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Abstract 

We present an efficient and robust ray-casting algorithm for 
directly rendering a curvilinear volume of arbitrarily-shaped 
cells. We designed the algorithm to alleviate the consump- 
tion of CPU power and memory space. By incorporating 
the essence of the projection paradigm into the ray-casting 
process, we have successfully accelerated the ray traversal 
through the grid and data interpolations at sample points. 
Our algorithm also overcomes the conventional limitation 
requiring the cells to be convex. Application of this algo- 
rithm to several commonly-used curvilinear data sets has 
produced a favorable performance when compared with re- 
cently reported algorithms. 

Keywords: Volume Visualization, Volume Rendering, Ir- 
regular Grid, Curvilinear Grid, Ray-Casting, Parallel Ren- 
dering, Dynamic Simulation 

1 Introduction 

A major barrier preventing the widespread usage of volume 
rendering technology is its substantial requirements for com- 
putational power and memory space. In the past few years, 
numerous algorithms have been investigated to improve the 
rendering performance of rectilinear volumes. However, vol- 
ume rendering of non-rectilinear (i.e., curvilinear and un- 
structured) grids [15] is still relatively under-explored. 

A curvilinear grid can be considered as the result of a 
rectilinear grid of cubic voxels subjected to non-linear trans- 
formations, so as to fill or warp around an object of complex 
shape while preserving the grid topology. The curvilinear 
grid has the same implicit connectivity as the rectilinear 
grid, yet unlike the rectilinear grid, the 3D locations of its 
grid vertices must be explicitly defined. As a result, each 
quadrilateral cell-face is not necessarily planar and each six- 
sided cell is not necessarily convex. Curvilinear grids are 
commonly utilized in a variety of applications such as sci- 
entific computing and computer-based modeling. For exam- 
ple, in a Computational Fluid Dynamics (CFD) simulation, 
a curvilinear grid can be employed to efficiently model the 
surrounding area of an aerodynamic object [14]. While in the 
case of dynamic simulation [Zl, l], a deformable object may 
initially be represented as a rectilinear volume, the volumet- 
ric object dynamically changes its underlying grid structure 
and soon becomes curvilinear, due to the influence of inter- 
nal and external factors (e.g., when colliding with another 
object). 

1.1 Related Work 

The irregularity of the curvilinear grid, in comparison with 
the rectilinear grid, imposes a much higher complexity on 
the rendering process. The simplest way of visualizing a 
curvilinear volume is to resample it into a rectilinear grid 
and subsequently render the new volume with algorithms 
for rectilinear data [8]. Since the curvilinear grid could con- 
sist of cells of drastically different sizes, a significantly large 
rectilinear volume has to be employed in order to preserve 
the details of the smallest curvilinear cells (which usually in- 
clude data of ultimate importance). In addition, the resam- 
pling abandons the original grid structure and may introduce 
sampling errors [3, 161. Alternatively, one may decompose 
each curvilinear cell into five tetrahedra and then further 
process the tetrahedral representation [4, 7, 11, 12, 18, 201. 
As a result, the implicit cell connectivity in the original grid 
structure is abandoned and a significant amount of memory 
space has to be allocated to explicitly define the connec- 
tivity of the tetrahedral cells. Commonly, the extra storage 
required is several times the amount of space needed to store 
the original curvilinear volume. 

Yet another approach is to perform the rendering directly 
on the curvilinear volume, without converting it into an 
intermediate grid. Generally speaking, there are two such 
techniques: projection and ray-casting. In Van Gelder and 
Wilhelms [5], each curvilinear cell was projected onto the im- 
age screen in a certain visibility order, with its contributions 
to the image pixels being calculated with graphics hardware. 
To obtain the visibility order, the cells were approximated as 
convex hexahedra and sorted using a linear-time topological 
sorting algorithm. To overcome the potential problem that 
the cell visibility order may be impossible to find [13, 191, 
Wilhelms et al. [17] treated each cell-face as a projection 
primitive and independently scan-converted the cell-faces in 
software. All the polygons contributing to a particular im- 
age pixel were then sorted by depth obtained from the scan- 
conversion and correctly cornposited to produce the pixel 
color. 

Using ray-casting to directly render a curvilinear volume 
has also been studied [9, 141. Typically, a ray is cast from the 
virtual camera through each image pixel into the curvilinear 
volume. All the cell-faces intersecting with the ray are found 
and data are interpolated for the ray/cell-face intersection 
points. The pixel color is then determined by accumulat- 
ing the contributions of the intersecting cells along the ray. 
Both Uselton [14] and Ramamoorthy and Wilhelms [9] ap- 
proximated each cell-face to be planar and adapted Garrity’s 
ray-casting algorithm of tetrahedral grids [4] to the curvilin- 
ear domain. Ramamoorthy and Wilhelms [9] also described 
their efforts in accelerating the rendering at the expense of 
extra memory space. 
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I image 1.2 Our Contribution 

Our work in curvilinear volume rendering was mainly driven 
by our project on dynamic simulatio:n of deformable objects 
[21]. The goal of this project is to simulate how deformable 
objects dynamically change their shapes under certain cir- 
cumstances. The FEM simulation model includes volumet- 
ric objects whose grid structures are initially rectilinear but 
quickly deform and become curvilinear. Subsequently, the 
curvilinear grid is likely to deform i:nto another curvilinear 
grid at each time step of the simulation. Due to the extraor- 
dinary consumption of computational power and memory 
space by the simulation, in conjunction with the desire to 
perform the volume visualization on the same platform, our 
objective has been to find a fast rendering algorithm which 
does not rely on an extensive precomputation or a consid- 
erable amount of extra storage. In addition, the algorithm 
would have to be robust enough to process both convex and 
concave cells. Furthermore, we expected that the algorithm 
could be readily parallelized on a multi-processor computer, 
and extensible in the future to handle multiple objects as 
well as produce realistic effects such as shadows and reflec- 
tions. After thoroughly evaluating the features of existing 
techniques, we found that none of them was well suited for 
our application and decided to develop a new rendering al- 
gorithm of our own, which is presented in this paper. 

Like the previous work by Uselton [14] and Ramamoorthy 
and Wilhelms [Q], our algorithm is a ray-casting technique 
directly generating images from the curvilinear volume. Our 
major contribution is in incorporating; the essence of the pro- 
jection approach into the ray-casting to speed up the critical 
steps of ray traversal and data interpolations [3, Q]. The ac- 
celeration is achieved without incurring any precomputation 
nor requiring a vast amount of extra storage. Specifically, 
to find the first-entry and re-entry cell-faces for a ray, we 
employ a pixel bucket to depth-sort those exterior cell-faces 
intersecting with the ray. When the ray enters a cell, we 
project the candidate cell-faces onto the image screen and 
efficiently perform the ray/cell-face intersection tests to iden- 
tify the cell-face from which the ray exits the cell. This also 
enables us to overcome the limitation of Garrity’s algorithm 
[4] which requires the cell to be convex. As a by-product 
of the tests, the data at the ray/cell-face intersections are 
reconstructed and subsequently used in the accumulation of 
color and opacity. 

The remainder of this paper is structured as follows: In 
Section 2, we describe our ray-casting algorithm, and out- 
line how we accelerate the ray traversal as well as the data 
interpolations. We also present the parallelization of our 
ray-casting algorithm on a shared-memory, multi-processor 
architecture. Then, in Section 3, we apply our algorithm 
on several well-known curvilinear data sets and compare its 
performance with two recently reportsed algorithms [12, 201. 

2 Acceleration Techniques for Ray-Casting 

In the ray-casting, a ray is cast from each image pixel into the 
curvilinear volume, as illustrated in Fig. 1. To accumulate 
the color c and opacity o along the ray for a pixel (m,y), a 
function in the form of CastOneRayis used (see Fig. 2). In 
general, there are three major challenges in the ray-casting 
process [3, Q] as follows: 

(1) Identifying the exterior cell-faces through which a ray 
first enters and possibly re-enters the grid after the ray 
exits from an exterior cell-face; 

Figure 1: Ray-casting a curvilinear volume. 

(2) Determining the cell-face through which a ray exits the 
current cell and enters the next cell; 

(3) Reconstructing data values at the intersections between 
a ray and the cell-faces. 

An exterior cell-face is a cell-face that belongs to the grid 
boundary and is exclusively owned by a cell, while an in- 
terior cell-face is the common wall shared by two adjacent 
cells. Since a great deal of rendering time is taken by these 
three operations, our goal is to accelerate them so as to im- 
prove the overall rendering speed. 

CastOneRay(c, y, c, 0) 

{ 

(1) cast a ray from pixel (z, y) and find the first cell- 
face intersected by the ray 

(2) while (the ray has not exited the grid andopacity 
o has not reached unity) 

{ 
(2a) locate the exiting cell-face of the cur- 

rent cell 

(2b) reconstruct the scalar a and depth z at 
the intersection between the ray and the 
exiting cell-face 

(2~) accumulate c and o, based on the values 
ofaandz 

(3) if opacity o has not reached unity and the ray re- 
enters the grid, go to (2a) 

1 

Figure 2: The junction for casting u ray from pixel (x, y) to 
accumulate color c and opacity o. 

2.1 Determining Entry Cell-Faces 

As shown in Fig. 1, to traverse along the ray, we need to 
find the exterior cell-face from which the ray fist enters the 
volume. In addition, since the grid is likely to be concave, 
after the ray exits the volume from an exterior cell-face, it 
can potentially re-enter the grid multiple times (see Fig. 1). 
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To quickly locate the first-entry and re-entry exterior cell- 
faces, both Garrity [4] and Ramamoorthy and Wilhelms [9] 
suggested superimposing a rectilinear grid of certain resolu- 
tion over the curvilinear grid. At a preprocessing step, each 
voxel of the embedded rectilinear grid is associated with a 
list of exterior cell-faces that are totally or partially within 
the voxel. During the rendering, when there is a need to find 
the first-entry cell-face or check whether the ray re-enters the 
volume, those rectilinear voxels intersecting with the ray are 
identified and their associated exterior cell-faces are tested 
against the ray. 

Due to the fact that the grid structure changes over time 
in our application, it may be undesirable to use such an em- 
bedding scheme which was originally designed for a static 
grid. In addition to the extra storage, a new curvilinear 
grid at each time step of the simulation would require that 
the exterior cell-faces be redistributed into the voxels of the 
rectilinear grid, which could probably have been reconfig- 
ured. Instead, by leveraging the projection paradigm, we 
have developed an alternative approach in our algorithm, as 
illustrated in the simplified 2D example of Fig. 3. 

I image 

I image 

Figure 3: (a) Aaaign a unique identification number to each 
exterior cell-face and project it onto the image screen. (b) 
For each image pixel, sort the intersecting exterior cell-faces 
by depth. 

Without incurring any extra storage, we first implicitly 
subdivide each quadrilateral cell-face (both exterior and in- 
terior) into two triangles. The triangle approximation is 
chosen over a bilinear patch because of our thrust to speed 
up the ray/cell-face intersections in the algorithm. Note 
that there are two possible ways of triangulating a cell-face, 
which may affect the data values reconstructed at the sam- 

ple points (see Section 2.3). For simplicity, similar to the 
cell subdivision approach [4, 7, 11, 12, 18, 201, we arbitrarily 
choose one triangulation and consistently use it throughout 
the ray-casting process. Then, for each pixel on the im- 
age screen, we set up a bucket. Next, each exterior triangle 
is independently projected onto the image screen and scan- 
converted according to the image resolution. For each pixel 
(x, y) covered by the projection of an exterior triangle, a tu- 
ple (22) is generated from the 2D scan-conversion, where 
id is a unique identification number assigned to the triangle 
(see Fig. 3a) and z is the depth (screen-z) interpolated from 
the triangle vertices. This tuple (id, z) indicates that the ray 
cast from the pixel (x, y) intersects the exterior triangle id 
at the depth z. We place the tuple (id,z) into the bucket 
of pixel (x,y). As a result, after all the exterior triangles 
have been processed, within each pixel bucket there is a list 
of tuples which represent the exterior triangles intersecting 
with the ray cast from that pixel. For each bucket, we sort 
the tuples by the depth z, as shown in Fig. 3b. Subsequently, 
during the traversal of a ray, we retrieve the sorted tuples 
from the corresponding pixel bucket to find the first-entry 
and re-entry triangles. 

This method is conceptually similar to Wilhelms et al. 
[17]. However, unlike their algorithm, where both the ex- 
terior and interior cell-faces are scan-converted and depth- 
sorted, at this phase we only process those exterior trian- 
gles that assist us in identifying the first-entry and re-entry 
triangles. For a typical curvilinear volume, since a ray usu- 
ally re-enters the grid a limited number of times, the space 
consumed by our pixel buckets is mostly determined by the 
image resolution and should not be significant in comparison 
with the embedding scheme. 

2.2 Identifying Exiting Cell-Faces 

Once the ray enters a cell from one of its six cell-faces, it is 
necessary to find the cell-face from which the ray exits the 
current cell and enters the next cell. Garrity [4] showed that 
for a convex cell, one can intersect the ray with the 3D planes 
containing the candidate cell-faces. The cell-face whose in- 
tersection lies after the entry point and has the smallest 
distance from the entry point is the exiting cell-face. This 
technique was extended to the curvilinear domain by Uselton 
[14] and Ramamoorthy and Wilhelms [9]. Both groups em- 
ployed a planar quadrilateral to approximate every cell-face. 
Furthermore, to speed up the ray/cell-face intersections, Ra- 
mamoorthy and Wilhelms [9] pre-computed the 3D planes 
containing the cell-faces and stored them at the expense of 
extra space. 

Unfortunately, for a non-convex cell, Garrity’s method [4] 
is no longer valid. As illustrated in Fig. 4, a ray enters the 
cell through cell-face AB. Following Garrity’s technique, 
AD will be chosen as the exiting cell-face, although CD is 
the real exiting cell-face in this example. It can be seen that 
the additional requirement needed for a correct method is 
that the ray/cell-face intersection has to be inside the ex- 
iting cell-face. In other words, to handle both convex and 
concave cells, the algorithm would have to compute the 3D 
plane containing a candidate cell-face, find the 3D location 
of the ray/plane intersection, and check whether the inter- 
section lies inside the cell-face. This could involve a great 
deal of computation. One may argue that for the curvilinear 
grids used in scientific computing, the cells are unlikely to 
be concave. However, even a small likelihood [9] makes the 
algorithm rather complicated to implement. It also prevents 
the algorithm from being applied on those curvilinear data 
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Figure 4: Find the exiting cell-face of a non-convex cell. 

where cell convexity can not be readily guaranteed. In the 
following, we present an efficient alternative which can be 
used in both convex and concave cells. 

Since we have subdivided each cell-face into two triangles, 
each cell consists of twelve triangles. As the ray enters a cell 
from one triangle, we check the ray against the other eleven 
triangles of the cell to find the exiting triangle. Instead of 
conducting the tests in 3D, we again explore the projection 
paradigm. Specifically, we project each candidate triangle 
T onto the image screen and test wh.ether the 2D projected 
triangle contains the pixel (x, y) from which the ray is cast, 
as illustrated in Fig. 5. Note that this function is essentially 
equivalent to the operations of computing the ray/triangle 
intersection in 3D and checking whether the intersection lies 
within the triangle. 

Boolean IntersectTriangle(z, y, T, z) 

{ 
(1) project the three vertices of the triangle T onto the 

image screen 

(2) check pixel (x, y) against the bounding rectangle of 
the 2D projected triangle. If the pixel is outside 
the bounding rectangle, return FALSE 

(3) check pixel (x, y) against ,the three edges of the 
2D projected triangle. If the pixel is outside the 
projected triangle, return .FALSE 

(4) interpolate the depth z at pixel (x,y) from the tri- 
angle vertices and return TRUE 

Figure 5: The function for testing whether a ray cast from 
pixel (x, y) intersects with triangle T. 

If the ray intersects with the triangle T, the function 
IntersectTriangle(x,y, T, .z) will return TRUE coupled with 
the depth z of the intersection; ot:herwise, it will return 
FALSE. Steps 2-4 of the function are three operations of 
progressively increasing complexity. Their objective is to 
quickly terminate the test when the ray does not intersect 
with the triangle T, which usually happens to most of the 
candidate triangles. At Step 4, where pixel (x,y) is con- 
firmed to be inside the 2D projectecd triangle, a linear in- 
terpolation scheme similar to 2D scan-conversion is used to 
reconstruct the depth of the intersection from the triangle 
vertices. Subsequently, if more than one triangle returns 
TRUE from the intersection test (i.e., the ray intersects with 

the cell multiple times), we designate the exiting triangle as 
the one whose intersection lies after the entry point and has 
the smallest depth. This allows the ray to re-enter the same 
cell at a later stage. 

2.3 Data Interpolations 

To accumulate the color c and opacity o along a ray, as well 
as the depth z, the scalar s at the ray/cell-face intersections 
has to be reconstructed from the grid vertices. That is, given 
the scalar values at the four grid vertices of a cell-face, one 
needs to find the scalar data for a sample point within the 
cell-face. The common solution is to transform the cell-face 
from its arbitrary 3D orientation to one of the coordinate 
planes (e.g., the XY-plane), and calculate the bilinear in- 
terpolation offsets in 2D [9]. This method unfortunately 
requires a considerable amount of computation. 

Since we have used two triangles to approximate a quadri- 
lateral cell-face in our algorithm, the task is reduced to inter- 
polating the scalar data at the intersection from the triangle 
vertices. Taking advantage of the 3D-to-2D projection trans- 
formation already performed in the function IntersectTrian- 
gle (see Fig. 5), we implement the data interpolation as part 
of the ray/triangle intersection test. Specifically, at Step 4 
of the function IntersectTriangle, where the ray is confirmed 
to have intersected with the triangle, we interpolate not only 
the depth z but also the scalar s from the triangle vertices. 
That is, the function becomes IntersectTriangZe(x,y, T, z, s). 
Accommodating this extra interpolation may slightly in- 
crease the execution time of IntersectTriangle, but it com- 
pletely eliminates a separate data interpolation phase. Now 
that we have the depth z and scalar s for the intersections, 
ray integral equations (the same as in [9]) which take into 
account the varying distances between consecutive samples 
are used to accumulate the color c and opacity o. 

2.4 Algorithm Parallelization 

Parallelieation of the ray-casting algorithm was motivated 
by the fact that OUT FEM simulation was performed on a 
shared-memory, multi-processor architecture [21] and we ex- 
pected to conduct the volume visualization of the simulation 
result on the same platform. Fortunately, as the rays are rel- 
atively independent of each other and only a single copy of 
the volumetric data is needed in the shared memory, it be- 
comes fairly easy to parallelize the algorithm. 

We have found from our initial experiments that in the 
sequential algorithm, less than 3% of the rendering time is 
spent on finding the fist-entry and re-entry exterior trian- 
gles. Because of its interactions with the pixel buckets, a 
global resource shared by the exterior triangles, our paral- 
lel version of this step turned out to be not as fast as its 
sequential counterpart, considering the overheads caused by 
the parallelization. Therefore, we decided to run this step 
sequentially on a single processor. For the other steps of the 
algorithm, we have successfully parallelized them with a sim- 
ple partitioning scheme and achieved satisfactory speedups 
(see Section 3.2). Specifically, given n2 processors in the 
shared-memory architecture, we partition the image screen 
into sub-blocks of n x n pixels. For each pixel of a sub- 
block, we assign a processor to traverse the ray for comput- 
ing the pixel color. When the ray traversal is terminated, 
the processor moves on to its corresponding pixel on the next 
sub-block. The overall computation is reasonably well dis- 
tributed among the processors, due to the spatial coherence 
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among the rays within a sub-block. Fig. 6 provides a brief 
description of the parallel implementation. 

ParallelRayCasting() 

{ 
(1) 

(2) 

I 

using processor 0, project every exterior triangle 
onto the image screen and depth-sort the tuples 
inside each pixel bucket 

while (processor i is idle) 

1 
(2a) find its corresponding pixel on the next 

partitioning sub-block and cast a ray 
from that pixel 

(2b) with the assistance of the pixel bucket, 
traverse the ray from cell to cell and ac- 
cumulate the color c & opacity o based 
on the interpolated data 

1 

Figure 6: Parallel version of our ray-casting algorithm. 

3 Experimental Results 

In our project, the ray-casting algorithm and the FEM sim- 
ulation model have been developed simultaneoudy. Before 
the simulation model had been well defined, we used several 
well-known curvilinear data sets to evaluate the consump- 
tion of computational power and memory space by our ren- 
dering algorithm. These included the Blunt Fin (40 x 32 x 32) 
[6], Liquid Uzygen Post (38 x 76 x 38) [lo], and Delta Wing 
(56 x 54 x 70) [2], all freely available from NASA. In the 
following we present our testing results obtained from both 
the sequential and parallel implementations. See [21, l] for 
our examples of the dynamic simulation of muscle volume 
deformation using FEM. 

3.1 Sequential Implementation 

The sequential algorithm was measured on an SGI Onyx 
(one 194MHz RlOOOO processor, 640MB memory, RE2 
graphics). Using the ray-casting algorithm, we generated 
an animation which depicted a flight around the Blunt Fin. 
This animation consisted of more than 100 individual frames 
with the virtual camera looking at the Blunt Fin from dif- 
ferent angles. All the images were rendered using the same 
transfer functions, with high density mapped to red and low 
density mapped to green. Fig. 7 (in the Color Section) shows 
three frames of the animation. Table 1 illustrates the aver- 
age time spent on each step of the algorithm and the total 
rendering time. 

Similarly, we generated animations for the Liquid Oxygen 
Post and the Delta Wing. Fig. 8 (in the Color Section) shows 
three images produced by rendering the energy scalar field 
of the Liquid Oxygen Post, where low energy was mapped 
to red and high energy was mapped to green. The rendering 
time distribution for this data set is illustrated in Table 2. 
Additionally, three images of the Delta Wing are shown in 
Fig. 9 (in the Color Section), with low density mapped to 
green and high density mapped to red. Table 3 illustrates the 

Table 1: Average time (seconds) spent on ray-casting the 
Blunt Fin with image size 500 x 500. 

Data Set ] Blunt Fin 
First-Entrv & Re-Entrv I 0.43 

I 
Traversal &” Interpolations 18.63 

Color 82 Opacity Compositing 0.65 
Total 19.71 

Table 2: Average time (seconds) spent on ray-casting the 
Liquid Ozygen Post with image size 500 x 500. 

Table 3: Average time (seconds) spent on ray-casting the 
Delta Wing with image size 500 x 500. 

rendering time distribution. Note that the images in Figs. 
7-9 are relatively transparent. If a more opaque transfer 
function were employed to accumulate the opacity along the 
rays, many rays could have been terminated earlier, further 
reducing the rendering time. 

In the following, we compare our algorithm with two tech- 
niques recently proposed by Silva and Mitchell [12] and Yagel 
et al. [20]. We have chosen these two algorithms because 
they represent state-of-the-art research on the rendering of 
non-rectilinear volumes and provide testing results on the 
same three data sets. Unlike our algorithm which performs 
the ray-casting directly on the curvilinear volume, both Silva 
and Mitchell [12] and Yagel et al. [20] decomposed the curvi- 
linear cells into tetrahedra and then rendered the tetrahedral 
representation. Silva and Mitchell intersected the tetrahe- 
dral grid with sweep-planes going through the scanlines and 
being perpendicular to the image screen. Polygons formed 
on each sweep-plane were then rendered in a sweep-line man- 
ner to generate pixel colors for the scanline. Alternatively, 
Yagel et al. intersected the tetrahedral volume with a set of 
slicing planes parallel to the image screen and used graphics 
hardware to project the 2D polygons formed on the planes. 
We do not compare against previous ray-casting techniques 
for curvilinear volumes [9, 141, because they were developed 
several years ago on platforms considered today to be out- 
of-date. 

Tables 4-6 show the performance comparison on the Blunt 
Fin, Liquid Oxygen Post, and Delta Wing, respectively. 
When interpreting these tables, note that different rendering 
parameters and computer workstations were used in these 
three algorithms. Silva and Mitchell performed the measure- 
ments on a single processor of an SGI Power Challenge (six- 
teen 194MHz RlOOOO processors, 3GB memory, IR graph- 
ics), while Yagel et al. obtained the timing from an SGI 
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Table 4: Performance comparison among Silva and Mitchell 
[ll], Yagel et al. [19], and our algorithm on the Blunt Fin 
data set. 

Algorithm S&M Yagel et al. OUR3 

Image Size 530 x 230 not ,reported 300 x 300 
Rendering (set) 22 !3.11 7.09 
Memory (MB) 8 21.2 1.8 

Table 5: Performance comparison among Silva and Mitchell 
[ii], Yagel et al. [19], and our algorithm on the Liquid Oxy- 
gen Post data set. 

Algorithm 
Image Size 

Rendering (set 
) 

Memory (MB) 

Table 6: Performance comparison among Silva and Mitchell 
[Ill, Yagel et al. [19], and OUT algorithm on the Delta Wing 
data set. 

Crimson (one 100MHz R4000 processor, 64MB memory, RE 
graphics), but using only 50 slicing planes. In terms of im- 
age quality, our algorithm is comparable to that of Silva and 
Mitchell, but Yagel et al.‘s algorithm may not approach our 
image quality. This is because, instead of adaptively sam- 
pling along each individual ray to account for the change of 
grid density, even the adaptive slicing scheme proposed by 
Yagel et al. imposed the same screen-z sampling rate for all 
the image pixels. Consequently, some areas of the grid may 
be under-sampled, while other areas may be over-sampled. 
To capture the details of the small cells, a much higher num- 
ber of slicing planes would have been. required, leading to a 
significant increase in both rendering time and memory us- 
age. 

3.2 Parallel Implementation 

Our parallel algorithm was implemented on an SGI Power 
Challenge (sixteen 194MHz RlOOOO ,processors, 3GB mem- 
ory, IR graphics). The measurements were obtained while 
the machine was being routinely used by other users as well 
For illustration purposes, in the following we divide the ren- 
dering process into two phases: Entry and Others. The for- 
mer corresponds to Step 1 of function ParallelRayCasting 
(see Fig. 6), where only one process is employed to set up 
the pixel buckets. While the latter corresponds to Step 2 
of function ParallelRayCasting, where multiple processors 
are concurrently used to traverse the rays and perform the 
accumulations. 

We ran our parallel algorithm on nine processors and six- 
teen processors of the Challenge, respectively. Tables 7-9 
show the performance comparison on the three data sets. 
The slight increase in the time taken by the Entry phase 
was due to the overheads of setting up the parallelization. 

Table 7: Comparison between the sequential and parallel 
algorithms on ray-casting the Blunt Fin with image size 
500 x 500. 

Entry Others Total 
1 Processor (set) 0.38 19.19 19.57 

9 Processors (set) 0.47 2.17 2.64 
9 Processors Speedup 0.81 8.84 7.41 

16 Processors (se,) 0.47 1.30 1.77 
16 Processors Speedup 0.81 14.76 11.06 

Table 8: Comparison between the sequential and parallel al- 
gorithms on ray-casting the Liquid Oxygen Post with image 
size 500 x 500. 

Table 9: Comparison between the sequential and parallel 
algorithms on ray-casting the Delta Wing with image size 
500 x 500. 

I Entrv I Others I Total 1 

The parallelized Others phase achieved an average speedup 
of 8.79 on nine processors, leading to an overall average 
speedup of 7.51 for the parallel algorithm. With sixteen 
processors, the Others phase achieved an average speedup 
of 14.95, resulting in an overall average speedup of 11.48 for 
the parallel algorithm. The algorithm non-linear scalability 
on all sixteen processors could be due to the cache and/or 
bus contentions, as well as the system resources taken by 
other users when the measurements were conducted. 

4 Conclusions and Future Work 

In this paper, we have presented an efficient yet robust ray- 
casting algorithm for high-quality rendering of a curvilinear 
volume. As demonstrated in the experimental studies, with 
this algorithm we have successfully achieved the goal of al- 
leviating the consumption of both computational power and 
memory storage. To the best of our knowledge, our un- 
optimized rendering time and memory usages on the Blunt 
Fin, Liquid Oxygen Post, and Delta Wing, respectively, are 
the best reported to date in the literature. Although this 
work was originally driven by our application of dynamic 
simulation, the generality and favorable performance of our 
algorithm also makes it an appealing alternative to existing 
rendering techniques. 

As indicated in Tables l-3, for the sequential implemen- 
tation about 95% of the rendering time is currently taken 
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by the steps of Traversal and Interpolation8 (i.e., function 
InteraectZ’riangle). We plan to further optimize this func- 
tion to improve the overall rendering performance. For the 
parallel implementation the resulting speedup of the Others 
phase is rather satisfactory, but the sequential execution of 
the Entry phase negatively affects the overall speedup. We 
are working on techniques to address this issue. 

As a long term goal, we plan to extend the proposed ac- 
celeration techniques to the rendering of unstructured grids. 
Since the projection method employed in our algorithm does 
not inherently depend on the structure of curvilinear cells, 
it should be applicable to unstructured cells as well. An- 
other plan for future research is the anti-aliasing rendering 
for non-rectilinear grids. Although the ray-casting approach 
has taken into account the changing grid density along 
the screen-z direction, the potential under-sampling/over- 
sampling problem in the screen-x and screen-y directions 
needs to be investigated as well. 
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