
Ray Tracing Objects Defined by Sweeping
Planar Cubic Splines
JARKE J. VAN WIJK
Delft University of Technology

The crucial step in a program based on ray tracing is the calculation of the intersection of a line with
an object. In this paper, algorithms are presented for performing this calculation for objects defined
by sweeping a planar cubic spline through space. Translational, rotational, and conic sweeping are
treated. Besides solutions for the exact calculation, rectangle tests for improving efficiency are given.
Possible extensions and improvements are discussed.

Categories and Subject Descriptors: 1.3.3 [Comput ing Methodologies] : Computer Graphics--
picture~image generation; computational geometry and object modeling; three-dimensional graphics and
realism

General Terms: Algorithms

Key Words and Phrases: Image synthesis, raster graphics, ray tracing, solid modeling, sweeping

1. INTRODUCTION

Among available techniques for rendering shaded images, ray tracing is the most
flexible and powerful. It provides a very simple and elegant way to handle optical
effects such as cast shadows, reflection, and refraction. It has also proved to be
a useful tool for rendering solid models [9] by reducing the complex task of
evaluating objects defined by constructive solid geometry (CSG) to a one-
dimensional problem, which can be solved in a simple and straightforward way.

The crucial step in ray casting is the calculation of the intersection of a ray
(line) with a surface or solid. Intersection procedures have been published for
several kinds of surfaces, including polygons and simple analytic surfaces [1, 4,
9], general algebraic surfaces [5], surfaces with a superimposed density distribu-
tion [2], cubic patches [6], and procedurally defined objects [7].

In [7] the intersection problem of a line with fractal surfaces and with simple
sweep-defined objects is discussed. A sweep-defined object can be described as an
object that is created by sweeping a two-dimensional contour along a trajectory.
A possible solution to the intersection problem would be to convert the surface
representation to polygons or patches and then apply one of the standard

This work was supported by the Delfts Hogeschoolfonds.
Author's address: J. J. van Wijk, Department of Industrial Design, Delft University of Technology.
Oude Delft 39a, 2611 BB Delft, The Netherlands.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0730-0301/84/0700-0223

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984, Pages 223-237.

224 • Jarke J. van Wijk

techniques. However, by taking advantage of the geometrical and topological
properties of this class of objects, more efficient algorithms can be developed.
Kajiya gives a solution for translational sweeping (prisms) and rotational sweep-
ing (surfaces of revolution) in which the contour is described by a strip tree. The
main principle is to reduce the three-dimensional intersection problem to a two-
dimensional problem. Another discussion of this principle can be found in [10].

This paper discusses sweep-defined objects with a cubic spline as contour.
Rotational and translational sweeping, as well as conic sweeping, are treated.

In the next section a general review of the problem and its solution is given.
The shape definition is described, as well as a global outline of the intersection
algorithm. The following sections deal with the detailed solution for translational
(Section 3), conic (Section 4), and rotational (Section 5) sweeps. In Section 6,
the implementation of the algorithms is described and examples of pictures are
shown. In the final section the results are discussed and suggestions for further
refinements are made.

2. OBJECTS DEFINED BY SWEEPING

A simple sweep-defined object can be ,represented by three entities:

- - a specification of the type of sweeping,
- - a transformation matrix,
- -a plane contour.

The first item is one of the three types: translational, rotational, or conic
sweeping. Figure 1 shows three objects, generated by performing these three
operations on the same contour. In the following sections, formal descriptions
will be given.

In line with the instancing technique, as described by Roth [9], each object is
defined in a local axis frame in a standard way. For example, in translational
sweep all contours lie initially in the base z = 0 and are translated in the
z-direction to lie finally in the plane z = 1. Thus it is possible to use a local,
standard intersection algorithm. The user can translate and rotate, as well as
scale and skew the objects. Information about a particular object is stored in an
associated 4 x 4 homogeneous matrix M, which defines the transformation from
world to local coordinates. When a picture has to be made, the view matrix
(transformation from view to world coordinates) is concatenated with M, so that
a single transformation of a line is sufficient to obtain its local counterpart.

The contour is a description of the cross section of the object. In the imple-
mentation, the contour is entered as a polygon in local (u, v)-coordinates, along
with a specification of the kind of curve desired. A choice can be made between

- -a line contour, the polygon itself;
- - a cubic B-spline, a curve approximating the polygon with second-order conti-

nuity;
- -a cubic Catmull-Rom spline, a curve passing through the vertices with first-

order continuity.

Because the intersection procedures operate on the piecewise polynomial
description of the splines, the input is converted into a linear list of segments,

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

Ray Tracing Objects • 225

Fig. 1. Objects generated by performing translational, rotational, and conic sweeping on the
same contour.

each defining a piece of the curve. A segment contains

- - the degree of the two polynomials u(s) and v(s), 1 or 3;
- - the coefficients of u(s) and v(s);
- -a rectangle (Umin, U~x, Vml,, Vmax), enclosing the relevant piece of the curve.

The curve itself is defined by the set of points (u(s), v(s)) with 0 _< s < 1. An
object does not contain a description of the contour, but a pointer to the first
element, which enables several objects (with different M's) to point to the same
contour, resulting in considerable savings in memory for regular patterns of
objects.

Just as it is possible to give a global description of a sweep-defined object, so
is it equally possible to give a general outline of the intersection algorithm. The
algorithm consists of the following steps:

--transform the ray to local coordinates;
--project the ray on the local (u, v) contour plane;

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

226 Jarke J. van Wijk

z

1 1
u (z=l)

x, u(z=O)

v (z=l)

y, v(z=O)

Fig. 2. T rans l a t iona l sweeping.

- -ca lcula te the intersections of the projected ray with the contour;
- -de te rmine , if necessary, intersect ions with the base and cap plane;
- -ca lcula te normals at intersect ion points;
- - t r a n s f o r m the results back to view coordinates.

In the following sections, this algori thm is elaborated for each type of object.

3. TRANSLATIONAL SWEEPS

The local geometry of an object defined by t ranslat ional sweeping is shown in
Figure 2. It consists of three parts:

- - a base plane, consisting of the points inside the contour, with the u- and v-
axis coinciding with the x- and y-axis, and z = 0;

- - a cap plane, defined similarly, but with z = 1;
- - t h e side planes of the object.

A t ransformed ray is defined by the vector equat ion

[rx, ry, rz] = [o~, oy, oz] + [dx, dy, dz]t. (1)

Determinat ion of the intersect ions of this ray with the object is done as follows.
First, the intersect ion values tl and t2 of the ray with the planes z = 0 and z = 1
are calculated from

Oz Oz
t = - - - t = l - - -

dz' dz"

These values are stored in increasing order in an array IP of intersect ion points.
We denote the smaller value by tmi, and the larger by t Kajiya [7] proposes
an inside contour test to check whether these points are valid intersect ion points.
This test, however, can be omitted, as is shown later.

In the next step, the intersect ion points with the side planes are determined
by processing the segments tha t occur in the list.

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

Ray Tracing Objects 227

Fig. 3. Rectangle test applied for t ranslat ional
and conic sweeping.

".~ (umax, vmax)

(umin, vmlh)
u

(umin , vmax)
~ ~ ray

{umax, vmin) u

The projection of the ray on the (u, v)-plane is

dyu - d=v + d=oy - dyox = 0. (2)

First, a simple rectangle test is carried out to determine whether this ray
intersects a segment. Denot ing the lef t -hand side of (2) by P(u, v), then if dxdy >
0, intersection occurs if P(umin, Vmax) and P(u Vmin) have different signs. If
d:dy < 0, intersection occurs if P(umi,, Vmin) and P(u Vmax) have different signs
(Figure 3). When intersection occurs, the polynomials u(s) and v(s) of the segment
are subst i tuted in (2), result ing in a polynomial in s. Because the maximum
degree of this polynomial is 3, the roots can be found analytically. Coincident
roots - -cor responding with the ray touching the ob jec t - -can be ignored. For each
root So satisfying 0 _< So < 1,

U(So) - ox
t -

dx

is inserted into its proper ordered position in the array of intersection points
provided tha t t > tm~.

After each segment has been tested in this way, a sorted array of n intersection
points is obtained. We denote the position of tm,x in the array with imax. For
simplicity, in the remainder of this section tmax is assumed to be the intersection
point with the plane z = 0. Selection of the valid intersection points is done with
the following algorithm:

- - i f odd(n - imax)
then n := i~a~ {delete intersections beyond plane z = 0}
else n := i~.~ - 1; {delete intersection with plane z = 0 and}

{intersections beyond it}

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

228 • Jarke J. van Wijk

u(z=l) v(z=l) Fig. 4. Conic sweeping.

x Y

- - i f odd(u)
then
begin n :-- n - 1;

for i :-- 1 to n do IP[i] := IP[i + 1]
end {delete intersection with z -- 11

This algori thm is based on the fact tha t the spaces defined by z _ 0, z _ 1, and
the area within the (extended) side planes can be viewed as half spaces. The
object itself can then be viewed as the intersect ion of these three half spaces. If
the number of intersections of the ray with the side planes beyond tmax is odd,
then the intersect ion point with the plane z = 0 is inside the half space of the
side planes and thus a valid point. If this is so, the base point has to be omitted.
The first point is t rea ted slightly differently. If the resulting number of intersec-
t ion points is odd, then it is deleted.

There are two cases for which the preceding method breaks down: dx -- 0 and
dy = 0 (top view), and dz = 0 (side view). A practical solution is to give these
parameters , if necessary, a very small absolute value and process them fur ther in
the s tandard way.

Calculation of the local normals [nx, ny, nz] at the intersection points is trivial.
For points on the side planes, the corresponding root So and the differentials of
the polynomials u(s) and v(s) are used:

= [-dv(so) du(so)]
[nx, ny, nz] [ds ' ds , 0 .

4. CONIC SWEEPING

With t ranslat ional sweeping, the size of the contour is cons tant as it is swept
parallel to the z-axis. An obvious extension of the simple t rans la t ion sweep is to
combine scaling of the contour, for example, by mult iplying the x- and y-
coordinates by z, with t ranslat ion. This is the basic idea of conic sweeping. Figure
4 shows an object resulting from a conic sweep. It consists of two parts: the cap
plane, defined as for t ransla t ional sweeping, and the side planes. Th e local
contour axis frame (u, v) is a funct ion of z. The posit ion of a point [x, y, z] on a

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

side plane can be defined in (u, v)-coordinates by

x v = y u ,

X ~ - Z U .

Ray Tracing Objects • 229

(3)

(4)

Equat ion (3) means tha t the point is moved toward the z-axis, while (4) gives
the scale factor z.

If we define a ray as in (1) and substi tute it in (3), we get

Wri t ing t explicitly yields

v(dx t + Ox) = u(dy t + oy).

t - oyu - o , v (5)
dxv - d y u "

Subst i tut ing (1) in (4), we find

o, + d , t = (oz + dzt)u.

Subst i tut ion of (5) into the above yields (6)

(oydz - ozdy)u - (o ,d, - ozd=)v + (oxd, - oyd=) = 0. (6)

Thus, the projected ray can be wri t ten as a linear equat ion in u and v, which can
be processed in the same way as for t ranslat ional sweep. Calculation of t can be
done with (5). T r e a t m e n t of the cap plane is simpler than for t ranslat ional
sweeping. Only points satisfying tmi, -< t < tm,x (with tml, and tm,x as defined in
Section 3) are stored in the intersection point array. I f the total number of
intersection points is odd, then the cap plane point is included.

Calculation of the normals is somewhat more complex than for t ranslat ional
sweep (Figure 5). First, [n,, %, nz] is calculated as in Section 3 and normalized.
Next, n, is determined via

with the sign changed if

nz = -(u2(so) + v2(so)) 1/2

nxU(So) + nyv(so) < O.

Figure 5 shows tha t this ensures tha t al (angle between the ruler on side and
z-axis) is identical to angle a2 {tilt of the normal with respect to the plane z = 0).

5. ROTATIONAL SWEEPING

The last type to be discussed is rotat ional sweeping, i l lustrated in Figure 6. The
local v-axis is coincident with the z-axis, while the u-axis rotates in the X O Y -
plane. The problem now is to project a ray, as defined in (1), onto the (u, v)-
plane. Consider the (u, v)-plane when the angle between u- and x-axis has a
certain value 0. Wha t do we know about the intersection point [x, y, z] of the ray
with the (u, v)-plane? First, since v = z, then

0 - - Oz
t - - - (7)

dz

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

230 Jarke J. van Wijk

z

\

nz

x
z

x y

n

Fig. 5. Calculat ion of the normal for conic sweeping.
In the case shown right, t he sign of nz is changed.

Fig. 6. Rota t iona l sweeping.

J x y--~

Further , the d i s tance o f the p o i n t [x, y , z] from the z -ax i s is u, so

U 2 ~- X 2 -4- y2 or u = (ox + dxt) 2 + (oy + dyt) 2.

S u b s t i t u t i o n of (7) in to (8) yields
a v 2 + b y + c - d u 2 - - 0

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

(8)

(9)

Fig. 7. Projected ray for rotational sweep-
ing, with several rectangles. Numbers in
rectangles refer to the algorithm in Sect. 5,
thick edges and dotted vertices denote tested
items.

hv

Ray Tracing Objects • 231

with

a = d~ + d~,

b = 2(-Oza + dz(dxo, + dyoy)),

c = (d~oz - d~o ,) 2 + (dyoz - dzoy) 2,

d = d~.

Again, an equation in u and v, now of second degree, is obtained. Substitution
of the two spline polynomials of a segment yields an equation of sixth degree,
which has to be solved numerically. In this implementation the method of
Laguerre [8] is used, together with synthetic division to decrease the degree of
the polynomial when roots are found. Characteristics of the Laguerre method are
stability, fast convergence, and location of all roots, real and complex. The first
two properties led to its implementation here.

To bypass unnecessary determinations of and working with sixth-degree poly-
nomials, we use a simple rectangle test, requiring in the worst case ten multipli-
cations and six additions. Equation (9) defines a hyperbola. We need only consider
u _ 0, since the computation is simplified by restricting u to nonnegative values.
The base point (h,, ho) of the hyperbola is given by

- b
ho ~ - - .

2a

Figure 7 shows the geometry of the projected ray, along with a number of relative
positions of the rectangle. The test applied, assuming that the values for a, b, c,
d, ha, and hv are defined, is then

Function Outrect: boolean;
{Outrect is true if the rectangle (Umin, U /-)rain, Vmax)}
lis not intersected by the projected ray with}
{equationa* v . v + b * v + c - d * u . u=0}

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

232 Jarke J. van Wijk

Function Inshyp(u, v : real) : boolean;
{Inshyp is true, if the point with coordinates}
I(u, v) lies inside the hyperbola}

begin
I n s h y p : = (a * v + b) * v + c - d * u * u < 0

end;
begin

if um.x < h. then Outrect := true {case 1}
else
if vmi. > hv then
begin

if Inshyp(u Vmi.) then
begin

if umi. > h.
then Outrect := Inshyp(umin, v~.x) {case 2, 3}
else Outrect := false {case 4}

end else Outrect := true {case 5}
end else
begin

if V~.x < hv then
begin

if Inshyp(u Vm.x) then
begin

if umi. > h.
then Outrect := Inshyp(umi., v=i.) {case 6, 7}
else Outrect := false {case 8}

end else Outrect := true {case 9}
end else
if Inshyp(umi., vmi.)
then Outrect := Inshyp(umi., vm..) {case 10, 11}
else Outrect := false {case 12}

end
end;

I f an intersect ion point is found, the resul t ing value of t is given by (7). T h e
normal on the surface can then be de te rmined as follows. First , the normal lies
in the plane th rough the z-axis and the intersect ion point , so we can s ta te for
the project ion of the normal on the plane z = 0:

nx = ox + d~t, ny = oy + dyt.

To de termine nz, we first calculate a normal on the contour:

- d (v (s o)) d(u(so))
n . - ds ' no - ds

T h e z -componen t of the normal follows then f rom

nz no
(n~ + @)1/2 n u '

This is i l lustrated in Figure 8.

6. RESULTS

o r n z =
(n~ + n~)l/2no

nu

The rout ines for input and intersect ion calculat ion for sweep defined objects are
embedded in an exper imenta l package for solid modeling. The package was
developed at the Delft Univers i ty of Technology and is based on Roth [9]. I t can

ACM Transac t ions on Graphics, Vol. 3, No. 3, July 1984.

Ray Tracing Objects • 233

Fig. 8.
sweeping.

Calculat ion of no rma l for rotat ional

u

/7 z

l z , v

Fig. 9. Control knob.

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

234 Jarke J. van Wijk •

Fig. 10. Countersink bore.

thus be described as a solid modeler working with a CSG representation which
is evaluated by ray casting. Instances implemented are cube, sphere, cylinder,
cone, and torus, to which the sweep defined objects are a considerable extension.
The first application of the modeler was the generation of shaded pictures. The
luminance model is similar to the one described by Whitted [12], and supports
features like specular and mirroring reflection, cast shadows, and transparency.

The package is written in Pascal and runs on a DEC PDP 11/44 under RSX-
l lM. The graphics device used is a Grinnell GMR 270 image processing display
system with a 512 x 512 x 8 frame buffer. The pictures shown in this paper were
taken directly from its screen.

Figure 9 shows a control knob. It was modeled by taking the intersection of a
rotational and a translational sweep. The red mark was made by subtracting a
small sphere. Figure 10 shows a countersink bore, modeled by intersecting a cone
and a conical sweep. Three light sources, cast shadows, and mirroring reflection
were used. Figure 11 shows a glass, modeled by rotational sweeping.

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

Ray Tracing Objects 235

Fig. l l . Glass.

7. DISCUSSION AND FURTHER WORK

A method is presented for calculating the intersection of a ray with a object
defined by sweeping a cubic spline contour. At present we cannot determine
whether the method of using splines is more efficient than one using strip trees
[7]. It does require fewer evaluations for a contour, but the calculations involved
per evaluation are more complex.

We think the method described in this paper has advantages over conversion
into patches or polygons. For instance, an object defined by rotational sweep
requests a very large number of polygons if smooth shading is required. By using
patches, fewer items are needed, but a single patch requires more complex
processing than a section of a contour.

We have shown that by representing a three-dimensional ray by an equation
in two variables, efficient rectangle tests can be developed that exploit the
halfspace nature of these equations.

Further work falls naturally into parts: improvement of the algorithms pre-
sented and extensions to the range of objects that can be described.

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

236 Jarke J. van Wijk

The main area in which improvements can be expected is in the solution of
the two-dimensional intersection problem for rotational sweeps. A variety of
ways to solve the resulting equation can be implemented. We used the method
of Laguerre, which, in general, yielded satisfactory results in terms of the number
of iterations required and of stability. The synthetic division step, however, as
we could have expected, turned out to be very sensitive to round-off error. The
ability of the Laguerre method to find all real and complex roots is not relevant
here, since we are only interested in real roots in the interval [0, 1]. The method
used by Hanrahan [5] can search for real roots in a limited interval, and it would
appear, therefore, to be a better choice. Another possibility is not to substitute
the polynomials u(s) and v(s) in eq. (9), but to use the subdivision method of
Catmull [3] for each piece of the contour, along with an efficient rectangle test.
Future research is needed to determine which technique, in general, is the most
efficient.

Other sweep-defined objects that can be handled by the methods described in
this paper can arise from generalizations of conic sweeping. Instead of both the
x- and y-coordinates being scaled, each coordinate can be separately scaled by
separate general functions of z. However, to find meaningful applications for the
use of these kind of shapes will be harder then the development of the necessary
algorithms.

General sweeping, that is, sweeping a contour along an arbitrary trajectory in
three-dimensional space, would be an obviously useful extension. The line-object
intersection problem has been solved for objects defined by sweeping a sphere as
a partial advance in this direction [11]. The method involves the solution of a
10-degree polynomial when the trajectory is a cubic spline.

ACKNOWLEDGMENTS

I would like to thank D. J. McConalogue, W. F. Bronsvoort, and F. W. Jansen
for their support, comments, and suggestions during the development of the
algorithms and the preparation of this paper.

REFERENCES

1. APPEL, A. Some techniques for shading machine renderings of solids. In Proceedings of the
Spring Joint Computer Conference {1968). Thompson Books, Washington, D.C., 37-45.

2. BUNN, J .F . A generalization of algebraic surface drawing. ACM Trans Graph 1, 3 {July 1982),
235-236.

3. CATMULL, E .E . A subdivision algorithm for computer display of curved surfaces. Ph.D. thesis,
Computer Science Dept., Univ. of Utah, Salt Lake City, 1974.

4. GOLDSTEIN, R. A., AND NAGEL, R. 3D visual simulation. Simulation 16, 1 {Jan. 1971), 25-31.
5. HANRAHAN, P. Ray tracing algebraic surfaces. Comput. Graph. 17, 3 (Jul. 1983), 83-90.
6. KAJIYA, J . T . Ray tracing parametric patches. Comput. Graph. 16, 3 (Jul. 1982), 245-254.
7. KAJIYA, J . T . New techniques for ray tracing procedurally defined objects. Comput. Graph. 17,

3 (1983), 91-102.
8. RALSTON, A., AND RABINOWlTZ, P. A first course in numerical analysis, 2nd ed., McGraw-Hill,

New York, 1978, pp. 380-383.
9. ROTH, S.D. Ray casting for modeling solids. Comput. Graph. Image Process. 18, (Feb. 1982),

109-144,
10. SEVBOLI), H. Construction of functions for the representation of surfaces. In Surfaces in

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

Ray Tracing Objects 237

Computer Aided Geometric Design (Copenhagen, Sept. 12-14), R. E. Barnhill and W. Boelm, Eds.
North-Holland, 1983, pp. 179-185.

11. VAN WlJK, J. J. Ray tracing objects defined by sweeping a sphere. In Proceedings of the
Eurographics' 84 Con/erence, K. Be and H. A. Tucker, Eds. North-Holland, Amsterdam, 1984,
pp. 73-82.

12. WHITTEB, T. An improved illumination model for shaded display. Commun ACM 23, 6
(June, 1980), 343-349.

Received November 1983; accepted November 1984

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984.

