Ray Tracing Parametric Patches

James T. Kajiya

Computer Science Department
California Institute of Technology

5017:TR:82

Ray Tracing Parametric Patches

James T. Kajiya
California Institute of Technology
Pasadena, CA 91125

TM# 5017

(To appear in SIGGRAPH 82)

RAY TRACING PARAMETRIC PATCHES

James T. Kajiya
California Institute of Technology
Pasadena, Ca. 91125

ABSTRACT. This paper describes an algorithm that uses
ray tracing techniques to display bivariate polynomial sur-
face patches. A new intersection algorithm is developed
which uses ideas from algebraic geometry to obtain a3 num-
erical procedure for finding the intersection of a ray and a
patch without subdivision. The algorithm may use complex
coordinates for the {u, v)-parameters of the patches. The
choice of these coordinates makes the computations more
uniform, so that there are fewer special cases to be con-
sidered. In particular, the appearance and disappearance
of silhouette edges can be handled quite naturally. The
uniformity of these techniques may be suitable for imple-
mentation on either a general purpose pipelined machine,
or on special purpose hardware.

KEYWORDS: computer graphics, raster graphics, ray trac-
ing, parametric patches

CR CATEGORIES: 1.3.3, 1.3.5, 1.3.7

From its inception, the method of ray tracing has al-
ways been the techmnique of choice when ultimate rea-
lism of computer generated images is the goal [Appel
1968]. This paper describes a new technique for
generating ray traced images of piecewise polynomial
bivariate parametric patches. In contrast to other
algorithms to do this, the new algorithm does not
repeatedly subdivide a patch, but rather calculates an
intersection between a patch and a ray using more or
less direct numerical procedures.

This procedure has a number of pleasant characteris-
tics. First, for patches of low degree, the algorithm

proceeds more quickly. In fact, if the patch coeflicients
degenerate to a planar surface the amount of computa-
tion needed to intersect a ray with it is roughly the
same as for an algorithm tuned for ray-plane intersec-
tions. Sccond, the algorithm is robust many patch
algorithms need preliminary subdivisions to satisfy
some & priors approximation [Blinn, ef. al. 1980], the

algorithm :presented here has no such requirement.

This paper treats the intersection problem only. There
arc many other componcnts to a ray tracing systcm,
such as the lighting mode! calculation [Whitted 1980,
the use of object coherence to mitigate scene com-
plexity [Rubin and Whitted 1980], antialiasing in the
ray tracing context [Whitted 1980), and the use of
reflectance and normal vector perturbation mapping
techniques to enhance realism [Blinn 1978b]. We study
the intersection problem because it has been found to
be the most time critical step.

§1 Notation

This section establishes the general notation of the
paper. We also set up the basic equations for patch,
line, and plane definitions.

A point in RP3, real projective 3 space, is given by its
homogeneous coordinates, i.e. a 4-vector

25, £k=0,1,2,3.
Usually (20, =1, 22, 2%) is written as

(zl y} z’ w) = (zlf z2) za) mo)'

A typical representation of a bicubic patch is as a set
of 4 by 4 matrices, one matrix for each homogeneous
coordinate:

pY, 4,5,k=0,...,3.
To calculate the 4D point corresponding to a chosen
u, v-parameter value we use

zk = phyd=iyi=i

1)

Throughout this paper we shall use the summation
convention: if an index appears twice in a term then it
is summed across the range of its values. The expres-
sion above when written in full is actually

3 3
z* = Z E p{-‘juz’"vs“" k=0,...,3
i=0 j=0
or in the familiar matrix form

vS

o2
zF = (u® u® w 1)(P) k

7

1
where PE = (p¥)). th

power while z* is a coordinate indexed by k. No con-

Note that u™ is an algebraic n

fusion should ever result since parameter values are al-
ways multiplied and never indexed while spatial coor-
dinates are always indexed and never multiplied.

Now a ray has several co-ordinate representations. One
can represent it as two points on the line, 3 point and
direction cosines, or the intersection of two planes. For
our purposes we choose the latter representation. Thus

a line is represented by the equation:

k=0, a=0,1)

§2 Intersecting A Ray with A Patch

* This section discusses the process we use to transform
the ray-patch intersection problem in real projective
3 space into the problem of intersecting two algebraic
curves in complex 2 space. By performing such a trans-
formation we will be able to make use of tools available

from algebraic geometry.

To intersect a patch and a ray we substitute equation
(1) into equation {2) to obtain:

‘,:pfjua""va_j =0 "a=0,1
or, setting
lg?’fj = Gey
_ li?’fj = by;
we have the equations:
a.-,-ua""va"' =0

b,-_.,-us""va"j = 0.

Each of these two equations define the algebraic curves
formed by the intersecting the patch with each of the
two line defining planes. The intersection points of
these two algebraic curves in turn give the u, v-param-
eter values at which the ray intersects the patch. This

proves our first theorem.

Theorem 1, Let a paich be given by o 4 by 4 by 4
array of coefficients pfj and a line be given by its 2 by
4 array of coefficients if. To find the parameter values
u, v ol which they intersect we may find the solution of
two algebraic equations:

a,-,-ua""va—j =0
b,'jua—"v"‘"".~= 0

where

a:; = ol
and

by = l;:??j
Proof: | |

The above two equations must be solved simultaneously.
They represent degree six algebraic curves in the (u,v)-
plane. They are not, however, completely arbitrary
degree six curves. We can consider algebraic curves
as points in a vector space. This is done via their
defining polynomial equations since the coefficients of
the defining polynomial form a vector space. In our
case above, the dimension of the vector space of curves
is only half the dimension of the vector space of general
degree six algebraic curves. As we shall see, the smaller

space cuts down the number of possible solutions by
half.

§3 The Resultant

We now present the key observation of this paper:
that it is possible to intersect algebraic curves via a
relatively straightforward mechanical procedure. We
describe the actual intersection algorithm in section 5.
This section and the next will justify the steps involved
in the algorithm. The reader may safely skip to section
5 on o first reading — at the risk of being somewhat

mystified by a few of the steps of the algorithm.

In finding a procedure to intersect two algebraic curves
given by bivariate polynomials, we use some results
about univariate polynomials. These results may be
found in most books treating algebraic geometry or the
theory of equations [Walker 1950, Littlewood 1970, or
Uspenskii 1948].

We now state the central definition of this section.

Definition. The resultant of two polynomials a(u) =
a;u"* and b(u) = b;u™ 7 of degree n and m, resp.

whose roots are a;,...,0, and Bi,...,Py is defined

as:

R(a,8) = af b3 (1™t J[(-8 (3

t==1,...,n
J=l,...m

From this definition follows two obvious facts.

Theorem 2. The resultant of twe polynomials ss

zero iff they share a common zero.

Proof: Obvious from the definition, since if a; = §;
for some %, 7 then and only then would the expression
for H(a,b) vanish. K

Theorem 3. The resultant R(a,b) f¢ homogeneous
and symmetric in each set of roots oy, ..., o, of a(u)
and f1,...,0n of b(u) considered independently.

Proof: Obvious from inspection of the definition of the
resultant and the definition of a symmetric polynomial
given immediately below. §

Deflnition. An expression f(z!,...,z") of n vari-
ables is called symmetric if its value is unchanged upon
any permutation of its arguments.

-3-

Example. Here are some symmetric functions for

n=3:

81(z%, 2, 2?) = 2% + 2! + 27

82(2%, 21, 2%) = 202 + 2°2° + 2122

8a(2% ', 2%) = 2%z 2%
Why is it important to notice that the resultant is
symmetric in the roots of the polynomials a and b? It
is because of the next theorem.

Theorem 4. Let

a(u) = aguf + g, 0" 1+ - 4 q

be a polynomial with roots ay,...,or. Then any ez-
pression @ symmetric in the a; can be rewrilien as a
polynomial in the coefficients a; of a(u) divided by ag
and a factor of -1.

Proof: The difference of two symmetric polynomials is
symmetric. We form the basic symmetric polynomials
given in the example below. It is possible to lower
the degree of ® simply by matching the highest degree
monomial with a power of one of the basic symmetric

terms. Induction finishes the proof. i

Example. Let a(u) = a;u®~* be a cubic polynomial.
Then from the previous example we have:

(—1)ags1(es, a2, 03) = a1+ 0p + a3 =0y
(—1)20082(0‘1; ag,a3) = 109 + @yQ3 + Gp0z == ay

(“1)3“083(0‘1: @z, a3) = o0z = Q.

Finally, we can now state the key fact that we need to

intersect algebraic curves. -

Theorem 5. The resultant of two polynomials can
be expressed as a polynomial in the coefficients of each.

Proof: Use theorem 3 and theorem 4. 1#

This important result allows us to determine whether

oot Ly
TOOU Uy

two univariate polynomials share a common
calculating directly from their coefficients without first
factoring each polynomial into its roots. We merely

calculate the resultant and test for zero. For univariate

polynomials the resultant gives us a convenient method

for testing for common zeroes of two polynomials.
For bivariate polynomials such a convenience becomes
necessity: the resultant allows us to solve the curve
intersection problem in u and v separately.

The resultant R(a, b) may be expressed as a polynomial
in the coefficients. What does this polynomial look
like? We might multiply out the product in equation
(3) and attempt to calculate the polynomial directly.
Fortunately, there is an easier way.

§4 The Bezout Determinantal Form of the
Resultant

This section discusses a method for directly calculating
the resultant R{a, b) as a polynomial in the coefficients
of ¢ and b. The resultant takes on a determinantal
form whose appearance depends on the degrees of the
polynomials @ and . We show how to generate 2
determinant for each degree and display determinants
for two cases: the full degree six bicubic case and the

case for the interscetion of two lines.

If a(u) and b(u) share a common root § then a(¢) =
0 and b(¢) = 0. Furthermore, if a{u) and b(u) have
degrees n, m we can without loss of generality assume
that n > m (or, in other words, that n =m+r, r >
0). It is then easy to see following set of equations also

obtain:

boa(€) — ao€"b(¢) = 0
(bo& + b1)a(€) — (aoé +a1)€"b(§) =0

(B0 €™ Y 4+ b1 6™ 2 4 ot bpp—y)a(é)
—(af™ N 4 a 8™ ka1)ETB(E) =0
fr-lb(f) =0
E2(8) =0
b() = 0.

If we multiply out these equations and collect like
powers of £ we get a system of algebraic equations.
Now, if 1,¢,£2,...,£" are considered to be inde-
pendent variables we then have a linear system of equa-
tions. For that system to have a solution the deter-

4

minant of the coefficients must be zero. This deter-
minant is exactly the resultant R{q,).

Let us illustrate the case for n = 3, m = 3, and r = 0.
We have the following determinant:

bo by by bg by b3
Go a3 2y Q3 Gy ag
bo b bo b by b by b
R(a, b)= o 02 o 03} + 1 U2 1 03
Gy ao dg Qs a; Qg a; as
bo b3 bl bs 52 b3
Qo ag a; ag az Qg

If this determinant is zero then the two cubic polyno-
mials have a root in common. Another example is if

n = m = 1. The system of equations then reduces to
by b
R(a,b)=|"° "
Qo Qi

which is the ordinary determinant encountered when
solving this particular linear system of equations ob-
tained by intersect the two lines by more conventional

means.

The above argument shows that the vanishing of the
Bezout determinant is a necessary condition for a com-
mon root to occur, but not a sufficient condition. The
argument‘ for sufficiency is more involved: it involves
a manipulation of the definition given in the previous

section.

§5 Calculating the Intersection of Two Curves

We need to intersect the two algebraic curves given
by the locus of solutions of two bicubic polynomials
a(u, v), b(u, v). We use the resultant to find such inter-
sections by a trick. This trick is to consider bivariate
cubic polynomials in ¥ and v to be univariate polyno-
mials in v with coeficients polynomials in u, i.e.

Clu, v] = Clu][v].
Thus to calculate the intersection of the a{u,v) and

b(u, v) curves we simply find common roots of the (uni-
variate) cubic polynomials in v. By theorem 2, the

vapishing of the resultant
R(a,b) =10

gives us a necessary and sufficient condition for an in-
tersection to occur. From theorem 5, the resultant is
a polynomial in the coeflicients of @ and b. Since each
of the coefficients of these polynomials are again poly-
nomials in u, the resultant is a polynomial expression
in these polynomials. Upon substituting, we obtain for

the resultant a polynomial r(u) in v, i.e.
R(a,b) = r(u)

The vanishing of this polynomial is the condition for a
common root in v, i.e. The roots of the equation

r(u) =10
gives the u-coordinates of the intersection points of the
two curves.

The roots pi,ps,...,Hnq of the polynomial r{u) give
the values of the u parameter at which intersections
occur. To find the values of the v parameter at which
intersections occur we successively substitute p; into
the coefficients to obtain polynomials in v. Since we
already know that these polynomials have a common
root it is unnecessary to solve each polyomial equation
separately and match roots. Rather, we may simply
compute the GCD of the two polynomials to obtain a
polynomial which divides both polynomials. Often this
GCD polynomial is of degree one allowing us to read
off the v parameter value directly from its coefficients.

Here is a2 summary of the intersection procedure:

Compute the Bezout determinantal form r(u) of
the resultant R(a,b) of the two bicubic polyno-
mials a{u, v),b(x, v) each considered as (univariate)

1.

cubic polynomials in v with coefficients in C[u].

2. Solve r(u) = 0 to obtain py, ..., u, the u param-

eter values of the intersection points.

For each y; calculate via the Euclidean algorithm
the GCD of the cubic polynomials a(u;, v), b(p:, v).

3.

4. Find the roots vy; of the GCD to obtain the v

parameter values of the intersection points.

-5-

There are:a number of special cases in the above algo-
rithm. First, when calculating the Bezout determinant
one of the polynomials, say a(u,v), may have degree 0
in v. In this case the determinant need not be com-
puted at all since a(u,v) and b(u,v) have a common
zero when and only when a(u) has a zero. Second, the
resultant relies on the fact that ag, by 7 0 for the two
polynomials. When these coefficients are themselves
polynomials we get spurious zeroes of the Bezout deter-
minant at the roots of ag,by. This is easily detected
at the GCD stage: the the two substituted polyno-
mials will be mutually prime. Third, the occurrence of
multiple intersections will cause the GCD of the sub-
stituted polynomials to have degree higher than one.
This is easily treated by simply solving the resulting
GCD polynomial for all roots. Finally, the presence of
numerical error makes computing the GCD polynomial
somewhat delicate. We use the Euclidean algorithm
modified by treating very small coefficients as zero. We
caution however that a careful evaluation of the algo-
rithm with respect to numerical error and stability has '

not yet been undertaken.

Figures 1 and 2 show the results of applying this proce-
dure to two different patches. We have not yet incor-
porated the lighting models which include reflection,

refraction, and shadows.

§6 Bezout’s Theorem

How many different intersections can a ray have with a
bicubic patch? We shall show that there are 18 possible
intersections—they are, however, not necessarily real.
The next theorem that tells us at how many points
two distinct algebraic curves can intersect. It is a
generalization of the fundamental theorem of algebra.

Theorem 6. (Bezoul). If two curves of degree m and

n do not share o common factor, then they intersect in

. ezactly mn points counted with mulliplicities.

Proof: See Walker (1950). 1§

Note that if one of the curves is linear then it has
degree 1 and we collapse to the fundamental theorem

of algebra. This example points out that the theorem
does not hold if we limit our attentions to the real case.
Nor should we ignore the points at infinity. Thus to
properly hold, Bezout’s theorem is stated in the setting'
of complex homogeneous coordinates.

Because bicubic polynomials are not general polyno-
mials of degree six we may improve upon Bezout’s
theorem. Bezout’s theorem implies that there may be
up to 36 intersections of a ray with a patch, but for the
case of bicubic polynomials many of these intersections

are always multiple.

Each a;; is obviously 2 point in 16-dimensional poly-
nomial space. A general degree six curve is the locus
of solutions of the equation

3 it o

i+i<6
' or as matrices, the general degree six looks like

8

0 v°
6,5 .

(v u’---ul)

while our case appears as

0
0

(wbub. . ul)

W

Two bicubic curves intersect al ezactly

Theorem 7.
18 points in CP2, the complex projective plane.

Proof: Computing the resultant of the two polyno-
mials as in the intersection procedure above we see that
the resultant polynomial r(u) has degree at most 18.
Each root of this polynomial gives a u-value at which

the a and b polynomials have a root in common.

§7 Solving Polynomial Equations

At the heart of the algorithm presented above is a re-
quirement to repeatedly solve univariate polynomial

equations. Indeed, as we shall see, the bulk of the com-
putation time for the whole intersection calculation is
taken by the root finding procedure. It is thus crucial
to use a highly efficient root finder. The method we
have chosen is Laguerre’s method [Ralston 1965]. It
is an iterative scheme similar to Newton’s but with a
more robust behavior. Laguerre’s method iterates ac-
cording to the following procedure:

fear = €k +na(x)
a'(€x) + VH()

where n is the degree of the polynomial a, and
H(§) = (n— 1)[(n — 1)a'(§)* — na(£)a"(€)]-

The sign of the square root is chosen to make the

update term have smallest wagnitude.

The derivation of Laguerre’s method proceeds essen-
tially the same way as does the Newton procedure
except that one additional term is preserved in the
power series expansion. This, in effect, approximates
the function by a parabola instead of a line.

The Laguerre procedure has a number of advantages
of the Newton. It is cubically
convergent, trebling the number of digits of accuracy

It is more robust.

at each step. It converges in a single iteration for
linear and quadratic equations. It naturally finds all

the complex roots.

The well known Newton procedure also possesses some
well known instabilities when presented with initial
guesses that do not satisfy certain criteria. In con-
trast, for a polynomial a(u) with real roots £ < & <
-++ < &p, the Laguerre procedure is unconditionally st-
able. No matter what the initial guess, it will converge
to the nearest real root. Unfortunately, for complex
roots the behavior of the Laguerre procedure is not so
thoroughly understood although it has been found in
practice to work well. Certainly our experience with
solving the polynomial equations encountered during
the intersection process above has shown the procedure

to be remarkably stable.

Because of the cubic convergence of the Laguerre pro-
cedure, roughly five iterations are sufficient for the ac-

curacy required for graphics.

Since most patches tend to have degree lower than the
full cubic, it is an advantage to be able to naturally
solve quadratics and linear equations in one step. The
Laguerre algorithm does this within a single iteration.

Finally, the ability of the Laguerre algorithm to find
.complex roots naturally is in contrast to the Newton
procedure. For a real polynomial, if the initial guess
is real then all subsequent Newton iterations will be
so. To obtain complex roots one must resort to a
modification of Newton’s algorithm such as, for ex-

ample, Bairstow’s.

For these reasons we have chosen the Laguerre pro-
cedure to calculate roots of the resultant polynomial.
However, we consider the selection of a suitable root
finding procedure to be an open question — especially
when considering hardware implementation.

Once a root has been found, the polynomial is deflated
by synthetically dividing by the monomial correspond-
ing to the root. This step is exactly Horner’s rule whose
intermediate results form the new deflated coefficients.
If the root £ is complex and the coefficients of the poly-
nomial are real then it is more efficient to deflate by
the root and its conjugate simultaneously. This is done
by synthetically dividing by the quadratic:

z? + 2Re{¢}= + |¢2.

§8 Algorithm Complexity

Because the probability distribution of the degrees of
the incoming bicubic patches are unknown, as well as
of the number of iterations for the Laguerre procedure
to converge (it is strongly dependent on the degree), we
are unable to estimate the average number of opera-
tions to compute a ray-patch intersection. We will,
however, estimate the worst case number of floating
point operations. These estimates appear in Table 1.

What do these numbers mean? The following is a
highly speculative discussion of the performance of this
algorithm in the context of a full ray tracing system.
We emphasize that we have as yet not constructed

such a system so that the following estimates are very

approximate. The reader is cautioned to regard this
speculation with skepticism. However, by giving the
reader a rough indication of the order of magnitude of
computation involved, this discussion may have some
small value.

Estimate that there are perhaps 1 million rays that
need to be traced per frame at 30 frames per second.
Assume also that the hierarchical representation tech-
nique of Rubin and Whitted culls intersection com-
putations to on the average of one patch per ray. Since
the Laguerre root finding procedure is O(n3) in the
number of iterations, let us also assume that the degree
of the patches is such that one tenth to one quarter
the number of floating point operations is needed in
the average as in the worst case. We then estimate
that using this technique we would need a 200-1000
gigaFlop machine to make real time ray traced images

possible.

It should be mentioned that an independent calculation
performed by one of the reviewers of this paper yielded
a complexity of 30 Hr/Frame on a quarter megaFlop
machine (VAX-11/780), which makes it approximately
as fast as existing programs. Also it puts the real time
figure at 810 gigaFlops.

The state of the art for general purpose machines is
roughly 200-1000 mcgaFlops. It is clear that in order to
realize real-time ray traced images we need substantial
advances both in algorithm development as well as in
special purpose hardware design.

§9 Comparison with Other Algorithms

At present only one other procedure is available for
computing the intersection of a ray with a patch, viz.
Whitted’s [1980).1 We car liken the current situation
in ray tracing to thc suitc of algorithms for render-
ing patches in scan-line order. There are roughly
two camps: the numerical analysis camp, of which

Blinn’s algorithm is the sole resident; and the subdivi-

11 understand that Michael Potmesil of Rensselaer Polytechnic
Institute has also implemented a ray tracing scheme for bicubic
patches that is a hybrid of subdivisior and numerical tech-
niques. Unfortunately, I haven't yet seen it.

sion camp, populated by (another) Whitted’s method
as well as the Carpenter-Lane and Lane-Carpenter ap-
proach, cf. Blinn, et. al. [1980].

The new method is similar in spirit to Blinn’s, espe-
cially his “slow-but-accurate” method, Blinn [1978a].
In fact, the new method may be used as a scan-line
algorithm and represents a new entry in the numeri-
cal analysis camp. Our method differs from Blinn’s in
that we do not have the various silbouette edge track-
ers and maxima finders needed in his algorithm. We
never need worry when contours appear and disappear
since we are not using Newton’s algorithm which has
a critical need for a good imitial guess.

Whitted’s ray tracing method repeatedly subdivides
patches using a necessary condition to determine upon
which subpatch to recurse. This method bears a strik-
ing similarity to the Carpenter-Lane algorithm for dis-
playing patches in scan-line order, except that subdivi-
sion must proceed along both parameters since the ob-
ject is to subdivide down to a point rather than a span.
The subdivision algorithm uses quite a bit of storage
and converges only at a linear rate to the desired point.
Thus many more iterations are needed than with the
new method. On the other hand, each iteration be-
ing a Catmull subdivsion [Catmull 1974] plus bound-
ing sphere calculation is far cheaper than the steps
proposed here.

‘We can liken the subdivision algorithms to root finding
by binary search along both co-ordinates. The method
presented here calculates a more powerful iteration
step. The method converges more quickly but is more
expensive at each step. Which method is preferable?
Certainly in the numerical analysis field, experience
has shown that iterative calculation is preferable to
subdivision search. Whether the same tradeoffs apply
in the computer graphics context — especially when
considering special purpose hardware — remains a
" question to be answered by a more careful and detailed

comparison than we have done here.

Finally we mention an approach due to Ullner[1981]
which is similar to the Lane-Carpenter algorithm. This
method does not actually subdivide but rather simply
evaluates at specified points, until a flatness criterion

-8-

is satisfied, then it directly calculates the ray-plane
intersection.

§10 Speeding up the Computation

There are several optimizations which may be carried
out on the above procedure. First, when roots of the
Bezout polynomial are either found to lie outside the
parameter interval (usually [0,1]) or are found to be
conllplex, then we may simply delete them from the
list of roots and deflate the resultant accordingly. This
step saves the subsequent substitution and GCD steps,
which are unnecessary since these roots do not con-
tribute to the visible portion of a patch. Second, if we
shoot rays from the observer'in scan-line order, we may
retain one of the plane equations and move only the
second. This eliminates half the algebraic curve com-
putations in the step which calculates the resultant.
Third, we may pick up a small amount of coherence
by retaining the solutions to the previous round of rays
from past scan lines to predict where the new inter-
section may be. Blinn [1978a] has found this to be a
most effective heuristic, reducing the average number
of iterations to less than one. I we retain the out
of bounds and complex roots then we may capitalize
on Blinn’s optimization further, for a ray which just
misses a patch actually intersects it at a pair of com-
plex conjugate points. See figure 3.

Finally, it may be that eliminating the Laguerre proce-
dure in favor of some form of Sturm’s algorithm (which
finds real roots within some interval), would yield ad-
vantages. We have not yet investigated this question.

§11 Suitability for Hardware Implementation

The lack of cohercnce in the ray tracing computation
can be considered to be both unfortunate and an ad-
vantage. Incoherence can be an advantage when seek-
ing to parallelize an algorithm. The opportunity for
virtually unbounded parallelism is afforded by the fact
the each pixel computation proceeds independently of
all others. Because it uses well known numerical pro-

cedures, fast floating point pipelines — both embedded '

within large scientific machines and implemented as
quasi-autonomous units — will without any difficulty
directly accelerate the speed of image generation. The
algorithm is bound almost exclusively by floating point
operation speed, not by storage management, not by
dataflow complexity, and not by program control com-
plexity.

Hardware to implement this technique must perform
two operations with facility. First, it must be able to
swiftly calculate fixed length recurrence formulae snch
as Horner’s rule. And second, it must be able to find
the roots of polynomials very quickly and in a robust
manner.

The algorithm as presented here is free of all ad hoc

heuristics which may complicate the implementation of
it in hardware. There are no silhouette edge trackers,
maxima finders, etc. involved. The algorithm is either
straight line code or conditional code dependent upon
the degree of the polynomials. Thus the algorithm con-

sists of only feedforward datapaths with no feedback .

datapaths. There is one indeterminate WHILE itera-
tion in the root finder, which because of the excellent
convergence of the Laguerre method may be unrolled
to say 5 stages. Upon loop unrolling everything may
be totally pipelined.

Additionally, the possibility of using a single unified
representation for planes and patches presents itself,
since aside from =2 pensalty in data storage and a
small computational o¥erhead, the cost of solving ray-
plane intersections via this method compares not un-
favorably with the direct linear solution.

§12 Disadvantages and Open Problems

Because no significant ray-to-ray coherence is utilized,
aside from a rather weak object coherence, the algo-
of computin

rithm conenmeg a tremendous amount uting

bandwidth. Given that a typical frame requires trac-
ing approximately 1 million rays, a real time processor
would have to dispatch the computation for each ray in
33 ns. Thus, if only 10 floating operations are required
per ray, real-time ray tracing requires a 300 megaFlop

processor. As we have seen, we have at worst case ap-
proximately 6000 floating operations per ray.

Thus it would seem that incorporating very strong ray-
to-ray coherence is a sine qua non for a practical ray
tracing system. On the other hand, techniques such as
normal perturbation destroy almost any coherence bet-
ween neighboring reflected and transmitted rays within
a patch. It is difficult to see how one can retain any
but weak coherence when employing the various in-
tensity and normal perturbation mapping techniques
which are so vital to the convincing realism offered by
parametric patches. Perhaps it is impossible to recon-
cile the two. It may well be that high quality images
are by their nature very expensive.

Another open problem is how to properly anti-alias
ray traced images. Whitted applies a Catmull sub-
division to each pixel [Whitted 1980]. He also op-
timizes by restricting the aliasing procedure to areas
which have high luminance gradients—such as edges.
Even so, this form of anti-aliasing triples the cost of
ray-tracing. For heavily mapped patches the penalty
for anti-aliasing simply staggers the imagination. We
believe that another way may be found to anti-alias
ray-traced images. We are currently investigating the
possibility that Hamilton’s point characteristic from
geometrical optics may be of some help here.

ACKNOWLEDGMENTS. Iwould like to thank Mike
Ullner for many discussions and ideas about the ray
tracing process. Also, the reviewers were helpful in

making many valuable suggestions.

§13 References

APPEL, A., “Some Techniques for Shading Machine Ren-
derings of Solids”, 1968 SJCC, pp. 37-45.

BLINN, J.F., “Computer Display of Curved Surfaces”
Ph.D. Thesis, U. of Utah, Computer Science
Department, Salt Lake City, Utah. 1978.

BLINN, J.F., “Simulation of Wrinkled Surfaces”, Compuler
Graphics, v.12, August 1978, pp.286-292.

BLINN, JF., CARPENTER, L.C., LANE, JM. AND
WHITTED, T., “Scan Line Methods for Displaying
Parametrically Defined Surfaces”,Comm. ACM,
v.23, January 1980, pp.23-34.

-10-

CATMULL, E.E., “A Subdivision Algorithm for Computer
Display of Curved Surfaces” Ph.D. Thesis, U. of
Utah, Computer Science Department, Salt Lake
City, Utah. 1974. Ly s

LANE, J.M., AND CARPENTER, L.C., “A Generalized
Scan Line Algorithm for the Computer Display
of Parametrically Defined Surfaces”, Computer
Graphics and Image Processing, v.11, 1979, pp.290-
297.)

LITTLEWOOD, D.E., A University Algebra, Dover, 1970.

Reieg

|
1
L]

RALSTON, A., A First Course in Numerical Analysis, Mc-~
Graw-Hill 1965.

ROTH, 8.D., “Ray Casting for Modeling Solids” Computer P
Graphics and Image Processing, v.18, 1982, pp.109-
144.

RUBIN, 8., AND WHITTED, T.,“A Three-Dimensional
Representation for Fast Rendering of Complex pebeh
Scenes”, Computer Graphics, v.14, 1980, pp.110-
116.

ULLNER, M., private communication, 1981.

T ‘i‘*‘g

Re 38

i

%S

USPENSKY, J.V., Theory of Equations, McGraw-Hill, 1948.
WALKER, R.J., Algebraic Curves, Springer-Verlag, 1950.

« N Tuuk

WHITTED, T., “An Improved Illumination Model for &

Shaded Display”,Comm. ACM, v.23, June 1980,

pp.343-349.

[g {
]1 Kciu'g
Compute the curve coefficients...... 224 petel
Compute the Bezout determinant...... 447
Find the roots of the resultant....3988 x!
Compute the GCD......ccvvviveneavenn 1476
Total..veeerieerreeoanenasnsanssens 6135
ti o} erations Figure 3. A ray crossing a silhouette edge. The crosses mark the parameter

Tabl? 1. Nmflber of iloa ;ngwigh a full values at which the ray intersects the patch. As the ray crosses the silhouette
requ1red to 1n1.;ers_ec a ray . edge, the intersection points become complex. (We have suppressed the v-parameter
degree (3,3) bicubic parametric patch. and two spatial coordinates for clarity.)

Figures 1§2. The contouring is an artifact of insufficient grey level
resolution. These images were displayed on a 4 bit/pixel frame buffer.

