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Translation:The Theory of the Rigid
Electron in the Kinematics of the Principle
of Relativity

The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity.

by Max Born.

Dedicated to the memory of HERMANN MINKOWSKI.

Introduction.

The great importance of the concepts of rigid body and rigid connection in Newronian mechanics, is
to the closest related with the fundamental views concerning space and time. Because the
requirement that lengths shall be mutually comparable at different times, directly leads to the
formation of the concept of measuring rods whose length is independent of time and motion, i.e.,
which are rigid. Later, this concept of the rigid body proves to be fruitful for the development of
dynamics itself; because the rigid body as a continuous mass system of only six degrees of freedom,
is not only kinematically of the highest simplicity, but also dynamically by allowing the composition
of the forces — which are acting at its points — to "resulting" forces and moments of the same
magnitude, whose knowledge is sufficient for the description of motion. All these possibilities are
principally based on the GaLiLer-NEwronian connection of space and time into a four-dimensional
manifold"S 1l (which I will call "world" following Minkowskil); a connection essentially contained in
the theorem, that the natural laws not only shall be independent from the choice of the origin and
the unit of time, as well as from the location of the spatial reference system and the unit of length,
but also from a uniform translation given to the reference system under maintenance of the measure
of time.

Exactly these foundations of kinematics are the ones to be abandoned, when the electrodynamic
relativity principle — as stated by Lorentz, EmnstEIN, Minkowskr and others — comes into play. Because
here, the connection of space and time into the "world" is different: the independence of the natural
laws from the uniform translation of the spatial reference system only then takes place, when also
the time parameter experiences a change, which not only tantamounts to a displacement of the
origin and the choice of another unit. It is most closely connected to this, that measuring rods that
maintain their length at uniform translation in the co-moving coordinate system, suffer a contraction
in the direction of their velocity when viewed from a stationary system. By that, the concept of the
rigid body fails, at least in its form adapted to Newronian kinematics.

However, a corresponding concept is by no means to be dispensed with in the new kinematics as
well, since otherwise the comparison of lengths of moving bodies at different times becomes illusory.
No difficulty arises at the formation of this concept for systems moving relative to each other, and
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the authors (mentioned above) of the foundational works on this theory, are using this circumstance
without giving a particular definition of rigidity.

The difficulty only then arises, when accelerations are present. Only one attempt exists — made by
EmvsteN2! — without completely clarifying the subject. Therefore I have undertaken the elaboration
of the kinematics of the rigid body on the basis of the relativity postulate. Its possibility is probable
from the outset, because the Newronian kinematics represents in every relation a limiting case of the
new kinematics, namely that one in which the speed of light ¢ is seen as infinitely great. The method
used by me, consists in defining rigidity by a differential law instead of an integral law.

Indeed, one arrives in this way at the general rigidity conditions in differential form, which are very
analogous to the corresponding conditions of the old kinematics and also pass into them for ¢ = oo.
The integration of these conditions, which is very easily executable in the old kinematics in general,
and which leads to the constancy of the distance of rigidly connected points, was only executed by me
for the case of uniformly accelerated translation; the result is hardly inferior to the old kinematics in
terms of simplicity and illustratability, and makes the assumption near at hand, as to what may be
the result at arbitrary curvilinear and rotatory motions; though I'm not discussing this. The main
result is (at uniform motion), that the motion of a single point of a rigid body co-determines the
motion of all other ones by a very simple law, i.e., that the body thus only has one degree of freedom.

Now the question arises, whether (as in the old mechanics) the rigid body has simple properties in its
dynamic behavior also in the new kinematics, and of course it will be about electromagnetic forces.

The practical value of the new definition of rigidity must therefore prove itself in the dynamics of
the electron; the greater or lesser clarity of the results achieved there, is to be used to a certain degree
also in favor or against the acceptance of the relativity principle per se, since experiments have
probably given no definite decision and maybe won't give one.

The theory of ABranam, which studies the motion of an electron (being rigid in the ordinary sense) in
the force field produced by itself, has not only led to a qualitatively satisfying explanation of the
phenomena of inertia of free electrons on a pure electric basis, but has also led to a quantitative law
for the dependency of the electrodynamic mass from velocity at very small accelerations, which is
probably not to be seen as disproved by the experiments. Though this theory which superimposes the
rigid body (which is suited to the old mechanics) upon electrodynamics, doesn't satisfy the relativity
principle, and this is the reason why its further development — at which SomMEerreLD,[3] P. Herrz, 4]
Hercrotz, 3] Scawarzscuint® and others are participating — leads to extraordinary mathematical
complications. Now, already Lorentz tried to adapt ABranam's theory to the relativity principle, and
for that purpose he constructed his "deformable" electron. Exactly this electron is to be denoted as
rigid according to the definition given by me. That despite of this agreement, Lorextz's theory gives
rise to contradictions to which Asranam!Z] has alluded, is due to the fact that the laws of the
composition of forces at the rigid body into resulting forces, were taken over without criticism from
the old mechanics; as to how these laws are to be modified, will be given by itself in the
representation chosen here. Lorentz's formula for the dependency of mass from velocity, which
represent the experiments as good as ABranam's formula, proves to be correct also in the more strict
theory. Because this law, as it was already noticed by EmnsteiN, and which was discussed by me in the
paper!8! concerning "the inertial mass and the relativity principle" for arbitrary currents, is a direct
consequence of kinematics and is not at all essentially connected with the actual electrodynamic
mass, the "rest mass".

Yet, my theory strictly provides the dependency of the rest mass on acceleration for a class of
motions, which corresponds — being the principally simplest accelerated motions — to the uniformly
accelerated ones of the old mechanics, and which I call "hyperbolic motions", namely the rest mass
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proves to be constant up to enormous accelerations. Equations of motion in the form of the
mechanical fundamental equations!9! which are adapted to the relativity principle, apply to this
motion. Yet, since every accelerated motion can be approximated by such hyperbolic motions as long
as their acceleration doesn't vary too suddenly, one achieves in this way an electrodynamic
foundation of the fundamental equations of mechanics. This theory fails only for very rapidly
changing accelerations; then also radiation resistances arise besides the inertial resistances. It is
remarkable, that an electron causes no actual radiation, as great as its acceleration may be, but it
drags its field along with it, which was up to now only known for uniformly moving electrons. The
radiation and the resistance of the radiation only arise at deviations from hyperbolic motion.

My rigidity definition proves to be appropriate for the system of MaxweLL's electrodynamics quite in
the same way, as the old definition of rigidity for the system of GarLiLei-Newronian mechanics. The
rigid electron in this sense, represents the dynamically most simple motion of electricity. One can
even go so far to assert, that the theory provides clear hints to an atomistic structure of electricity,
which is not at all the case in ABranam's theory. Thus my theory is in agreement with the atomistic
instinct of so many experimentalists, for which the interesting attempt of Levi-Crvital’®l — to describe
the motion of electricity as a freely moving fluid being bound by no kinematic conditions — will
hardly find applause.

Since the simplicity of the dynamics is therefore not inferior to the simplicity of kinematics of the
new rigid body, then one will ascribe to this concept of rigidity the same fundamental importance in
the system of the electromagnetic world-picture, as the ordinary rigid body in the system of the
mechanical world-picture.

First chapter. The kinematics of the rigid body.

§ 1. The rigid body of old mechanics.

With respect to the electrodynamic applications of the second and the third chapter, we won't
concern ourselves with rigid systems of discrete points, but with continuous rigid bodies. A
continuous current of matter can be represented in the way named after Lacrance, by giving the
space coordinates x,y, z as functions of time ¢ and of three parameters &, n,{ — for example the

values of z,y, z at time £ = 0:

T = m(£7777Cat)a
(1) Yy= y(é.a n, Cat)a
z= z(§7 ¢, t)-

The mass system is rigid, when the distance of any two of its points

(2) = \/(931 — )2 4 (1 — 1)’ + (21 — 22)°

is independent of time, thus equal to

VE —6) +m—m)+ (G —6)
Then it follows from that, that equations (1) have the form
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3) z =a; + an&+ aen+ a3,
y = a2 + azn€ + axn+ as(,
z=a3 + ag1€ + asan + as3(,

where the quantities a,, a,g are functions of time ¢, and the matrix

aiz ai2 ais
A=]ay axn a3 |= (aaﬁ)
asy a3z ass

is orthogonal[“]; i.e., when A denotes the transposed matrix of A, and 1 is the unit matrix, then it is
(4) AA=1

To oversee the generalization capability of this condition of the
kinematics of the relativity principle, it is advantageous to use the
interpretation (used by Mmkowski in the work just cited) of the
variables x,y,z,t as parallel coordinates in a space of four
dimensions called "world". In the following, the figures shall always
mean the plane cut y = 0, z = 0 through a four-dimensional space;
within them, we draw the z-axis horizontally, and the t-axis
upwards. The path of a point is represented in the zyzt-manifold
(world) as a curve, the "world line", and the motion of a body is
represented by a bundle of world lines. The previous condition Fig. 1.

dr/dt = 0 now means, that the connecting line of the passage

points (of two world-lines each) through a three-dimensional

structure ¢ = const., has the same length for all those structures. Thus it is related to the three-
dimensional points ¢ = const. "parallel" to space t = 0.

E‘iH|

The importance of this rigidity condition for Newronian mechanics, lies in the fact that it is invariant
with respect to transformations, which transfer the Newronian equations of motion into themselves.
These transformations have the form, when the origin is maintained:

x=knx+ kiey+ kisz + ki t,
(5) Y =knT + kaoy + kozz + kat,
2= k31T + k3ay + k33z + kst,
where kqg, ko are constants, and the matrix
K = (kaﬁ )
is orthogonal:

(6) KK=1

The orthogonal constituent only denotes the passage from the initial coordinate system to a system
rotated around the origin; yet the second part denotes a uniform translation in time. This is

represented in our four-dimensional world as passage from the initial ¢-axis to an inclined ¢-axis.
One immediately sees (Fig. 1), that the quantity r indeed remains unchanged at this occasion.
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The relativity principle of electrodynamics states an invariance of natural laws with respect to other
linear substitutions, and by that the meaning of quantity r becomes irrelevant. These "Lorentz

transformations" connect the four magnitudes x, y, 2, t with four new ones Z, ¥, z, t by such linear
equations

T =kn + kioy + k13z + kut,
Y =knT + koY + kasZ + kaat,
2=k + k32y + k3sz + k34i,
t =knZ + koo + kusz + kat,

which transform the expression
(8) o + oy + 22— A
into itself, where ¢ means the speed of light.

Here, the time (or rather the quantity cty/—1) is thus transformed with the coordinates in a
symmetric way, and not only the t-axis

———a
FE—————

Fig. 2.

becomes inclined at this transformation, but also space ¢ = 0 obtains another location in the four-

dimensional world.[2] Since spaces ¢ = const. don't go over to spaces ¢ = const, then neither quantity
r nor condition dr/dt = 0 is invariant.

At first it seems impossible as well, to provide an analogous condition between two world-lines, since
there are no three-dimensional spaces with respect to transformations (7), (8), which are so
preferred as previously the spaces t = const. with respect to (5).

Therefore for the sake of generalization, one has to look after another definition of rigidity in the old
kinematics. For that, one can use the circumstance that one can replace condition r = const. (taking
place between two finitely distant world lines) by a differential condition between infinitely adjacent
world lines, so that, when the differential condition is satisfied in the whole space, it gives rise to
equation r = const.
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For that purpose, we consider at time ¢ the distance of two infinitely adjacent world lines, i.e., the
line element

ds = \/da:2 +dy? + d2?
If one sets this equal to a constant €, then equation
ds? = €2

represents an infinitely small sphere. This emerges from an infinitely small ellipsoid during the
motion represented by (1), which one obtains when one represents the quantity ds? by means of the

equations
’M:%@+%m+%m
(9) <@:%@+%@+%m
@:%@+%m+%m

\

as quadratic form of d¢, dn, d¢; let this form be:

{ ds? = py1d€ + posdn? + pasd(?

10
(10) +2p12d€ dn + 2p13d€ d¢ + 2pa3dn d(

There, the matrix of the "deformation quantities" p,g

P = (pop)

from the matrix

Oz Oz oz \
o¢ on ¢
Oy Oy Oy
an A=l3% &
9z 9z 9z
ot on ¢ }
is composed in this way:
(12) P=AA

Now, we will call this motion only in the smallest parts as rigid, when an infinitely small structure is
not changed during motion, thus when all pog are independent of time. Thus we have the

infinitesimal rigidity conditions:

dpaﬂ _

13
(13) 7

0
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When &, 7, ¢ are the initial values of z,y, z, then matrix A is equal to unit matrix 1 for ¢ = 0, thus
(12) reads:

P=AA=1

It is now an elementary theorem of infinitesimal geometry!'3], that when these conditions are
satisfied everywhere, it is about the motion of a rigid body.

This infinitesimal rigidity condition (13) can now easily be transfered to the kinematics of the

relativity principle.

§ 2. The differential conditions of rigidity.

In the following, only such quantities shall have a meaning, which are invariant with respect to the
Lorentz transformations (7), (8).

Now we consider a current, which we represent instead of equations of form (1), by the following
equations which better correspond to the symmetry of quantities z, y, 2, required by the relativity

principle:
= m(é" 17’ C’ T)’
y=y(&mn¢ ),
14
( ) z= z(£7 77’ C’ T)’

t=1t(mn¢ 7).

There, let T be the proper time, i.e., the identity exists:

az\* [(oy\® [(8z\* L[6t\®
o) (5) *(a) *(5) ¢ (E) -

T is measured starting at any "cross section" of the currents.

&, n, ¢ shall characterize individual current-filaments, though we leave open their meaning. Now we
set for the time being;:

z(0,0,0,7) = (1),
¥(0,0,0,7) = y(7),
2(0,0,0,7) = 3(7),
t(0,0,0,7) = t(7),

(16)

and consider the filament of world lines, surrounding world line (16) § =n = { = 0.
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Normalsclotd
z=2Honst.=t,

/

'/
Fig. 3.

This can be represented as follows:

z=t+zed+ xpdn+xcdC+ ...,
Yy =19+ yedl+ ypdn+yed¢+...,
z2 =3+ zed€+ zpdn + z¢dC .. .,
t=t+tdé+tydn+ted(+...,

(17)

where we confine ourselves to terms being linear in the increments d§, dn, d¢ (which are first to be
imagined as small, though finite). Here, z, #), 3, t are the functions defined by (16), and it is set:

Ty = Z—Z(0,0,0,T),...

Two spacetime vectors with components x1,¥y1,21,t1 and x3,y2, 22,t2 are called normal, when
their direction are conjugated with respect to the invariant hyperbolic structure

(18) 22+ + 22— =1,
thus when
(19) T1T2 +Y1Ye + 2120 — ity =0

All vectors being normal to a time-like vector™ z;,4;,21,¢; are satisfying a three-dimensional

linear structure, which can be made to space ¢ = 0 by a suitable Lorentz transformation; we call it
the normal cut of the vector.

The concepts being so defined, are evidently invariant with respect to Lorentz transformations.
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Now we consider a certain point P upon the world line £ = 7 = { = 0, belonging to the value 7y of
the proper time. Through this point P, we lay the normal cut to the velocity vector g, y4, 35, t, in P:

{{MathForm1|(20)[¢f (& — zo) + 1 (¥ — Do) + 34 (2 —3¢) — *t5 (t —t) =0

where
3
dr or £=77=C=0, o

and index 0 means, that 7 = 7y is to be inserted into the functions.

In (20), we replace , y, z, t by their expressions (17) as functions of d§, dn, d¢ and 7:

1) {%ﬁ—%+%%+%®+q%+”}+m

ce— g {t—to +tedé+tydn+ted(+...} =0
We can see this as an equation for 7, from which one can calculate the values of proper time 7
(belonging to normal cut 1) upon the neighboring line d§, dn, d¢. Since the difference 7 — 79 = d7

is small, then (21) will be a linear equation in d7. Namely, if one expands

r=gp trdr+...,

and if one considers, that according to (15) it is identical in 7
(23) 2 402 452 — 2 = ¢,

then it follows from (21), when one neglects all quadratic terms in d§, dn, d(, dT:

ctdr =1 (mé’d& + z0dn + wgdC) +...

(24)

~~w%&@@+ﬂ@+%%%
or when we

( wgdi + zddn + wgdg‘ =z,
25) yed€ + yhdn + y2d¢ = H,

2 dé + zpdn + z0d( = Z,

| z¢d€ + thdn + t)d¢ = T,

set as:
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20 — = ! ! 2/
(26) cdr =2 +9H+30Z2 — ", T

Now we consider the (one-shell) hyperbolic structure located around the point
£E=0,7=0, (=0, 7= Ty as center:

(27) (x—10)* +(W—10)" +(z—3)° —F(t—t)* =€

This cuts the normal cut (20) into a figure, which is to be seen as the "rest shape" of the filament at
this place.

If we accordingly replace in (27), =,y,z,t by expressions (17), and then the quantities
59,3 t, ¢, . . . by the expansions (22), it follows

2

- (;6(17 + 20d€ + #dn + xgdc) ¥
2

e (tgdr +82dg + thdn + tgdg) — e,

and herein is (upon the normal cut d7) the function of d§, dn, d{ defined by (26); thus (28) goes over
into:

2 ! ) ! 2
{<1+%)E+;°Z°H+%Z—;3%T} ¥

c

02 C2 62

! ! s/ ! 51 2
..—c2{t°p65+t°”°H+t°3°Z+(1—;62)T} = e,

By that, the rest shape is given as a quadratic form in d§, dn, d{. Since point§ =n=(=0,7=179
was an arbitrary point of the current, one can omit indices 0 and replace ¢’ ... by z,,. ... If we then
write (29) in the form

(30) { (c11d€ + cradn + c13dC)? + (ca1d€ + caadn + ca3d()®

+(ca1d€ + caadn + c33dC)” + (cadf + candn + cggd()’ = €2,

then the rectangular matrix for 4 rows and 3 columns C = (cng) is equal to the product of two
matrices S and A, which are formed from the derivatives of functions (14):

(31) C=S5A
namely it is:

(32)
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(1+2 o wrer _atr \
c2 c2 c2 ic
Yrr y72' Yrzr y‘rtT
Y 1+ % Yr2r ¥
c2 c2 c2 ic
S =
Zr&r ZrYr 14+ é _ Zrtr
c2 c2 c2 ic
\ _ trar _ tryr _ trzr 1— t2 )
ic ic ic T
mé a:n iI:C
Ye Yn Y¢
(33) A=
2¢ Zn 2¢

If we now develop the quadratic from (30) to d§, dn, d¢, then one has:

(34) { P11dE2 + poadn? + p33d(?
+2p12d§ dn + 2p13d€ d¢ + 2pazdn d(

where it becomes
(35) P = (pop) = CC = ASSA

With the aid of equation (15) causing the determinant of S to vanish, this relation can still further be
simplified; namely it is easily given by computation:

(36) S§=S8
and (33) thus goes over into:
(37) P—=ASA

This is analogues to equation (12) derived in § 1. The six quantities p,g are to be denoted as

"deformation quantities”, and would be of importance in a theory of elasticity adapted to the
relativity principle.

We will call a filament as rigid in the smallest parts, whose rest shape is independent from proper
time T, 1.e., for which the six equations

8paﬂ _

38
(38) or

0

hold.

When these equations are satisfied in the whole space, then we are dealing with the motion of a
rigid body.
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By that, we have gained the general differential conditions of rigidity. Since they are solely formed by
the aid of such concepts being invariant with respect to Lorentz transformations, they thus have
necessarily the same property.

§ 3. The continuity equation and the incompressible current.

If p is the density belonging to the current (1), then we know that it is connected with the velocity
components

Oz Oy oz
39 o= = =
(39) w wy w o

ot’ ot’
by the continuity equation.

This can be formulated in two ways. According to the one of EuLer, one sees g, wg,wy,w, as
functions of z, y, 2, t; then the continuity equation reads:

0o Oow, Oowy dow,
40 — =0
(40) o ox | oy | oz

According to the one of LaAGranGt, x,y, 2, 0 are seen as functions of £, 7, (,t; then the condition

reads:
000
41 =~ -0

(41) Y

where O is the functional determinant
('3 on ¢
Oy oy Oy

(42) =% =
o on o¢

The connection between both formulas is caused by the identity:[5!

0o Oow, Oowy, HBow, _ 1de®
(43) 8t+8w+8y+8z_@6t

Both forms of the continuity equation can be transfered to the representation of the current with the
aid of proper time by equations (14). First, it is evidently given:

Lr Yr 27
Wy = —, Wy = —, Wy = —
(44) s T T

If we furthermore replace p by the "rest density"
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4 «_ @
(45) =2

then (40) goes over into:

Oo*z, 00'yr 00z 0ot
oz oy | 6z | ot

(46)

We get the analogue to formula (41) by showing the correctness of the identity corresponding to (43)

0o*z, O00'yr 00"z 0g*t, 1 0¢*D
Qa7+ Q"J+ Qz+ 0 _ *0o¢e
Oz Oy 0z ot D or

(47)

where D means the functional determinant

T¢ Ty Z¢ Tr
zZ¢ Zp 2¢ Zr

123 ty t¢ tr
For this purpose, we momentarily replace for the sake of shortness:

a:,y,z,tbywl,ccg,mg,:c4

f,ﬂa C,Tby £1,£2a€3’§4
Then we have for the left-hand side of (47):

ZB(Q ZZ)_Z ( 364)0&:2(9* 32517«1 +39*05Ea) agﬁ

0za 43 \" 0608 ' 065 Ofs ) Oa

a

If we now denote (in the scheme of determinant D) by S (0z, /0¢s) the sub-determinant belonging
to 8z, /0, then it is given by successive differentiation of equations (14) with respect to z,, and by
solving of the linear equations emerging in this way:

(49) o, 5(3)

0z, D

If this is inserted above, it follows

Oz
o\ o* —
(g "’64)

_1 « 00 o (034 | 00" O2a %_aaﬁ}
D E{ 98308, (aeﬂ) T % o S(ac‘ﬁ) 5,

_1f «0D fi}
_D{Q oe, T o, P
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according to general determinant theorems. Thus it follows

2(¢' %) 10gD
Z sz&l 2% (;)54

a

which is the identity (47) that had to be proven.
Consequently, one can write the continuity condition in the form

00*'D

(50) or

0

Formulas (46), (47), (50) have invariant character with respect to Lorentz transformations

The quantity
0*D = go

is only dependent from &, 7, (; when D is equal to 1 for 7 = 0 (which one can always assume), then
oo is the "initial value of the rest density".

A current is called incompressible in the old kinematics, when p is constant and independent from
time £. In the new kinematics we will define it as follows:

A current is incompressible, when the rest density p* is constant, i.e., independent from proper
time T.

Two forms of the incompressibility condition are given from (46) and (50).

At first one can namely (46) write:

) (t%sr Oyr | 0z Btr) do* do* do* do*
0 +

T T A AT _tT:O
oz oy oz o) T T o T a7t e

or

. Ba:T+8yT+6zT+% +89*_O_
®\oz "oy "Bz ' ot or

now, if o* shall not depend on 7, then the first form of the incompressibility condition follows:

a‘r T T
Bwr_i_y 0z _'_i:()

(53) oz "oy oz | o

The second form is immediately given from (50):

oD

(54) B 0

By that, when D is equal to 1 for 7 = 0, D is identically equal to 1, and by (51):
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0" =00(§n,¢)

§ 4. The uniform translation of the rigid body.

We now want to integrate the differential conditions of rigidity (38) for the simplest case of uniform
translation. When we consider, that rigidity must be identical with incompressibility in this case,
then we not only achieve by that a criterion as to what our rigidity definition means mutatis
mutandis, but simultaneously also a method for integration.

Thus we set

(59) y=777z=C

and assume that  and ¢ only depend on £ and 7. Then we obtain from (32) and (33):

‘1’72' Tir
0 1 0 0
S =
0 0 1 0
trer 2
\ T e 1 - t‘,-}
Te 0 0
A 0 1 0
0 0 1
icte 0 0

If one forms from that the matrix:

P=ASA,

then one easily finds

(:I)gtr — :l:,,-tg)2 0 0
P= 0 0 0
0 0 0

The six rigidity conditions thus are reduced to one equation:

(56) % (:L'gt.r — thg) =0

On the other hand, determinant (48) becomes:
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(57) T 0
D— 0 1

0 0

te 0

Thus the incompressibility condition

dD

— =0
dr

is identical with the rigidity condition (56).

0 T,
0 0
1 0
0 t,

T

Consequently we can also replace the latter by the other form (53) of the incompressibility condition,

which assumes the form here:

Oz,

(58) %

ot

+ =0

ot

The integration is now easily to be executed in this form.

If one puts:
(59) zr =p, tr = —q,
then one obtains the two equations for g, g:

O  8q _

% a0
(60)

P — 3P = —c

These are equivalent to a partial differential equation for a function of two independent variables.

Namely, if one puts

(61) p=

then the first equation (60) is satisfied, and the second one goes over into

(62) g2 — Pk = —c?

_ %
8t ’

_%
q= oz’

The simplest solution of these equation is obtained, when one puts ¢; and ¢, equal to constants vy

and —4, which must satisfy the condition

(63) °a
Then it becomes

p=2r=74qg=—t=—0

from which it follows:
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= W(¢) +r,
(64) { t = V(€) + 67,

where W and V are two arbitrary functions of £&. Due to equation (63), the form of equations (64) is
indeed conserved, when z, t are subjected to a Lorentz transformation.

Equations (64) together with (55) represent a rectilinear uniform motion. Functions W (§), V(&)
are determined by the value, which z and ¢ shall have for 7 = 0. It is not convenient here to assume
z = & for 7 = 0, but functions W(§), V() are so to be determined, that formulas (64) represent
that Lorentz transformation which transforms the body into rest, i.e., it is to be set:

z=af +1,
(65) {t — Bt + 6r,

where the conditions
(66) a? -3 =1, ay—2B5=0, 4% — 2§ =—1
are satisfied.

As soon as one of the two quantities ¢;, ¢, depends on ¢ in (62), then this must also be the case for

the other one. In this case, the integration of (62) can be easily executed by the aid of a Legendre
transformation. Then, one can namely introduce the quantity

(67) Yt =Dp

as independent variable besides &, and imagine ¢ [from (67)] to be calculated as a function of £ and p
. If one then introduces (instead of ¢) the new unknown function

Y(p,z) = ¢ — pt,
then it is

(68) {«/JP = ity — Pty — t = —t,

¢z = @z + Pity — Pty = Pz
Consequently, (62) goes over into the following equation for 1(p, z):
p? — Y} =~

this can be immediately integrated. It is given:

_ P _
(69) ¢:l! - 1 + c2 - Q7
Y=gz — w(p)a

where w means an arbitrary function. From that it follows by differentiation with respect to ¢ under
consideration of (68):
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(70) -z —w/(p) = —t
cq

If one consequently imagines p as being calculated as a function of £ and inserted into ¢ = ¥ + pt,
then one has the desired most general solution of (62):

(71) ¢ =gz —w(p) +pt
According to (59) and (61), it is evidently

o _de_ @

tr T odt Pz

from which it follows that any equation ¢ = const. = —¢ represents the world line of a point of the
rigid body. From (770) and (771) we consequently find the following representation of the world lines:

gr +pt =w—§,

or, when solved with respect to x and ¢:

73) {w=q(w—£)—pqw,

t=—%(w—§+dv.

Here, the world lines of the rigid body are so described, that x and t are given as functions of the
independent variables €, p. We now want to discuss this representation.

First it is to be noticed, that the rectilinear translatory motion only depends on one arbitrary
function of an argument w(p). Thus one can say, that also here only one degree of freedom (as in
the old kinematics) is present. There, the usage of the independent variables p = @, is essential,

which still will be of great importance. Furthermore, equations (73) go over into the corresponding
representation of the uniform translation of the old kinematics, when ¢ = 00. Because

qg=.4/1+ (p2 / c2) becomes equal to 1 in this case; from the second equation (73) it follows for

¢ = 00, that p only depends on ¢, so that the first one assumes the form
z=E§+a(t)

Finally we direct our attention to the characterization of the world lines in the zt-plane. One
recognizes, that (72) and (73) have the form of a Lorentz transformation and their inverse ones,

which transform the variables 2, y into the variables T = w — £, ¢t = qu', and they read:
(74)

because the equations (66) between the coefficient are evidently satisfied due to (60).
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Thus we are faced with a bundle of Lorentz transformations depending on the parameter p. The
motion, or rather the corresponding bundle of world lines, can now be described as follows.

If one gives a certain value &; to £, then z and ¢ are given by equations (73) as specific functions of p,
which represent the world line of point &;. The components of the velocity world-vector with respect
to axes x and ¢, are p and —q. By that single curve &;, all curves of the bundle are co-determined.
One has to construct it as follows: To the tangent in a point p of the curve, one lays the line being
normal to it in the sense of § 2 (p. 12); this forms (together with the tangent) the z- and t-axis of a
transformed coordinate system. Upon this &-axis, one draws the distance £&; — £ in the unit of this
coordinate system!®]. If one now moves this coordinate system along curve &;, then point ¢ follows
the world line belonging to the parameter value £. All points of such a normal (z-axis) belong to the
same value p, thus they have the same velocity.

The uniform motion of a rigid body is so constituted, that — as soon

j as one point is transformed to rest — all of its points are
transformed to rest by the same transformation. This rest
transformation is exactly (74). The lines of same velocity p = const.,
except at uniform motion, always have an envelope; the regularity
of motion stops at this one. At given dimensions of the body, the
curvature of world lines thus cannot exceed a certain limit, and vice
versa. From that it follows, that a rigid body is necessarily
extended into all directions, and has to be the smaller, the bigger
// ’ the accelerations are that it should experience. Here, we have the
first hint at the fundamental importance of atomistics in the new

Fig. 4 dynamics. If the rigid body carries a substance of rest density o,
then it is independent of p, and it is a function of &, 7, {, which we
denote by
Qo (€7 n, C)

§ 5. Hyperbolic motion.

The simplest motion different from uniform translation will be obtained by us, when we set the
arbitrary function w = 0 in (72) and (73). Then it becomes

(75) { ;v: £¢1€,

2>
If one eliminates p therefrom, then it follows
(76) z? — Pt =¢2

From that one recognizes, that the corresponding world line in the zt-plane and the planes
y =1, z = ( being parallel to it, are hyperbolas having the lines corresponding to the speed of light
as asymptotes, and which are cutting the z-axis in the distance £ from the origin. A bundle of such
hyperbolas represents a motion, at which the rigid body comes from infinity and is approaching the
origin, then it is turning back and is moving away into infinity again, where its velocity decreases
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from the speed of light to zero first, and after the turning back
increases again to c¢. This motion, to some extent analogous to the 4
uniformly accelerated motion of old kinematics, we want to call '

hyperbolic motion shortly.
yp y -
Since the origin is a quite arbitrary point, then the hyperbolas / -
Ty,
Fig. 5.

(z—a)’ —(t-p)*=¢

represent no essentially different motion; only the velocity is then different from zero for ¢ = 0. Thus
we will be able to confine ourselves to formulas (75), (76).

This hyperbolic motion proves to be not only kinematically, but also dynamically as the simplest one.
This is closely connected with the circumstance, that any world line is osculated by a hyperbola in

any of its points P, the "curvature hyperbola", where the vector of magnitude b = ¢? /€ directed from
its center to point P, represents the acceleration vector of the world line in P.

Indeed, if we calculate the acceleration components of hyperbolic motion, then we find at first

0%y 8z
78 Y0, 2220
(78) or? or?

To calculate the - and t-components, we consider the equations

A
(79) & =-p, pi= pg
6:1; =—q Pz= ?
Then it becomes
O _ oy P CF
6’7’2 Dr DT+ Dilr é.p E q
Thus we obtain
&z
80 —— =b, = —qb
(80) 572 q
as well as
0%t P
81 b=
( ) 87'2 t c2
where
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c2

(82) b= bt — % = 7

is the magnitude of acceleration. From (81), (81), (82), the previous assertion follows.[17!]

The acceleration is thus constant for every world line of hyperbolic motion in terms of their
magnitude; here lies the analogy with the uniformly accelerated motion of old mechanics
represented by parabolic world lines. Thus it is the simplest accelerated motion, and every motion
can approximated by hyperbolic motions. Based on that, we want to find out more precisely the
dynamics of hyperbolic motions, above all we try to determine the force exerted by an electrically
charged rigid body upon itself. The result (as approximation) will then also give information about
all motions, in which the magnitude of the acceleration vector is only slightly changed.

Second chapter. The field of the rigid electron in
hyperbolic motion.

§ 6. Retarded potentials and field strengths.

The forces exerted by moving electric charges, which enter into the equations of motion of these
charges, are derived from certain auxiliary quantities, the retarded potentials and field strengths. We
want to summarize the expression for these quantities, which are employed in the following.

Let an electric current be represented by equations of form (14); let the initial value of its rest density
(see § 3, p. 18, (51)) be:

Qo (ga n, C)

Then the retarded potentials are given by the following expressions:

( A®, (z,y, 2, t)

(2=2)Zr+(y—7) ¥, +(2-2) 2~ (t—t)tr

4rd®(z,y, 2, 1)
=l | deaac
=0

(e-B)or +Hy—D)Tr+He- D)%~ (t-D)r

\

where T,¥,7z,t and ET,QT,ET,ET denote the functions (14) or their derivatives with respect to 7,

taken from the arguments £, 7, ¢, and the function of z, y, z, ¢, £, 7, € is to be inserted for 7 into the
brackets, which is given by solving the equation

(84) h=@E-2) 2 +@w-9)>+(z-22 -E2t—-1t)?=0

with respect to 7; namely that solution of the equation which is definitely determined is to be

taken8], for which ¢ > t. As to how the expressions (83), which are surely not used yet for
continuous currents in this form, are connected to the ordinary formulas for the retarded potentials,
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shall be shortly explained in the next paragraphs.

The electric field strength € and the magnetic one 9t are derived from the potentials according to
the vector equations:

_ 120
(85) ¢ = —Cca (ézaéyaéz) - grad‘ﬁ,
M = curl (®,,®,,2,).

The potentials (83) are solutions of equations!9!

1 a2§z _ o
a:IOI'Q + 0—2? - A@z = Tw;,-,

®) L
3 1 9% *
EIOI'Q—'— c_2§ bl A@ = Q0 tT,
namely especially such solutions, for which the quantity

0, 0%, H®, 10%
87 lor® = il
(87) o 8w+8y+8z+c8t

vanishes for itself.

Equations (86) are the Lagrangian equations regarding the variation problem!2°], to find those
functions @, ®,, ®,, ® for which the integral

(88) W= ////{% (2 - &) - £ @, + Byr + Bz, - @tr)} dz dy dz dt

extended over an area G of the xyzt-manifold, becomes an extremum, where the current of
electricity and the values of the potentials are given upon the boundary of G.

§ 7. Comparison of the expressions for retarded potentials.
The expressions (83) for the potentials can be seen as the superposition of the elementary potential,

stemming from the individually moving points of the current. For the latter, one namely has the
expressions according to Litnarp and WigcHErT!2!]

Where e denotes the charge of the acting point

(90) z=1x(t), y=y(t), z=z(t);

https://en.wikisource.org/wiki/Translation:The_Theory_of_the_Rigid_Electron_in_the_Kinematics_of_the_Principle_of_Relativity 22/48



4/5/2020 The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity - Wikisource, the free online library
furthermore

©1) rz\/(w—5)2+(y—§)2+(z—2)2

its distance from reference point z, y, 2,
1 N N N
(92) wr == {(z —z)w, + (y — y)wy + (2 — 2)w,}

is the component of its velocity w,, wy, w, in the direction of 7, and t instead of ¢ is to be set in the
brackets, which is given from the equation

,
t—t=—
(93) o

If one now has a continuous current, then world line (90) is to be replaced by a bundle of world lines,
by bringing function (90) into the form (1) by inserting three parameters &, 7, ¢, and by replacing e

by density g(&,, ). Then, functions ¢, ¢y, ¢., ¢ become also dependent on &, 7, (, and one can
integrate them over the entire space. There it is also to be noticed, that it is

dx dy dz = ©d€ dn d¢

at the space integration, and that the functional determinant ® connects itself with density g to the
initial density gy = @ according to § 3, (41).

The emerged expressions can easily be brought into the form (83). For this, one only has to write the
equations of motion of the acting point homogeneously in the form:

(94) z =2%(7), y=y(7), 2="2(7), t =t(7)

where 7 denotes the proper time, and to replace g by the rest density ¢*. Equation (93) then goes
over into

(95) h=-2)?+@w-9)2+(=-2?2 -32(t-t)?% =0

from which 7 is unequivocally given at the additional condition ¢ > #.[22]

The connection of expressions (83) with the otherwise ordinary expressions for the potentials is also
easy to find out. The latter ones read:[23!

4n®, = [[] TEE[LE],

r Cc t=t— -

Y

dz dy dz
ard = [ E2E L),

There, the current is to be imagined as represented by equations of the form (1) (p. 6), furthermore it
is
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r=y/(-2?+@-9"+ (-2’

and ¢, y,2, t =t — r/c are to be introduced as arguments in the brackets. The integrations in (95)
are to be extended over all charges, i.e., over temporally variable boundaries, since they are in
motion. The passage from expressions (95) to expressions (83) now exactly consists in this, that one
brings the integrals to invariable limits independent of time. This has to be happening in the
following way.

In the equations of current (1), we replace ¢ byf =t — r/c, then we obtain equations of the form
2{&n,6,4=,3,2,)}
©7) ~5{&n¢t @551}
{6? 177 C’ t(z’ y? z’ )}

z

o+
||

which connect z, y, z with &, 7, ( and evidently exactly represent the transformation, which brings

the integrals to invariable limits when applied to (96); because this transformation (97) represents
x, Y, z as function of their initial values for the relevant instant in the brackets.

To calculate the functional determinant of transformation (97)

o(z, v, z)]
A= —-—="7
(98) [ 8(6’ n, C) t=konst.

we want to denote the derivative from Z to £ at maintained ¢ with (8/8¢);, and at maintained ¢

with (0z /0€);. If we differentiate then equations (97) (one after the other) with respect to &,n,¢,
then we obtain three equation systems with identical coefficients; for example at the differentiation
with respect to &:

o\ _ (% 05 [oi(om) L o (%W , (%=
(6£)t_ (as)z+ = { z( s)t+aa(as)t+az(as)t}’

Ve
N
N—"
-
/
R
N—"
o+l

_I_
2|
=
53
Ve
R[S
N—"
o~

_|_
|2
/N
RS
N——"
o~

_I_
SIE2
/N
2%
N—"
-
N —
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Three equation are added twice, at which ¢ is replaced by 7 or (. If we denote the matrices occurring

here as follows:

(99)

(100)

(101)

then our nine equations can be summarized in the matrix equation:

PQ =R
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From that the relation of determinants follows:

(102) |P|-|Q| = |R]|
Now it is evidently according to (98)

(103) |P|=A
furthermore it is according to § 3, (42), p. 16:

(104) || = |Of;_-
Finally one finds easily

8z or 0y or 8z Or
-1+ (55 + 25+ 25)
QI T 6265+a¥637+6262’

_ 10 O | = 0r | — or
=1+ c (wz% —I—'wya?_/ +wzaz)
which is to be written according to (92):

(105) Q= [1——]_

Consequently it becomes:

(106) A= [ _@ﬁ]

If we insert this into (96) and consider that according to § 3, (41), p. 16, it is to be set:
Q@ = Q(£7 n, C)y

then it follows:

(

T

471'@2 = fff Qo (57 m C) [ﬁ] df d77 dCa
(107) 4

o= 60| oy | seanac
¢/ dt—t=%

If we also replace w, by Z, /t; etc. as on p. 30, then formulas (107) go directly over into expressions
(83). Indeed, only the initial density gy occurs in them.

\

§ 8. Calculation of the potentials at hyperbolic motion.
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We now want to evaluate the potentials (83) for hyperbolic motion

p
(108) w=—q£,y=n,z=c,t=c—2§

Since y, = 2z, = 0, then also ®, = ®, = 0. Since we have in (108) the quantity p instead of 7 as
independent variable besides &, 1, ¢, we will see equation (84) h = 0 as equation for p as well. Then

it reads:
=\ 2
(109) <w+63)2+(y—77)2+(z—f)z—cz(t—Z—.f) =0,
when one introduces the abbreviations
s=2z2 - = ¢,
(1o b=k (s+22+(y—v‘7)2+(z—2)2)

one can write (109) as follows:
pt + qx = k;

where it is added:

—2

P - g ==

p is to be calculated from these equations; namely that value of p is to be chosen, for which ¢ > t. If
one inserts the value following from the first equation

k—qx
t

p=
into the second one, then the quadratic equation emerges for q:

—o  _2kx k2 + c2t?
q9 —¢ = -
s s

From that if follows:

q= % (kw—l—ct\/kz—s)

If we also set (for abbreviation) for the positive square root
(111) B=k —s

and calculate p, then we find

https://en.wikisource.org/wiki/Translation:The_Theory_of_the_Rigid_Electron_in_the_Kinematics_of_the_Principle_of_Relativity 27/48



4/5/2020 The Theory of the Rigid Electron in the Kinematics of the Principle of Relativity - Wikisource, the free online library

p= —%(kct+ Bz)

q 2 (kz + Bet)

Here, that sign is to be chosen, which corresponds to the smaller value of ¢. Now, since t= EE / cz,
then the following is given (presupposed, that the electron is moving on the right side of the origin

z=0,1e,&>0):
for all reference points, at which /s > 0, the positive sign is to be taken,
for all reference points, at which z/s < 0, the negative sign is to be taken.

The distribution of these reference points can be derived from the figure.

*<o

Fig. 6.

We want to presuppose mostly in the following, that /s > 0; only such points can be interior
points of the electron at hyperbolic motion. Thus the positive square root B is to be taken for them.
When we sometimes also consider points for which /s < 0, then we have to replace +B by —B

everywhere.

Thus we have:

(112) {

Now we calculate the denominator of integral (83) for these values of p, gq.

— < (kct + Bz)
%(kw + Bct)

Ql Rl
Il

Duetoyr = 2z =0, =, = p, t; = —q, it becomes:
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(z+qé)p+c (t - %E) g=zp+c’tg=—cB
C

This is inserted into the integrals; it follows:

(113)

478, (z,y, 2t) = [[f 2 (ket + Bz)d€ dnj dC,
47®(c,y, 2 t) = [[] 2 (ke + Bet)dE dn dC,

If we set for abbreviation:

(114)

{ )= 3 2l it =
! 1T k€ dn .

where e denotes the total charge of the electron, then it simply becomes:

(115)

{47r<I>,, = P1(8) -  + P2(8) - t,
A7® = 1po(s) - & + P1(s) - ct

Here, ¥1 and 19 are functions of the connection s from « to £ alone.

These potentials particularly satisfy equation (87) lor® = 0; because one has, since ds/0z = 2z,

0s/ot =

8<I>z

4#% = 1c — 2Pt —

thus
0%,
lor® =
g oz
Now it is
e
I _ =
Y=

thus it becomes

(116)

—2c%t:

= 1 + 29| 2? + 2¢) ct,

24 ¢3¢

102

c ot o (41 + sv))

lor® =0

For later purposes, we want to write potentials (115) in a still different way soon. For that, we
consider that according to (108) it is to be set:

b
m:—qﬁ,t=—2
C

¢, thus s = €2

If we then introduce the following ones instead of the abbreviations 11, 1s:
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{ 4rd, = —&hy = —

(117) _ . _
An® =~y = fff 20 & d¢ dn d¢

then one can write instead of (115):

(118)

Functions ®,,® thus are connected with the auxiliary functions Ew,E by the same Lorentz

transformation, which (9. 23, (74)) transforms the rigid body to rest. Therefore we will call 53,6
the "rest potentials"; functions of &, 7, ( alone don't depend any more from p.

From relations (118) we see, that the electron is carrying its field; the rest potentials observed by an
observer co-moving with the electron, only depend on the rest coordinates &, 7, ¢.

We still want to provide the explicit expression for the scalar rest potential ®:

(119) AT (¢,7,¢) = ///aol 4+ 2% dEd‘d(

‘/ 2_|_4

where it is set
(120) P =0E-8>+(mn-n°+(-¢)?

If the reference point is located in the area z/s < 0, then the negative sign is to be chosen instead of

the positive one. Both &, and ® become infinite at & = 0; the whole hyperbolic motion is singular
for this value; yet the field strengths remain, as we will see, finite everywhere and are defined in the
whole zyzt-manifold.

§ 9. The field strengths at hyperbolic motion.

From expressions (115), now we want to calculate the field strengths according to formulas (85).
Here, they read:

108 8% 0% bi%i
=< "% GH="% E="7%
(121)
M 0%, m 0%,
=0, 4 0z’ Z27T T ay

Now we find from (115) under consideration of (110):

o0
471' z

= ctpy — 29} ACtx — ¢’2c3t2

471'2—: = g + 29 z® + 29 ctz.
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Thus it becomes:

1
(122) €, = o (Y2 + s11)

From that it follows, that &, only depends (besides n,({) on s, i.e., on &, yet not on p. The z-
component of the electric field strength is thus constant along every world line of the electron.

If one computes &, then it is given:

(123) ///Qo_ rones E))dsdv‘wlc

2 + 455) ¥

where 7 is defined by (120).

€, doesn't become infinite at £ = 0. Yet one can continue &, also over the line £ =0, ie.,
z 4+ ct =0 and £ — ct = 0. In the areas where z/s < 0, one has to give the opposite sign to the

denominator in the same way as B®. Furthermore it is to be considered that by equations (108),
which represent the hyperbolas of the zt-plane normal to the z-axis for real values of &, those
hyperbolas are represented which are normal to the t-axis for pure imaginary £. The parenthetical
expressions in numerator and denominator of &,, can be written in the form

E-&+m-7)+ €0
€ -erm-mrr-0p] -aed

only the square of £ occur within them, so that they are real for purely imaginary values of £ as well.

—2
Furthermore, the denominator expression in the integration area, i.e., for £ > 0, can never become
zero; if one sets £ = iq, then it becomes

-2 . _ 2 -2
[+ + -1+ (0] +407E >0
Thus €&, is defined in the whole zt-plane.

Now we want to calculate the other field components. It becomes:

_8® g Oy €& Oy
A vy L i
(124)
8% z OPa £ O
=% T wwx Ymax
0%, ct O _p & Oy
My =, e T cdn e’
(125)
0%, ct O _  p € Oy
Me ==%% = "mwo ~ cwma
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Now one easily finds:

i) Y (€ (n:) dE diy dt,

an 468 3/2
(126) 4
. ¢ 0 7

\

Consequently, the y- and 2z- components of the field strengths are not only dependent on the
connection £2 = 2% — *t? (besides on 7, {), but explicitly on « and ¢ as well; thus one can see them
as functions of €, 7, (, p

In areas where /s < 0, the sign of expressions (126) is to be reversed again.

One recognizes, that also the y- and z-components of the field strengths, do not become infinite at
& = 0. We won't discuss the field-path in a fixed coordinate system in more detail. Only that much
can immediately be seen, that &, and €, are vanishing at £ = 0, thus that the force lines are parallel

to the z-axis there, and that 901, and 90, are vanishing at ¢ = 0, i.e., in the moment where the

electron turns back and therefore is momentarily at rest. From that we see again, that the field is
indeed carried along by the electron, because the magnetic field momentarily vanishes everywhere,
when the electron is at rest for a moment.

§ 10. Transformation of the wave equation, the potentials, and field strengths of
a co-moving coordinate system.

The form (118) given by us to the retarded potentials, leads us to transform the wave equation (86)
itself to a coordinate system co-moving with the electron, i.e., into the independent variables

&n,¢,p.

To simplify the transformation, we transform the variation problem (88) instead of the differential
equations (86).

Thus we first have to transform the components of field strengths (121).

Due to (79), it is:

108,  10%, 108, 8%, p %, cq?

e = 2 o€ £t+ P 6ppt— 6_§c+ 6_pT’
8% 8% 8% 8% pg
oz szt pPs = 5q+ o €

We now introduce the rest potentials Ex, @ by the same relations as earlier:

d, =qb,— 29,
(118) { 1 c

® =—%$z—q$
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Then it evidently is:

0% _ 0% _po3
e 98 ~ ceee
o2 _ P agm @
%~ “ecae 9%

and the corresponding holds for the derivatives with respect to 77 and ¢. On the other hand, it
becomes

Consequently it becomes:

0P, = 0db,
et o m (5 g,

ot dz %€ € ap
5% p 8%, %
— 8 _ po%, 8%
\_ez_ 9z cag+ a¢?
_ 0% _ 0% p&B
(128) 3 = &z TP e
_ 0%, _ 8%, pa3,
(W= S =05, — <o)

Now it is given:

—\12
2 _g2_ _ |02 L 1(F _ g%
M — ¢ = [0§+§(¢. cqap)]

(129)

Furthermore it becomes:

(130) g? (227 + Byyr + 2.2, — Btr) = —0° (%i‘z + q‘P) =—0'®

Finally, the functional determinant becomes

(131)
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oz, y,2,t) &

8&mn ¢p) g

Therefore the variation problem (88) goes over into the following one:

wo o{ ([F i (5-ats)]
&) -@]- (%)@

+§qg*$} d¢ dn d¢ dp = Min.

From that, one takes the differential equations of electrodynamics for a hyperbolically accelerated
reference system:

(133) <

0 )¢t G 00%% T | 53
3§{§8§+<I> anp}+€(an2+a<2)

5% 1 (& 0%, %
| R (o)) e

These equations necessarily must also satisfy the rest potentials (117) derived in § 8. Yet they do not
depend on p, as well as the density ¢* = gg (&, 1, {); thus they are "statical potentials” with respect to
an accelerated coordinate system. By omission of the derivatives with respect to p, we obtain from
(133) the differential equations of electrostatics in a hyperbolically accelerated reference system:

8%, e,
8172 3{2

(%) e (57 + 5) T =t

Additionally, potentials ®,, ® satisfy equation lor ® = 0; it goes over at the transformation into:

0, 1(— a$>
(135) +=|(®—gc— | =

= 0,
(134)

When Ez, P are independent from p, this becomes:
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(136) 0e, &,
+-2=0
o ¢

We now want to show directly, that expressions (117) or (119) indeed satisfy equations (134), (136).

This is clear from the outset for Ex = —4i ; both the first equation (134) as well as (136) are

€
T £
satisfied.

We use the explicit expression (119) for &, We will show, that it is the exact analogue to the
electrostatic potential of given charges

ru(en, ) = [[[ £de g

and that it has exactly the same relation to the differential equation

2_ 2_ F
(137) 5 (5—) ¢ (;2 8—2) - = f&no

as the ordinary potential u to the equation
Au = f (5’ m, C)

First, the function being symmetric in the two series of variables &, 1, (; E, 7, Z
11 7% +2¢
"EE [ Ae¢

a solution!24! of the homogeneous equation (137) (f = 0), which corresponds to the solution 1/r of
Ay =0 That it indeed satisfies the equation, can directly be seen by a (though complicated)
calculation. Furthermore, for r = 0, i.e., £ = £€,n =T,{ = (, it has a singularity of order 1 /7 and
the factor of 1/r becomes equal to 1/¢ for r = 0. However, it must excluded at that occasion, that £

org become zero; this value itself is naturally singular for differential equation (137). From this
behavior of our fundamental solution, it follows exactly as in potential theory, that (when f is a
function defined for £ 2 0) the expression

- Cff fEm, Q) 1 4 2¢8
47r<1>(£,n,C)—// P r2+4€€d€d_d<

satisfies the inhomogeneous equation (137) (of course, only as long as £ is different from zero). If one
herein replaces f by its value gg&, which corresponded to the co-moving charges according to (134),
then one is led back to (119). The different signs in different areas of the reference point are resulting

from the considerations, that ®,, ® assembled by <I>m, & in the stationary coordinate system, are
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retarded potentials, not advanced ones. Consequently, one can unequivocally determine the rest

potentials Em , ® in an analogous way by differential equations (134), (136) and by their behavior in
the infinite, as the ordinary static potential. Though I won't discuss this here more closely.

If one now considers, that Em doesn't depend on p,n,(, then one gains from (127), (128) the

following expressions for the field strengths by the rest potential & alone:

'3
(138) 1€ =—q5, m=-2%,
9% P 6%
L sz qa_ca Sﬁz E%

One easily sees, that these expressions are identical with (122), (124), (125).

According to Minkowski, 25! we still introduce the rest field strength besides the rest potentials:

The electrical rest force is defined by

r —

€, =t,C + = (4, MM, — 2,MMy),

(139) § € =t€ + L (M, —z,MM,),

€, =t¢ +1(z M —yM,).

\

The expression for the electrical rest work is added:
(139%) A=2,¢ +y,€ +2€,
Furthermore, the magnetic rest force is defined by

( ﬁax =t M, — % (y'rez - z’rey)a

(140) § My, =t My — 1 (2,€, — 2, ¢E,),

M, =t M, — * (2,€, — 4, &).

and the magnetic rest work:

(140%) B =z, M, +y, My + z,M,

If one inserts expressions (138) herein, and considers that it is to be set:
Tr=p, tr =—¢, Y- =2, =0,

then one obtains:
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{ — = - —_
(141) Qfm:—q(%—?—l-%), M, =0,
€, =2, ;m, =0,
!
- 5 =
ez_a_g’ Sﬁz—oa
21— 8% |, ). o _
(4= p<6£+€) B =0.

The magnetic rest force and rest work are thus identically zero, as it was to be expected. The
electric rest force and rest work, however, are solely derived from rest potential ®. From the value
of ® one finds the following explicit expressions for the electrical rest forces:

’

€29 - _
—_mdﬁ dn d¢,
(r2+4£§)

€. =3 [[le

(142) V&, = —2¢ [[a— 2 i ay F,
(2 +462)

= __€ .ﬂf Qo (€ € 633/2 d& dn dZa

\

and rest force A emerges from ¢, by permutation of g with —p. These expressions in any case hold
in the interior of the electron itself.

If one compares expressions (141) with equations (108), then one recognizes, that the quantities

S

ewa ey7 eza _2A
c

are in the same way composed of the quantities depending on &, 1, ¢

@+<1> 0% a<1>
¢ 6677’(%

as x, y, 2, t are composed of £, 7, ¢ and p, q. From that it follows, that

b,q

are exactly so transformed by a Lorentz transformation as z, y, 2, t, that is, as a spacetime vector of
first kind.
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Third Chapter. The dynamics of the rigid electron at
hyperbolic motion.

§ 11. The resulting forces and the equations of motion.

It's known that the product of rest density with the electric rest force defined in the previous
paragraph, is denoted as ponderomotive force of the field and is seen as equivalent to the ordinary
mechanical forces.

In ABraHaM's theory of the rigid electron, as well as in Lorentz's one of the "deformable” electron, the
equations of motion of an electron free of ordinary mass, are formed in the following way: By
integration over the space filled by an electron in a moment ¢, the resultants of those ponderomotive
forces — both that of the external as well as the field generated by the electron itself (or the resulting
moment when rotation is also considered) — are formed, and the sum of these resultants is set equal
to zero.

This procedure of course is not in agreement with the way taken by us. Because the resultants so
created, are evidently dependent on the reference system chosen. We will try to state such equations
of motion, which are invariant against Lorentz transformations.

The form of the rest forces (141) and (142) produced by the electron itself, and the remark on p. 45
concerning the behavior under Lorentz transformations, however, lays it near at hand in which way
one has to form the resultants, so that the equations of motion are invariant under Lorentz
transformations, i.e., so that the resultants themselves are transforming as spacetime vectors of first
kind. We will understand as the resulting force of a force field, the integral of the product of rest
charge and rest force over the rest shape of the electron, i.e., with respect to £, n,  at invariablep.

As to how the resulting moments are to be defined in the case, where rotations are allowed, we won't
discuss here.

Furthermore we want to state the equations of motion of a rigid electron as follows: The rigid
electron is so moving, that the resultants of its own field is oppositely equal to the resultant of the
external field.

Before we actually calculate the resultants of the interior field at hyperbolic motion, we want to make
a remark concerning the momentum and energy theorems.

It's known that due to the electromagnetic fundamental equations, the following identities hold:

et T e a0
a3y L

636;4'%"'63% c%agzg*z
Where
(144)
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_1 2 2 2 1 2 2 2
Xp=3 (€2 - —&)+ 7 (M - —m?2),
X, = €, ¢, + MM,
X, =€,¢, + MM,

and (two times) three corresponding quantities of components of MaxweLL's stresses , furthermore
(145) S = c[eMm]

is the ray vector, and

_ e g2
(146) W_2&+m)

is the energy density. If one integrates these equations over a space limited by a closed surface, then
one obtains the equations

fffg*ézdv = ffT:cd - % fff%Szdv,

a4y <

[[f e Adv= [[Sndf— L [[fW do,

where dv indicates the integration over space, df that over the boundary, and where &,, is the
normal component of & and

T, = X, cos(n,z) + X, cos(n,y) + X, cos(n, 2)

is the normal component of the z-stresses at the boundary. These equations say, that the resulting
force formed in the old sense, is equal to the decrease of the electromagnetic momentum %6 present

in a volume, increased by the total stress upon the boundary of the volume; and that the work
performed by the forces is equal to the decrease of the electromagnetic total energy, increased by the
radiation passing through the boundary.

Let us now first consider ABranam's theory; in this one, the aether is assumed as a stationary absolute
reference system, and the electron is rigid in the old sense. Here, the formation of the resultants by
integration over the space at invariable 2, is justified. Because, when we confine ourselves to the case
of rectilinear translation, then all points of the electron have the same velocity w at a time ¢; the
single points of the electron don't perform work relative to each other, the forces acting between
them don't appear, and therefore one can see the integrals of the force components and the work
over the volume of the electron, as resulting force components and total work. There, however, no
relativity principle of any kind is satisfied.

In Lorentz's theory, the electron at quasi-stationary motion is seen as deformable, and namely by the
same law according to which a rigid uniformly moving body (in the sense of the theory presented
here) appears to be deformed by a stationary reference system. If one defines the resulting forces etc.
as integrals at invariable ¢, then one will obtain quite different values, depending on the reference
system employed; yet equations (143) are invariant, i.e., they maintain their form when one subjects
the coordinates to a Lorentz transformation, yet only then when the quantities Xz, ... 85,... W are
simultaneously transformed in a certain way. This circumstance causes the apparent occurrence of a
deformation energy and -momentum, to which Pranck and Asranam have alluded. Accordingly, the
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value for the resulting force, work, stresses, and of the ray, which are formed at invariable ¢, have no
immediate meaning in the kinematics of the relativity principle. From the non-observance of this
circumstance, the contradictions in Lorentz's theory are immediately explained.

We can say, that the localization of energy and momentum in the aether in the old sense, in not in
agreement with the relativity principle. However, we not at all need the energy and momentum
theorems (in the considered form) for the formation of the equations of motion. Rather the
definition given on p. 46 completely suffices. The energy theorem is then added to the three
equations of motion as a statement depending on them, that the sum of the works of the resultants of
the external and the interior field are always equal to zero.

§ 12. The resulting interior forces at hyperbolic motion.

From the expressions (141) or (142), we now form the resultants of the interior rest forces. If we
denote the space element d§ dn, d¢ by dw, then we obtain:

(

) _ )
KY = Jo0€rdw = = [l eoeo [ 3/2]
(7‘2 455)
(148) {EY = fon€dw=— 2 [[og, & o n)3/2 dw dw,
3 (r2+4§§)
. — 72 Ve
K = [0 €dw=— 2 [feoo— " dw dio
\ 3 (r2+4§§)

The resulting force K @) emerges from K. ,Ef) by permutation of g with —p.

First, we consider the integral K. g(f). Here, we will insert the coordinate of an arbitrary point a of the
electron (instead of the coordinate £ calculated from the asymptote of the hyperbolic motion), and
therefore replace

Ebya+¢§

Ebya-l-z.

We will immediately prove, that the electron must have a center. Therefore we choose this center as
reference point.

Then we have to study (under the integral) the expression
(a+87 [ —2(a+8)(¢- 9]
_ 13/2
P12 +4a+§(a+9)

Now, according to equation (82), the magnitude of acceleration of the center a is equal to

(149)
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b=—;

a

if we insert this into the expression above, then the following function of acceleration becomes:

(c2 + Eb) [br2 —2(+6b) (¢ - Z)]

3/2

(150) /= :
3 [r282 + 4(c2 + £0)(c* + £0)]

If we denote this as a function of the two points P(€,7,¢), P(€,7,¢) with f(P, P), then f can be
decomposed into a symmetric and antisymmetric part:

f(P,P) = fi(P, P) + f»(P, P)

where
fi= % [f(P, P) + f(P, P)] symmetric,

= Llep,P P,P i i
fo= ) [f( ,P)— f(P, )],antlsymmetrlc

Now it is clear, that the integral

J[ vt Praw

identically vanishes.

Consequently we can confine ourselves to the study of f;. It is given:

b [<c2 +6)"+ (¢ +Zb)2] +2(6-8) (2 +8) + (& + &)
2

(151) £ = o
rs [,,.2 b2 + 4(c® + &b)(c® + Zb)]

Thus the six-fold integral in Kg(f) becomes proportional to b. If we combine b with the factor g
[according to (80)] into —b,, and combining b with p into ¢?b; by forming the work K @), then we

can write:
@ _
(152) {Kﬂ(”.) = "2”“
K% = —c*ub,.

Where rest mass p is the following quantity, which only depends on magnitude b of the acceleration
of the center a:

(153)
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=1L g 2 | (2 +¢b 2
=l ﬂ[r2b2+4(02+§b)(c2+2b)]3/ ’ { [( )

+(c2 + Zb)z] +2(6 - €)? (2 + ¢&b) (02 + Zb) } dw dw

Since b depends on the initial coordinate a of the center only, it is constant at any hyperbolic motion.
Thus for any hyperbolic motion, W is a constant which only depends on the shape and charge

distribution of the electron.

From (151), one obtains the equation of motion of the z-coordinate, by setting the sum of the interior

force Ki.i) and the external force K_,E;a) equal to zero; and K @ + K@ =0is the expression for the
energy equation as well. This gives:

b, = K,
(154) {“

[th = C%K(a) .

It is to be shown now, that one can state an external force field, which is capable to sustain
hyperbolic motion. This is performed by an electric force E, acting in the z-direction, and which is
independent from location and time. Then, the rest force according to (139) is namely:

E,=tE, = —qE,

as well as the rest work

A= z; B, = qEz

and when F, is constant, then the integration of gy E, and QOZ with respect to &, n, € is simply
K:E'a) = —qeE,,

K@ = geFE,.

This force will be capable of sustaining the hyperbolic motion with acceleration b, when one chooses:

(155) E, = b

If the external force field is only slightly variable, so that one can see it as constant in the interior of
the electron, then it will generate a motion which only slightly deviates from hyperbolic motion.
When we see equations (154) as valid also in this case, we are neglecting radiation.

Thus we obtain for slightly variable, yet arbitrary great accelerations, the following equations of
motion and energy:

2
/J'(;__;; =treE,,
(156)
62
ot = aorele,
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where x and ¢t are related to the center of the electron. These equations are invariant under Lorentz
transformations and have the form of the mechanical equations of motion of a mass point.

If one sees p as constant (which is justified by the next paragraph), and if one introduces the
"ordinary" mass by the relation

(157)

and replaces the derivatives with respect to 7 by derivatives with respect to ¢, then one obtains:

mawy
8:” =ekE,,
(158)
% = éeEzwz.

The first of these equations, is the equation of motion in an analogous form of one of the Newronian

equations of old mechanics, the second one is the energy equation. The quantity c¢?m thus
corresponds to the kinetic energy of old mechanics. The dependency of mass m from velocity is
given by Lorentz's formula (157); more essential than this one (which is also valid for the ordinary
(non-electromagnetic) mass in the new kinematics), is the dependency of rest mass p from the

magnitude b of acceleration according to formula (153). This dependency shall be studied more
closely in the next paragraph.

Before that, we still have to consider the y- and z-component of the interior force.

If we apply to Kg(f) the same considerations as to Ka(f) , by splitting the integration into a symmetric
and an antisymmetric part, then we obtain:

. (n—m)(E—&) (2 +bg) (c* +1b¢
(159) K = —Eb//goi)o ( = )
™ r3 {1'2b2 +4(c® +bf)(c? + bf)}

dw dw

and an analogous expression hold for K 9) .

If one presupposes acceleration b as small, then it becomes:

_ (17 n)(é 6) o do

(160) [K(’) ST
7T

We now will postulate, that at vanishingly small acceleration, the electron exerts no lateral forces
upon itself. Namely, if this were the case, then external lateral forces would already be required at
quasi-stationary translation, to sustain the motion. Yet this contradicts the observation at cathode-
and Becquerel rays, which are moving rectilinear by themselves without external lateral influence.
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Yet, the charge distribution must be symmetrical to one of the planes £ =0 or n =0, so that

[Kzsz)] 0= 0. One also sees, that it must also be symmetrical to one of the planes £ = 0 or ( =0, so

that [Kf)]o = 0.

Since furthermore the direction of motion is an arbitrary direction in the electron, then the charge
must be symmetrical to every plane passing through the center. Thus it is located in concentric layers
around the center.

From the observational fact, that no external lateral forces are necessary to sustain the quasi-
stationary translation, it thus follows, that the electron has a center around which the charge is
distributed in concentric layers.

Though if this is the case, then it is given from (159) without further ado, that Kgsi) then vanishes for

arbitrary values of b; and the same applies to K, ,Ef). Consequently we have the result:
The electron exerts no lateral force upon itself at arbitrary accelerated hyperbolic motion.

By that, also the still missing part of the law of inertia is derived electrodynamically. With the same
approximation, by which equations (156) and (158) hold for motions with slight changes of
accelerations, we can also transfer this result upon such motions.

The insight, that one can conclude the existence of a center and of the charge distribution in
concentric layers from the behavior of electrons at quasi-stationary translation, is an additional
contribution to fortify the atomistic view of electricity. I don't believe, that any other theory can give
such a close connection between atomistics and the principle of dynamics.

§ 13. The electrodynamic rest mass.

First we want to calculate the value of the rest mass for quasi-stationary motions, i.e., for vanishingly
small values of b. If we set b = 0 in expression (153), then it goes over into

po = — //Q°E°dw@+//eoz)o(£;¥dw@

8mc? r

The first of these two integrals is the electrostatic energy of the electron

(161) 4 = // 9":’" dw d@
The second integral can also be represented (because of the centric symmetry of the electron) in the
forms
_ (n—m)?
/ / Q00— —dwdw
r
and
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_(€=¢)
0009 3 dw dw
r

If we add up these three expressions, then we obtain 47U again. Thus the second integral is equal to
%rU , and we obtain for the rest mass at quasi-stationary motion:

2
(162) Mo = 3?[]

If the electron is particularly a homogeneously charged sphere of radius R, it is given:

1 €2

163 _1le
(163) H = 51 Re2

where e is the total charge.

This expression agrees with the values given by all other theories.[2¢]

If the motion is not quasi-stationary any more, then one has to use the general expression (153) for u
. Then, one will develop p with respect to powers of b:

(164) = o +buy +b2ps +...

We prove now, that the coefficient g3 of b is equal to zero. Namely, one finds the following
expression for it:

= ([ (-9 (r - €-0)

167c? r

Now, since the charge of the electron is distributed in concentric layers, then &,,(; 2,7_7,2

corresponds to another —§,m,(; — Z, 1_7,Z in any value system, for which the integrand assumes the
opposite value. Consequently it is g3 = 0.

Furthermore one finds:

4 22 7
1 — £2+€ +6¢€
K2 = = gonct JIJ eoeo {37'+2T

(165) . .

(e-8)> (352 +3§2+10§§)
+ 3 dw dw
r
\

This value is extraordinarily small compared with the value of ug; because, while the latter is
converging into infinity at decreasing radius R of the electron, us is converging (like R) into zero.
Furthermore, p» has the sixth power of the speed of light in the denominator. Thus we can say:

In the series for the rest mass
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(166) p=po+bpus+...

the coefficient of ugy is so extraordinarily small compared to pyg, that already the quadratic term in
the acceleration, can in no way become noticeable at any observation.

Therefore, one can see the rest mass as constant in all practical cases. Its value is given by
expression (162) for yo.

By that, the basic features of the dynamics of the rectilinear moving electron are given on an
electromagnetic basis. Of course, the area of applicability of the theory immediately is extended by
the consideration, that any uniform translation in any direction can be superimposed over rectilinear
motions; because this is only about the passage from one coordinate system of another one by the aid
of a Lorentz transformation, where our equations of motions are invariant. Therefore, this theory
encloses the deflection of the electrons by electric fields, which have an arbitrary direction with
respect to their velocity and are not changing too rapidly in terms of location and time. On the
other hand, it is not immediately valid for the magnetic deflection; though it can be easily seen, that
(for quasi-stationary motion) also the magnetic deflection is reproduced by the theory.

(Received June 13, 1909.)

Correction to the paper: The theory of the rigid electron
in the kinematics of the principle of relativity.

by Max Born.

In § 13, p. 54, of the paper published in Ann. d. Phys. 30. p. 1. 1909, 47U is to be replaced by 87U, in
formula (161) as well as in some lines below. Consequently, formula (162) must read:

4
(162) Ko = 3?[]

(Received October 30, 1909.)

Annotations by Wikisource

1. This means the four-dimensional representation of Newtonian mechanics in which ¢ = oco.

Footnotes by the author

1. H. Minkowski, Raum und Zeit, Physk. Zeitschr. 10. p. 104, 1909, and Jahresber. d. deutsch.
Mathematiker-Vereinigung, 18. (Also published separately in print.) The knowledge of this work is
presupposed at some discussions.

2. A. EInsTEIN, Jahrb. der Radioakt. und Elektronik 4. Heft 4, § 18, 1907.
3. A. SommerreLD, Nachr. d. k. Ges. d. Wissensch. zu Goéttingen, math.-physik. Kl. Heft 2 a. 5, 1904
4. P. Hertz, Math. Ann. 68. p. 1. 1907.
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. G. HeraLOTZ, Nachr. d. k. Ges. d. Wissensch. zu Gaéttingen, math.-physik. Kl. Heft 6, 1903.
. K. ScHwaRrzscHILD, Nachr. d. k. Ges. d. Wissensch. zu Géttingen, math.-physik. KI. p. 125, 1903.
. See M. AsraHam, Theorie der Elektrizitat 2. Aufl. Vol. 2. § 22.
. M. Born, Ann. d. Phys. 28. p. 571. 1909.

. See. A. EinsTeN, Ann. d. Phys. 17. p. 891. 1905 (http://www.fourmilab.ch/etexts/einstein/specrel/w
ww/); M. Pranck, Verh. d. Deutsch. Phys. Ges. 8. p. 136. 1906; H. Minkowski, Nachr. d. k. Ges. d.
Wissensch. zu Géttingen, math.-physik. Kl. p. 54. 1908; see M. Born, I.c.

T. Levi-Civita, Sui campi elettromagnetici puri, at C. Ferrari, Venezia 1908; Sulle azione
meccaniche etc., Rendiconti d. R. Acad. dei Lincei 18. 5a. This theory also appears to be leading
to contradictions with experiments, when applied to cathode rays.

To avoid laborious expressions, | use the matrix calculus which is most suitable for these
considerations; a very simple representation which is understandable without previous
knowledge, can be found in § 11 of the work of Minkowski concerning "die Grundgleichungen fur
die elektromagnetischen Vorgange in bewegten Korpern" (cited in note 2, p. 5).

For a closer geometric description of the Lorentz transformation, see H. Minkowski, Raum und
Zeit, I.c. (Note 1, p. 2)

This theorem is seldom formulated explicitly, yet it is an immediate consequence of the simplest
projection theorems.

i.e. a vector hitting the structure (18) in a real way.

See for example WeBer-RiemanN, Die partiellen Differentialgleichungen der mathematischen
Physik 2. § 146. 1901.

See H. Minkowski, Raum u. Zeit, I.c. (Note p. 2)

H. Minkowski, Raum und Zeit, I.c. (Note p. 2.)

The equation has one and only one such solution, because the velocity of the current cannot
reach the speed of light. See H. Minkowski, I. c. (Note p. 7).

In this representation, | follow the procedure of W. Ri1z, by seeing the potentials as the effects of
charge to charge as primary throughout, and by moving the partial differential equation into the
second row at first. It is characteristic, that in my whole theory no use is at all made of the actual
field equations of MaxweLL for &, 901.

See. K. ScHwaRzscHILD, |.c. (Note p. 4); M. Born, I.c. (Note p. 5).

E. Wiechert, Arch. néerl. (2) 5. p. 549. 1900. A. Liénard, L’éclairage électrique 16. p. 5, 53, 106.
1898

See I.c. (Note. 1 p. 28).

See for example M. Abraham, Theorie der Elektrizitat 2, 2. Ed., Formulas (51b), (51c), p. 57.

It is (exactly like 1/r for Au = 0) GreeN's function of differential equation (137) for the infinite
space with the limiting condition, that the solution shall vanish at infinity, and that the derivative
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multiplied by 2 shall remain finite.
25. H. Minkowski, I.c. (Note p. 5., see p. 32ff.)

26. See for example M. AsraHam, Theorie d. Elektrizitat 2. 2. ed. p. 179, formula (117c). There,
another unit was used; our formula (163) goes over into that of ABRAHAM

4 e2

“ = R

when e is replaced by +/4me.
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