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Abstract 
In this paper we present an acceleration method for 

volumetric ray tracing which utilizes standard graphics 
hardware without compromising image accuracy. The 
graphics hardware is employed to ident@ those segments 
of each ray that could possibly contribute to the jinal 
image. A volumetric ray tracing algorithm is then used to 
compute the$nal image, traversing only the identi$ed seg- 
ments of the rays. This technique can be used to render 
volumetric isosurfaces as well as translucent volumes. In 
addition, this method can accelerate the traversal of 
shadow rays when performing recursive ray tracing. 

1. Introduction 
The ability to render large volumetric data sets 

quickly is an essential requirement in many engineering 
and scientific applications. This is a challenging demand, 
since the scientific user is typically unwilling to sacrifice 
the accuracy of the final image in order to decrease projec- 
tion times. 

One way to improve rendering performance is to take 
advantage of the graphics hardware supported by most 
workstations. Current workstations typically offer hard- 
ware methods for rendering geometric primitives, with 
depth buffering employed for hidden surface removal. 
This hardware can be used directly to render a set of geo- 
metric primitives that approximate the volume. Although 
there are many rendering algorithms that directly employ 
graphics hardware, none of these methods can be used to 
generate accurate images of both volumetric isosurfaces 
and translucent volumetric data. The marching cubes tech- 
nique [8] can be used effectively to render volumetric iso- 
surfaces, but cannot adequately represent an amorphous 
object. A cell projection method [13] or a polygonal splat- 
ting technique [6] can be used to capture translucent volu- 
metric data, but the resulting images are often 
unacceptable when sharp deta,ils are desired. 

In contrast to hardware projection algorithms, a volu- 
metric ray tracing algorithm is generally slower, but much 
more accurate and flexible [9]. For example, the value 

returned by a ray-volume intersection may represent an 
isosurface intersection location, an accumulated color and 
opacity value, or the maximum value encountered along 
the ray. In addition, a ray tracing algorithm can be used to 
include global effects such as shadows and reflections in 
the final image. 

The rendering method presented in this paper 
employs graphics hardware to accelerate volumetric ray 
tracing. An approximation of the volumetric data is pro- 
jected using the graphics hardware, and the information 
stored in the color and depth buffers is used to reduce the 
amount of time required for a ray-volume intersection cal- 
culation. These rendering improvements are obtained by 
avoiding intersection calculations in regions of the volume 
that could not contribute to the final image. A classifica- 
tion of volume regions is given in Section 2. An algorithm 
that accelerates ray tracing with a depth buffer projection 
is described in Section 3. In Section 4, a color buffer ver- 
sion of this algorithm that improves rendering times for 
translucent projections is presented. These acceleration 
methods can also be used to reduce the time required to 
cast shadow rays in a ray tracing algorithm, as described in 
Section 5. The results of this technique are given in Sec- 
tion 6. Finally, some conclusions and future work are dis- 
cussed in Section 7. 

2. Cell Classification 
A volume is a 3D rectilinear array of scalar values 

that define some property, such as density or temperature, 
at discrete grid locations. An interpolation function is 
employed to define scalar values between grid locations in 
order to produce a scalar field. We have chosen to use tri- 
linear interpolation for the work presented in this paper. 
However, the acceleration algorithms readily extend to 
handle other interpolation functions such as zero-order 
(nearest-neighbor) interpolation or tricubic interpolation. 

Consider the example ray in Figure 1 where a ray is 
cast through a volume and ray-isosurface intersection cal- 
culations are being performed along the ray. The cells 
encountered along the ray are shown as small cubes where 
the data samples that the define the scalar field within the 

(See color plates, page CP-5) 
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cube are located at the eight vertices. The isosurface 
threshold value can be used to classify all cells in the vol- 
ume as either “empty” cells, or “possibly contributing” 
cells. An empty cell is one where all eight vertices are 
either above or below the isosurface value, and therefore 
the surface does not pass through this cell. A possibly con- 
tributing cell is one that does contain the surface. For a 
specific ray, as shown in Figure 1, the possibly contribut- 
ing cells can be further classified as either “non-contribut- 
ing” or “contributing”. The non-contributing cells, shown 
in light grey, indicate that a surface does pass through the 
cell, but the ray does not actually intersect that surface. 
The contributing cells, shown in dark grey, contain a sur- 
face that the ray does intersect. 

These cell classifications are also valid for volume 
rendering techniques where, for example, an accumulated 
color and opacity value is calculated instead of an isosur- 
face intersection value. In this case, the empty cells con- 
tain only scalar values with zero opacity according to the 
opacity transfer function, while the possibly contributing 
cells contain scalar values with non-zero opacity. For a 
given ray, the contributing cells are those in which the ray 
encounters scalar values with non-zero opacity. The non- 
contributing cells are those which contain non-zero opac- 
ity values, but the ray does not encounter these values. 

either contrihu 
empty Cj). 

tion of cells along a ray as 
non-contributing (a), or 

The standard ray casting method considers all cells 
along a ray when searching for an isostiace intersection 
or accumulating color and opacity. The ideal ray caster 
would look only at the contributing cells to determine the 
final ray value. Unfortunately, the determination of 
whether a cell is contributing is dependent on the scalar 
values, the isosurface threshold value or opacity transfer 
functions, and the ray. Since the ray is typically different 
for every ray cast, it is difficult to know for a given ray 
which cells are contributing. 

Alternatively, the determination of whether a cell is 
possibly contributing is independent of the ray direction. 

Considering only the possibly contributing cells is equiva- 
lent to skipping the empty cells. There are various algo- 
rithms for quickly stepping through the empty cells. A 
hierarchical representation of the data could be con- 
structed [6], and a ray traversal algorithm could be used to 
step through the cells at various levels. Unfortunately, for 
noisy data such as that acquired from confocal micros- 
copy, the time required to move between levels in the hier- 
archy is sometimes greater than the time saved by the 
larger steps taken at the higher levels of the hierarchy. 
Another possibility is to construct a distance volume, 
where each cell contains the distance to the nearest possi- 
bly contributing cell [lo, 141. This method requires a sig- 
nificant amount of additional memory to store distance 
values, and the time required to build the distance volume 
may be prohibitively slow for interactively modifying the 
isosurface threshold value or opacity transfer functions. 
Algorithms that employ an object-order technique [4, 61 
can compress the volume to remove empty cells, but can- 
not easily produce an accurate rendering of multiple over- 
lapping volumes. 

The goal of the work presented in this paper was to 
develop an algorithm that reduces the time required to cast 
a ray by avoiding empty cells. This algorithm can render 
volumetric isosurfaces as well as translucent volume data 
with no loss in image quality over standard ray casting. In 
addition, multiple overlapping volumes can be easily ren- 
dered. 

3. Depth Buffer PARC 
In Polygon Assisted Ray Casting, known as PARC, 

graphics hardware is used to determine the distance to the 
closest and farthest possibly contributing cell along each 
ray [l]. These distance values can be quickly obtained by 
projecting a simple polygonal model of the possibly con- 
tributing cells into standard zbuffer hardware. 

The polygonal model consists of the rectangular poly- 
gons representing the “outer” faces of the possibly con- 
tributing cells. The outer faces are those that are shared 
beiween a possibly contributing cell and an empty cell. 
The polygonal model is projected first into a “near” 
zbuffer using the standard “less than” operator to capture 
the closest distance information, and then into a “far” 
zbuffer using a “greater than” operator to capture the far- 
thest distance information. If a greater than operator is 
unavailable for zbuffering, the viewing matrix can be 
modified to produce inverted depth values. 

Once the nearest and farthest distances have been 
computed for a ray, a cell stepping algorithm is used to 
evaluate the contribution of each cell between the bound- 
ing distances, as in the 2D example of an isosurface inter- 
section shown in Figure 2. 
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Far Distance 4 

Viewing/Ray Nei Distance lso&face 
Figure 2: The near and far zbuffers contain the closest 
and farthest distance to a possibly contributing cell 
along a viewing ray. 

Isosurface intersection calculations are done on a cell- 
by-cell basis along the ray, while samples are taken at uni- 
form intervals along the ray for accumulation techniques. 
Early ray termination is possible, for example, when an 
isosurface intersection is detected, or the opacity along the 
ray reaches unity. If early ray termination does not occur, 
ray traversal ends at the far distance. In the special case 
where the eye point is located within a possibly contribut- 
ing cell, the stepping algorithm must start from the view- 
ing plane and can terminate at the farthest distance. The 
PARC ray tracing method is summarized in the algorithm 
shown in Figure 3. 

o Create a set of near and far buffers for each visi- 
ble volume 

o For each pixel in the image do: 
o For each visible volume do: 

O Obtain near and far distances for the ray 
from the set of buffers for that volume 

O If near value is less than far value: 
O Cast the ray segment 

O If any contributing cells are encountered along 
any ray segments: 

O Shade the ray segments to get pixel color 

I I 

Figure 3: The PARC ray tracing algorithm. 

Decoupling the ray casting and the shading processes 
allows for multiple overlapping volumes, even if the vol- 
umes require different ray casting functions [9]. For exam- 
ple, a volumetric isosurface could intersect with a 
translucent volume. A standard ray tracing illumination 
equation is used for surface intersections [12], while a 
transport theory model is employed for rendering translu- 
cent data [3]. 

For large volumetric data sets, the number of geomet- 
ric primitives in the simple polygon model often produces 
high hardware projection times that eliminate the savings 
gained during ray stepping. To reduce the number of poly- 
gons in the model, an m X y1 X p group of neighboring 
cells can be considered one “supercell”. The interpolation 
function can be employed to generate supercells with non- 
integer m, 12, and p. A supercell is possibly contributing if 
it contains any possibly contributing cells, otherwise it is 
considered to be empty. The polygonal model is then cre- 
ated for the possibly contributing supercells, resulting in 
fewer geometric primitives, but generally longer ray seg- 
ments between the near and far distances. Figure 4 shows 
the same example as in Figure 2, except that a supercell 
size of 3 X 2 was employed. 

Far Distance 

Viewing/Ray Ne& Distance lso&face 
Figure 4: A 3 x 2 supercell is used to determine the 
near and far distances, resulting in less geometric 
primitives but longer ray segments than the example 
shown in Figure 2. 

For small volumetric data sets, “subcells” can be cre- 
ated by sub-sampling the volume. This results in more 
geometric primitives and generally shorter ray segments. 
In general, the closer the polygonal model comes to accu- 
rately representing the possibly contributing regions of the 
volume, the higher the ratio of contributing to non-contrib- 
uting segments along the ray, as can be noted by compar- 
ing Figure 2 with Figure 4. Therefore a reduction in ray 
casting speed can typically be obtained at the cost of 
higher polygon projection times. The optimal number of 
geometric primitives mainly depends on the relative per- 
formance of hardware polygon projection versus software 
cell processing. 

In theory, the PARC algorithm as described above 
will produce images identical to those produced by stan- 
dard ray casting. In practice, allowances must be made for 
the inaccuracies found in hardware polygon scan-conver- 
sion to achieve the identical image. This can be accom- 
plished by small changes to the position and size of the 
polygon to ensure that: 
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ZS I Zi for all near buffer pixels, and 

zS 2 Zi for all far buffer pixels, 

where ZS is the scan-converted depth value, and zi is the 

ideal depth value for a pixel. 

4. Color Buffer PARC 
The depth buffer PARC algorithm described in the 

previous section can be used to skip over the initial empty 
cells when performing volume rendering. This technique 
works well when rendering a volumetric isosurface, since 
the contributing cell with the actual intersection location is 
typically encountered at, or shortly after, the first possibly 
contributing cell. However, when performing a color and 
opacity accumulation method along the ray, the opacity 
does not typically reach unity at the first contributing cell. 
In fact, all contributing cells along the ray are often con- 
sidered when computing the final ray accumulation value. 
This is also true of other ray-object intersection functions 
such as maximum value and average value calculations. 
Therefore, volumetric ray tracing would often benefit from 
the ability to skip over the empty cells that occur between 
the first and last possibly contributing cell. This capability 
can be achieved by making a modification to the PARC 
algorithm. 

Instead of projecting the outer faces of the possibly 
contributing cells into a zbuffer, a polygonal model for the 
possibly contributing cells is projected into me color 
buffer. Rendering is performed so that the resulting bits for 
each pixel in the color buffer represent segments along the 
ray passing through that pixel. The value of each bit deter- 
mines whether the corresponding ray segment encounters 
any possibly contributing cells. Using this information, 
intersection or sampling calculations can be avoided on 
the empty segments of the ray. 

In order to obtain this color buffer, the possibly con- 
tributing cells are assigned color values according to their 
distance along the major viewing axis, as shown in Figure 
5. The major viewing axis is the positive or negative axis 
of the volume that is most closely aligned with the view- 
ing direction. For each plane i, 0 S i < N, along the 
major viewing direction, the color value of the possibly 

contributing cells in that plane is 2’ . To reduce the num- 
ber of color values required, the first plane along the major 
viewing direction that contains at least one possibly con- 
tributing cell is considered plane 0. 

The outer faces of the possibly contributing cells, and 
the faces that are shared by two possibly contributing cells 
of different color values, are projected without shading or 
depth buffering according to the currently defined viewing 

Figure 5: The color of a cell is determined by its dis- 
tance along the major direction. The example colors 
given here are valid when 2 is the major axis. 
matrix. During projection, a bitwise OR operation is 
employed on the value currently stored in a pixel and the 
value being written to the pixel to determine the final pixel 
value. Only P planes of cells can be projected at once, 
where P is the number of color bits available for display 
on a workstation. After each set of P planes has been pro- 
jected, the bits from the color buffer are saved. When all 
cells have been projected, the bits that are set in each pixel 
indicate the possibly contributing cells encountered along 
the ray that passes through that pixel, as shown in Figure 
6. 

Each bit in a color buffer pixel represents the segment 
of the ray passing through the corresponding plane of 
cells. The ray may pass through either one or two cells in a 
plane, and the corresponding bit is set to 1 if either cell is 
possibly contributing, otherwise the bit is set to 0. The ray 
stepping algorithm is modified to avoid sampling the 
planes that have a bit value of 0. Additional speedups are 
achieved by considering the pixel value one byte at a time, 
and examining the actual bits only for non-zero bytes. 

When supercells are projected to obtain the color 
buffer values, this method is analogous to a hierarchical 
method with three levels. The lowest level is the original 
data, the middle level is represented by the pixel bits, and 
the highest level is represented by the bytes. This hard- 
ware acceleration method provides an approximate list of 
elements pierced by the ray at the two higher levels of the 
hierarchy. The list is approximate since two pierced super- 
cells in one plane are represented by one value in the list. 
The time spent acquiring samples in empty cells in the tra- 
versal list is overshadowed by the time saved due to the 
hardware generation of the list. 

As in the depth buffer PARC algorithm, special con- 
siderations must be made when the eye point is inside a 
possibly contributing cell. In this case, each viewing ray 
must start at the viewing plane. After the ray steps beyond 
the plane containing this initial cell, the algorithm utilizes 
the projected color bits to step along the ray as before. 
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Near and Far Plane 
Value: 

I 
Pixel Value 

Color: 
Binary: 00111110010100 

Figure 6: The color buffer values for a pixel represent 
the possibly contributing cells encountered along the 
ray passing through that pixel. 

5. Shadow Rays 
The depth buffer PARC method described in Section 

3, and the color buffer version described in Section 4 can 
also be employed to accelerate shadow rays in a volumet- 
ric ray tracing method. For each point light source in the 
scene, the light position is treated as an eye point, and 
either a color buffer, or near and far zbuffers are created 
for each object using a perspective viewing matrix. The 
viewing direction is defined by the vector from the light 
source to the center of the object. Eight vectors are defined 
that point from the light source to the eight vertices of the 
bounding box of the object, and the field of view for the 
perspective projection is twice the maximum angle 
between the viewing ray and each of the eight vectors. If a 
field of view is computed to be greater than 90 degrees, 
then multiple projections are taken, each with a field of 
view that is less than or equal to 90 degrees. In the worst 
case the light source is located within the object, and six 
projections are required. Figure 7 shows an example of the 
buffers created for a point light source and an object using 
depth buffer PARC. For each directional light source in the 
scene, the light direction is considered the viewing direc- 
tion, and a parallel viewing matrix is employed to generate 
the PARC buffers for each object. The position, width, and 
height of the viewing plane used for rendering is deter- 
mined by the projected locations of the eight bounding 
vertices of the object onto the viewing plane. 

In this shadow ray method, the width and height in 
pixels of the PARC buffers is arbitrary. All buffers could 
be set to a constant size, or the size of the buffers could 
vary depending upon the size of the object and distance to 
the light source. 

8 dv Polygoh Model of 
pe;;ibly Contributing 

Point Light Source 
Figure 7: Near and far PARC buffers are created by 
viewing the volume from the light source. 

When a shadow ray is cast to a light during ray trac- 
ing, the information stored in the PARC buffers for that 
light is employed in a manner similar to the PARC buffers 
for primary rays. The difference is that a shadow ray is not 
necessarily represented exactly by a pixel in the light 
PARC buffers. Therefore, the intersection of the ray with 
each of the PARC buffers for that light is determined. For 
each intersection, the values stored at the four neighboring 
pixels are merged to form one PARC value. For depth 
buffer PARC, this requires selecting the minimum near 
value, and the maximum far value found in the four pixels. 
For color buffer PARC, this involves applying a bitwise 
OR operation to the values found in the four pixels. In 
addition, the values found in the PARC buffers for a light 
source must be inverted to account for the fact that the 
shadow rays are cast in the opposite direction of the view- 
ing rays used to create the buffers. 

6. Results 
The algorithms described in this paper were imple- 

mented within the VolVis volume visualization system [l, 
21. Great care was taken to ensure that these algorithms 
support multiple overlapping volumes, perspective and 
parallel projections, analytic intersection calculations, and 
many other VolVis capabilities. As a result, some of the 
possible rendering speedups have been sacrificed in order 
to retain high functionality. 

The results were obtained on a Silicon Graphics 
Indigo2 Extreme with a 2OOMHz R4400 processor, 24 bit 
color buffer, 24 bit zbuffer, and 64MB of RAM. Since a 
double buffered visual was employed for the rendering 
window, color buffer information was captured eight bits 
at a time. The timing information is in seconds of wall 
time. 
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Figure 8: A volume rendered image of an LGN cell 
using a color and opacity accumulation method. 

Figure 9: A polygonal model used to obtain depth buff- 
ers for the LGN cell. 

Figure 8 shows an example data set where color 
buffer PARC performs better than depth buffer PARC for 
images generated using a color and opacity accumulation 
method. This lateral geniculate nucleus (LGN) data was 
obtained at a resolution of 384x256x195 using a confocal 
microscope. After applying the opacity transfer function, 
93.5% of the cells were empty. The standard ray tracing 
method required 110.33 seconds to generate a 300x300 
image. The depth buffer PARC method reduced this time 
to 60.64 seconds. The polygonal model used to generate 
the depth buffers is shown in Figure 9. This model con- 
tains approximately 38,000 polygons. The color buffer 
PARC method reduced the image time to 23.88 seconds, 
using a color buffer with 8 bytes. The color buffer shown 
in Figure 10 is 3 bytes deep for illustration purposes. The 
additional reduction in rendering time over the depth 
buffer PARC method was gained by skipping empty seg- 
ments between samples. 

Statistics for the images shown in Figures 11-13 are 
given in Tables I-3. The image represented by the data in 
the fourth row of each table is the image shown in the cor- 

Figure 10: A color buffer used to accelerate volume 
rendering of the LGN cell. 

responding Figure, although except for pixel size, all four 
images in each table are identical. Statistics for the data 
sets are given in Table 4. This information includes the 
number of data samples and the size of the volume in 
units. Also given are the size of the supercells in data sam- 
ples, and the percentage of supercells that were classified 
as possibly contributing. 

Figure 11 contains a CT scan of a frozen human foot 
from the Visible Human Project [5] which was rendered 
using an opacity and color accumulation method. In Table 
1, the PARC version is given in the first column, where 
“None” indicates standard ray tracing. The image size is 
indicated in the second column. Two different image reso- 
lutions were used to show that both standard ray tracing 
and PARC scale according to image size. The third col- 
umn contains the number of samples taken along all rays, 
while the fourth column indicates the time to take these 
samples. This time includes the time required to project 
the polygonal model for the PARC methods. Samples 
were takes every 0.25 units, where the unit size of the data 
set was 144~247.9~220, as shown in Table 4. Finally, the 
fifth column indicates the total image generation time. 
This is essentially the ray casting time plus the ray shading 
time. The color buffer PARC algorithm performed almost 
9 times better than the standard ray tracing algorithm. 

Figure 12 contains two data sets obtained from simu- 
lation, representing the positive and negative wave func- 
tion values in a high potential iron protein. The positive 
wave function values are rendered as a volumetric isosur- 
face while the negative wave function values are rendered 
using a color and opacity accumulation method. The 
depth buffer PARC method was used to accelerate the iso- 
surface, while the color buffer PARC method was used to 
accelerate the translucent data. The statistics for this 
image are shown in Table 2, where the first two columns 
again indicate the PARC method and the image resolution. 
The third column indicates the number of cells that were 
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Figure 11: A translucent rendering of a human foot. 

considered for intersection calculations, while the fourth 
column contains the number of samples taken during the 
accumulation method. Again, samples were takes at 0.25 
unit intervals. The fifth column contains the time required 
to cast all rays, while the sixth column indicates the total 
time for a shaded image. In this case, the combined color 
and depth buffer PARC performed more than 5.6 times 
faster than the standard ray tracing method. 

Figure 13 shows a hippocampal pyramidal neuron 
casting two shadows on a volumetric floor. The cell was 
obtained using confocal microscopy, while the floor was 
voxelized from a geometric description [ll]. Depth buffer 
PARC was used to accelerate both the primary rays and 
the shadow rays. The statistics for the image are given in 
Table 3, where the first two columns indicate PARC ver- 
sion and image size. The third column contains the num- 
ber of cells considered for intersection during primary ray 
calculations, the fourth column indicates the time required 
to cast the primary rays, and the fifth column shows the 
time required to generate a shaded image with only pri- 
mary rays. In the sixth column, the number of cells con- 
sidered for intersection during shadow ray casting is 
given, while the seventh column indicates the time 
required for the shaded image with shadows. For primary 
rays, a 3.5 times increase in rendering performance is 
obtained, while shadow ray generation times are improved 
by about a factor of 2. 

Table 1: Results for Figure 11 

PARC 
Image Samples Casting Total 

Version 
Size 

(pixels2) 
(x 103) 

Time Time 
6) 6) 

None 300 47250 149.12 168.43 

Color 1 300 1 3318 1 12.70 1 19.16 

None 600 189741 598.50 673.95 

Color 600 13285 49.70 75.90 

Figure 12: A combined isosurface and translucent ren- 
dering of a high potential iron protein. 

7. Conclusions 
We have developed two projection algorithms that 

utilize standard graphics hardware to significantly reduce 
volumetric rendering times. The depth buffer version of 
PARC is well suited for rendering volumetric isosurfaces 
whereas the color buffer version of PARC is better suited 
for volume rendering. Both algorithms achieve high 
speedups without compromising image accuracy. The 
algorithms are general, supporting both parallel and per- 
spective projections. In addition, the algorithms can be 
used to accelerate shadow rays. 

In the future, we intend to investigate several 
enhancements to these algorithms. Requiring all elements 
(cells, supercells, or subcells) to have the same voxel 
dimensions leads to a compact data structure for storing 
the elements, but may not lead to an optimal polygonal 
model. We are investigating the ability to group variously 
sized regions of the volume in order to more closely 
approximate the possibly contributing cells with fewer 
polygons. In the color buffer PARC method, we are con- 
sidering projecting several resolutions of polygonal mod- 
els, enabling us to perform a hierarchical ray traversal. 
Finally, we are exploring the possibility of projecting addi- 
tional information for each possibly contributing cell. For 
example, we could also indicate if a cell is homogeneous 
which may accelerate the rendering of translucent data. 

Table 2: Results for Figure 12 

I I I , I 

None 1 300 I 5123 1 15094 1 61.01 1 68.95 

Color/Depth 300 183 881 8.19 12.12 

None 600 20508 60436 242.92 276.02 

Color/Depth ( 600 1 735 I 3341 I 31.99 1 43.55 
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Figure 13: A ray traced image of a hippocampal cell 
casting two shadows on a volumetric floor. 
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