
Figure 1. Quake Wars*: ray traced without textures.

Light It Up!  
Quake Wars* Gets Ray Traced                                                                 

By DANIEL PohL

a scene unfolds in the computer room of a 
major university. Those watching sense electricity in the 
air, the kind of tension that builds before a thunderstorm, 
as a cluster of 20 networked PCs, each equipped with 
spanking new dual-socket technology and dual processors, 
warm to the task assigned to them: distributed ray 
tracing of the game Quake* 3 (www.q3rt.de). Though 
the modest display resolution (512x512) and a frame 
rate of 20 frames per second (fps) aren’t overwhelming 
by the standards of the day, this doesn’t diminish the 
accomplishment in the least. Special effects never before 
seen flimmer across the display screen. The viewers 
watch with rapt attention and a feeling of satisfaction as 
the intricately rendered images move about the screen. 
Amazingly, this happened in 2004, a time when most 
people rejected the concept of real-time ray tracing.

bacK to the future (2008, that is)
A new research project from the ray-tracing team at 

Intel advances beyond the 2004 achievements, this time 
converting the game enemy territory: Quake Wars*, which 
was created by id Software and Splash Damage, to use ray 
tracing. Read on to learn about the development process 
that followed, the challenges we had to overcome, and the 
benefits we ultimately achieved—all of which provide 
valuable insights into the future of ray tracing. To pump up 
your visual adrenaline level, we’ve also included numerous 

images to show the process in action. By the time you 
finish this article, you’ll have a better idea of the ways in 
which ray tracing can quickly and easily render light and 
shadow.

starting from scratch
For this project, we started rewriting the renderer 

from ground zero. Because of this, the very first 
images from the renderer were not of typical ray-
tracing caliber, but displayed only the basic parts of the 
geometry, without any shaders or textures (Figure 1).  

InTEl VISUAl ADrEnAlInE ISSUE 2, 2009 34

http://www.intelsoftwaregraphics.com/?lid=2161&siteid=12


Typically, games load their 
geometry from a variety of different 
model formats—either created over 
the in-game map editor or through 
external modeling tools.  once it is 
verified that there are no missing 
objects, the loading of textures can 
begin. modern games have their own 
material description language that 
allows designers to easily modify 
texture parameters, blend textures, 
use bump and specular maps, and 
write small shader programs. For 
example, compare the untextured 
image in Figure 1 with the unlit 
(Figure 2) and lit (Figure 3) textured 
images of the same scene. 

Today’s games all use a rendering 
technique called rasterization. 
Rasterization requires difficult 
programming work and as many 
special effects (such as shadows or 
reflections) need to be calculated 
as approximations over multiple 
rendering passes and are often 

stored in resolution-limited textures 
in between. These approximations 
fail in certain cases. Let’s look 
closer at shadows. With ray tracing, 
you only need to check if the path 
from the light to the surface is 
blocked or not. This can be easily 
determined with just a ray (the 
so-called “shadow ray”). If the ray 
from the light source can reach the 
surface, the point on the surface is 
lit. otherwise, it is in shadow. The 
gameplay in Quake Wars: Ray traced 
takes place primarily outdoors, where 
the most important light source is 
sunlight. We were able to apply this 
form of lighting to the scenes quite 
easily, and the appearance of the 
shadows is what one would expect.

transParencies
Instead of employing real 

3D geometry, game developers 
sometimes approximate 3D 
properties with a 2D quad surface (or 
two triangles, as shown in Figure 4) 
and a texture on which transparency 
values have been applied.

Creating correct shadows from 
partially transparent quads is not 
an easy task for a rasterizer. The 
most commonly used algorithms for 
calculating shadows in rasterization 
(called “shadow mapping”—see 
http://en.wikipedia.org/wiki/
Shadow_mapping) does not deliver 
additional information that might 
help in the case of shadows from 

Figure 4. Example of a partially transparent leaf texture applied to a two-triangle surface.

Figure 2. Quake Wars*: ray traced with textures (unlit).

Figure 3. Quake Wars*: ray traced with textures (lit).

InTEl VISUAl ADrEnAlInE ISSUE 2, 2009 35

light it up! quake wars gets ray traced

http://www.intelsoftwaregraphics.com/?lid=2162&siteid=12


Figure 5. Different shadows from different amounts of transparencies that change over time.

Figure 6(b).  
Same tree model  
rendered with textures 
and transparencies. 

Figure 6(a). 
Tree model consisting of 
many partially  
transparent quads.

transparencies. For that reason, 
shadows are sometimes baked into 
textures, and, because of this, they 
don’t change when the light position 
changes (such as when a scene 
changes from sunrise to sundown).  

When using ray tracing, however, 
the algorithmic solution is simple. If 
the shadow ray hits an object, the 
program can read the transparency 
value of the texture and continue 
tracing that ray, when the texture 
sample is transparent. This offers 
interesting special effects, but also 
creates challenges. The images 
in Figure 5 show an animated 
force-field shader effect that 
casts a different intense shadow 
depending on the transparency 
values of the orange force field. 

Another advantage of using a ray 
tracer for partially transparent objects 

is that they don’t need to be sorted 
by their depth. This makes it easier for 
the developer, but there is a downside: 
increased rendering costs. Whenever 
a ray hits such a surface, another ray 
needs to be shot from that point in the 
same direction. If this happens once, 
the impact is small. But what happens 
if you have ten or more of these 
surfaces in a row? This can happen 
if a tree, for example, consisting of 
a mix of partially transparent quads, 
is rendered [Figure 6(a) and (b)].

Rendering a large number of those 
trees in the outdoor world quickly 
became our biggest performance 
bottleneck. During several 
optimization cycles, we came up with 
many improvements. The following 
improvements had the greatest 
impact on performance. 

Avoid shooting a new ray each time • 
after reading the transparency 
value; instead, we reused the 
same ray now originating from 
the hit position and continued in 
the same direction afterwards.

Signify whether a texture uses • 
transparencies with a single flag. If 
not, there is no need to shoot 
additional rays through potential 
transparencies. The bark inside a 
tree is an example of an opaque 
texture mixed in between many 
partially transparent textures.

Decrease the number of rays • 
that are bundled together. In 
many cases, bundling rays with 
almost the same path can lead to 
substantial speedups. however, if 
one part of the bundle hits another 
surface then the other one, it 
produces some reorganization 

InTEl VISUAl ADrEnAlInE ISSUE 2, 2009 36



overhead to split those bundles.  
In the case of rendering the 
trees, this overhead can 
become significant, slowing 
everything down.

Even after a great deal of 
tweaking, rendering the trees is still 
very time consuming. We visualized 
the costs of rendering a single pixel 
in a color scheme where a blue pixel 
represents a quickly calculated pixel 
and a red pixel an expensive one 
(Figure 7). An intense red is also 
more costly than a light red tone. As 
can be seen in the figure, rendering 
the trees is still more expensive 
than rendering a reflecting water 
surface or other parts of the scene. 
more research needs to be done on 
rendering these trees to discover if 
further improvements are possible. 

adding more sPecial effects
In our ray-tracing conversion, once 

we reached the same quality as the 

original game, we began adding 
enhancements and more special 
effects. Ray tracing does a very good 
job with reflections and refractions. 
The most common everyday objects in 
the world that exhibit this behavior 
are glass and water.

glass
A large dome exists in the original 

game. We changed the surface 
properties of the dome so that it 
would appear to be made out of glass 
(Figure 8). Using the refraction index 

for glass (which you can find in your 
favorite physics books), we wrote 
a shader to accurately depict the 
reflections and refractions. The code 
is about 15 lines long in our hLSL-
like ray-tracing shading language and 
generates very pleasing results.

Water
Rendering water can be 

accomplished different ways. We 
investigated two approaches: 
water on a 2D surface and water 
with genuine 3D properties1. 

Figure 7. Performance costs encoded  
in colors. Blue takes less time than red.

 1Source: Implementation by Jacco Bikker

InTEl VISUAl ADrEnAlInE ISSUE 2, 2009 37

Figure 8. Dome appears 
to be made out of glass 
after applying a shader.



Figure 9(a). Water with a 2D surface and a bump map.

Figure 9(b). Water with a real 3D surface.

To render the water in 2D, we used a bump map to 
simulate waves [Figure 9(a)]. The 3D water image 
uses a mesh with around 100,000 triangles in 
several subgrids [Figure 9(b)]. Those subgrids are 
updated every frame, depending on their visibility. 
(During rendering, subgrids that are not visible are 
ignored.) The visibility test is performed over rays.

the Performance issue
Performance is the main reason why ray tracing  

is not yet used in mainstream games. Compared to  
special-purpose rasterization graphics hardware—such  
as current-generation GPUs—ray tracing is fairly slow.  
Also, a lack of texture units for our CPU-based approach  
to ray tracing causes significant slowdowns when  
trilinear filtering is used for all texture samples.  
With Intel’s latest quad-socket systems—equipped with 
a 2.66 GHz Dunnington processor in each socket—we 
can achieve approximately 20 to 35 fps at a resolution 
of 1280x720. Nonetheless, this represents a significant 
improvement over the experiments in 2004 that required 
20 machines to render a simpler game more slowly and 
at a lower resolution. The greatest performance gains 
result from research efforts around the world that improve 
efficiency and the new, many-core hardware platforms 
that use parallelism to accelerate graphics operations. 

the future of ray tracing
As mentioned earlier, creating very realistic shadows 

in games is not an easy task. Given the current state of 
our demo work, only hard-edged shadows are produced. 
modern games tend toward soft shadows, which usually 
require many more rays. This important topic deserves 
more study; smarter approaches to this task need to be 
developed. Also, to obtain higher quality images, better 
anti-aliasing methods are needed. Adaptive super-sampling 
is a smart way of refining the rendering of the scene 
at those exact places where it will deliver the greatest 
benefit. There are experimental implementations, but they 
need to be tested and tuned for the best results. With 
the industry moving from multi-core to many-core (that is, 
greater than ten cores), improving the algorithms so they 
can fully use the newly acquired power will be interesting.

Even though Intel’s upcoming many-core graphics 
architecture, code named Larrabee, has been primarily 
developed as a rasterizer card, it will also be freely 
programmable. This opens up some extremely interesting 
opportunities to perform ray tracing with the Larrabee 
architecture. 

Stay tuned for more information about our upcoming 
ray-tracing projects! •

InTEl VISUAl ADrEnAlInE ISSUE 2, 2009 38

ABoUT ThE AUThor
Daniel Pohl started researching real-time ray tracing for games in 2004 during his study of computer science at the 
Erlangen-Nuernberg University in Germany. As his master’s thesis, he developed a ray-traced version of Quake 4.  
In 2007, he joined Intel’s ray-tracing group. In 2008, he moved from Germany to sunny California where he 
continues to research game-related ray tracing.

light it up! quake wars gets ray traced



InTEl VISUAl ADrEnAlInE ISSUE 2, 2009 39

resources

RESoURCES

Alert: Latest Call of Duty* Release Breaks New Ground
For an insider’s view of the Treyarch work on Call of Duty*: World at 
War, go to  www.treyarch.com.

To learn more about the history of cooperative gameplay, view this  
Wikipedia entry: en.wikipedia.org/wiki/Cooperative_gameplay.  
 
For the latest releases from Activision, visit  
www.activision.com/index.html.  

An Evil Genius Test Drives the Intel® Core™ i7 Processor 
Extreme Edition

For the latest adventures of Team EG, visit www.myeg.net.

To learn more about the Intel® Extreme masters events, go to  
www.intelextrememasters.com.

To follow the Electronic Sports League WC3L series, visit  
www.esl.eu/eu/wc3l/.

Damien Thaller: Passion and Talent Bring Stories to Life 
To view more of Thaller’s portfolio, posted in the CG Society gallery, 
go to  thaller.cgsociety.org/gallery.

For information about Evolve Pictures, visit  
www.evolvepictures.com.au/.

To learn more about Animal Logic, go to  
www.animallogic.com/#home.

DreamWorks Animation and Intel: Forging an Alliance to 
advance S3D Entertainment

For a look behind the scenes of modern day animation, go to  
www.dreamworksanimation.com and click the Studio button. 

For more background on InTru™ 3D and the history of animation,  
go to www.intel.com/consumer/learn/intru3d.htm.

Enabling 3-D Moviemaking: Autodesk® Retools Maya®

For details about advances in digital cinema, visit the Digital Cinema 
Report* at www.digitalcinemareport.com. 

For more on the history of Autodesk maya® and its 10th  
anniversary celebration, go to  
area.autodesk.com/maya_anniversary.

For lists of 3D motion picture theaters in different parts of the  
country, go to  
marketsaw.blogspot.com/2007/12/wow-they-are-popping-up-
everywhere.html.

IGOR: The Making of a Monster Hit 
For a spirited introduction to the characters that populate the world 
of igor (the game), visit www.igorgame.com.

For a trailer and the inside scope on igor (the movie), visit 
www.igor-movie.com/.

To tap into the energy at Santa Cruz Games, visit  
www.santacruzgames.com.

Check out the Sparx Animation Studios activities at  
www.sparx.com/index.html.

Light It Up! Quake Wars* Gets Ray Traced
For more details about the original ray tracing of Quake* 3, visit  
www.q3rt.de.

To learn about recent ray-tracing developments, go to  
www.q4rt.de (Quake 4: Ray traced) and www.qwrt.de (Quake Wars: 
Ray traced). 

For the latest Intel news and development on the ray-tracing front, 
visit the Visual Computing Developer Center:  
software.intel.com/en-us/visual-computing. 

explore topics from this issue of Visual adrenaline further: 

Subscribe to the • intel® software insight magazine: www.intel.com/go/softwaredispatch 
Sign up for the Intel® Software Partner Program, available to software companies:  • 
www.intel.com/partner 
Tap into multi-core resources: • www.intel.com/software/mcdeveloper 
Find out more about Intel® Software Network: • www.intel.com/software 
Explore Intel® Software Development Products: • www.intel.com/software/products 
Build your knowledge base with books from Intel® Press: • www.intel.com/intelpress/ 
Find online and classroom training courses from Intel® Software College:  • 
www.intel.com/software/college
Interact with a lively community of individuals in the Intel® Graphics Developer Community:  • 
www.intel.com/software/graphics/

intel® software
Intel’s heightened focus on visual computing and graphics processing is complemented by software development 
products, graphics chipsets, professional services, technical expertise, and developer-oriented resources. keep up 
with the activities of Intel’s Visual Computing Software Division through www.intel.com/go/visualcomputing.

To sign up for an on-going 
subscription (gratis) of the  
intel® Visual adrenaline 
magazine, as well as the  
Intel® Software Dispatch 
for Visual Adrenaline e-mail 
program, go to:  
www.intelsoftwaregraphics.com.

http://www.intelsoftwaregraphics.com/?lid=2190&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2189&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2188&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2187&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2161&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2186&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2185&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2184&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2183&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2182&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2181&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2157&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2180&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2179&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2178&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2177&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2176&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2175&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2174&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2173&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2172&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2152&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2171&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2153&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2170&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2169&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2168&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2167&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2166&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2165&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2164&siteid=12
http://www.intelsoftwaregraphics.com/?lid=2163&siteid=12


Intel does not make any representations or warranties whatsoever regarding quality, reliability, functionality, or compatibility of third-party vendors and their devices. 
All products, dates, and plans are based on current expectations and subject to change without notice.

Intel, Intel logo, Intel Core, InTru, the Intru logo Pentium, VTune, and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and 
other countries.

*other names and brands may be claimed as the property of others. 
Copyright © 2009. Intel Corporation. All rights reserved. 01/09/Sm/CS/PDF

To subscribe to Intel® Visual adrenaline,
go to www.intelsoftwaregraphics.com

http://www.intelsoftwaregraphics.com/?lid=2190&siteid=12



