
Accelerated Ray-Casting for Curvilinear Volumes

Lichan Hong Arie Kaufman
Software Production Research Department Center for Visual Computing (CVC)

Bell Laboratories, Lucent Technologies and Department of Computer Science
Room 2F-321, 263 Shuman Blvd State University of New York at Stony Brook

Naperville, IL 60566-7050 Stony Brook, NY 11794-4400
lhong&esearch.bell-labs.com ariOcs.sunysb.edu

Abstract

We present an efficient and robust ray-casting algorithm for
directly rendering a curvilinear volume of arbitrarily-shaped
cells. We designed the algorithm to alleviate the consump-
tion of CPU power and memory space. By incorporating
the essence of the projection paradigm into the ray-casting
process, we have successfully accelerated the ray traversal
through the grid and data interpolations at sample points.
Our algorithm also overcomes the conventional limitation
requiring the cells to be convex. Application of this algo-
rithm to several commonly-used curvilinear data sets has
produced a favorable performance when compared with re-
cently reported algorithms.

Keywords: Volume Visualization, Volume Rendering, Ir-
regular Grid, Curvilinear Grid, Ray-Casting, Parallel Ren-
dering, Dynamic Simulation

1 Introduction

A major barrier preventing the widespread usage of volume
rendering technology is its substantial requirements for com-
putational power and memory space. In the past few years,
numerous algorithms have been investigated to improve the
rendering performance of rectilinear volumes. However, vol-
ume rendering of non-rectilinear (i.e., curvilinear and un-
structured) grids [15] is still relatively under-explored.

A curvilinear grid can be considered as the result of a
rectilinear grid of cubic voxels subjected to non-linear trans-
formations, so as to fill or warp around an object of complex
shape while preserving the grid topology. The curvilinear
grid has the same implicit connectivity as the rectilinear
grid, yet unlike the rectilinear grid, the 3D locations of its
grid vertices must be explicitly defined. As a result, each
quadrilateral cell-face is not necessarily planar and each six-
sided cell is not necessarily convex. Curvilinear grids are
commonly utilized in a variety of applications such as sci-
entific computing and computer-based modeling. For exam-
ple, in a Computational Fluid Dynamics (CFD) simulation,
a curvilinear grid can be employed to efficiently model the
surrounding area of an aerodynamic object [14]. While in the
case of dynamic simulation [Zl, l], a deformable object may
initially be represented as a rectilinear volume, the volumet-
ric object dynamically changes its underlying grid structure
and soon becomes curvilinear, due to the influence of inter-
nal and external factors (e.g., when colliding with another
object).

1.1 Related Work

The irregularity of the curvilinear grid, in comparison with
the rectilinear grid, imposes a much higher complexity on
the rendering process. The simplest way of visualizing a
curvilinear volume is to resample it into a rectilinear grid
and subsequently render the new volume with algorithms
for rectilinear data [8]. Since the curvilinear grid could con-
sist of cells of drastically different sizes, a significantly large
rectilinear volume has to be employed in order to preserve
the details of the smallest curvilinear cells (which usually in-
clude data of ultimate importance). In addition, the resam-
pling abandons the original grid structure and may introduce
sampling errors [3, 161. Alternatively, one may decompose
each curvilinear cell into five tetrahedra and then further
process the tetrahedral representation [4, 7, 11, 12, 18, 201.
As a result, the implicit cell connectivity in the original grid
structure is abandoned and a significant amount of memory
space has to be allocated to explicitly define the connec-
tivity of the tetrahedral cells. Commonly, the extra storage
required is several times the amount of space needed to store
the original curvilinear volume.

Yet another approach is to perform the rendering directly
on the curvilinear volume, without converting it into an
intermediate grid. Generally speaking, there are two such
techniques: projection and ray-casting. In Van Gelder and
Wilhelms [5], each curvilinear cell was projected onto the im-
age screen in a certain visibility order, with its contributions
to the image pixels being calculated with graphics hardware.
To obtain the visibility order, the cells were approximated as
convex hexahedra and sorted using a linear-time topological
sorting algorithm. To overcome the potential problem that
the cell visibility order may be impossible to find [13, 191,
Wilhelms et al. [17] treated each cell-face as a projection
primitive and independently scan-converted the cell-faces in
software. All the polygons contributing to a particular im-
age pixel were then sorted by depth obtained from the scan-
conversion and correctly cornposited to produce the pixel
color.

Using ray-casting to directly render a curvilinear volume
has also been studied [9, 141. Typically, a ray is cast from the
virtual camera through each image pixel into the curvilinear
volume. All the cell-faces intersecting with the ray are found
and data are interpolated for the ray/cell-face intersection
points. The pixel color is then determined by accumulat-
ing the contributions of the intersecting cells along the ray.
Both Uselton [14] and Ramamoorthy and Wilhelms [9] ap-
proximated each cell-face to be planar and adapted Garrity’s
ray-casting algorithm of tetrahedral grids [4] to the curvilin-
ear domain. Ramamoorthy and Wilhelms [9] also described
their efforts in accelerating the rendering at the expense of
extra memory space.

O-8 186-9 176-x/98/$10.00 Copyright 1998 IEEE

247

I image 1.2 Our Contribution

Our work in curvilinear volume rendering was mainly driven
by our project on dynamic simulatio:n of deformable objects
[21]. The goal of this project is to simulate how deformable
objects dynamically change their shapes under certain cir-
cumstances. The FEM simulation model includes volumet-
ric objects whose grid structures are initially rectilinear but
quickly deform and become curvilinear. Subsequently, the
curvilinear grid is likely to deform i:nto another curvilinear
grid at each time step of the simulation. Due to the extraor-
dinary consumption of computational power and memory
space by the simulation, in conjunction with the desire to
perform the volume visualization on the same platform, our
objective has been to find a fast rendering algorithm which
does not rely on an extensive precomputation or a consid-
erable amount of extra storage. In addition, the algorithm
would have to be robust enough to process both convex and
concave cells. Furthermore, we expected that the algorithm
could be readily parallelized on a multi-processor computer,
and extensible in the future to handle multiple objects as
well as produce realistic effects such as shadows and reflec-
tions. After thoroughly evaluating the features of existing
techniques, we found that none of them was well suited for
our application and decided to develop a new rendering al-
gorithm of our own, which is presented in this paper.

Like the previous work by Uselton [14] and Ramamoorthy
and Wilhelms [Q], our algorithm is a ray-casting technique
directly generating images from the curvilinear volume. Our
major contribution is in incorporating; the essence of the pro-
jection approach into the ray-casting to speed up the critical
steps of ray traversal and data interpolations [3, Q]. The ac-
celeration is achieved without incurring any precomputation
nor requiring a vast amount of extra storage. Specifically,
to find the first-entry and re-entry cell-faces for a ray, we
employ a pixel bucket to depth-sort those exterior cell-faces
intersecting with the ray. When the ray enters a cell, we
project the candidate cell-faces onto the image screen and
efficiently perform the ray/cell-face intersection tests to iden-
tify the cell-face from which the ray exits the cell. This also
enables us to overcome the limitation of Garrity’s algorithm
[4] which requires the cell to be convex. As a by-product
of the tests, the data at the ray/cell-face intersections are
reconstructed and subsequently used in the accumulation of
color and opacity.

The remainder of this paper is structured as follows: In
Section 2, we describe our ray-casting algorithm, and out-
line how we accelerate the ray traversal as well as the data
interpolations. We also present the parallelization of our
ray-casting algorithm on a shared-memory, multi-processor
architecture. Then, in Section 3, we apply our algorithm
on several well-known curvilinear data sets and compare its
performance with two recently reportsed algorithms [12, 201.

2 Acceleration Techniques for Ray-Casting

In the ray-casting, a ray is cast from each image pixel into the
curvilinear volume, as illustrated in Fig. 1. To accumulate
the color c and opacity o along the ray for a pixel (m,y), a
function in the form of CastOneRayis used (see Fig. 2). In
general, there are three major challenges in the ray-casting
process [3, Q] as follows:

(1) Identifying the exterior cell-faces through which a ray
first enters and possibly re-enters the grid after the ray
exits from an exterior cell-face;

Figure 1: Ray-casting a curvilinear volume.

(2) Determining the cell-face through which a ray exits the
current cell and enters the next cell;

(3) Reconstructing data values at the intersections between
a ray and the cell-faces.

An exterior cell-face is a cell-face that belongs to the grid
boundary and is exclusively owned by a cell, while an in-
terior cell-face is the common wall shared by two adjacent
cells. Since a great deal of rendering time is taken by these
three operations, our goal is to accelerate them so as to im-
prove the overall rendering speed.

CastOneRay(c, y, c, 0)

{

(1) cast a ray from pixel (z, y) and find the first cell-
face intersected by the ray

(2) while (the ray has not exited the grid andopacity
o has not reached unity)

{
(2a) locate the exiting cell-face of the cur-

rent cell

(2b) reconstruct the scalar a and depth z at
the intersection between the ray and the
exiting cell-face

(2~) accumulate c and o, based on the values
ofaandz

(3) if opacity o has not reached unity and the ray re-
enters the grid, go to (2a)

1

Figure 2: The junction for casting u ray from pixel (x, y) to
accumulate color c and opacity o.

2.1 Determining Entry Cell-Faces

As shown in Fig. 1, to traverse along the ray, we need to
find the exterior cell-face from which the ray fist enters the
volume. In addition, since the grid is likely to be concave,
after the ray exits the volume from an exterior cell-face, it
can potentially re-enter the grid multiple times (see Fig. 1).

248

To quickly locate the first-entry and re-entry exterior cell-
faces, both Garrity [4] and Ramamoorthy and Wilhelms [9]
suggested superimposing a rectilinear grid of certain resolu-
tion over the curvilinear grid. At a preprocessing step, each
voxel of the embedded rectilinear grid is associated with a
list of exterior cell-faces that are totally or partially within
the voxel. During the rendering, when there is a need to find
the first-entry cell-face or check whether the ray re-enters the
volume, those rectilinear voxels intersecting with the ray are
identified and their associated exterior cell-faces are tested
against the ray.

Due to the fact that the grid structure changes over time
in our application, it may be undesirable to use such an em-
bedding scheme which was originally designed for a static
grid. In addition to the extra storage, a new curvilinear
grid at each time step of the simulation would require that
the exterior cell-faces be redistributed into the voxels of the
rectilinear grid, which could probably have been reconfig-
ured. Instead, by leveraging the projection paradigm, we
have developed an alternative approach in our algorithm, as
illustrated in the simplified 2D example of Fig. 3.

I image

I image

Figure 3: (a) Aaaign a unique identification number to each
exterior cell-face and project it onto the image screen. (b)
For each image pixel, sort the intersecting exterior cell-faces
by depth.

Without incurring any extra storage, we first implicitly
subdivide each quadrilateral cell-face (both exterior and in-
terior) into two triangles. The triangle approximation is
chosen over a bilinear patch because of our thrust to speed
up the ray/cell-face intersections in the algorithm. Note
that there are two possible ways of triangulating a cell-face,
which may affect the data values reconstructed at the sam-

ple points (see Section 2.3). For simplicity, similar to the
cell subdivision approach [4, 7, 11, 12, 18, 201, we arbitrarily
choose one triangulation and consistently use it throughout
the ray-casting process. Then, for each pixel on the im-
age screen, we set up a bucket. Next, each exterior triangle
is independently projected onto the image screen and scan-
converted according to the image resolution. For each pixel
(x, y) covered by the projection of an exterior triangle, a tu-
ple (22) is generated from the 2D scan-conversion, where
id is a unique identification number assigned to the triangle
(see Fig. 3a) and z is the depth (screen-z) interpolated from
the triangle vertices. This tuple (id, z) indicates that the ray
cast from the pixel (x, y) intersects the exterior triangle id
at the depth z. We place the tuple (id,z) into the bucket
of pixel (x,y). As a result, after all the exterior triangles
have been processed, within each pixel bucket there is a list
of tuples which represent the exterior triangles intersecting
with the ray cast from that pixel. For each bucket, we sort
the tuples by the depth z, as shown in Fig. 3b. Subsequently,
during the traversal of a ray, we retrieve the sorted tuples
from the corresponding pixel bucket to find the first-entry
and re-entry triangles.

This method is conceptually similar to Wilhelms et al.
[17]. However, unlike their algorithm, where both the ex-
terior and interior cell-faces are scan-converted and depth-
sorted, at this phase we only process those exterior trian-
gles that assist us in identifying the first-entry and re-entry
triangles. For a typical curvilinear volume, since a ray usu-
ally re-enters the grid a limited number of times, the space
consumed by our pixel buckets is mostly determined by the
image resolution and should not be significant in comparison
with the embedding scheme.

2.2 Identifying Exiting Cell-Faces

Once the ray enters a cell from one of its six cell-faces, it is
necessary to find the cell-face from which the ray exits the
current cell and enters the next cell. Garrity [4] showed that
for a convex cell, one can intersect the ray with the 3D planes
containing the candidate cell-faces. The cell-face whose in-
tersection lies after the entry point and has the smallest
distance from the entry point is the exiting cell-face. This
technique was extended to the curvilinear domain by Uselton
[14] and Ramamoorthy and Wilhelms [9]. Both groups em-
ployed a planar quadrilateral to approximate every cell-face.
Furthermore, to speed up the ray/cell-face intersections, Ra-
mamoorthy and Wilhelms [9] pre-computed the 3D planes
containing the cell-faces and stored them at the expense of
extra space.

Unfortunately, for a non-convex cell, Garrity’s method [4]
is no longer valid. As illustrated in Fig. 4, a ray enters the
cell through cell-face AB. Following Garrity’s technique,
AD will be chosen as the exiting cell-face, although CD is
the real exiting cell-face in this example. It can be seen that
the additional requirement needed for a correct method is
that the ray/cell-face intersection has to be inside the ex-
iting cell-face. In other words, to handle both convex and
concave cells, the algorithm would have to compute the 3D
plane containing a candidate cell-face, find the 3D location
of the ray/plane intersection, and check whether the inter-
section lies inside the cell-face. This could involve a great
deal of computation. One may argue that for the curvilinear
grids used in scientific computing, the cells are unlikely to
be concave. However, even a small likelihood [9] makes the
algorithm rather complicated to implement. It also prevents
the algorithm from being applied on those curvilinear data

249

B

Figure 4: Find the exiting cell-face of a non-convex cell.

where cell convexity can not be readily guaranteed. In the
following, we present an efficient alternative which can be
used in both convex and concave cells.

Since we have subdivided each cell-face into two triangles,
each cell consists of twelve triangles. As the ray enters a cell
from one triangle, we check the ray against the other eleven
triangles of the cell to find the exiting triangle. Instead of
conducting the tests in 3D, we again explore the projection
paradigm. Specifically, we project each candidate triangle
T onto the image screen and test wh.ether the 2D projected
triangle contains the pixel (x, y) from which the ray is cast,
as illustrated in Fig. 5. Note that this function is essentially
equivalent to the operations of computing the ray/triangle
intersection in 3D and checking whether the intersection lies
within the triangle.

Boolean IntersectTriangle(z, y, T, z)

{
(1) project the three vertices of the triangle T onto the

image screen

(2) check pixel (x, y) against the bounding rectangle of
the 2D projected triangle. If the pixel is outside
the bounding rectangle, return FALSE

(3) check pixel (x, y) against ,the three edges of the
2D projected triangle. If the pixel is outside the
projected triangle, return .FALSE

(4) interpolate the depth z at pixel (x,y) from the tri-
angle vertices and return TRUE

Figure 5: The function for testing whether a ray cast from
pixel (x, y) intersects with triangle T.

If the ray intersects with the triangle T, the function
IntersectTriangle(x,y, T, .z) will return TRUE coupled with
the depth z of the intersection; ot:herwise, it will return
FALSE. Steps 2-4 of the function are three operations of
progressively increasing complexity. Their objective is to
quickly terminate the test when the ray does not intersect
with the triangle T, which usually happens to most of the
candidate triangles. At Step 4, where pixel (x,y) is con-
firmed to be inside the 2D projectecd triangle, a linear in-
terpolation scheme similar to 2D scan-conversion is used to
reconstruct the depth of the intersection from the triangle
vertices. Subsequently, if more than one triangle returns
TRUE from the intersection test (i.e., the ray intersects with

the cell multiple times), we designate the exiting triangle as
the one whose intersection lies after the entry point and has
the smallest depth. This allows the ray to re-enter the same
cell at a later stage.

2.3 Data Interpolations

To accumulate the color c and opacity o along a ray, as well
as the depth z, the scalar s at the ray/cell-face intersections
has to be reconstructed from the grid vertices. That is, given
the scalar values at the four grid vertices of a cell-face, one
needs to find the scalar data for a sample point within the
cell-face. The common solution is to transform the cell-face
from its arbitrary 3D orientation to one of the coordinate
planes (e.g., the XY-plane), and calculate the bilinear in-
terpolation offsets in 2D [9]. This method unfortunately
requires a considerable amount of computation.

Since we have used two triangles to approximate a quadri-
lateral cell-face in our algorithm, the task is reduced to inter-
polating the scalar data at the intersection from the triangle
vertices. Taking advantage of the 3D-to-2D projection trans-
formation already performed in the function IntersectTrian-
gle (see Fig. 5), we implement the data interpolation as part
of the ray/triangle intersection test. Specifically, at Step 4
of the function IntersectTriangle, where the ray is confirmed
to have intersected with the triangle, we interpolate not only
the depth z but also the scalar s from the triangle vertices.
That is, the function becomes IntersectTriangZe(x,y, T, z, s).
Accommodating this extra interpolation may slightly in-
crease the execution time of IntersectTriangle, but it com-
pletely eliminates a separate data interpolation phase. Now
that we have the depth z and scalar s for the intersections,
ray integral equations (the same as in [9]) which take into
account the varying distances between consecutive samples
are used to accumulate the color c and opacity o.

2.4 Algorithm Parallelization

Parallelieation of the ray-casting algorithm was motivated
by the fact that OUT FEM simulation was performed on a
shared-memory, multi-processor architecture [21] and we ex-
pected to conduct the volume visualization of the simulation
result on the same platform. Fortunately, as the rays are rel-
atively independent of each other and only a single copy of
the volumetric data is needed in the shared memory, it be-
comes fairly easy to parallelize the algorithm.

We have found from our initial experiments that in the
sequential algorithm, less than 3% of the rendering time is
spent on finding the fist-entry and re-entry exterior trian-
gles. Because of its interactions with the pixel buckets, a
global resource shared by the exterior triangles, our paral-
lel version of this step turned out to be not as fast as its
sequential counterpart, considering the overheads caused by
the parallelization. Therefore, we decided to run this step
sequentially on a single processor. For the other steps of the
algorithm, we have successfully parallelized them with a sim-
ple partitioning scheme and achieved satisfactory speedups
(see Section 3.2). Specifically, given n2 processors in the
shared-memory architecture, we partition the image screen
into sub-blocks of n x n pixels. For each pixel of a sub-
block, we assign a processor to traverse the ray for comput-
ing the pixel color. When the ray traversal is terminated,
the processor moves on to its corresponding pixel on the next
sub-block. The overall computation is reasonably well dis-
tributed among the processors, due to the spatial coherence

250

among the rays within a sub-block. Fig. 6 provides a brief
description of the parallel implementation.

ParallelRayCasting()

{
(1)

(2)

I

using processor 0, project every exterior triangle
onto the image screen and depth-sort the tuples
inside each pixel bucket

while (processor i is idle)

1
(2a) find its corresponding pixel on the next

partitioning sub-block and cast a ray
from that pixel

(2b) with the assistance of the pixel bucket,
traverse the ray from cell to cell and ac-
cumulate the color c & opacity o based
on the interpolated data

1

Figure 6: Parallel version of our ray-casting algorithm.

3 Experimental Results

In our project, the ray-casting algorithm and the FEM sim-
ulation model have been developed simultaneoudy. Before
the simulation model had been well defined, we used several
well-known curvilinear data sets to evaluate the consump-
tion of computational power and memory space by our ren-
dering algorithm. These included the Blunt Fin (40 x 32 x 32)
[6], Liquid Uzygen Post (38 x 76 x 38) [lo], and Delta Wing
(56 x 54 x 70) [2], all freely available from NASA. In the
following we present our testing results obtained from both
the sequential and parallel implementations. See [21, l] for
our examples of the dynamic simulation of muscle volume
deformation using FEM.

3.1 Sequential Implementation

The sequential algorithm was measured on an SGI Onyx
(one 194MHz RlOOOO processor, 640MB memory, RE2
graphics). Using the ray-casting algorithm, we generated
an animation which depicted a flight around the Blunt Fin.
This animation consisted of more than 100 individual frames
with the virtual camera looking at the Blunt Fin from dif-
ferent angles. All the images were rendered using the same
transfer functions, with high density mapped to red and low
density mapped to green. Fig. 7 (in the Color Section) shows
three frames of the animation. Table 1 illustrates the aver-
age time spent on each step of the algorithm and the total
rendering time.

Similarly, we generated animations for the Liquid Oxygen
Post and the Delta Wing. Fig. 8 (in the Color Section) shows
three images produced by rendering the energy scalar field
of the Liquid Oxygen Post, where low energy was mapped
to red and high energy was mapped to green. The rendering
time distribution for this data set is illustrated in Table 2.
Additionally, three images of the Delta Wing are shown in
Fig. 9 (in the Color Section), with low density mapped to
green and high density mapped to red. Table 3 illustrates the

Table 1: Average time (seconds) spent on ray-casting the
Blunt Fin with image size 500 x 500.

Data Set] Blunt Fin
First-Entrv & Re-Entrv I 0.43

I
Traversal &” Interpolations 18.63

Color 82 Opacity Compositing 0.65
Total 19.71

Table 2: Average time (seconds) spent on ray-casting the
Liquid Ozygen Post with image size 500 x 500.

Table 3: Average time (seconds) spent on ray-casting the
Delta Wing with image size 500 x 500.

rendering time distribution. Note that the images in Figs.
7-9 are relatively transparent. If a more opaque transfer
function were employed to accumulate the opacity along the
rays, many rays could have been terminated earlier, further
reducing the rendering time.

In the following, we compare our algorithm with two tech-
niques recently proposed by Silva and Mitchell [12] and Yagel
et al. [20]. We have chosen these two algorithms because
they represent state-of-the-art research on the rendering of
non-rectilinear volumes and provide testing results on the
same three data sets. Unlike our algorithm which performs
the ray-casting directly on the curvilinear volume, both Silva
and Mitchell [12] and Yagel et al. [20] decomposed the curvi-
linear cells into tetrahedra and then rendered the tetrahedral
representation. Silva and Mitchell intersected the tetrahe-
dral grid with sweep-planes going through the scanlines and
being perpendicular to the image screen. Polygons formed
on each sweep-plane were then rendered in a sweep-line man-
ner to generate pixel colors for the scanline. Alternatively,
Yagel et al. intersected the tetrahedral volume with a set of
slicing planes parallel to the image screen and used graphics
hardware to project the 2D polygons formed on the planes.
We do not compare against previous ray-casting techniques
for curvilinear volumes [9, 141, because they were developed
several years ago on platforms considered today to be out-
of-date.

Tables 4-6 show the performance comparison on the Blunt
Fin, Liquid Oxygen Post, and Delta Wing, respectively.
When interpreting these tables, note that different rendering
parameters and computer workstations were used in these
three algorithms. Silva and Mitchell performed the measure-
ments on a single processor of an SGI Power Challenge (six-
teen 194MHz RlOOOO processors, 3GB memory, IR graph-
ics), while Yagel et al. obtained the timing from an SGI

251

Table 4: Performance comparison among Silva and Mitchell
[ll], Yagel et al. [19], and our algorithm on the Blunt Fin
data set.

Algorithm S&M Yagel et al. OUR3

Image Size 530 x 230 not ,reported 300 x 300
Rendering (set) 22 !3.11 7.09
Memory (MB) 8 21.2 1.8

Table 5: Performance comparison among Silva and Mitchell
[ii], Yagel et al. [19], and our algorithm on the Liquid Oxy-
gen Post data set.

Algorithm
Image Size

Rendering (set
)

Memory (MB)

Table 6: Performance comparison among Silva and Mitchell
[Ill, Yagel et al. [19], and OUT algorithm on the Delta Wing
data set.

Crimson (one 100MHz R4000 processor, 64MB memory, RE
graphics), but using only 50 slicing planes. In terms of im-
age quality, our algorithm is comparable to that of Silva and
Mitchell, but Yagel et al.‘s algorithm may not approach our
image quality. This is because, instead of adaptively sam-
pling along each individual ray to account for the change of
grid density, even the adaptive slicing scheme proposed by
Yagel et al. imposed the same screen-z sampling rate for all
the image pixels. Consequently, some areas of the grid may
be under-sampled, while other areas may be over-sampled.
To capture the details of the small cells, a much higher num-
ber of slicing planes would have been. required, leading to a
significant increase in both rendering time and memory us-
age.

3.2 Parallel Implementation

Our parallel algorithm was implemented on an SGI Power
Challenge (sixteen 194MHz RlOOOO ,processors, 3GB mem-
ory, IR graphics). The measurements were obtained while
the machine was being routinely used by other users as well
For illustration purposes, in the following we divide the ren-
dering process into two phases: Entry and Others. The for-
mer corresponds to Step 1 of function ParallelRayCasting
(see Fig. 6), where only one process is employed to set up
the pixel buckets. While the latter corresponds to Step 2
of function ParallelRayCasting, where multiple processors
are concurrently used to traverse the rays and perform the
accumulations.

We ran our parallel algorithm on nine processors and six-
teen processors of the Challenge, respectively. Tables 7-9
show the performance comparison on the three data sets.
The slight increase in the time taken by the Entry phase
was due to the overheads of setting up the parallelization.

Table 7: Comparison between the sequential and parallel
algorithms on ray-casting the Blunt Fin with image size
500 x 500.

Entry Others Total
1 Processor (set) 0.38 19.19 19.57

9 Processors (set) 0.47 2.17 2.64
9 Processors Speedup 0.81 8.84 7.41

16 Processors (se,) 0.47 1.30 1.77
16 Processors Speedup 0.81 14.76 11.06

Table 8: Comparison between the sequential and parallel al-
gorithms on ray-casting the Liquid Oxygen Post with image
size 500 x 500.

Table 9: Comparison between the sequential and parallel
algorithms on ray-casting the Delta Wing with image size
500 x 500.

I Entrv I Others I Total 1

The parallelized Others phase achieved an average speedup
of 8.79 on nine processors, leading to an overall average
speedup of 7.51 for the parallel algorithm. With sixteen
processors, the Others phase achieved an average speedup
of 14.95, resulting in an overall average speedup of 11.48 for
the parallel algorithm. The algorithm non-linear scalability
on all sixteen processors could be due to the cache and/or
bus contentions, as well as the system resources taken by
other users when the measurements were conducted.

4 Conclusions and Future Work

In this paper, we have presented an efficient yet robust ray-
casting algorithm for high-quality rendering of a curvilinear
volume. As demonstrated in the experimental studies, with
this algorithm we have successfully achieved the goal of al-
leviating the consumption of both computational power and
memory storage. To the best of our knowledge, our un-
optimized rendering time and memory usages on the Blunt
Fin, Liquid Oxygen Post, and Delta Wing, respectively, are
the best reported to date in the literature. Although this
work was originally driven by our application of dynamic
simulation, the generality and favorable performance of our
algorithm also makes it an appealing alternative to existing
rendering techniques.

As indicated in Tables l-3, for the sequential implemen-
tation about 95% of the rendering time is currently taken

252

by the steps of Traversal and Interpolation8 (i.e., function
InteraectZ’riangle). We plan to further optimize this func-
tion to improve the overall rendering performance. For the
parallel implementation the resulting speedup of the Others
phase is rather satisfactory, but the sequential execution of
the Entry phase negatively affects the overall speedup. We
are working on techniques to address this issue.

As a long term goal, we plan to extend the proposed ac-
celeration techniques to the rendering of unstructured grids.
Since the projection method employed in our algorithm does
not inherently depend on the structure of curvilinear cells,
it should be applicable to unstructured cells as well. An-
other plan for future research is the anti-aliasing rendering
for non-rectilinear grids. Although the ray-casting approach
has taken into account the changing grid density along
the screen-z direction, the potential under-sampling/over-
sampling problem in the screen-x and screen-y directions
needs to be investigated as well.

Acknowledgments

This work was supported by the National Science Founda-
tion (grant MIP-9527694), the Office of Naval Research grant
(N000149710402), the Naval Research Laboratory (grant
N00014961G015), and by a grant from the Mitsubishi Elec-
tric Research Laboratory. The three curvilinear data sets of
Blunt Fin, Liquid Oxygen Post, and Delta Wing are courtesy
of NASA. Thanks to Chi-kun Lam for his implementation of
the parallel algorithm. We also thank Kathleen McConnell,
Edmond Prakash, Claudio Silva, and Ming Wan for valuable
comments on drafts of the paper.

References

PI

PI

[31

[41

[51

[‘31

[71

Y. Chen, Q. Zhu, A. Kaufman, and S. Muraki.
Physically-based animation of volumetric objects. In
Proc. Computer Animation ‘98, pages 154-160. IEEE
Computer Society Press, 1998.

J. Ekaterinaris and L. Schiff. Vertical flows over delta
wings and numerical prediction of vortex breakdown.
In AIAA Aerospace Sciences Conference, 1990. Paper
90-0102.

T. Friihauf. Raycasting of nonregularly structured vol-
ume data. In Computer Graphics Forum (Proc. EURO-
GRAPHICS ‘94), pages 294-303, 1994.

M. Garrity. Raytracing irregular volume. In Computer
Graphics (Proc. 1990 ACM Workshop on Volume Vi-
sualization), pages 35-40, 1990.

A. Van Gelder and J. Wilhelms. Rapid exploration
of curvilinear grids using direct volume rendering. In
Proc. IEEE Visualization ‘93, pages 70-77. IEEE Com-
puter Society Press, 1993.

C. Hung and P. Burring. Simulation of blunt-fin induced
shock wave and turbulent boundary layer separation. In
AIAA Aerospace Sciences Conference, 1984. Paper 84-
0457.

N. Max, P. Hanrahan, and R. Crawfis. Area and volume
coherence for efficient visualization of 3D scalar func-
tions. In Computer Graphics (Proc. 1990 ACM Work-
shop on Volume Visualization), pages 27-33, 1990.

PI

PI

PO1

Llll

Ll21

P31

P41

[151

Ll61

Ll71

Ll81

Ll91

PO1

WI

C. Prakash and S. Manohar. Volume rendering of un-
structured grids: A voxelization approach. Computers
and Graphics, 19(5):711-726, 1995.

S. Ramamoorthy and J. W&elms. An analysis of ap-
proaches to ray-tracing curvilinear grids. Technical
Report UCSC-CRL-92-07, University of California at
Santa Cruz, 1992.

S. Rogers, D. Kwak, and U. Kau. A numerical study of
three-dimensional incompressible flow around multiple
posts. In AIAA Aerospace Sciences Conference, 1986.
Paper 86-0353.

P. Shirley and A. Tuchman. A polygonal approxima-
tion to direct scalar volume rendering. In Computer
Graphics (Proc. 1990 ACM Workshop on Volume Vi-
sualization), pages 63-69, 1990.

C. Silva and J. Mitchell. The lazy sweep ray cast-
ing algorithm for rendering irregular grids. IEEE
Transactions on Visualization and Computer Graphics,
3(2):142-157, 1997.

C. Stein, B. Becker, and N. Max. Sorting and hard-
ware assisted rendering for volume visualization. In
Proc. 1994 ACM Symposium on Volume Visualization,
pages 83-89, 1994.

S. Uselton. Volume rendering of computational fluid
dynamics: Initial results. Technical Report RNR-Ol-
026, NAS-NASA Ames Research Center, Moffett Field,
California, 1990.

J. Wilhelms. Pursuing interactive visualization of irreg-
ular grids. The Visual Computer, 9:450-458, 1993.

J. Wilhelms, J. Challinger, N. Alper, S. Ramamoor-
thy, and A. Vaziri. Direct volume rendering of curvi-
linear volumes. In Computer Graphics (Proc. 1990
ACM Workshop on Volume Visualization), pages 41-
48, 1990.

J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibbs.
Hierarchical and parallelizable direct volume rendering
for irregular and multiple grids. In Proc. IEEE Visual-
ization ‘96, pages 57-64. IEEE Computer Society Press,
1996.

P. Williams. Interactive splatting of nonrectilinear vol-
umes. In Proc. IEEE Visualization ‘92, pages 37-44.
IEEE Computer Society Press, 1992.

P. Williams. Visibility ordering meshed polyhedra.
ACM Transactions on Graphics, 11(2):103-126, 1992.

R. Yagel, D. Reed, A. Law, P. Shih, and N. Shareef.
Hardware assisted volume rendering of unstructured
grids by incremental slicing. In Proc. 1996 ACM/IEEE
Symposium on Volume Visualization, pages 55-62,
1996.

Q. Zhu, Y. Chen, and A. Kaufman. Real-time
biomechanically-based muscle volume deformation us-
ing FEM. To appear in Proc. EUROGRAPHICS ‘98.

253

540

