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The crucial step in a program based on ray tracing is the calculation of the intersection of a line with 
an object. In this paper, algorithms are presented for performing this calculation for objects defined 
by sweeping a planar cubic spline through space. Translational, rotational, and conic sweeping are 
treated. Besides solutions for the exact calculation, rectangle tests for improving efficiency are given. 
Possible extensions and improvements are discussed. 

Categories and Subject Descriptors: 1.3.3 [Comput ing  Methodologies] :  Computer Graphics--  
picture~image generation; computational geometry and object modeling; three-dimensional graphics and 
realism 

General Terms: Algorithms 

Key Words and Phrases: Image synthesis, raster graphics, ray tracing, solid modeling, sweeping 

1. INTRODUCTION 

Among available techniques for rendering shaded images, ray tracing is the most 
flexible and powerful. It provides a very simple and elegant way to handle optical 
effects such as cast shadows, reflection, and refraction. It has also proved to be 
a useful tool for rendering solid models [9] by reducing the complex task of 
evaluating objects defined by constructive solid geometry (CSG) to a one- 
dimensional problem, which can be solved in a simple and straightforward way. 

The crucial step in ray casting is the calculation of the intersection of a ray 
(line) with a surface or solid. Intersection procedures have been published for 
several kinds of surfaces, including polygons and simple analytic surfaces [1, 4, 
9], general algebraic surfaces [5], surfaces with a superimposed density distribu- 
tion [2], cubic patches [6], and procedurally defined objects [7]. 

In [7] the intersection problem of a line with fractal surfaces and with simple 
sweep-defined objects is discussed. A sweep-defined object can be described as an 
object that is created by sweeping a two-dimensional contour along a trajectory. 
A possible solution to the intersection problem would be to convert the surface 
representation to polygons or patches and then apply one of the standard 
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techniques. However, by taking advantage of the geometrical and topological 
properties of this class of objects, more efficient algorithms can be developed. 
Kajiya gives a solution for translational sweeping (prisms) and rotational sweep- 
ing (surfaces of revolution) in which the contour is described by a strip tree. The 
main principle is to reduce the three-dimensional intersection problem to a two- 
dimensional problem. Another discussion of this principle can be found in [10]. 

This paper discusses sweep-defined objects with a cubic spline as contour. 
Rotational and translational sweeping, as well as conic sweeping, are treated. 

In the next section a general review of the problem and its solution is given. 
The shape definition is described, as well as a global outline of the intersection 
algorithm. The following sections deal with the detailed solution for translational 
(Section 3), conic (Section 4), and rotational (Section 5) sweeps. In Section 6, 
the implementation of the algorithms is described and examples of pictures are 
shown. In the final section the results are discussed and suggestions for further 
refinements are made. 

2. OBJECTS DEFINED BY SWEEPING 

A simple sweep-defined object can be ,represented by three entities: 

- - a  specification of the type of sweeping, 
- - a  transformation matrix, 
- -a  plane contour. 

The first item is one of the three types: translational, rotational, or conic 
sweeping. Figure 1 shows three objects, generated by performing these three 
operations on the same contour. In the following sections, formal descriptions 
will be given. 

In line with the instancing technique, as described by Roth [9], each object is 
defined in a local axis frame in a standard way. For example, in translational 
sweep all contours lie initially in the base z = 0 and are translated in the 
z-direction to lie finally in the plane z = 1. Thus it is possible to use a local, 
standard intersection algorithm. The user can translate and rotate, as well as 
scale and skew the objects. Information about a particular object is stored in an 
associated 4 x 4 homogeneous matrix M, which defines the transformation from 
world to local coordinates. When a picture has to be made, the view matrix 
(transformation from view to world coordinates) is concatenated with M, so that  
a single transformation of a line is sufficient to obtain its local counterpart. 

The contour is a description of the cross section of the object. In the imple- 
mentation, the contour is entered as a polygon in local (u, v)-coordinates, along 
with a specification of the kind of curve desired. A choice can be made between 

- -a  line contour, the polygon itself; 
- - a  cubic B-spline, a curve approximating the polygon with second-order conti- 

nuity; 
- -a  cubic Catmull-Rom spline, a curve passing through the vertices with first- 

order continuity. 

Because the intersection procedures operate on the piecewise polynomial 
description of the splines, the input is converted into a linear list of segments, 
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Fig. 1. Objects generated by performing translational,  rotational, and conic sweeping on the  
same contour. 

each defining a piece of the curve. A segment contains 

- - the  degree of the two polynomials u(s) and v(s), 1 or 3; 
- - the coefficients of u(s) and v(s); 
- -a  rectangle (Umin, U~x, Vml,, Vmax), enclosing the relevant piece of the curve. 

The curve itself is defined by the set of points (u(s), v(s)) with 0 _< s < 1. An 
object does not contain a description of the contour, but a pointer to the first 
element, which enables several objects (with different M's) to point to the same 
contour, resulting in considerable savings in memory for regular patterns of 
objects. 

Just as it is possible to give a global description of a sweep-defined object, so 
is it equally possible to give a general outline of the intersection algorithm. The 
algorithm consists of the following steps: 

--transform the ray to local coordinates; 
--project the ray on the local (u, v) contour plane; 
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Fig. 2. T rans l a t iona l  sweeping. 

- -ca lcula te  the intersections of the projected ray with the contour;  
- -de te rmine ,  if necessary, intersect ions with the base and cap plane; 
- -ca lcula te  normals  at intersect ion points; 
- - t r a n s f o r m  the results back to view coordinates.  

In the following sections, this algori thm is elaborated for each type of object. 

3. TRANSLATIONAL SWEEPS 

The  local geometry of an object defined by t ranslat ional  sweeping is shown in 
Figure 2. It  consists of three  parts: 

- - a  base plane, consisting of the points  inside the contour,  with the u- and v- 
axis coinciding with the x- and y-axis, and z = 0; 

- - a  cap plane, defined similarly, but  with z = 1; 
- - t h e  side planes of the object. 

A t ransformed ray is defined by the vector equat ion 

[rx, ry, rz] = [o~, oy, oz] + [dx, dy, dz]t. (1) 

Determinat ion  of the intersect ions of this ray with the object is done as follows. 
First, the intersect ion values tl and t2 of the ray with the planes z = 0 and z = 1 
are calculated from 

Oz Oz 
t = - - -  t = l - - -  

dz' dz" 

These  values are stored in increasing order in an array IP of intersect ion points.  
We denote the smaller value by tmi, and the larger by t . . . .  Kajiya [7] proposes 
an inside contour test  to check whether  these points  are valid intersect ion points.  
This  test, however, can be omitted, as is shown later. 

In the next  step, the intersect ion points  with the side planes are determined 
by processing the segments tha t  occur in the list. 
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Fig. 3. Rectangle test  applied for t ranslat ional  
and conic sweeping. 
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The  projection of the ray on the (u, v)-plane is 

dyu - d=v + d=oy - dyox = 0. (2) 

First, a simple rectangle test  is carried out to determine whether  this ray 
intersects a segment. Denot ing the lef t -hand side of (2) by P(u, v), then  if dxdy > 
0, intersection occurs if P(umin, Vmax) and P(u . . . .  Vmin) have different  signs. If  
d:dy < 0, intersection occurs if P(umi,, Vmin) and P(u . . . .  Vmax) have different signs 
(Figure 3). When  intersection occurs, the polynomials u(s) and v(s) of the segment 
are subst i tuted in (2), result ing in a polynomial  in s. Because the maximum 
degree of this polynomial  is 3, the roots can be found analytically. Coincident 
roots - -cor responding  with the ray touching the ob jec t - -can  be ignored. For each 
root So satisfying 0 _< So < 1, 

U(So) - ox 
t -  

dx 

is inserted into its proper  ordered position in the array of intersection points 
provided tha t  t > tm~. 

After each segment has been tested in this way, a sorted array of n intersection 
points is obtained. We denote the position of tm,x in the array with imax. For  
simplicity, in the remainder  of this section tmax is assumed to be the intersection 
point  with the plane z = 0. Selection of the valid intersection points is done with 
the following algorithm: 

- - i f  odd(n - imax) 
then n := i~a~ {delete intersections beyond plane z = 0} 
else n := i~.~ - 1; {delete intersection with plane z = 0 and} 

{intersections beyond it} 
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u(z=l) v(z=l) Fig. 4. Conic sweeping. 

x Y 

- - i f  odd(u) 
then 
begin n :-- n - 1; 

for i :-- 1 to n do IP[i] := IP[i + 1] 
end {delete intersection with z -- 11 

This  algori thm is based on the fact tha t  the spaces defined by z _ 0, z _ 1, and 
the area within the (extended) side planes can be viewed as half  spaces. The  
object itself can then  be viewed as the intersect ion of these three half  spaces. If 
the number  of intersections of the ray with the side planes beyond tmax is odd, 
then  the intersect ion point  with the plane z = 0 is inside the half  space of the 
side planes and thus a valid point.  If  this is so, the base point  has to be omitted. 
The  first point  is t rea ted  slightly differently. If  the resulting number  of intersec- 
t ion points  is odd, then  it is deleted. 

There  are two cases for which the preceding method  breaks down: dx -- 0 and 
dy = 0 (top view), and dz = 0 (side view). A practical  solution is to give these 
parameters ,  if necessary, a very small absolute value and process them fur ther  in 
the s tandard  way. 

Calculation of the local normals  [nx, ny, nz] at  the intersection points is trivial. 
For  points on the side planes, the corresponding root  So and the differentials of 
the polynomials u(s) and v(s) are used: 

= [-dv(so) du(so) ] 
[nx, ny, nz] [ ds  ' ds , 0  . 

4. CONIC SWEEPING 

With  t ranslat ional  sweeping, the size of the contour  is cons tant  as it is swept 
parallel to the z-axis. An obvious extension of the simple t rans la t ion sweep is to 
combine scaling of the contour,  for example,  by mult iplying the x- and y- 
coordinates by z, with t ranslat ion.  This  is the basic idea of conic sweeping. Figure 
4 shows an object resulting from a conic sweep. It  consists of two parts: the cap 
plane, defined as for t ransla t ional  sweeping, and the side planes. Th e  local 
contour  axis frame (u, v) is a funct ion of z. The  posit ion of a point  [x, y, z] on a 
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X ~ - Z U .  

Ray Tracing Objects • 229 

(3) 

(4) 

Equat ion (3) means  tha t  the point  is moved toward the z-axis, while (4) gives 
the scale factor z. 

If  we define a ray as in (1) and substi tute it in (3), we get 

Wri t ing t explicitly yields 

v(dx t  + Ox) = u(dy t  + oy). 

t - oyu - o , v  (5) 
dxv  - d y u "  

Subst i tut ing (1) in (4), we find 

o, + d , t  = (oz + dzt)u.  

Subst i tut ion of  (5) into the above yields (6) 

(oydz - ozdy)u - (o ,d,  - ozd=)v + (oxd, - oyd=) = 0. (6) 

Thus,  the projected ray can be wri t ten as a linear equat ion in u and v, which can 
be processed in the same way as for t ranslat ional  sweep. Calculation of t can be 
done with (5). T r e a t m e n t  of the cap plane is simpler than  for t ranslat ional  
sweeping. Only points  satisfying tmi, -< t < tm,x (with tml, and tm,x as defined in 
Section 3) are stored in the intersection point  array. I f  the total  number  of 
intersection points is odd, then  the cap plane point  is included. 

Calculation of the normals  is somewhat  more complex than  for t ranslat ional  
sweep (Figure 5). First, [n,, %, nz] is calculated as in Section 3 and normalized. 
Next,  n, is determined via 

with the sign changed if 

nz = -(u2(so) + v2(so)) 1/2 

nxU(So) + nyv(so)  < O. 

Figure 5 shows tha t  this ensures tha t  al (angle between the ruler on side and 
z-axis) is identical to angle a2 {tilt of  the normal  with respect to the plane z = 0). 

5. ROTATIONAL SWEEPING 

The  last type to be discussed is rotat ional  sweeping, i l lustrated in Figure 6. The  
local v-axis is coincident with the z-axis, while the u-axis rotates in the X O Y -  
plane. The  problem now is to project  a ray, as defined in (1), onto the (u, v)- 
plane. Consider the (u, v)-plane when the angle between u- and x-axis has a 
certain value 0. Wha t  do we know about  the intersection point  [x, y, z] of the ray 
with the (u, v)-plane? First, since v = z, then  

0 - -  Oz 
t - - -  (7) 

dz 

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984. 



230 Jarke J. van Wijk 

z 

\ 

nz 

x 
z 

x y 

n 

Fig. 5. Calculat ion of the  normal  for conic sweeping. 
In the  case shown  right,  t he  sign of nz  is changed.  

Fig. 6. Rota t iona l  sweeping. 

J x  y--~ 

Further ,  the  d i s tance  o f  the  p o i n t  [x, y ,  z] from the  z -ax i s  is u, so 

U 2 ~- X 2 -4- y2 or u = (ox + dxt) 2 + (oy + dyt) 2. 

S u b s t i t u t i o n  of  (7) in to  (8) yields 
a v  2 + b y  + c - d u  2 - -  0 
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Fig. 7. Projected ray for rotational sweep- 
ing, with several rectangles. Numbers in 
rectangles refer to the algorithm in Sect. 5, 
thick edges and dotted vertices denote tested 
items. 

hv 
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with 

a = d~ + d~, 

b = 2(-Oza + dz(dxo, + dyoy)), 

c = (d~oz - d~o , )  2 + (dyoz  - dzoy)  2, 

d = d~. 

Again, an equation in u and v, now of second degree, is obtained. Substitution 
of the two spline polynomials of a segment yields an equation of sixth degree, 
which has to be solved numerically. In this implementation the method of 
Laguerre [8] is used, together with synthetic division to decrease the degree of 
the polynomial when roots are found. Characteristics of the Laguerre method are 
stability, fast convergence, and location of all roots, real and complex. The first 
two properties led to its implementation here. 

To bypass unnecessary determinations of and working with sixth-degree poly- 
nomials, we use a simple rectangle test, requiring in the worst case ten multipli- 
cations and six additions. Equation (9) defines a hyperbola. We need only consider 
u _ 0, since the computation is simplified by restricting u to nonnegative values. 
The base point (h,, ho) of the hyperbola is given by 

- b  
ho ~ - - .  

2a 

Figure 7 shows the geometry of the projected ray, along with a number of relative 
positions of the rectangle. The test applied, assuming that  the values for a, b, c, 
d, ha, and hv are defined, is then 

Function Outrect: boolean; 
{Outrect is true if the rectangle (Umin, U . . . .  /-)rain, Vmax)} 
lis not intersected by the projected ray with} 
{equationa* v .  v + b *  v + c - d *  u .  u=0} 
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Function Inshyp(u, v : real) : boolean; 
{Inshyp is true, if the point with coordinates} 
I(u, v) lies inside the hyperbola} 

begin  
I n s h y p : = ( a * v + b ) * v + c - d * u * u < 0  

end; 
begin  

if  um.x < h. then Outrect := true {case 1} 
else 
if  vmi. > hv then 
begin  

if  Inshyp(u . . . .  Vmi.) then  
begin  

if  umi. > h. 
then  Outrect := Inshyp(umin, v~.x) {case 2, 3} 
else Outrect := false {case 4} 

end else Outrect := true {case 5} 
end else 
begin  

if  V~.x < hv then 
begin  

if  Inshyp(u . . . .  Vm.x) then  
begin  

if  umi. > h. 
then  Outrect := Inshyp(umi., v=i.) {case 6, 7} 
else Outrect := false {case 8} 

end else Outrect := true {case 9} 
end else 
if  Inshyp(umi., vmi.) 
then  Outrect := Inshyp(umi., vm..) {case 10, 11} 
else Outrect := false {case 12} 

end 
end; 

I f  an  intersect ion point  is found, the  resul t ing value of t is given by (7). T h e  
normal  on the surface can then  be de te rmined  as follows. First ,  the normal  lies 
in the  plane th rough  the z-axis and  the  intersect ion point ,  so we can s ta te  for 
the project ion of the  normal  on the plane z = 0: 

nx = ox + d~t, ny = oy + dyt. 

To de termine  nz, we first  calculate a normal  on the  contour:  

- d ( v ( s o )  ) d(u(so)  ) 
n .  - ds  ' no - ds  

T h e  z -componen t  of  the  normal  follows then  f rom 

nz no 
(n~ + @)1/2 n u '  

This  is i l lustrated in Figure 8. 

6. RESULTS 

o r  n z  = 
(n~ + n~)l/2no 

nu 

The  rout ines  for input  and  intersect ion calculat ion for sweep defined objects are 
embedded  in an exper imenta l  package for solid modeling. The  package was 
developed at  the Delft  Univers i ty  of  Technology and  is based on Roth  [9]. I t  can 
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Fig. 8. 
sweeping. 

Calculat ion of no rma l  for rotat ional  
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Fig. 9. Control  knob. 
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Fig. 10. Countersink bore. 

thus be described as a solid modeler working with a CSG representation which 
is evaluated by ray casting. Instances implemented are cube, sphere, cylinder, 
cone, and torus, to which the sweep defined objects are a considerable extension. 
The first application of the modeler was the generation of shaded pictures. The 
luminance model is similar to the one described by Whitted [12], and supports 
features like specular and mirroring reflection, cast shadows, and transparency. 

The package is written in Pascal and runs on a DEC PDP 11/44 under RSX- 
l lM.  The graphics device used is a Grinnell GMR 270 image processing display 
system with a 512 x 512 x 8 frame buffer. The pictures shown in this paper were 
taken directly from its screen. 

Figure 9 shows a control knob. It was modeled by taking the intersection of a 
rotational and a translational sweep. The red mark was made by subtracting a 
small sphere. Figure 10 shows a countersink bore, modeled by intersecting a cone 
and a conical sweep. Three light sources, cast shadows, and mirroring reflection 
were used. Figure 11 shows a glass, modeled by rotational sweeping. 
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Fig. l l .  Glass. 

7. DISCUSSION AND FURTHER WORK 

A method is presented for calculating the intersection of a ray with a object 
defined by sweeping a cubic spline contour. At present we cannot determine 
whether the method of using splines is more efficient than one using strip trees 
[7]. It does require fewer evaluations for a contour, but the calculations involved 
per evaluation are more complex. 

We think the method described in this paper has advantages over conversion 
into patches or polygons. For instance, an object defined by rotational sweep 
requests a very large number of polygons if smooth shading is required. By using 
patches, fewer items are needed, but a single patch requires more complex 
processing than a section of a contour. 

We have shown that by representing a three-dimensional ray by an equation 
in two variables, efficient rectangle tests can be developed that exploit the 
halfspace nature of these equations. 

Further work falls naturally into parts: improvement of the algorithms pre- 
sented and extensions to the range of objects that can be described. 
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The main area in which improvements can be expected is in the solution of 
the two-dimensional intersection problem for rotational sweeps. A variety of 
ways to solve the resulting equation can be implemented. We used the method 
of Laguerre, which, in general, yielded satisfactory results in terms of the number 
of iterations required and of stability. The synthetic division step, however, as 
we could have expected, turned out to be very sensitive to round-off error. The 
ability of the Laguerre method to find all real and complex roots is not relevant 
here, since we are only interested in real roots in the interval [0, 1]. The method 
used by Hanrahan [5] can search for real roots in a limited interval, and it would 
appear, therefore, to be a better choice. Another possibility is not to substitute 
the polynomials u(s) and v(s) in eq. (9), but to use the subdivision method of 
Catmull [3] for each piece of the contour, along with an efficient rectangle test. 
Future research is needed to determine which technique, in general, is the most 
efficient. 

Other sweep-defined objects that can be handled by the methods described in 
this paper can arise from generalizations of conic sweeping. Instead of both the 
x- and y-coordinates being scaled, each coordinate can be separately scaled by 
separate general functions of z. However, to find meaningful applications for the 
use of these kind of shapes will be harder then the development of the necessary 
algorithms. 

General sweeping, that is, sweeping a contour along an arbitrary trajectory in 
three-dimensional space, would be an obviously useful extension. The line-object 
intersection problem has been solved for objects defined by sweeping a sphere as 
a partial advance in this direction [11]. The method involves the solution of a 
10-degree polynomial when the trajectory is a cubic spline. 
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