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Abstract

We examine a rendering system that interactively ray traces an im-
age on a conventional multiprocessor. The implementation is “brute
force” in that it explicitly traces rays through every screen pixel, yet
pays careful attention to system resources for acceleration. The de-
sign of the system is described, along with issues related to material
models, lighting and shadows, and frameless rendering. The system
is demonstrated for several different types of input scenes.

CR Categories: 1.3.0 [Computer Graphics]: General; 1.3.6 [Com-
puter Graphics]: Methodology and Techniques.
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1 INTRODUCTION

Interactive rendering systems provide a powerful way to convey in-
formation, especially for complex environments. Until recently the
only interactive rendering algorithms were hardware-accelerated
polygonal renderers. This approach has limitations due to both the
algorithms used and the tight coupling to the hardware. Software-
only implementations are more easily modified and extended which
enables experimentation with various rendering and interaction op-
tions.

This paper describes our explorations of an interactive ray trac-
ing system designed for current multiprocessor machines. This sys-
tem was initially developed to examine ray tracing’s performance
on a modem architecture. We were surprised at just how respon-
sive the resulting system turned out to be. Although the system
takes careful advantage of system resources, it is essentially a brute
force implementation (Figure 1). We intentionally take the simple
path wherever feasible at each step believing that neither limiting
assumptions nor complex algorithms are needed for performance.

The ray tracing system is interactive in part because it runs on a
high-end machine (SGI Origin 2000) with fast frame buffer, CPU
set, and interconnect. The key advantages of ray tracing are:

l ray tracing scales well on tens to hundreds of processors;

l ray tracing’s frame rendering time is sub-linear in the number
of primitives for static scenes;

l ray tracing allows a wide range of primitives and user pro-
grammable shading effects.

Figure 1: The ray tracing system discussed in this paper explicitly
traces all rays on a pool of processors for a viewpoint interactively
selected by the viewer:

Figure 2: A portion of a 600 by 400 pixel image from our system
running at approximately fifteen frames per second.

The first item allows our implementation to be interactive, the sec-
ond allows this interactivity to extend to relatively large (e.g. giga-
byte) scenes, and the third allows the familiar ray traced look with
shadows and specular reflection (Figure 2).

In the paper we stress the issues in ray tracing that change when
we move from the static to the interactive case. These include
achieving performance in synchronous or asynchronous (frameless)
fashions (Section 2), and modifications to traditional Whitted-style
lighting/shadowing model to improve appearance and performance
(Section 3). We also discuss a few areas that might benefit from
interactive ray tracing and show some of the environments we used
in Section 4. We compare our work to the other work in paral-
lel ray tracing in Section 5. We do not compare our work to the
many object space methods available for simulating shadows and
non-diffuse effects (e.g. Ofek and Rappoport [22]) which we be-
lieve comprise a different family of techniques. Our interactive
implementation of ray tracing isosurfaces in trilinear volumes is
described elsewhere [23].
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Figure 3: Operation of ray tracer in synchronous mode. Numbers 
in boxes represent number of pixels in a block being processed. All 
pixels are traced before the screen swaps buffers. 

2 SYSTEM ARCHITECTURE 

It is well understood that ray tracing can be accelerated through two 
main techniques [26]: accelerating or eliminating ray/object inter- 
section tests and parallelization. We employ both techniques in our 
system. We use a hybrid spatial subdivision which combines a grid 
based subdivision of the scene [lo] with bounding volumes [17]. 
For a given scene, we can empirically test both methods to arrive at 
the ‘best’ combination where ‘best’ is dependent upon the scene ge- 
ometry and the particular application. The beauty of the interactive 
system is the ability to rapidly explore tradeoffs such as different 
spatial subdivision techniques. 

Ray tracing naturally lends itself towards parallel implementa- 
tions. The computation for each pixel is independent of all other 
pixels, and the data structures used for casting rays are usually read- 
only. These properties have resulted in many parallel ray tracers, as 
discussed in Section 5. The simplest parallel shared memory imple- 
mentation with reasonable performance uses Master/Slave demand 
driven scheduling as follows: 

Master Task 
initialize model 
initialize ray tracing slaves on each free CPU 
loop 

update viewing information 
lock queue 
place all primary rays in queue 
unlock queue 
when the queue is empty redraw screen and handle user input 

end loop 

The ray tracing slaves are simple programs that grab primary rays 
from the queue and compute pixel RGB values: 

Slave Task 
initialize memory 
loop 

if queue is not empty then 
lock queue 
pop ray request 
unlock queue 
compute RGB for pixel 
write RGB into frame buffer pixel 

end if 
end loop 

This implementation would work, but it would have excessive syn- 
chronization overhead because each pixel is an independent task. 
The actual implementation uses a larger basic task size and runs in 
conventional or frameless mode as discussed in the next two sec- 
tions. 

Parallel Speedup 
Rcan scene 

80,“. , 

Figure 4: Performunce results .for varying numbers of processors 
fo;a single view of the scene shown in-Figure 16. 
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Figure 5: Per$ormance results for the visible female dataset, shown 
in Figure 9. 

2.1 Conventional Operation 

To reduce synchronization overhead we can assign groups of rays 
to each processor. The larger these groups are, the less synchro- 
nization is required. However, as they become larger, more time is 
potentially lost due to poor load balancing because all processors 
must wait for the last job of the frame to finish before starting the 
next frame. We address this through a load balancing scheme that 
uses a static set of variable size jobs that are dispatched in a queue 
where jobs linearly decrease in size. This is shown in Figure 3. 

Figure 3 has several exaggerations in scale to make it more ob- 
vious. First, the time between job runs for a processor is smaller 
than is shown in the form of gaps between boxes. Second, the ac- 
tual jobs are multiples of the finest tile granularity which is a 128 
pixel tile (32 by 4). We chose this size for two reasons: cache co- 
herency for the pixels and data cache coherency for the scene. The 
first reason is dictated by the machine architecture which uses 128 
byte cache lines (32 4-byte pixels). With a minimum task granular- 
ity of a cache line, false sharing between image tiles is eliminated. 
A further advantage of using a tile is data cache reuse for the scene 
geometry. Since primary rays exhibit good spatial coherence, our 
system takes advantage of this with the 32 by 4 pixel tile. 

The implementation of the work queue assignment uses the hard- 
ware fetch and op counters on the Origin architecture. This allows 
efficient access to the central work queue resource. This approach 
to dividing the work between processors seems to scale very well. 
In Figure 4 we show the scalability for the room scene shown in 
Figure 16. We used up to 64 processor (all that are available lo- 
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Figure 6: Operation of ray tracer in asynchronous (frameless) 
mode. Screen is constantly updating and each processor is repeat- 
edly tracing its set of pixels. 

tally) and found that up through about 48 we achieved almost ideal 
performance. Above 48 there is a slight drop off. We also show 
performance data for interactively ray tracing the iso-surfaces of 
the visible female dataset in Figure 5. For this data we had access 
to a 128 processor machine and found nearly ideal speed ups for up 
to 128 processors. 

Since most scenes fit within the secondary cache of the processor 
(4 Mb), the memory bandwidth used is very small. The room scene, 
shown in Figure 4 uses an average of 9.4 Mb/s of main memory 
bandwidth per processor. Ironically, rendering a scene with a much 
larger memory footprint (rendering of isosurfaces from the visible 
female dataset [23]) uses only 2.1 to 8.4 Mb/s of main memory 
bandwidth. These statistics were gathered using the SGI perfex 
utility, benchmarked with 60 processors. 

Since ray tracing is an inherently parallel algorithm, efficient 
scaling is limited by only two factors: Load balance and synchro- 
nization. The dynamic work assignment scheme described earlier is 
used to limit the effect of load imbalance. Synchronization for each 
frame can limit scaling due to the overhead of the barrier. The stan- 
dard barrier provided in Irix requires an average of 5 milliseconds 
to synchronize 64 processors, which limits the scaling at high fram- 
erates. An efficient barrier was implemented using the “fetchop” 
atomic fetch-and-op facilities in the Origin. A barrier operation 
consumes 61 microseconds on average, which is an insignificant 
percentage of the frame time. 

2.2 Frameless Rendering 

For frameless rendering [3,7, 361 the viewpoint and screen are up- 
dated synchronously, but the pixels are updated according to an 
asynchronous quasi-random pattern. Our implementation for this 
is summarized in Figure 6. 

The implementation assigns a static pixel distribution to the ren- 
dering threads - every processor has a list of pixels that it will up- 
date, requiring minimal synchronization between threads. The ren- 
dering thread handles user input and draws the buffer to the screen 
at regular intervals. This is done asynchronously to the rendering 
threads. The rendering threads periodically update their camera - 
this is done at a specified rate expressed as a percentage of the 
pixels that thread owns. The display thread is modified so that it 
updates the screen at some user defined frame rate. 

When creating a “static” pixel distribution (partitioning the 
screen between processors), there are two conflicting goals: 1) 
maintain coherent memory access; 2) have a more random distri- 
bution (incoherent memory) of pixels. The first is important for 
raw system efficiency, and the second is important to avoid visually 
distracting structure during updates. 

In the current system we partition the image plane using a Hilbert 
curve (this maps the image to a 1D line), and then break this line 
into “chunks”, these chunks are distributed to the processors in a 
round robin fashion (processors interleaved with chunk granularity 

along the 1D domain of the Hilbert curve). Each thread then ran- 
domly permutes its chunks so that the update doesn’t always exactly 
track the Hilbert curve. 

When updating the image, pixels can be blended into the frame 
buffer. This causes samples to have an exponential decay and cre- 
ates a smoother image in space and time. We can use jittered sam- 
pling where there are four potential sample locations per pixel and 
two of them are updated when the pixel is updates, so the pixel is 
only fully updated after two passes. This implements the “frameless 
anti-aliasing” concept of Scher Zagier [35]. 

One nice property of a static pixel distribution is the ease of keep- 
ing extra information around (each thread just stores it - and no 
other threads will access this memory.) This can be used for com- 
puting a running average, sub pixel offsets for jittered sampling, a 
running variance computation or other information about the scene 
associated with that pixel (velocity, object ids, etc.). 

3 IMPLEMENTATION DETAILS 

Users of traditional ray tracers feel free to change the lighting and 
material parameters when the viewpoint is changed, and to add 
multiple lights to achieve a desired lighting effect. These are not 
practical in an interactive ray tracer where the lighting and material 
parameters are static as the viewpoint changes, and where even one 
light is expensive in terms of framerate. To help reduce the need 
for such traditional hacks, our implementation modifies the tradi- 
tional key components of a ray tracer: lighting, material models, 
shadows, and ray-object intersection routines. In Section 3.1 we 
discuss how we handle and modify material models and lighting in 
a dynamic context. In Section 3.2 we discuss how we approximate 
soft shadows efficiently. In Section 3.3 we discuss how we compute 
ray-object intersections for spline surfaces. 

3.1 Lighting and Materials 

The traditional “Whitted-style” illumination model has many vari- 
ations, but for one light the following formula is representative: 

L=kd(l.+sl.~.i)+Sl,kh(~.i)N+k,L,+ktLt, (1) 

where the vector quantities are shown in Figure 7, and L is the ra- 
diance (color) being computed, s is a shadow term that is either 
zero or one depending on whether the point luminaire is visible, 
kd is the diffuse reflectance, 1, is the ambient illumination, 1, is 
the luminaire color, kh is the Phong highlight reflectance, k, is the 
specular reflectance, L, is the radiance coming from the specular 
direction, lit is the specular transmittance, and Lt is the radiance 
coming from the transmitted direction. Although this basic for- 
mula serves us well, we believe some alterations can improve per- 
formance and appearance. In particular, we are careful in allowing 
Ic, and kt to change with incident angle, we modify the ambient 
component I, to be a very crude approximation to global ilhuni- 
nation (Section 3.1.1), and we allow soft shadowing by making s 
vary continuously between zero and one (Section 3.2). Finally, we 
break the materials into several classes to compute only non-zero 
coefficients for efficiency. 

One well-known problem with Equation 1 is that the specular 
terms do not change with incident angle. This is different from 
the behavior of materials in the real world [14]. In a conventional 
ray tracer the values of kd, k, and kt can be hand-tuned to de- 
pend on viewpoint but in an interactive setting this does not work 
well. Instead, we first break down materials into a few distinct sub- 
jective categories suggested in [31]: d$bse, dielectric, metal, and 
polished. The modifications for these materials is described below: 

Diffuse. For diffuse surfaces we use Equation 1 with kh = k, = 
kt = 0. This is the same as a conventional ray tracer. 
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Figure 7: The directional quantities associated with Equation 1.

Metal. Metal has a reflectance that varies with incident angle [6].
We are currently ignoring this effect, and other effects of real metal,
and using traditional Whitted-style lighting. We use Equation 1

Dielectric. Dielectrics, such as glass and water, have re-
flectances that depend on viewing angle. These reflectances are
modeled by the Fresnel Equations, which for the unpolarized case
can be approximated by a polynomial developed by Schlick [28]:

and let is determined by conservation of energy:

The internal attenuation of intensity I is the standard exponential
decay with distance t according to extinction coefficient IE: I(t) =
I(O)ezp(-&). To approximate the specular reflection of an area
light source we add a Phong term to dielectrics as well.

Polished. We use the coupled model presented in [30]. This
model allows the k, to vary with incident angle, and allows the
diffuse appearance to decrease with angle. As originally presented,
it is a BRDF, but it is modified here to be appropriate for a clamped
RGB lighting model with an ambient component:

where the first term assumes the ambient component arises from
directionally uniform illumination.

3.1.1 Ambient Lighting

The ambient term 1, in Equation 1 is a crude approximation used
in conventional ray tracers to avoid computing an indirect light-
ing term. It is not meant to be physically accurate, but instead to
illuminate those areas that are not directly lit by the luminaires.
Given this, its main failing is that the uniform intensity causes dif-
fuse objects to appear flat when the surface faces away from the
light source. One way to avoid this is to put a fill-light at the eye
point, but we feel this is distracting for a moving viewpoint. An al-
ternative is to allow the ambient coefficient to vary with position p’
and orientation: I, (p’, ii). This can be a simple heuristic, or based
on radiosity solutions [13]. Our motivation for using a more sophis-
ticated ambient term is to allow shading variation on surfaces that
are not directly lit without the computational cost of adding addi-
tional lights. This can be accomplished by assuming the ambient
term arises due to illumination from a background divided evenly
between two intensities A and B (Figure 8). The angle .9 will vary
from zero to rr radians. For 0 = 0 the surface will only “see” A so
the ambient term will be A. As 0 increases the ambient term will

Figure 8: A surface is illuminated by a hemisphere with colors A
and B.

gradually change to (A + B)/2 at 0 = r/2, and finally change
to B as the surface fully faces the bottom hemisphere. Nusselt’s
analog [4] allows us to derive the full relationship:

Either the user can set A and B algorithmically or by hand. We set
ours by hand, but some heuristics can aid in selection. If we en-
vision the hemisphere-pair as approximating indirect lighting of an
object in a room, then the “walls” opposite the light are well illumi-
nated and bright. So the hemisphere can be roughly aligned to the
light source, with the hemisphere in the direction of the light source
darker than the one pointing away from the light source. As advo-
cated by Gooch et al. [12], we can accent the shape using a cool-to-
warm color shift by making sure the light source is yellow (warm)
and the hemisphere facing away from the light is blue (cool). Our
ambient approximation is shown in Figure 9 and is not measurably
slower than a constant ambient component for non-trivial mmodels.

Figure 9: Left: simple ambient approximation. Right: directionally
varying ambient approximation.

3.2 Shadows

One of the limitations of ray tracing is the hard edges computed
for shadows. In addition to aesthetic reasons, there is evidence that
soft edged shadows aid in accurate spatial perception [19]. Ray
tracing methods that produce accurate soft shadows such as ray
tracing with cones [l] or probabilistic ray tracing [5] stress accu-
rate soft shadows, but dramatically increase computation time rela-
tive to hard shadow computation. In this section we examine how
to compute soft-edged shadows approximately so that interactivity
can be maintained.
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Figure 10: A beam traced shadow with five samples. Note that there
are discontinuities within the shadow.

One option to improve performance is to do explicit multi-
sampling of the light with a “beam” made up of a small number of
rays [15]. Since the number of rays is small, there will be visual ar-
tifacts but interactive performance will be possible (Figure 10). To
speed up this computation we can precompute the rays in the beam
if we assume the luminaire is far away, and we can vectorize the
intersection computation against each geometric primitive. This is
similar to traversing efficiency structures using bundles rather than
single rays [9]. Although this optimization gives us a factor of two
performance over the unvectorized version, it is still too slow for
many shadow rays.

An alternative to computing accurate soft shadows is to soften
the edges of hard shadows. This is essentially the technique used
in depth buffer algorithms [25] where the binary shadow raster can
be filtered. However we want to simulate the change in penumbra
width we see in real shadows. Such an effect requires more so-
phisticated filtering. This means shadow penumbra width should
behave in a believable way, starting at zero at the occluder and in-
creasing linearly with distance from the occluder.

It is hard for observers to tell the difference between shadows
cast by differently shaped lights. For this reason we assume spher-
ical lights. We do a rough calculation at each illuminated point of
what fraction s of the light is visible, and attenuate the unshadowed
illumination by s. Thus our goal is to estimate s in efficiently and
to visually plausible results.

Rather than creating a correct shadow created by an area source,
the algorithm creates a shadow of a soft-edged  object from a point
source (Figure 11). The penumbra is the shadow of the semi-
opaque (outer) object that is not also shadowed by the opaque (in-
ner) object. The transparency of the outer object increases from no
transparency at the inner object to full transparency at the bound-
ary of the outer object. For an isolated object, we can use inner and
outer offsets of the real object to achieve believable results. We also
need to make the intensity gradient in the penumbra natural. This
can be achieved by computing the shadowing variable s beginning
at s = 0 on the penumbra/umbra boundary (the surface of the inner
object) and increasing non-linearly with distance to s = 1 on the
outer boundary of the penumbra (the surface of the outer object).

The above approach will give an approximate soft shadow. The
size of the penumbra is based on the size of the offsets used to
create the inner and outer objects. In order to have the penumbra
width change plausibly, the offsets need to change based on the dis-
tance along the shadow ray and the size of the light source, as illus-
trated in Figure 12. This requires modifying the intersection tests

Figure 11: The inner object is opaque and the outer object’s opac-
ity falls off toward its outer boundary.

for shadow rays. The details of this approach, including solutions
to light leaking between two objects and the intersection tests and
bounding box construction for polygons and spheres with varying
offsets are discussed in more depth by Parker et al. [24]. The results
are shown in Figure 13.

Figure 12: Choosing the size of the outer objectfor a given config-
uration.

3.3 Spline Surfaces

In most traditional rendering systems NURBS are tessellated, often
outside the graphics API in order to have more control over the
accuracy. This can lead to an explosion in the amount of data that
needs to be stored and then sent down the rendering pipeline. Ray
tracing does not have this limitation.

Intersection tests with NURBS have been done in several ways
(e.g., [16, 29, 33]. Our approach computes an estimate to the in-
tersection point and then uses a brute force approach to compute

Figure 13: Left: one sample per pixel with hard shadows. Right:
one sample per pixel with soft shadows. Note that the method cap-
tures the singularity near the box edge.
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Figure 14: Two images rendered directly from the spline model.

the actual intersection point. Surface parameter spaces are subdi-
vided to a user-specified depth, and the quadtree that results is used
to construct an inn-a-surface bounding volume hierarchy. Axis-
aligned bounding volumes are used to preserve consistency with
the overall infrastructure. Bounding volume hierarchies are built
bottom up. It is important to note that this will result in tighter
volumes than top down construction (since the subdivided control
meshes converge to the surface).

Intersections with the leaf nodes of the bounding volume tree
are computed using Broyden’s method. This is a pseudo-Newton
solver which approximates the value of the Jacobian. It converges
more slowly than Newton, but requires fewer function evaluations.
The initial guess is given by the average of the boundary parameter
values of the patch in question. Patches are allowed to overlap by
a small percentage of their parametric domains, thereby lessening
the chance of cracks.

Usually fewer than three iterations of the root finder are required
to converge to a suitably refined surface. The cost of storage is
one copy of the original control mesh, and for each leaf node in the
intra-surface bounding volume hierarchy, four doubles denoting the
parametric interval it covers. In addition, we require each processor
to reserve a scratch area so that the spline basis functions can be
computed without needing to lock the data. The cost of this storage
is m+n where m and n are the maximum control mesh dimensions
over all surfaces in the scene.

4 RESULTS

The final rendering system is interactive on relatively few (8) pro-
cessors, and approaches real time for complex environments on 64
or more processors. It runs well on a variety of models from differ-
ent application areas. Its flexibility allows several different display
modes, all of which are applicable to ‘the various models.

Ray tracing is ideal for showing dynamic effects such as spec-
ular highlights and shadows. Dynamic objects are more difficult
to incorporate into a ray tracer than into a z-buffer algorithm as
current acceleration schemes are not dynamic [11]. Our current
workaround is to keep dynamic objects outside the acceleration
scheme and check them individually for each ray. Obviously this
only works for limited numbers of dynamic objects. In Figure 2
we show a static image from a set of bouncing balls using the soft
shadow approximation.

Computer-aided design usually uses both curved surfaces and
non-diffuse objects, such as a windshield made from glass. Ray
tracing can render curved surfaces directly, making it ideal for
spline models. The ability to calculate accurate reflections across
the surface make is possible to evaluate the smoothness and curva-
ture of the models for aesthetic purposes. A sample of a directly
ray traced spline primitives is shown in Figure 14. We have run
on several models containing 20-2000 individual patches with run-
times ranging from 1-20 fps at 512 by 512 pixels on 60 processors.

Ray tracing time is sub-linear with respect to model size. This
allows us to interact with very large models. One area that cre-

ates large models is scientific visualization. In Figure 15 we show
a visualization of a stress simulation. Each node in the simula-
tion is represented by a sphere. There are 35 million spheres in this
model. Unlike conventional rendering systems, the high depth com-
plexity has very little effect on the rendering times. Another area
that can create complex models is architectural design. The model
in Figure 16 contains roughly 75,000 polygons and a spline teapot.
An area we would like to explore is the use of interactive ray trac-
ing for walk throughs of globally illuminated static environments,
where the illumination information has been computed in advance
by such techniques as radiosity or density estimation. Usually spec-
ular and transparent effects are missing from such walk throughs.
In addition, we should be able to easily allow higher order recon-
struction of the solution. Also, we could greatly reduce polygon
count if radiance lookup evaluates the mesh instead of representing
each mesh element as a separate polygon.

Figure 15: Simulation of crack propagation visualized using 35M
spheres. This image at 512 by 512 pixels runs approximately 15
frames per second on 60 CPUs.

5 RELATED WORK

Ray tracing has long been a focus for acceleration through parallel
techniques. There are two general parallel methods which are used
for such acceleration: demand scheduling and data parallel. De-
mand driven scheduling refers to distributing tasks upon demand.
Data parallel methods partition the data and assign tasks to the pro-
cessors which contain the required data. Hybrid methods combine
these two paradigms generally by partitioning the tasks into those
requiring a small amount of data and those requiring a large amount.
Since shared memory processors with large amounts of memory
have only recently been commercially available, most parallel ray
tracing research has focused on distributed memory architectures.
For shared memory parallel computers, demand driven scheduling
methods tend to lead to the best performance [26]. Our implemen-
tation is based on demand driven scheduling where the task granu-
larity is rendering an 32 by 4 pixel tile. In this section, we provide
a comparison with several related parallel ray tracing implementa-
tions. A more thorough general review is provided by Reinhard and
Jansen [26].

Muuss and researchers from ARL have experimented with par-
allel and distributed ray tracing for over a decade [20, 21]. In their
recent work, they describe a parallel and distributed real-time ray
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Figure 16: A model with splines, glass, image textures, and proce-
dural solid textures. At 512 by 512 pixels this image is generated at
approximately 4 frames per second on 60 CPUs.

tracer running on a cluster of SGI Power Challenge machines [21].
One of the differences between BRL’s effort and ours is the ge-
ometric primitives used. Their geometry is defined by through a
CSG modeler, BRL-CAD. Additionally, we leverage the tight cou-
pling of the graphics hardware on the SGI Origin while their system
uses an image decomposition scheme combined with a network at-
tached framebuffer. Muuss points out that synchronization, partic-
ularly at the frame level, is critical for real-time ray tracing [21].
Our research indicates that synchronization within a frame is also
critical as noted by our dynamic load balancing scheme. Although
not reported in the literature, ARL’s current effort seems to have a
comparable framerate as ours (Muuss, personal communication at
SIGGRAPH98).

Keates and Hubbold use a distributed shared memory architec-
ture, the KSRl, to implement a demand driven ray tracer which
renders a simple scene is slightly over 1.8 seconds for 256 pro-
cessors [18]. Their implementation is similar to ours in that they
use the brute force technique of parallelizing over rays. However,
their work differs in the granularity of work distribution, the method
used for load balancing, and results based upon architecture. Their
implementation split the screen into regions and divided the work
among the CPUs. It is not clear how large the regions were but
one is lead to believe the regions are larger than the 32 pixel re-
gions used in our implementation. They report problems with load
balancing and synchronization. They address these by a two level
hierarchy for screen space subdivision similar to Ellsworth [8]. Our
system uses a different strategy for load balancing of decreasing
granularity of assigned work which empirically yields better results.
This also assists in synchronization which is why this issue has not
been a problem for us.

Singh et al. reported on using the Stanford DASH distributed
shared memory machine for ray tracing [32]. Their implementation
used an image decomposition scheme which subdivided the image
among the available processors. Within a processor, the sub-image
a further subdivided into 8 by 8 pixel tiles. As in our system, their
implementation noted the advantage of data cache reuse for object
intersection test. Their work differed from ours in the load bal-
ancing scheme. They used task stealing rather than demand driven
scheduling. We find that the simpler approach of using a task queue
with good dynamic load balancing provides excellent results with-
out the complexity of performing task stealing. The fetch and op

hardware in the Origin architecture allows the task queue to per-
form well even on a large number of processors.

Yoon et al. use an image partitioning scheme which stati-
cally load balances the tasks by interleaving pixels and distribut-
ing among nodes the scene data while replicating the spatial hier-
archy on each node [34]. Their work attempts to prefetch data for
each ray task. Their work differs from ours in two major respects:
load balancing and machine architecture. Our implementation ef-
fectively exploits dynamic load balancing through the heuristic of
decreasing task size while Yoon et al. employ static load balancing
through pixel assignment. Since their work focuses on a distributed
memory architecture, they need to explicitly address data distribu-
tion while our implementation exploits the CC-NUMA distributed
shared memory.

Reinhard and Jansen use a hybrid scheduling method for paral-
lel ray tracing [27]. Their implementation divides the ray tracing
task into those tasks which require limited amounts of data and
those that require more substantial amounts of data. Since their
spatial subdivision hierarchy, but not the leaf nodes, is replicated
on each processor, tasks using these are demand scheduled whereas
tracing rays through the objects within the leaf nodes is performed
in a data parallel fashion. Their method makes novel use of this
combined scheduling scheme which provides better performance
on distributed memory parallel computers. Since our method ex-
ploits the distributed shared memory architecture, we can achieve
very good performance with only demand scheduling.

Bala et al. describe a bounded error method for ray tracing [2].
For each object surface, their method uses a 4D linetree to store a
collection of interpolants representing the radiance from that sur-
face. If available, these interpolants are reprojected when the user’s
viewpoint changes. If not, the system intersects the ray with the
scene checking for a valid interpolant at the intersection point. If
one is found, the radiance for that pixel is interpolated. Otherwise,
using that linetree cell, an attempt is made to build an interpolant.
If this is within an error predicate, it is used otherwise the line-
tree cell is subdivided and the system falls back to shading using a
standard ray tracing technique. The acceleration is based upon the
utilization of previously shaded samples bounded by an error pred-
icate rather than fully tracing every ray. Our system is brute-force
and traces every ray in parallel. Bala’s method is oriented toward a
more informed and less parallel strategy, and is currently not inter-
active. Moving objects would pose a problem for the linetree based
system whereas they can be handled in our implementation. Using
reprojection techniques might further accelerate our system.

6 CONCLUSION

Interactive ray tracing is a viable approach with high end paral-
lel machines. As parallel architectures become more efficient and
cheaper this approach could have much more widespread applica-
tion. Ray tracing presents a new set of display options and tradeoffs
for interactive display, such as soft shadows, frameless rendering,
more sophisticated lighting, and different shading models. The soft-
ware implementation allows us to easily explore these options and
to evaluate their impact for an interactive display.

We believe the following possibilities are worth investigating:

l How should antialiasing be handled?

l How do we handle complex dynamic environments?

l How do we ensure predictable performance for simulation ap-
plications?

l What should the API be for an interactive ray tracer?

. How could an inexpensive architecture be built to do interac-
tive ray tracing?
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The first three items above highlight significant limitations of our 
current system: antiahasing is brute-force and thus too costly, and 
performance can be slow or unpredictable because there is a com- 
plex interaction between efficiency stucture build time, traversal 
time, and view-dependent performance. How much of these are 
due to the batch nature of traditional ray tracing methodology ver- 
sus intrinsic limitations is not yet clear. 

Additionally, we feel that an interactive ray tracer can help an- 
swer more general questions in interactive rendering, such as: 

l How important are soft shadows and indirect illumination to 
scene comprehension and how accurate do they need to be? 

l Are more physically accurate BRDF’s more or less important 
in an interactive setting? 

l Do accurate reflections give significant information about sur- 
face curvature/smoothness? 

The ability to have more complete control over these features allows 
us to investigate their effects more completely. 
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Figure A: A portion of a 600 by 400 pixel image from our system
running at approximately fifteen frames per second.

Figure C: Simulation of crack propagation visualized using 35M
spheres. This image at 512 by 512 pixels runs approximately 15
frames per second on 60 CPUs.

Figure B: Directionally varying ambient approximation.

Figure D: A model with splines, glass, image textures, and procedu-
ral solid textures. At 512 by 512 pixels this image is generated at
approximately 4 frames per second on 60 CPUs.
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