
A Hardware Acceleration Method for Volumetric Ray Tracing

Lisa M. Sobierajski and Ricardo S. Avila

GE Corporate Research & Development
Schenectady, New York 12345

Abstract
In this paper we present an acceleration method for

volumetric ray tracing which utilizes standard graphics
hardware without compromising image accuracy. The
graphics hardware is employed to ident@ those segments
of each ray that could possibly contribute to the jinal
image. A volumetric ray tracing algorithm is then used to
compute the$nal image, traversing only the identi$ed seg-
ments of the rays. This technique can be used to render
volumetric isosurfaces as well as translucent volumes. In
addition, this method can accelerate the traversal of
shadow rays when performing recursive ray tracing.

1. Introduction
The ability to render large volumetric data sets

quickly is an essential requirement in many engineering
and scientific applications. This is a challenging demand,
since the scientific user is typically unwilling to sacrifice
the accuracy of the final image in order to decrease projec-
tion times.

One way to improve rendering performance is to take
advantage of the graphics hardware supported by most
workstations. Current workstations typically offer hard-
ware methods for rendering geometric primitives, with
depth buffering employed for hidden surface removal.
This hardware can be used directly to render a set of geo-
metric primitives that approximate the volume. Although
there are many rendering algorithms that directly employ
graphics hardware, none of these methods can be used to
generate accurate images of both volumetric isosurfaces
and translucent volumetric data. The marching cubes tech-
nique [8] can be used effectively to render volumetric iso-
surfaces, but cannot adequately represent an amorphous
object. A cell projection method [13] or a polygonal splat-
ting technique [6] can be used to capture translucent volu-
metric data, but the resulting images are often
unacceptable when sharp deta,ils are desired.

In contrast to hardware projection algorithms, a volu-
metric ray tracing algorithm is generally slower, but much
more accurate and flexible [9]. For example, the value

returned by a ray-volume intersection may represent an
isosurface intersection location, an accumulated color and
opacity value, or the maximum value encountered along
the ray. In addition, a ray tracing algorithm can be used to
include global effects such as shadows and reflections in
the final image.

The rendering method presented in this paper
employs graphics hardware to accelerate volumetric ray
tracing. An approximation of the volumetric data is pro-
jected using the graphics hardware, and the information
stored in the color and depth buffers is used to reduce the
amount of time required for a ray-volume intersection cal-
culation. These rendering improvements are obtained by
avoiding intersection calculations in regions of the volume
that could not contribute to the final image. A classifica-
tion of volume regions is given in Section 2. An algorithm
that accelerates ray tracing with a depth buffer projection
is described in Section 3. In Section 4, a color buffer ver-
sion of this algorithm that improves rendering times for
translucent projections is presented. These acceleration
methods can also be used to reduce the time required to
cast shadow rays in a ray tracing algorithm, as described in
Section 5. The results of this technique are given in Sec-
tion 6. Finally, some conclusions and future work are dis-
cussed in Section 7.

2. Cell Classification
A volume is a 3D rectilinear array of scalar values

that define some property, such as density or temperature,
at discrete grid locations. An interpolation function is
employed to define scalar values between grid locations in
order to produce a scalar field. We have chosen to use tri-
linear interpolation for the work presented in this paper.
However, the acceleration algorithms readily extend to
handle other interpolation functions such as zero-order
(nearest-neighbor) interpolation or tricubic interpolation.

Consider the example ray in Figure 1 where a ray is
cast through a volume and ray-isosurface intersection cal-
culations are being performed along the ray. The cells
encountered along the ray are shown as small cubes where
the data samples that the define the scalar field within the

(See color plates, page CP-5)

27
1070-2385/95 $4.00 0 1995 IEEE

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

cube are located at the eight vertices. The isosurface
threshold value can be used to classify all cells in the vol-
ume as either “empty” cells, or “possibly contributing”
cells. An empty cell is one where all eight vertices are
either above or below the isosurface value, and therefore
the surface does not pass through this cell. A possibly con-
tributing cell is one that does contain the surface. For a
specific ray, as shown in Figure 1, the possibly contribut-
ing cells can be further classified as either “non-contribut-
ing” or “contributing”. The non-contributing cells, shown
in light grey, indicate that a surface does pass through the
cell, but the ray does not actually intersect that surface.
The contributing cells, shown in dark grey, contain a sur-
face that the ray does intersect.

These cell classifications are also valid for volume
rendering techniques where, for example, an accumulated
color and opacity value is calculated instead of an isosur-
face intersection value. In this case, the empty cells con-
tain only scalar values with zero opacity according to the
opacity transfer function, while the possibly contributing
cells contain scalar values with non-zero opacity. For a
given ray, the contributing cells are those in which the ray
encounters scalar values with non-zero opacity. The non-
contributing cells are those which contain non-zero opac-
ity values, but the ray does not encounter these values.

either contrihu
empty Cj).

tion of cells along a ray as
non-contributing (a), or

The standard ray casting method considers all cells
along a ray when searching for an isostiace intersection
or accumulating color and opacity. The ideal ray caster
would look only at the contributing cells to determine the
final ray value. Unfortunately, the determination of
whether a cell is contributing is dependent on the scalar
values, the isosurface threshold value or opacity transfer
functions, and the ray. Since the ray is typically different
for every ray cast, it is difficult to know for a given ray
which cells are contributing.

Alternatively, the determination of whether a cell is
possibly contributing is independent of the ray direction.

Considering only the possibly contributing cells is equiva-
lent to skipping the empty cells. There are various algo-
rithms for quickly stepping through the empty cells. A
hierarchical representation of the data could be con-
structed [6], and a ray traversal algorithm could be used to
step through the cells at various levels. Unfortunately, for
noisy data such as that acquired from confocal micros-
copy, the time required to move between levels in the hier-
archy is sometimes greater than the time saved by the
larger steps taken at the higher levels of the hierarchy.
Another possibility is to construct a distance volume,
where each cell contains the distance to the nearest possi-
bly contributing cell [lo, 141. This method requires a sig-
nificant amount of additional memory to store distance
values, and the time required to build the distance volume
may be prohibitively slow for interactively modifying the
isosurface threshold value or opacity transfer functions.
Algorithms that employ an object-order technique [4, 61
can compress the volume to remove empty cells, but can-
not easily produce an accurate rendering of multiple over-
lapping volumes.

The goal of the work presented in this paper was to
develop an algorithm that reduces the time required to cast
a ray by avoiding empty cells. This algorithm can render
volumetric isosurfaces as well as translucent volume data
with no loss in image quality over standard ray casting. In
addition, multiple overlapping volumes can be easily ren-
dered.

3. Depth Buffer PARC
In Polygon Assisted Ray Casting, known as PARC,

graphics hardware is used to determine the distance to the
closest and farthest possibly contributing cell along each
ray [l]. These distance values can be quickly obtained by
projecting a simple polygonal model of the possibly con-
tributing cells into standard zbuffer hardware.

The polygonal model consists of the rectangular poly-
gons representing the “outer” faces of the possibly con-
tributing cells. The outer faces are those that are shared
beiween a possibly contributing cell and an empty cell.
The polygonal model is projected first into a “near”
zbuffer using the standard “less than” operator to capture
the closest distance information, and then into a “far”
zbuffer using a “greater than” operator to capture the far-
thest distance information. If a greater than operator is
unavailable for zbuffering, the viewing matrix can be
modified to produce inverted depth values.

Once the nearest and farthest distances have been
computed for a ray, a cell stepping algorithm is used to
evaluate the contribution of each cell between the bound-
ing distances, as in the 2D example of an isosurface inter-
section shown in Figure 2.

28

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

Far Distance 4

Viewing/Ray Nei Distance lso&face
Figure 2: The near and far zbuffers contain the closest
and farthest distance to a possibly contributing cell
along a viewing ray.

Isosurface intersection calculations are done on a cell-
by-cell basis along the ray, while samples are taken at uni-
form intervals along the ray for accumulation techniques.
Early ray termination is possible, for example, when an
isosurface intersection is detected, or the opacity along the
ray reaches unity. If early ray termination does not occur,
ray traversal ends at the far distance. In the special case
where the eye point is located within a possibly contribut-
ing cell, the stepping algorithm must start from the view-
ing plane and can terminate at the farthest distance. The
PARC ray tracing method is summarized in the algorithm
shown in Figure 3.

o Create a set of near and far buffers for each visi-
ble volume

o For each pixel in the image do:
o For each visible volume do:

O Obtain near and far distances for the ray
from the set of buffers for that volume

O If near value is less than far value:
O Cast the ray segment

O If any contributing cells are encountered along
any ray segments:

O Shade the ray segments to get pixel color

I I

Figure 3: The PARC ray tracing algorithm.

Decoupling the ray casting and the shading processes
allows for multiple overlapping volumes, even if the vol-
umes require different ray casting functions [9]. For exam-
ple, a volumetric isosurface could intersect with a
translucent volume. A standard ray tracing illumination
equation is used for surface intersections [12], while a
transport theory model is employed for rendering translu-
cent data [3].

For large volumetric data sets, the number of geomet-
ric primitives in the simple polygon model often produces
high hardware projection times that eliminate the savings
gained during ray stepping. To reduce the number of poly-
gons in the model, an m X y1 X p group of neighboring
cells can be considered one “supercell”. The interpolation
function can be employed to generate supercells with non-
integer m, 12, and p. A supercell is possibly contributing if
it contains any possibly contributing cells, otherwise it is
considered to be empty. The polygonal model is then cre-
ated for the possibly contributing supercells, resulting in
fewer geometric primitives, but generally longer ray seg-
ments between the near and far distances. Figure 4 shows
the same example as in Figure 2, except that a supercell
size of 3 X 2 was employed.

Far Distance

Viewing/Ray Ne& Distance lso&face
Figure 4: A 3 x 2 supercell is used to determine the
near and far distances, resulting in less geometric
primitives but longer ray segments than the example
shown in Figure 2.

For small volumetric data sets, “subcells” can be cre-
ated by sub-sampling the volume. This results in more
geometric primitives and generally shorter ray segments.
In general, the closer the polygonal model comes to accu-
rately representing the possibly contributing regions of the
volume, the higher the ratio of contributing to non-contrib-
uting segments along the ray, as can be noted by compar-
ing Figure 2 with Figure 4. Therefore a reduction in ray
casting speed can typically be obtained at the cost of
higher polygon projection times. The optimal number of
geometric primitives mainly depends on the relative per-
formance of hardware polygon projection versus software
cell processing.

In theory, the PARC algorithm as described above
will produce images identical to those produced by stan-
dard ray casting. In practice, allowances must be made for
the inaccuracies found in hardware polygon scan-conver-
sion to achieve the identical image. This can be accom-
plished by small changes to the position and size of the
polygon to ensure that:

29

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

ZS I Zi for all near buffer pixels, and

zS 2 Zi for all far buffer pixels,

where ZS is the scan-converted depth value, and zi is the

ideal depth value for a pixel.

4. Color Buffer PARC
The depth buffer PARC algorithm described in the

previous section can be used to skip over the initial empty
cells when performing volume rendering. This technique
works well when rendering a volumetric isosurface, since
the contributing cell with the actual intersection location is
typically encountered at, or shortly after, the first possibly
contributing cell. However, when performing a color and
opacity accumulation method along the ray, the opacity
does not typically reach unity at the first contributing cell.
In fact, all contributing cells along the ray are often con-
sidered when computing the final ray accumulation value.
This is also true of other ray-object intersection functions
such as maximum value and average value calculations.
Therefore, volumetric ray tracing would often benefit from
the ability to skip over the empty cells that occur between
the first and last possibly contributing cell. This capability
can be achieved by making a modification to the PARC
algorithm.

Instead of projecting the outer faces of the possibly
contributing cells into a zbuffer, a polygonal model for the
possibly contributing cells is projected into me color
buffer. Rendering is performed so that the resulting bits for
each pixel in the color buffer represent segments along the
ray passing through that pixel. The value of each bit deter-
mines whether the corresponding ray segment encounters
any possibly contributing cells. Using this information,
intersection or sampling calculations can be avoided on
the empty segments of the ray.

In order to obtain this color buffer, the possibly con-
tributing cells are assigned color values according to their
distance along the major viewing axis, as shown in Figure
5. The major viewing axis is the positive or negative axis
of the volume that is most closely aligned with the view-
ing direction. For each plane i, 0 S i < N, along the
major viewing direction, the color value of the possibly

contributing cells in that plane is 2’ . To reduce the num-
ber of color values required, the first plane along the major
viewing direction that contains at least one possibly con-
tributing cell is considered plane 0.

The outer faces of the possibly contributing cells, and
the faces that are shared by two possibly contributing cells
of different color values, are projected without shading or
depth buffering according to the currently defined viewing

Figure 5: The color of a cell is determined by its dis-
tance along the major direction. The example colors
given here are valid when 2 is the major axis.
matrix. During projection, a bitwise OR operation is
employed on the value currently stored in a pixel and the
value being written to the pixel to determine the final pixel
value. Only P planes of cells can be projected at once,
where P is the number of color bits available for display
on a workstation. After each set of P planes has been pro-
jected, the bits from the color buffer are saved. When all
cells have been projected, the bits that are set in each pixel
indicate the possibly contributing cells encountered along
the ray that passes through that pixel, as shown in Figure
6.

Each bit in a color buffer pixel represents the segment
of the ray passing through the corresponding plane of
cells. The ray may pass through either one or two cells in a
plane, and the corresponding bit is set to 1 if either cell is
possibly contributing, otherwise the bit is set to 0. The ray
stepping algorithm is modified to avoid sampling the
planes that have a bit value of 0. Additional speedups are
achieved by considering the pixel value one byte at a time,
and examining the actual bits only for non-zero bytes.

When supercells are projected to obtain the color
buffer values, this method is analogous to a hierarchical
method with three levels. The lowest level is the original
data, the middle level is represented by the pixel bits, and
the highest level is represented by the bytes. This hard-
ware acceleration method provides an approximate list of
elements pierced by the ray at the two higher levels of the
hierarchy. The list is approximate since two pierced super-
cells in one plane are represented by one value in the list.
The time spent acquiring samples in empty cells in the tra-
versal list is overshadowed by the time saved due to the
hardware generation of the list.

As in the depth buffer PARC algorithm, special con-
siderations must be made when the eye point is inside a
possibly contributing cell. In this case, each viewing ray
must start at the viewing plane. After the ray steps beyond
the plane containing this initial cell, the algorithm utilizes
the projected color bits to step along the ray as before.

30

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

Near and Far Plane
Value:

I
Pixel Value

Color:
Binary: 00111110010100

Figure 6: The color buffer values for a pixel represent
the possibly contributing cells encountered along the
ray passing through that pixel.

5. Shadow Rays
The depth buffer PARC method described in Section

3, and the color buffer version described in Section 4 can
also be employed to accelerate shadow rays in a volumet-
ric ray tracing method. For each point light source in the
scene, the light position is treated as an eye point, and
either a color buffer, or near and far zbuffers are created
for each object using a perspective viewing matrix. The
viewing direction is defined by the vector from the light
source to the center of the object. Eight vectors are defined
that point from the light source to the eight vertices of the
bounding box of the object, and the field of view for the
perspective projection is twice the maximum angle
between the viewing ray and each of the eight vectors. If a
field of view is computed to be greater than 90 degrees,
then multiple projections are taken, each with a field of
view that is less than or equal to 90 degrees. In the worst
case the light source is located within the object, and six
projections are required. Figure 7 shows an example of the
buffers created for a point light source and an object using
depth buffer PARC. For each directional light source in the
scene, the light direction is considered the viewing direc-
tion, and a parallel viewing matrix is employed to generate
the PARC buffers for each object. The position, width, and
height of the viewing plane used for rendering is deter-
mined by the projected locations of the eight bounding
vertices of the object onto the viewing plane.

In this shadow ray method, the width and height in
pixels of the PARC buffers is arbitrary. All buffers could
be set to a constant size, or the size of the buffers could
vary depending upon the size of the object and distance to
the light source.

8 dv Polygoh Model of
pe;;ibly Contributing

Point Light Source
Figure 7: Near and far PARC buffers are created by
viewing the volume from the light source.

When a shadow ray is cast to a light during ray trac-
ing, the information stored in the PARC buffers for that
light is employed in a manner similar to the PARC buffers
for primary rays. The difference is that a shadow ray is not
necessarily represented exactly by a pixel in the light
PARC buffers. Therefore, the intersection of the ray with
each of the PARC buffers for that light is determined. For
each intersection, the values stored at the four neighboring
pixels are merged to form one PARC value. For depth
buffer PARC, this requires selecting the minimum near
value, and the maximum far value found in the four pixels.
For color buffer PARC, this involves applying a bitwise
OR operation to the values found in the four pixels. In
addition, the values found in the PARC buffers for a light
source must be inverted to account for the fact that the
shadow rays are cast in the opposite direction of the view-
ing rays used to create the buffers.

6. Results
The algorithms described in this paper were imple-

mented within the VolVis volume visualization system [l,
21. Great care was taken to ensure that these algorithms
support multiple overlapping volumes, perspective and
parallel projections, analytic intersection calculations, and
many other VolVis capabilities. As a result, some of the
possible rendering speedups have been sacrificed in order
to retain high functionality.

The results were obtained on a Silicon Graphics
Indigo2 Extreme with a 2OOMHz R4400 processor, 24 bit
color buffer, 24 bit zbuffer, and 64MB of RAM. Since a
double buffered visual was employed for the rendering
window, color buffer information was captured eight bits
at a time. The timing information is in seconds of wall
time.

31

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

Figure 8: A volume rendered image of an LGN cell
using a color and opacity accumulation method.

Figure 9: A polygonal model used to obtain depth buff-
ers for the LGN cell.

Figure 8 shows an example data set where color
buffer PARC performs better than depth buffer PARC for
images generated using a color and opacity accumulation
method. This lateral geniculate nucleus (LGN) data was
obtained at a resolution of 384x256x195 using a confocal
microscope. After applying the opacity transfer function,
93.5% of the cells were empty. The standard ray tracing
method required 110.33 seconds to generate a 300x300
image. The depth buffer PARC method reduced this time
to 60.64 seconds. The polygonal model used to generate
the depth buffers is shown in Figure 9. This model con-
tains approximately 38,000 polygons. The color buffer
PARC method reduced the image time to 23.88 seconds,
using a color buffer with 8 bytes. The color buffer shown
in Figure 10 is 3 bytes deep for illustration purposes. The
additional reduction in rendering time over the depth
buffer PARC method was gained by skipping empty seg-
ments between samples.

Statistics for the images shown in Figures 11-13 are
given in Tables I-3. The image represented by the data in
the fourth row of each table is the image shown in the cor-

Figure 10: A color buffer used to accelerate volume
rendering of the LGN cell.

responding Figure, although except for pixel size, all four
images in each table are identical. Statistics for the data
sets are given in Table 4. This information includes the
number of data samples and the size of the volume in
units. Also given are the size of the supercells in data sam-
ples, and the percentage of supercells that were classified
as possibly contributing.

Figure 11 contains a CT scan of a frozen human foot
from the Visible Human Project [5] which was rendered
using an opacity and color accumulation method. In Table
1, the PARC version is given in the first column, where
“None” indicates standard ray tracing. The image size is
indicated in the second column. Two different image reso-
lutions were used to show that both standard ray tracing
and PARC scale according to image size. The third col-
umn contains the number of samples taken along all rays,
while the fourth column indicates the time to take these
samples. This time includes the time required to project
the polygonal model for the PARC methods. Samples
were takes every 0.25 units, where the unit size of the data
set was 144~247.9~220, as shown in Table 4. Finally, the
fifth column indicates the total image generation time.
This is essentially the ray casting time plus the ray shading
time. The color buffer PARC algorithm performed almost
9 times better than the standard ray tracing algorithm.

Figure 12 contains two data sets obtained from simu-
lation, representing the positive and negative wave func-
tion values in a high potential iron protein. The positive
wave function values are rendered as a volumetric isosur-
face while the negative wave function values are rendered
using a color and opacity accumulation method. The
depth buffer PARC method was used to accelerate the iso-
surface, while the color buffer PARC method was used to
accelerate the translucent data. The statistics for this
image are shown in Table 2, where the first two columns
again indicate the PARC method and the image resolution.
The third column indicates the number of cells that were

32

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

Figure 11: A translucent rendering of a human foot.

considered for intersection calculations, while the fourth
column contains the number of samples taken during the
accumulation method. Again, samples were takes at 0.25
unit intervals. The fifth column contains the time required
to cast all rays, while the sixth column indicates the total
time for a shaded image. In this case, the combined color
and depth buffer PARC performed more than 5.6 times
faster than the standard ray tracing method.

Figure 13 shows a hippocampal pyramidal neuron
casting two shadows on a volumetric floor. The cell was
obtained using confocal microscopy, while the floor was
voxelized from a geometric description [ll]. Depth buffer
PARC was used to accelerate both the primary rays and
the shadow rays. The statistics for the image are given in
Table 3, where the first two columns indicate PARC ver-
sion and image size. The third column contains the num-
ber of cells considered for intersection during primary ray
calculations, the fourth column indicates the time required
to cast the primary rays, and the fifth column shows the
time required to generate a shaded image with only pri-
mary rays. In the sixth column, the number of cells con-
sidered for intersection during shadow ray casting is
given, while the seventh column indicates the time
required for the shaded image with shadows. For primary
rays, a 3.5 times increase in rendering performance is
obtained, while shadow ray generation times are improved
by about a factor of 2.

Table 1: Results for Figure 11

PARC
Image Samples Casting Total

Version
Size

(pixels2)
(x 103)

Time Time
6) 6)

None 300 47250 149.12 168.43

Color 1 300 1 3318 1 12.70 1 19.16

None 600 189741 598.50 673.95

Color 600 13285 49.70 75.90

Figure 12: A combined isosurface and translucent ren-
dering of a high potential iron protein.

7. Conclusions
We have developed two projection algorithms that

utilize standard graphics hardware to significantly reduce
volumetric rendering times. The depth buffer version of
PARC is well suited for rendering volumetric isosurfaces
whereas the color buffer version of PARC is better suited
for volume rendering. Both algorithms achieve high
speedups without compromising image accuracy. The
algorithms are general, supporting both parallel and per-
spective projections. In addition, the algorithms can be
used to accelerate shadow rays.

In the future, we intend to investigate several
enhancements to these algorithms. Requiring all elements
(cells, supercells, or subcells) to have the same voxel
dimensions leads to a compact data structure for storing
the elements, but may not lead to an optimal polygonal
model. We are investigating the ability to group variously
sized regions of the volume in order to more closely
approximate the possibly contributing cells with fewer
polygons. In the color buffer PARC method, we are con-
sidering projecting several resolutions of polygonal mod-
els, enabling us to perform a hierarchical ray traversal.
Finally, we are exploring the possibility of projecting addi-
tional information for each possibly contributing cell. For
example, we could also indicate if a cell is homogeneous
which may accelerate the rendering of translucent data.

Table 2: Results for Figure 12

I I I , I

None 1 300 I 5123 1 15094 1 61.01 1 68.95

Color/Depth 300 183 881 8.19 12.12

None 600 20508 60436 242.92 276.02

Color/Depth (600 1 735 I 3341 I 31.99 1 43.55

33

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

Figure 13: A ray traced image of a hippocampal cell
casting two shadows on a volumetric floor.

Acknowledgements
The nerve cell data sets shown in Figures 8 and 13 are

courtesy of Barry Burbach at the Howard Hughes Medical
Institute, Stony Brook, NY. The CT data for Figure 11 is
courtesy of the National Library of Medicine’s Visible
Human Project. The high potential iron protein data set
shown in Figure 12 is courtesy of Scripps Clinic, La Jolla,
CA.

References
1. RX Avila, L.M. Sobierajski, and A.E. Kaufman “Towards

a Comprehensive Volume Visualization System,” Visualiza-
tion ‘92 Proceedings, pp. 13-20 (October 1992).

2. R. Avila, T. He, L. Hong, A. Kaufman, H. Pfister, C. Silva,
L. Sobierajski, and S. Wang, “VolVis: A Diversified Volume
Visualization System,” Visualization ‘94 Proceedings, pp.
31-38 (October 1994).

3. W. Krueger, “The Application of Transport Theory to Visu-
alization of 3D Scalar Data Fields,” Computers in Physics,
pp. 397-406 (July/August 1991).

4. P. Lacroute and M. Levoy, “Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Transformation”,
Computer Graphics (Proc. SIGGRAPH), pp. 451-457 (July
1994).

5.

PARC
Version

None
Depth/

Shadow
None

Depth/
Shadow

Table 3: Results for Figure 13

W. Lorensen, “Marching Through the Visible Man”, Visual-
ization ‘95 Proceedings, (October 1995).

6. D. J-aur and P Hanrahan, “Hierarchical Splatting: A Pro-
gressive Refinement Algorithm for Volume Rendering”,
Computer Graphics (Proc. SIGGRAPH) 25(4), pp. 285-288
(July 1991).

7. M. Levoy, “Display of Surfaces from Volume Data”, IEEE
Computer Graphics & Applications, g(3) pp. 29-37 (May
1988).

8. W.E. Lorensen and H.E. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Computer
Graphics (Proc. SIGGRAPH) 21(4) pp. 163-169 (July
1987).

9. L.M. Sobierajski and A.E. Kaufman, “Volumetric Ray Trac-
ing,” 1994 Symposium on Volume Visualization, pp. 11-18
(October 1994).

10. M. Sramek, “Fast Surface Rendering from Raster Data by
Voxel Traversal Using Chessboard Distance”, Visualization
‘94 Proceedings, pp. 188-195 (October 1994).

11. S.W. Wang and A.E. Kaufman, “Volume Sampled Voxeliza-
tion of Geometric Primitives”, Visualization ‘93 Proceed-
ings, pp. 78-84 (October 1993).

12. T. Whitted, ‘“An Improved Illumination Model for Shaded
Display,” Communications of the ACM 23(6) pp. 343-349
(June 1980).

13. J. Wilhelms and A. Van Gelder, “A Coherent Projection
Approach for Direct Volume Rendering”, Computer Graph-
ics (Proc. SIGGRAPH) 25(4), pp. 275-284 (July 1991).

14. K.J. Zuiderveld, A.H.J. Koning, and M.A. Viergever,
“Acceleration of Ray-Casting Using 3D Distance Trans-
forms”, Visualization and Biomedical Computing Proceed-
ings, pp. 324-335 (October 1992).

Table 4: Volume Data Set Statistics

34

Proceedings of the 6th IEEE Visualization Conference (VISUALIZATION '95)
1070-2385/95 $10.00 © 1995 IEEE

