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1. Introduction 
 
The research in volume modelling with voxel 
data includes Boolean operations and linear 
transformations, transformation from one voxel 
data structure to another by manual 3D painting 
and carving [1], volume sculpting [15], 
metamorphosis [6], and morphological 
operations [10]. However, we also need more 
global smooth transformations providing non-
linear deformations and topological changes of 
volumes.  
Let us consider a volume as a subset of 3D 
space with an additional scalar value given in 
each of its points. If this scalar value is 
interpreted as an additional point co-ordinate, 
the volume becomes a 4D “height field” or a 
hypersurface in 4D space. The defined scalar 
field can be thought of as a variable of the 
object’s density, temperature, etc. Scalar values 
can be specified in the nodes of a regular space 
grid (voxel data) or by a continuous function of 
three variables (so-called implicit surface model 
or more generally the function representation 
[12]).  
 

Sculpting can be modelled by a combination of 
global and local deformations. Parametric 
representations of curves, surfaces and volumes 
are the most common ones used in modelling 
free-form shapes. Another way to represent 
complex shapes is to use implicit surfaces. One 
of traditional techniques is using skeleton-based 
implicit surfaces. To model an irregular shape 
with skeleton-based implicits, one should 
usually use many skeleton primitives. 
In this paper, we propose modelling a complex 
shape with a single volume primitive and its 
global deformations. We define primitives by 
mixing two types of representations: parametric 
and implicit. One of the main advantages of the 
parametric form is that it leads to a design 
paradigm based on a control-point array, and 
the implicit form allows for the use of multiple 
geometric operations [14, 12]. This 
combination of these representations introduces 
new possibilities for interactive volume 
modelling. 
We choose trivariate B-spline volumes as 
parametric functions due to their attractive 
properties for modelling. We use them to define 
solids and their corresponding implicit surfaces 
in 3D space. Similar approaches have already 
been proposed to construct piecewise algebraic 
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surfaces [13] and thick free-form shells [7]. In 
contrast, we wish to use parametric volumes in 
functionally based constructive modelling. The 
positions of the control points in the co-
ordinate-function space are used to manipulate 
function values. In this sense, the proposed 
technique falls into the category of a general 
extended space mapping [14].  
Local deformations are implemented using real-
time carving on the approximate model (3D 
regular grid with real function values in the 
nodes). We use analytically defined convolution 
surfaces as a model for removing material in 
carving. The final model is represented as a 
volume with subtracted convolution surfaces. 
We describe an interactive sculpting system 
with which we are able to design complex 3D 
shapes. 

2. Extended Space Mapping with 
Curves and Surfaces 

 
A space mapping establishes a one-to-one 
correspondence between points of a given space 
and, if applied to some point set in the space, it 
changes this set to a different one. A mapping 
can be defined by the functional dependence 
between the new and old co-ordinates of points.  
 

A

 ξ

 0
 x
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 B

 S’

A’  B’

Figure 1: Transforming a 1D segment AB into A’B’ by 
applying extended space mapping to a curve S defined as 
ξ = f(x) 

Here, we discuss the example illustrated in 
Fig.1. The intention is to model a 1D geometric 
object (a line segment AB) on the x-axis, and 
then to transform it to A’B’. Let us introduce a 
function of one variable ξ = f(x). It defines the 
segment AB as f(x) ≥ 0. At the same time, it 
defines a curve S in the (x, ξ) plane. We call 
this plane an extended space, because it has a 
geometric co-ordinate and an additional 
function co-ordinate. The segment AB can be 
also considered as a projection of the part of the 
curve S, which is above the x-axis. Now, let us 
translate the curve S to S’ as it is shown in Fig. 
1. By doing this, we map the extended space (x, 

ξ) onto itself and thus define an extended space 
mapping. Now, the segment A’B’ can be also 
considered as the projection of the part of the 
curve S’, which is above the x-axis. Therefore, 
we transformed AB to A’B’ with the single 
extended space mapping. Note that, to obtain 
this transformation with mappings of the x co-
ordinate only, one has to think of some 
composition of 1D translation and scaling. The 
general definition of extended space mappings 
and details can be found in [14].  
Let us now consider the case where the 
intention is to model a 2D solid as it is shown in 
Fig. 2. The surface S is a B-spline (parametric) 
function. It is defined in the (x, y, ξ) space, 
where ξ = f(x, y). The 2D solid belongs to the (x, 
y) plane and is defined as the zero-contour line 
of the surface and its inside part, i.e. the 
projection of the positive part of the 3D surface 
onto the plane. The surface is defined 
parametrically, then, by moving its control 
points vertically (function mapping), along the 
ξ axis, one can define different extended space 
mappings, and transform the 2D solid. In the 
following sections we apply this approach to 
define and to deform 3D solids using 
parametric volumes in 4D extended space. 
 

 

 
Figure 2: A parametric function (B-splines) in the 
extended 3D space and its corresponding 2D solid in 
the 2D space.  



3. F-rep with Spline Volumes 
 
A spline volume  is defined with 3-dimensional 
control points [11], i.e. the x, y and z co-
ordinates. We use  the definition of F-reps, 
where a solid is defined by its defining function 
f and the inequality  f(x, y, z) ≥ 0, (and its 
boundary is defined by the equality). We follow 
this definition and apply it to parametric 
volumes ([8]). In the parameter space defined 
by {(x,y,z) : 0 ≤ (x,y,z) ≤ 1}, we assume that the 
x,y and z co-ordinates of the surface S(u,v,w) 
can be expressed as a regular grid, i.e. 

n
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ijkPand
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ix
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control point of the spline, and l,m,n are the 
number of control points on each axis. 
We add one more dimension to those points, the 
ξ co-ordinate, corresponding to the function 
value. Then, we define a 3D solid as f(x,y,z) = 
Sξ(u,v,w). Hence, we can modify the 3D solid 
by changing the ξ co-ordinate of control points’ 
volume. This is a direct application of the 
function mapping defined with the extended 
space mapping. In addition, one can move 
control points in (x, y, z) space and thus deform 
the 3D solid in a different way. This requires 
implementation of the inverse space mapping 
described elsewhere [8]. 
 
3.1. Functional Clipping  
 
One undesirable property of the B-spline 
volume, which is due to the used parametric 
function, is that there is no control over the 
behaviour of the volume outside the unit cube 
domain. In order to overcome this, we introduce 
functional clipping. Fig. 3, left part, shows a 
solid, based on a B-spline parametric function, 
which is bounded by the unit cube.  The aim 
was to create a solid inside this domain. As it 
can be observed, the behaviour of the 
parametric function outside the domain 
contradicts the requirement that there be only 
negative values of a defining function for points 
outside the defined object. This results in 
undesirable (“ghost”) solids. 
Let S(u,v,w) be a function defining a parametric 
volume where S(u,v,w) = Sξ(u,v,w). Consider 
the intersection between the unit cube and the 
3D solid defined by this function: 

),,(&),,(),,( wvuFwvuSwvuS sclip =  

 

where Fs(u,v,w) = Fb(u) & Fb(v) & Fb(w) is a 
defining function of the unit-cube with Fb 
defining the unit strip by each variable: 

tttFb )1()( −= , 

and & is the symbol of  the intersection 
operation defined by the R-function [12] as: 

2
2

2
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Figure 3: (Left) The unit cube, the desired solid inside 
it, and “ghost” solids outside. (Right) The same solid 
after functional clipping 

The result of this procedure is illustrated in Fig. 
3, right part. The defining function is negative 
outside the domain (no “ghosts”) and the 
desirable 3D solid is unchanged. 
In our implementation, the procedures defining 
parametric volumes encapsulate the introduced 
functional clipping. Once a solid is modelled, 
this allows us to apply any operation provided 
by a F-rep modeller to it. 
At this stage, we are able to model a complex 
shape with a single primitive. 

4. Interactive Sculpting 
 
4.1. Visual Representation of Control Points 
 

Each control point ijkP is visually represented 

by a sphere. Its position is centred 

in ( )z
ijk

y
ijk

x
ijk PPP ,,  using the usual 3D space with 

its three axis. In order to represent the function 

value of the control point ξ
ijkP , we first define a 

colour scale function to the value, and apply it 
to the control points. A complete grid is shown 
in Fig. 4. In the case of a NURBS volume, the 
radius of the sphere allows us to represent the 

homogeneous co-ordinate w
ijkP of the control 

point (kind of 5D). When its absolute value 
increases, the radius of the sphere increases. 
And either the character “+” or “-“ is then 
mapped on the sphere, according to the sign of 
the co-ordinate.  



 
 

 
Figure 4: 3D Grid of colored control points of a 
B-spline volume. 

4.2. Modeling Interface 
 
We have developed an interactive modeller 
using Tcl/Tk  for the interface and MAM/VRS 
for graphics. In this section we illustrate main 
features of the modeller. The main idea in 
modelling a volume is to deal with slices of it. 
A volume is defined by a grid of l×m×n control 
points. To change their function values, the user 
first selects a slice of the volume in a grid 
similar to Fig. 4, i.e. a patch defined by a l×m 
grid. This patch is then represented in a separate 
window (left part Fig. 5). To change the 
function value of a control point the user drags 
the corresponding sphere along the axis 
perpendicular to the patch. At the same time, 
the corresponding zero-contour is drawn (right 
part Fig. 5). Finally, the volume can be 
rendered as a polygonal model (Fig 5.). 
 

4.3. Interactivity  
 

When one models a solid, he/she defines 
parameters that allow for a global speed up of 
the calculations. For example, the grid density 
for the solid is known, and will not be changed 
while dragging control points. According to the 
general formula of B-spline, all the coefficients 
can be evaluated before this operation. So, we 
may say that this part of the modeller is 
completely interactive. Three different ways 
exist to render the solid. The first one is direct 
polygonisation included in the modeller, which 
is the fastest one because is based on the 
previous described calculation. The two other 
ways is to use a script, generated by the 
modeller when one saves its current model, and 
call HyperFun [3], which is a high-level F-rep 
modelling language. A default polygonisation 
or a raytraced image can then be rendered. 

 

 
Figure 5: A selected slice of a B-spline  volume. By 
moving a control point along the cylinder (upper-left), the 
corresponding zero-contour (red) is updated (upper-right). 
The lower-left part shows the corresponding polygonised 
surface. The lower-right part shows the result with a 
Bézier volume using the same set of control points. 

 
4.4. Comparison between solids based on 

Bézier, B-spline  and NURBS  functions 
 
A NURBS volume is the most general case of 
the parametric functions we have used. Three 
different parameters can be used to modify it: 
the order on each axis, the homogeneous co-
ordinate of the control points and, of course, the 
function value. Because of this it allows the 
largest degree of freedom. 
A Bézier volume can be compared with a B-
Spline volume, where the order on each axis is 
maximum, i.e., is equal to the number of control 
points on each axis. When modifying a volume, 
the deformations are global. With the case of 
the B-spline, the possibility of defining the 
order of the volume allows to do more local 
deformations (i.e., less global, but still 
influencing the entire volume). A comparison is 
shown in Fig. 5 (lower part). 
Finally the NURBS functions add one more 
way of modification, that of changing the 
weight of each control point. But the effect has 
some restrictions. First, if a control point is 
inside the solid, with a positive function value, 
the effect of changing its weight can be 
considered as null. On the other hand, if the 
control point is close to the boundary of the 
solid, i.e. the last control point with a positive 
value, the effect is locally important.  If the 

ξ>0 

ξ=0 

ξ<0 



control point has negative value, the effect is 
locally important too, depending of course on 
the order of the volume. From the interactive 
modelling point of view, there is no big 
difference between NURBS and B-spline 
functions, because for each of the results 
obtained with NURBS, we were able to get an 
equivalent one result with B-splines. 
 
4.5. About intuitive modelling 
 
The aim of this paper is to present a modeller 
which should be able to model complex shapes.  
But one can wonder if the way of modelling is 
intuitive. Dealing with slices of volume is very 
simple. Dragging control points along the ξ  
axis and watching the resulting zero-contour at 
the same time illustrate clearly what 
deformations are occurring to the solid. 
Moreover, the primitive based on spline is 
defined in a 4D space and by the way, the user 
does not have to care about the topology of his 
model. 
The main restriction of the presented modeller 
comes from the geometric properties of the 
chosen splines. In fact, if one choose a low 
degree for the spline, an undesirable effect may 
appear, comparable as small swellings. In this 
case, the expected result is not intuitive, and 
may be disappointing. This effect is shown in 
Fig 6. (left part). In this figure, swellings have 
been amplified in order to have a better 
visualisation of the problem.  
To avoid this, one may increase this degree. But 
the counterpart is that the modification of a 
control point becomes more global (Fig 6. right 
part, and previous sub-section).   Another way 
is to change one by one all the control points. 
But this task is impossible to realise when the 
grid contains a large number of control points. 
An interesting way to overcome this problem 
may be the use of multiresolution,  based on 
wavelets. At a low level of details, i.e. a grid  
with a few control points, to model the global 
shape becomes easy and the previous problem 
disappears. It should be then possible to add 
details to the shape when one increases the 
resolution. 
 
 

 
Figure 6: The upper part is a ray traced surface of a solid 
defined with a B-spline of degree 3, and the lower part, the 
same solid with a degree 5. The swellings disappeared. 

5.  Real Time Carving: Local 
Deformation 

 
We present here our methods for sculpting 
using  local deformations of solids with the 
primitive previously defined. Carving stands for 
modifying the solid locally in its contact area 
with an instrument (cutter).  
The main problem with this approach is the 
speed of the rendering. Methods of near real 
time implicit surface polygonisation are usually 
modifications of the base Marching Cubes 
algorithms [5], and derivatives (see, for 
example, [2, 16]). But the huge number of 
polygons is still too important for an interactive 
visualisation. 
Our approach uses hierarchical implicit surface 
reconstruction, based on an octree data structure 
[17], as a way to achieve a good interactive 
visualisation times [16]. The data-set bounding 
the volume is recursively subdivided into eight 
subvolumes (cells) until the unit cell size is 
reached. The detalisation criterion determines 
the cell’s hierarchy level at which the surface 
should be constructed. Because of possible 
cracks between neighbour cells from different 
detalisation levels [2, 17], a special stitching 
procedure is applied to the cells’ surface 
patches. This idea is shared with the one 
described in [17], but a substantial increase in 
the frame rate can be reached as a result of its 
combination with the minimisation of 
processing efforts during the implicit surface 
extraction and polygonisation. We minimise  
the volume of the data-set to process and 
introduce maximal caching of a constructed 
surface mesh after the detalisation criterion’s 
modifications. Such an approach results in a 
substantial difference from [17]. A complete 
description of our method and its 
implementation would require a separate paper, 



however here we give a brief account of our 
optimisations as follows:  
 
• only the visible part of the data-set (i.e., one 

that lies within the viewing frustum) is 
processed for  surface extraction; 

• instead of dropping the whole polygonised 
surface for each movement of the observer 
(practically every frame under some 
circumstances) we interactively update the 
visible surface part processing data-set 
regions that come into the viewing frustum; 

• localised modifications are made to the 
reconstructed surface according to updates 
in the detalisation criterion value (i.e., only 
those parts of a surface that belong to the 
data subset where required level of detail 
has changed are updated); 

• localised modifications in the surface are 
made according to updates in the data-set 
(e.g., as a result of carving). 

 
Cell from a finer
level

Cell from a coarse
level

Vertices that are shared between cells
from the finer level and the coarse level

Vertices that belongs to cell at finer
level only

Surface crack on the boundary of the cells
from different hierarchy levels

 
Figure 7: Boundary vertices from finer levels are 
moved to corresponding vertices at a coarse level 
thus stitching surface patches in cells of different 
size 

 
A simple scheme for stitching the neighbouring 
surface patches generated at different levels of 
detail was used. The idea at its core is 
illustrated in Fig. 7. The  implementation uses 
lookup tables for fast performance 
To facilitate navigation inside the resulting 
polygonal model, we deploy a mechanical 
model for camera movement as described in [4]. 
This model is similar to underwater submarine 
navigation in which a repulsive force from the 

isosurface is experienced. Our implementation 
differs from [4] in the way the repulsive force is 
calculated, regarding to the gradient of the 
scalar field associated with the scalar data-set 
near the camera position. 
A fish-like object was prepared using the global 
deformation tool and exported to the interactive 
local deformation tool (Fig 8.). A ray-traced 
image of the implicit surface for this data-set is 
shown at Fig. 9. Then eyes, mouth, and some 
features on its body were carved. 
We selected analytically defined convolution 
surfaces [9] as the model for removing material 
in carving. 
Thus, the cutter’s trajectory information was 
exported into an HyperFun script [3]. Finally, 
the model is represented as a volume with 
subtracted convolution surfaces.  
 
 

 
Figure 8. Surface view during carving 
a fish’s eye. 

 
 

 
Figure 9. Ray-traced Fish data-set (left) with eyes and 
mouth carved (right). 



Conclusion 
We have developed a new technique for 
interactive volume sculpting using 
parametrically defined free-form volumes. Even 
though such volume models are widely used, 
there are difficulties with interactively 
modifying them. In order to overcome these 
difficulties, we use parametrically defined 
volumes with functional clipping to define 
global deformations. For local deformations, we 
use real time carving. 
We implemented interactive sculpting software 
based on the proposed solutions. We extended 
the F-rep library of the HyperFun language [3] 
with primitives based on the Bézier, B-spline 
and NURBS parametric functions. We also 
have implemented software for real time 
carving. The resulting object is a volume with 
subtracted convolution surfaces. Our interactive 
tool generates the corresponding model in the 
HyperFun language.  In this way, the results of 
sculpting can be used in F-rep modelling along 
with other primitives and operations. 
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