the clock remote from him by reception of light pulses emitted at the beats of 
the clock. Thus each observer may monitor continually the time-keeping of both his 
own clock and the clock of the other observer. 

Firstly, consider the inertial observer S. The number of beats recorded by his own 
clock between the two events will be simply ( 2 x / v ) v 0 .  On monitoring the remote clock, 
he receives pulses at the Doppler-reduced rate v- for a time x / u  +x/c (since pulses en 
route continue to arrive for a time x/c after the turn-around point Q is reached) and at 
the Doppler-increased rate v+ for a time x / v  -x/c. Noting that v, = ( 1  f v / c ) y v o  we 
may summarize the findings of S by: 

N(C) = 2xvo/u 

x x  x x  2xvo 
N(C’) = (-+-) v- + (-- v c  -) v+ = yv. 

v c  

Consider, now, the co-moving observer S’. For him the distance travelled is x’ 
rather than x, so he counts (2x’ /v )v0  beats by his own clock. Monitoring the remote 
clock, S’ finds exactly the same effects as did S-that is, the Doppler and light transit 
time effects, which combine to yield simply time dilation. But there is one very 
important additional effect. During the period T of deceleration there arises for S’ a 
cosmological gravitational field (in accordance with the principle of equivalence). This 
means that his clock and the remote clock are at different gravitational potentials, and 
hence go at different rates. The difference of potential is gx,  and the extra number of 
counts from the remote clock during T is just (gx/c2)voT. Using gT=2u, this 
correction becomes 2vxvo /c2 ,  which remains finite as T + 0. In the correction term we 
have used x rather than x’ because the relative velocity of S and S’ is zero in the limit 
T += 0. Summarizing, S’ will make the counts: 

“ ( C )  = 2x’vo/v = 2xvo/yv 

From ( 2 1 )  and (22 )  it is clear that both observers can agree that the clock of S’ (the 
accelerated clock) performs less beats between the two coincidences. The agreement 
between the observers is achieved only by inclusion of the gravitational frequency 
change. 

The gravitational effect occurs only during the period T of deceleration. It may be 
eliminated by introducing a third clock C‘ at rest relative to observer S who completes 
the return leg of the journey with uniform velocity v.  At the instant when C’ passes Q 
the clock C‘ also is passing Q, and an instantaneous photograph of the superimposed 
clocks permits a comparison of readings. In order to understand how the paradox is 
now resolved, let two clocks be introduced at rest relative to S, Cp at P and CO at Q. For 
S these two clocks are synchronous, but in order that S’ should consider them 
synchronous CO must be advanced relative to Cp by v x / c 2 ,  and in order that Sr should 
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consider them synchronous Cp must be advanced relative to CO by the same amount 
vx /c2  (as follows from the Lorentz transformation). The 2vxv0/c2 term of (22)  again 
emerges, resolving the paradox (Lowry 1963). It seems that the gravitational frequency 
change basically is a variation with time of the synchronization correction applied when 
the relative motion is uniform (Levi 1967). 

Another way to view the effect is to consider the procedure by which Cp and CO are 
synchronized by S, during the time T of deceleration. Due to the deceleration the 
relative velocity between source and detector alters by gx/c during the light transit time 
x /c .  Hence there arises during T a Doppler shift of vgx /c2 .  Using gT = 2v,  the extra 
beats counted over T amount to precisely 2vxv0/c2.  

7.2. Circular return motion of one clock 

Now let clock C‘ move with uniform circular velocity U once around a circular orbit of 
radius r. During the motion S receives pulses from the clock C‘ of S‘, which we shall 
suppose to be relayed via an oscillator at the centre 0 of the circle. According to S’ the 
clock C of S will rotate, along with the rest of the universe, about 0. 

The transverse Doppler shift takes the place of the combined first-order Doppler 
shifts and the light transit time effect which together amount to time dilation. Thus the 
effects which led to (21 )  still are present for circular motion in the view of S. 

The additional effects which S’ took into account for linear motion were (i) Lorentz 
contraction of the distance travelled, and (ii) the gravitational frequency shift. We shall 
assume that the circumference of the circle appears contracted to S’. But how can one 
obtain a gravitational frequency shift since C and C remain at the same gravitational 
potential throughout the circular motion (although the centre 0 of the circle is at a 
higher gravitational potential)? The gravitational effect which now resolves the 
paradox is rather different-in fact the curvature of the light rays in the frame of S’. Due 
to this curvature signals from C are emitted not normally to the motion of C, but at a 
slightly forward angle which introduces a small first-order Doppler effect. From the 
aberration formula one find that the angle of emission relative to the forward direction 
of motion is 8, where cos 8 = v / c  = p. The total Doppler effect therefore becomes 

Thus the small first-order Doppler effect reverses the transverse Doppler effect, which 
is exactly what is required to resolve the paradox. 

The agreement of the observers concerning the difference of time recorded by C and 
by C means that this is a real physical effect. It means that S and S’ will measure 
different angular velocities of rotation, which are w and wo respectively as given by (8). 
Thus the difference is a consequence of the Thomas precession w -wo. 

8. Frequency of signals from rotating sources 

The effects which were required to resolve the clock paradox for circular motion are 
capable of being directly observed. If one monitors at the centre of rotation signals 
from a source which rotates relative to an inertial frame, then only the transverse 
Doppler shift (or time dilation) will be observed. The Mossbauer effect has been used to 
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verify this (Hay et a1 1960, Kundig 1963, Champaney et a1 1965). In a co-rotating 
frame of reference there is no transverse Doppler shift, but instead there arises a 
gravitational frequency shift of the same magnitude due to a cosmological field. 

The above are two limiting cases. What happens if we view a rotating source from a 
frame of reference with different angular velocity? That is, the source continues to 
rotate with respect to the non-inertial frame. In this situation the small first-order 
Doppler effect due to curvature of light rays will be seen-precisely the effect taken into 
account in (23). If two such sources rotate in opposite directions with the same velocity, 
then since the first-order Doppler shift will be in the one case a red shift and in the other 
a blue shift (the curvature of the rays being the same for each). The difference in the 
clock frequencies will therefore be given by 

where *pc (=  *U) are the velocities of the clocks with respect to the rotating frame, and 
where cos 0 = Qr/c,  where Q is the angular velocity of the rotating frame relative to the 
inertial frame. Between successive coincidences of the clocks, a time of 27rr/u, the 
difference in the number of beats for the two clocks will be AN where 

AN = (2mu-')Av = (27")(2p COS e yo) = 4AQvoc-'. (25) 

Here A (= m2)  is the area enclosed by the path of the clocks. 
Hafele and Keating (1972) (see also Schlegel 1974) have performed such an 

experiment. 133Cs clocks, operating on a hyperfine transition of frequency 
9.192631770 x lo9 Hz, were flown in opposite directions once around the Earth. The 
difference in their recorded times over this journey was 332* 17 ns, which agrees with 
the predicted time difference of 315 ns. 

9. The Sagnac effect 

Let a plane light wave be split by a partial reflector into two waves which then propagate 
in opposite senses around a closed path and are finally re-united at the partial reflector. 
When the entire optical system is rotated relative to an inertial frame, Sagnac (1915) 
discovered that the relative phase of the two beams alters by an amount given by (25). If 
the mirror system is used as the cavity of a ring laser, the phase difference between the 
clockwise and counterclockwise propagating waves introduces a frequency difference 
given by (24) (for a square path of side D this reduces to f lD/c)  between modes which 
would be degenerate if the system were at rest inertially. The frequency difference 
between the modes is readily measured in the output of a detector into which is fed 
emissions in the two laser modes (Macek and Davis 1963, Cheo and Heer 1964). 

The explanation of the Sagnac effect is simple for the inertial frame of reference. 
The motion of the mirrors during the light transit time between mirrors causes the 
clockwise and counterclockwise waves to be reflected at different points of space, which 
leads to an optical path difference. 

With respect to the co-rotating frame the mirrors are at rest, but again there arises 
an optical path difference due to the different curvatures of the clockwise and coun- 
terclockwise waves. Alternatively, one may compare phase velocities around one and 
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the same path. If v ( r )  is the aether rotation field, the difference of phase velocities of the 
two waves around a closed path will produce the phase change, 

A N = 2  4 v .d r=2b[  [ V x o . d S = 4 b [  [ w o . d S  

where b = vo /c2 .  
The Sagnac effect has been thoroughly reviewed by Post (1967). Post considers the 

effect of a medium of refractive index n which may or may not move with the mirror 
system. Defining a drag coefficient by (Y = l-n-’-6(ln n)/S(lnA) Post obtains the 
following results for the Sagnac phase change: 

interferometer stationary AN=O 
medium stationary 

interferometer stationary 
medium rotating 

interferometer rotating 
medium stationary 

interferometer rotating 
medium rotating 

AN = 2b n2av.  d r  

AN=2b  n2u.dr  

AN = 2b 

f 
f 
f n2(1 - a ) v  . dr. 

Post treats Sagnac effects both from geometrical optics and physical optics. For the 
latter treatment the refractive index of the aether is required. Post obtains this, or 
rather the constitutive tensor, from a metric obtained from the Minkowski metric by a 
Galilean rotation. 

A point that has not been made elsewhere is that the Sagnac experiment must give a 
null result (like aether drift experiments of the Michelson-Morley and Kennedy- 
Thorndike type) when the rotating system is an entire universe. Otherwise the angular 
velocity of the universe could be measured absolutely, or at least, relative to some 
standard external to the universe, and this is impossible if the universe is a perfectly 
isolated system. But how does the Sagnac phase change disappear in these 
circumstances? 

When the rotating system is local, the Sagnac phase change is attributed, in the 
inertial frame, to a difference of optical path due to reflections at different points of 
space for the clockwise and counterclockwise propagating waves, and is attributed, in 
the co-rotating frame, to a difference of optical path due to the different curvatures of 
the clockwise and counterclockwise rays. If these two effects were observed in the same 
frame of reference they would cancel each other; the first effect is due to rotation of the 
system, and the second effect is due to rotation of background matter, so that the Sagnac 
effect does indeed disappear when both system and background rotate. Clearly there 
will be no effect when both system and background are stationary. The disappearance 
of the Sagnac phase change for a rotating universe is a good example of the fundamental 
principles discussed in Q 3. 

10. Gravitational fields in rotating frames of reference 

The adoption, by convention, of a flat space-time, with its implication of non- 
holonomic aether motion (§ 2), requires the introduction of a Newtonian-type gravita- 
tional field. Newton’s gravitational field is obtained from a scalar potential, but for 
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rotating isolated systems, or equivalently, for rotating frames of reference, a vector 
potential must also be introduced. 

In a rotating frame of reference there must arise a gravitational field which replaces 
the centrifugal force on the Syncom satellite in an inertial frame (the Syncom satellite 
remains permanently overhead since its angular velocity with respect to an inertial 
frame equals the spin angular velocity of the Earth). This is an outward-directed force. 
There must arise also a gravitational force, directed inwards, which balances the cen- 
trifugal force on a distant star with respect to a rotating frame. In order to provide for 
the stationary Syncom satellite an outward-directed force and for the rotating star an 
inward-directed force, we shall see that a magnetic-type gravitational field is required. 

The required cosmological gravitational fields can be obtained from the scalar and 
vector potentials (4, A ) ,  where 

Here use has been made of relations (8) .  The potential 4o is a universal constant with 
the significance that it gives to any mass a gravitational potential energy equal to minus 
its rest energy. If we treat the imaginary quantity iG1’2M, where G is the gravitational 
constant and M is rest mass, analogously to charge in electromagnetism, then +o is 
defined by 

-iG1/2M40 = KMc‘. (29)  
K is a constant which can be given the magnitude unity by choice of units, but which is 
not dimensionless; KM is inertial mass if M is gravitational mass. Like imaginary 
charges attract. 

We derive gravitational fields from the potentials (28)  exactly as in electromagnet- 
ism, and indeed it is convenient to employ the conventional electromagnetic notation 
for the imaginary fields. Treating wo, but not w, as a constant, 

E = -SA/c St  -V+ = -y-’w&qi0/c2 = -yw2r+,,/c2 

B = V X A = - 2 ~ o + o / c  = - ~ Y w ~ O / C .  

F = iG’”M(E + U X B l c ) .  

( 3 0 4  

( 3 0 ~  
The force on a mass M due to these fields is given by the Lorentz force law, 

(3  1) 

In the case of the Syncom satellite U = 0, and substitution from (30a)  and (29)  then 

(32)  

yields 

F = iG1I2ME = K M - p ’ r  

which is what is required to replace relativistic centrifugal force. 
In the case of the distant star we have U = -W X r, so that 

F = iG’/’M[E - (o X r )  X B l c ]  = -KMyw’r. ( 3 3 )  

Thus the magnetic-type gravitational field (306)  yields a Coriolis force which is 
oppositely directed and twice as great as the gravostatic force on M. Again this is 
exactly what is required to maintain the circular orbit of the distant star. 
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It is of interest to note that the Sagnac phase change AN, as given by (26), can be 
expressed in the form, 

Its analogy to the phase shift of de Broglie waves in the Aharanov-Bohm effect 
(Erlichson 1970) is now apparent, and also to the phase shift of electrons in a 
superconductor (Jaklevic et a1 1965). 

Appendix. Metric for a rotating frame of reference 

Adopting an inertial frame of reference, and neglecting cosmological terms, the metric 
for space-time according to Einstein's theory, will be Minkowskian. For cylindrical 
polar coordinates, r, 4, z,  

ds2 = c 2  dt2 - dr2 - r2d42 - dz2. 

dc$'=d4 - U  dt (A.2) 

ds2= y-2~2dt2-2r2w d4'dt-dr2-r2d4'2-dz2 (A.3) 

(A. 1) 

Transforming, now, to a rotating frame by use of 

we obtain 

where y = (1 -02r2 /c2 ) -"2 .  
The space-time (A.3) will be flat like (A.l) if (A.2) is holonomic, which implies that 

w is not a function of r in accordance with (8). Whilst space-time would be flat, space 
itself is not flat. If w is a function of r due to the Thomas precession, then neither 
space-time nor space is flat for a rotating frame of reference. Post (1967) considers, in 
addition to (A.2), the non-holonomic time transformation, dt' = dt/y. This implies that 
w dt = wo dt', so that (A.2) now can be integrated, but not the equation defining dt'. 

Mdller (19723 has used metrics (A.l) and (A.3) to resolve the clock paradox for 
circular motion. Inertial observer S, when monitoring his own clock, substitutes into 
(A. 1) dr = d 4  = dz = 0, finding ds = c dt ; when monitoring the moving clock, he 
substitutes d 4  = w dt and dr = dz = 0, which yields ds = y-lc dt. The non-inertial 
observer S', when monitoring his own clock, substitutes into (A.3) dr = d+'= dz = 0, 
obtaining ds = y-lc dt ; when monitoring the clock moving with respect to his frame, he 
substitutes d4 '  = -6.1 dt and dr = dz = 0, obtaining ds = c dt. Both observers will 
therefore agree that the non-inertial clock goes slow relative to the clock which remains 
at rest in the inertial frame. 

An objection to the metric form (A.3) is that simultaneity has been defined in the 
inertial frame rather than the rotating frame. If one uses the Einstein definition of 
simultaneity for a local infinitesimal region, then following Adler et al(1965) we would 
introduce a new time coordinate by the non-holonomic relation, 

dt' = dt -dr  (A.4) 
where 
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d7 is just the synchronization correction applied by S to two events with spatial 
separation r d+’ if the events are synchronous for S’. Substitution of (A.4) and (A.5) 
into (A.3) yields 

(A.@ ds2 = y-Zc2 dt’2 - dr2 - y2r2 d 4  - dz2. 

The further non-holonomic transformation, 

d i =  7-l dt’ dc$=yd+ 64.7) 

will change the metric (A.6) back to the form (A.1). 
We may decompose the Lorentz transformation in a similar fashion into a Galilean 

transformation, a re-synchronization of clocks, and finally a time dilation and length 
contraction. Thus, the metric, 

ds2 = c 2  dt2 - dx2 - dy2 - dz (A.8) 

x ’ = x - v t  64.9) 

under the Galilean transformation, 

becomes 

ds2 = (1  - v 2 / ~ 2 ) ~ 2  dt2 - 2 ~ X ’ V  dt -dx” -dy2-dz2. (A.lO) 

Re-synchronizing clocks by 

d t ’=dt -y2u  dX’/C2 (A. 11) 

(A. 12) 

and finally the time dilation and length contraction non-holonomic transformation, 

d i =  y-’ dt‘ d.f = y dx’ (A. 13) 

leads back again to the metric form (A.8). 
Often (e.g. Mdler 1972) o in (A.2) is treated as constant. Then the space-time 

(A.3) will be flat, although three-space is not flat. The geodesics on this three-space 
have been considered in some detail by Arzelies (1966), who then goes on to consider 
different measures of time on the rotating disc. In general authors have not distin- 
guished between a rotating local system and a rotating universe. 

The dependence of w on r given by relations (8) is not the only one that has been 
proposed. Trocheris (1949) has given grounds for wr/c = tanh(oor/c), and Takeno 
(1952) also has obtained this result. On the other hand, Hill (1946) finds or = 
-icJ,(2ioor/c)/Jo(2ioor/c) where J1 and Jo  are Bessel functions. 

References 

Adler R, Bazin M and Schiffer M 1965 Introduction to General Relativity 2nd edn (New York: McGraw-Hill) 

Arzelies H 1966 Relativistic Kinematics (London: Pergamon) pp 204-43 
Ashworth D G and Jennison R C 1976 J.  Phys. A :  Math. Gen. 9 35-43 
Atwater H A 1970 Nature, Land. 228 272-3 
Browne P F 1976 Found. Phys. 6 457-71 
Champaney D C, Isaak G R and.Khan A M 1965 Roc.  Phys. Soc. 85 583-93 

p 124 



744 P F Browne 

Cheo P K and Heer C V 1964 Appl. Opr. 3 788-9 
Davies P A and Jennison R C 1975 J. Phys. A :  Marh. Gen. 8 1390-7 
Dicke R H 1962 Phys. Rev. 125 2163-7 
Erlichson H 1970 A m .  J. Phys. 38 162-73 
Furry M H 1955 A m .  J. Phys. 23 517-25 
Hafele J C and Keating R E 1972 Science 177 168-70 
Hay H J, Schiffer J P, Cranshaw T E and Egelstaff P A 1960 Phys. Rev. Lett. 4 165-6 
Hill E L 1946 Phys..Rev. 69 488-91 
Hogarth J E and McCrea W H 1952 Proc. Camb. Phil. Soc. 48 616-24 
Jaklevic R L, Lamb J and Mercereau J E 1965 Phys. Rev. 140 A1628-37 
Jennison R C 1963 Nature, Lond. 199 739-41 
- 1964 Nature, Lond. 203 395-6 
Kundig W 1963 Phys. Rev. 129 2371-5 
Levi L 1967 A m .  J. Phys. 35 968-9 
Lowry E S 1963 A m .  J. Phys. 31 59 
McCrea W H 1971 Nature, Land. 234 399-401 
McGill N C 1968 Conremp. Phys. 9 33-48 
Macek Wand Davis D 1963 Appl. Phys. Lett. 2 67-8 
Marsh G E 1971 Narure, Land. 230 197 
Milne E A 1935 Relativity, Gravitation, and World-Structure (Oxford: Clarendon) 
Mglller C 1972 The Theory of Relativity 2nd edn (Oxford: Clarendon) pp 272, 297 
Penrose R 1959 Proc. Camb. Phil. Soc. 55 137-9 
Post E J 1967 Rev. Mod. Phys. 39 475-92 
Rosen N 1947 Phys. Rev. 71 54-8 
Sagnac G 1915 C.R.  Acad.  Sci., Paris 157 708-10, 1410-3 
Schlegel R 1974 A m .  J. Phys. 42 183-7 
Takeno H 1952 Prog. Theor. Phys. 7 367-76 
Terre11 J 1959 Phys. Rev. 116 1041-5 
Treder H-J 1970 Found. Phys. 177-93 
Trocheris M G 1949 Phil. Mag. 40 1143-54 
Tupper B 0 J 1971 Nuouo Cim. B 6 105-10 
Weinstein D H 1971 Nature, Lond. 232 548 
Whitmire D P 1972 Nature 235 175-6 
- 1972 Nature 239 207 


