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Abstract

In this work nonlinear ray tracing is investigated. Sources of nonlinearity, e.g., gravity centers,
gravity lines, chaotic dynamical systems, and parametric curved rays, are discussed. Curved
rays are either represented iteratively or hierarchically. Algorithms for the intersection test of a
curved ray with a 3D object are presented. Sample images of a test implementation show the
feasibility of the approach. Applications of nonlinear ray tracing are visualization of relativistic
effects, visualization of the geometric behavior of nonlinear dynamical systems, visualization of
the movement of charged particles in a force field (e.g., electron movement), virtual reality and
arts.
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1. Introduction

Ray tracing is a powerful technique that is widely used in computer graphics for realistic image
generation. Light propagation within a 3D environment is simulated by tracing rays through
object space to calculate global lighting effects like shading, shadows, reflections and
transparencies [Glas89]. Ray tracing determines for each pixel of the resulting raster image
where the light is coming from. The first object that is intersected by the ray which starts at a
given pixel (primary ray) is determined. Secondary rays (reflection rays, transparency rays) are
calculated depending on the surface characteristics of the intersected object. Shadow rays (rays
between intersection point and light sources) are used to decide whether the point of intersection
is in shadow or not. The evaluation of a shading model produces, in a subsequent step, the
color information for the pixel in consideration. Ray tracing generates realistic images with
reasonable computational requirements.

Various extensions and modifications to the basic ray-tracing technique have been
investigated to increase efficiency, realism, functionality, etc. [FoDa90], [Glas89], [GrLö94a].
Almost all these approaches make the following assumption on light propagation: light is made
up of particles (photons) that travel linearly on straight paths. Although this assumption may
hold for a variety of applications, one can think of situations were linear light propagation is
clearly not appropriate. On a macroscopic level massive objects in space may act as gravity
lenses thereby causing nonlinear light paths (caustics). Relativistic effects due to the local
curvature of spacetime require the simulation of curved paths. Imaging of objects that move at a
speed close to the speed of light has been investigated in [HsTh90] and [RuEr91].

On a microscopic level it may be better to simulate light as wave forms instead of particles
(dual wave-particle nature of light). In [Mora81] light is represented by wave fronts to avoid
some of the disadvantages (e.g., aliasing) of the particle model where light propagates in
straight and conceptually infinitely thin rays. Applying wave fronts, however, is
computationally very expensive. [Glas91] briefly discusses some useful applications of curved
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rays. One example is the visualization of electron particles that due to their interaction with an
electric force field trace out curved paths. [BeTr90] investigate atmospheric variations (e.g., in
temperature or in pressure) which can cause light rays to bend. Mirages are one of the possible
visual effects of these bent rays.

In another context nonlinear rays have already been used to determine the intersection of a
straight line with deformed surfaces [Barr86] or sweep objects [Kaji83], [Wijk84]. Instead of
intersecting a linear ray with a deformed surface a more cost efficient intersection test between
the nonlinearly transformed ray and the undeformed surface is done.

In this paper nonlinear ray tracing is investigated. Applications of nonlinear ray tracing are
for example: visualization of relativistic phenomena, visualization of the complexity of nonlinear
deterministic dynamical systems, visualization of particle movements (e.g., electrons) that are
subjected to some nonlinear force field. Specifying gravity centers with local influence, for
example, produces a nonlinear local zoom effect which allows the observer to concentrate on
some interesting portion of object space while having, at the same time, an overall view of the
whole object scene. Further applications of nonlinear ray tracing are virtual reality and arts. One
may not only define his own virtual objects and spaces but may as well specify his own virtual
(nonlinear) laws of particle or light propagation.

Emphasis has been put on an algorithmic treatment of curved rays. Physical phenomena that
produce nonlinear light propagation are modelled only approximately. In section 2 different
types of nonlinear rays are presented. Section 3 deals with data structures for efficient ray and
object representation. In section 4 ray - object intersection algorithms are discussed. Section 5
discusses a test implementation and resulting images. Section 6 addresses some open problems
and further topics on nonlinear ray tracing.

2. Nonlinear rays

In this section different types of nonlinear rays are discussed. Nonlinear rays are either assumed
to result implicitly from an underlying dynamical system or they are defined explicitly as
parametric curves, possibly without corresponding dynamical model. In the first case curved
rays are assumed to be solutions of a system of first order ordinary differential equations
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x0. Typically the exact solution 

  

r
x = r

x0 + V(
r
u)∫ d

r
u of such a system

of differential equations can not be determined analytically. Therefore numerical techniques like
Euler's method or more elaborate Runge-Kutta methods are taken to calculate approximate
solutions to the above system of differential equations [StBu83]. Section 2.1 discusses
nonlinear light propagation in curved spacetime due to gravity centers and gravity lines with
either local or global range of influence. In section 2.2 nonlinear rays are used to visualize the
dynamic behavior and geometric complexity of chaotic dynamical systems. Section 2.3
investigates nonlinear rays which are defined explicitly and analytically through parametric
curves.

2.1 Gravity centers and gravity lines

The exact path of a particle influenced by a center or line of gravity is given as the solution of
the following second order differential equation
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with the initial conditions   
r
x(0) = r

x0 ,   ′
r
x (0) = r

v0 .  
r
x(t)is the location of the particle in space at

time t,   
r
x0 is its initial location,   

r
v0 is its initial speed. 

r
xgis the location of the gravity center and

Mg  its mass. Using Euler's method for approximately solving this second order differential
equation results in the following set of difference equations:
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Rays are assumed to start at a user defined viewing plane. This determines the initial conditions
for the above system of difference equations. Parameter h is the step size of the approximating
Euler method. The attenuation function d() is introduced to describe the amount and range of
influence of a gravity center or gravity line. In the exact physical model the influence of a
gravity center or gravity line decreases with the square of the distance. The vector  (

r
xn − r

xg )
describes the direction of influence of a gravity center or gravity line. In case of a gravity center
the direction of influence is simply taken to be the vector between the current position   

r
xn along

the solution (or nonlinear ray) and the point location  
r
xg of the gravity center (see Figure 1 left).

In case of a gravity line the direction of influence is perpendicular to the gravity line. The
gravity line is defined by a point  

r
pg and a normalized direction vector   

r
vg . Therefore the

direction of influence is given as follows (see Figure 1 right):
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Figure 1: 2D gravity center and 2D gravity line

The attenuation function d(r) should be decreasing with increasing distance r to ensure that
particles closer to the gravity center or gravity line are influenced more heavily than particles
farther away. Two attenuation functions d(r) have been investigated: According to Newton's
law of gravity d(r) should be taken as d(r)=1/r2, i.e., the influence of a gravity center or gravity
line is decreasing with the square of the distance (see Figure 2).
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Figure 2: 2D gravity center, attenuation function d(r)=1/r2
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Although attenuation with d(r)=1/r2 resembles physical reality, this approach does have two
disadvantages in practice. As d(r)=1/r2 is non zero for all positive r, a computationally
expensive global influence of gravity centers or gravity lines results. Furthermore particles close
to a gravity center or gravity line are heavily influenced due to the singularity of d(r) at r=0.
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Figure 3: 2D gravity center, attenuation function d(r)=2r3/R3-3r2/R2+1

In [WyMc86] a cubic function that is taken to be non zero only within a certain range (radius of
influence R) is used for modeling soft objects. Following [WyMc86] d(r) is defined as:

d(r) = 2
r3

R3 − 3
r2

R2 +1        0 ≤ r ≤ R

0                      else







The attenuation function d(r) is non zero only locally and drops smoothly to zero at R (see
Figure 3). Gravity centers and gravity lines with local influence allow computationally efficient
processing.

If several gravity centers or gravity lines are defined the modified direction of movement of a
particle is calculated by summing up the contributions of all gravity centers or gravity lines.

2.2 Chaotic dynamical systems

One way of analyzing nonlinear deterministic dynamical systems is to investigate a suitably
defined phase space. A point within this phase space completely determines the state of the
system at a certain point of time. The temporal behavior of such a system results in curved
paths, called orbits, within the phase space. The long term behavior of a nonlinear deterministic
dynamical system is often specified by chaotic "strange" attractors with fractal properties
[BeDö89], [Glei88], [Gröl94a]. Nonlinear ray tracing is useful in visualizing the geometric
complexity of such systems. If the paths of primary rays are governed by the differential
equations of the nonlinear system, questions as "What do solids living close to strange
attractors look like?" are easily answerable. Thus conclusions about the local behavior of
dynamical systems (e.g., scaling, stretching, bending effects) can be drawn from the distorted
images of solids. Two chaotic dynamical systems will be briefly discussed. The Lorenz system
is given by the following differential equations (see Figure 4, left):

x ' = σ.(y–x)
y ' = r.x–y–x.z
z ' = x.y–b.z

with σ=10, b=8/3 and r=28. The Rössler system is given by
x ' = –y–z
y ' = x+a.y
z ' = b+z.(x–c)
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with a=0.375, b=2 and c=4 (see Figure 4, right).

Figure 4: Lorenz attractor [Glei88] Rössler attractor [CrFa89]

Starting from a given initial position a solution (orbit, trajectory) of one of the above equations
traces a curved path within phase space which is at any position tangential to the flow defined
by the dynamical system. Nonlinear terms in the equations produce highly complex dynamical
behavior. Each trajectory is approaching the geometrically complex attractor and follows a
highly intricate path on this attracting set. Again a numerical method, e.g., Euler's method may
be used to approximate a trajectory of such a dynamical system. An image is generated by
specifying an image plane, i.e., fixing the starting positions of primary rays (initial conditions),
whereas the curved paths of these rays are controlled by the dynamical system. Many other
dynamical systems (e.g., electrostatic or magnetic fields) might be taken to govern nonlinear
rays.

2.3 Parametric curved rays

Another definition of curved rays can be achieved with parametric functions. The position
vector 

r
x(t)and direction vector 

r
v(t) of a particle are thereby specified explicitly by parametric

functions, i.e., 
r
x(t) = (x(t),  y(t),  z(t)) and 

r
v(t) = ( ′x (t),  ′y (t),  ′z (t)) (see Figure 5).
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Figure 5: 2D curved ray 
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x(t) = (x(t),  y(t)) defined by parametric functions (x(t) and y(t) scaled

by 0.5)
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The scalar coordinate functions x(t), y(t) and z(t) could be derived from some analytically
solvable dynamical system or might be specified without any underlying realistic dynamical
model in mind. They might for example be defined as polynomials or trigonometric functions.
Curved rays of sections 2.1 and 2.2 are approximated incrementally. With parametric curves,
however, the entire path of a curved ray is known in advance. This additional information is
exploited for efficient ray - object intersection tests. Certain acceleration techniques for the
intersection of a curved ray with an object require the determination of the parameter value t for
a given position   

r
x(t) = (x(t),  y(t),  z(t)). So at least one of the coordinate functions x(t), y(t)

and z(t) should be invertible. Considering restricted sets of functions only, e.g., lower-order
polynomials, enables and simplifies the calculation of minima and maxima and thus the
calculation of a simple bounding box for a curved ray.

3. Data structures

Ray - object intersection tests usually account for most of the cost of the ray-tracing technique.
The intersection test of an object with a curved ray is even more expensive. One often employed
method for tackling nonlinear problems is linearization. This can also be done with nonlinear
rays. A curved ray is thereby approximated by a set of linear line segments (Euler integration).
A curved ray - object intersection test is transformed into a set of linear ray - object intersection
tests. One complicated intersection test is thus replaced by several simple intersection tests.
Intersection tests of a straight line with many different types of objects have been investigated
extensively in the literature [FoDa90], [Glas89], [Gröl94b]. As a curved ray is approximated by
line segments all these algorithms can easily be used for nonlinear ray tracing as well. Two
representations of curved rays are discussed in the following: an iterative representation and a
hierarchical representation. Although the iterative and the hierarchical representation could both
be applied to all types of nonlinear rays discussed previously, we used the iterative
representation for rays as defined in sections 2.1, 2.2  and the hierarchical representation for
rays as defined in section 2.3. The efficiency of ray - object intersection is increased by either
object space subdivision or the use of bounding-volume hierarchies.

3.1 Iterative ray representation

In this approach a curved ray is represented incrementally by line segments that are given by
positions   

r
xn and irections   

r
vn  each. Given a line segment (  

r
xn,  

r
vn) the following line

segment (  
r
xn+1,   

r
vn+1) is calculated iteratively as follows (see Figure 6):

  

r
xn+1 = r

xn + h ⋅
r
vnr
vn

r
vn+1 = f(

r
xn,

r
vn )

The factor h corresponds to the length of an approximating line segment and may be chosen to
be constant or to be varying adaptively according to the local curvature of the approximated ray
(Figure 6). With a constant h algorithms are simpler, varying h adaptively, however, produces
better results and greater efficiency.
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Figure 6: uniform (h constant), adaptive (h varying) iterative ray representation

 
r
vn+1 is calculated by applying the (usually) nonlinear function f(). f() depends on the type of

nonlinearity used, e.g., gravity center, gravity line, chaotic dynamical system, and is derived
from formulas like those in sections 2.1 and 2.2. Figure 7 lists possible choices for function
f().
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Figure 7: possible choices for function f()

Curved rays leaving the bounding box of the object scene may return at a later point in time or
may end up in a loop. In practice, however, only a finite portion of the potentially
infinitesimally long curved ray can be traversed. This is done by restricting the ray length
although in certain cases (if the ray length has not been chosen to be large enough) some points
of intersection might be missed.

3.2 Hierarchical ray representation

In [Ball81] a hierarchical data structure called a strip tree for the storage of 2D curves is
introduced. [Kaji83] uses strip trees to calculate the intersection of a ray with a translational
sweep. The concept of strip trees is modified (we use axis-aligned bounding boxes) and
extended to three dimensions for the efficient representation of 3D curved rays. A curved 3D
ray is stored as a binary tree with bounding boxes as follows (see Figure 8): The relevant
portion of a curved ray is enclosed within an axis-aligned bounding box. Subdividing this
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bounding box produces two pieces of the curved ray with generally much smaller bounding
boxes. These two pieces together with their bounding boxes constitute the two sons of the
original curve in the hierarchical binary tree representation. Subdivision of a portion of the
curve proceeds recursively until the bounding box is small enough, i.e., the enclosed portion of
the curve is almost linear or simply monotone. Bounding box calculation and subdivision
require the determination of minima and maxima of the curved ray, which can be done easily if
the ray is defined by simple parametric curves, e.g., second-order polynomials. A balanced
subdivision is achieved if each node contains a portion of the curved ray of approximately equal
length. In the most general case it may happen that an axis-aligned bounding box contains more
than one portion of a curved ray. For algorithmic simplicity we avoid such a situation by
assuming that every curved ray is monotone with respect to at least one coordinate axis.
Subdivision is done only along axes where monotonicity is given. A bounding box is split in
the middle along the axis where monotonicity holds and the bounding box extent is largest. The
remaining values of both of the two new axis-aligned bounding boxes are determined by
calculating the extremal points of the corresponding coordinate functions.

The initial bounding box can be deduced from the smallest bounding box that encloses the
objects in object space. Only those portions of a curved ray within this bounding box might
intersect objects and are therefore of interest. With the hierarchical storage of a curved ray large
portions of a ray that do not intersect objects can be discarded rapidly by simple bounding
volume comparisons. This data structure is, however, only applicable if a curved ray is known
completely in advance. If the curved ray is calculated iteratively the iterative ray representation
of section 3.1 is more appropriate. The hierarchical tree structure can be used to represent sets
of adjacent and therefore similar rays as well. With this modification ray coherence properties
can be exploited.

splitting plane

Figure 8: hierarchical representation of a curved ray (illustration in 2D), bounding boxes are
split in the middle along an axis where monotonicity of the curve holds

4. Algorithms

The intersection test of a curved ray with an object is replaced by a number of linear ray - object
intersection tests. As the linear ray - object intersection test has to be done several times for each
curved ray efficiency is of great concern. Two well-known acceleration techniques, i.e., space
subdivision ([FuTa86], [Glas84]) and bounding volume hierarchies ([Glas89], [KaKa86]), are
used for nonlinear ray tracing. Object space subdivision may be uniform [FuTa86] or non-
uniform [Glas84]. With bounding volume hierarchies [KaKa86] objects are grouped together
according to their bounding volumes to achieve a hierarchical data structure. A binary bounding
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volume hierarchy, i.e., two bounding volumes are combined to specify the bounding volume of
the parent node, has been used for nonlinear ray tracing.

Depending on the ray representation (iterative, hierarchical) and object space representation
(uniform subdivision, bounding volume hierarchy) different algorithms result (see Figure 9).
The combination of a hierarchical ray representation and a uniform space subdivision has not
been implemented.

ray
object

sub-
divison

bounding
volume
hierarchy

iterative hierarchical

"sub/iter"

"bvh/iter" "bvh/hier"

-

Figure 9: different intersection algorithms depending on ray
representation and object space representation

4.1 Algorithm "sub/iter"

The intersection test for an iterative ray representation and uniform subdivision proceeds as
follows: line segments are processed consecutively until an intersection has been found (if there
is any). For each line segment those subspaces of the subdivision that are intersected by the line
segment are determined. This can be done easily by classifying the first and last point of the line
segment. If more than one subspace is found, the subspaces are treated in sequential order
according to their distance to the starting point of the line segment. A usual linear ray - object
intersection test is then performed with each object that lies at least partially inside the currently
processed subspace. If there exist several intersection points of the line segment with objects of
the same subspace the first intersection point is selected.

4.2 Algorithm "bvh/iter"

The intersection test for an iterative ray representation and objects stored in a (binary)
hierarchical bounding volume structure proceeds as follows: line segments are again processed
consecutively. A line segment is tested if it intersects the bounding box of the root node of the
bounding volume hierarchy. With axis-aligned bounding boxes this is efficiently done through
comparisons of coordinate values. If the line segment intersects the bounding box of the root
node, the two sons of the root are processed recursively. If a leaf node is reached, then the
usual linear ray - object intersection test is done. In case of overlapping hierarchies, i.e., the
bounding boxes of two nodes at the same level overlap, it must be determined if a point of
intersection is indeed the first visible one. When a point of intersection has been found it does
not make sense to determine further points of intersection beyond the one already determined.
In this case the search for further points of intersection is reduced to a smaller line segment.

Traversal of the bounding volume hierarchy need not restart at the root node for every
segment of a curved ray. The information gained during the processing of the previous line
segment (with whom the current segment even shares one endpoint) is used to quickly focus on
the interesting portion of the bounding volume hierarchy.
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4.3 Algorithm "bvh/hier"

Objects are organized in a possibly overlapping (binary) hierarchical bounding volume
structure. Curved rays are stored in a non-overlapping binary tree as discussed in section 3.2.
In this case the intersection test of a curved ray with objects of the scene requires the
simultaneous recursive processing of both tree data structures.
ray_node :     record    

box : axis-aligned bounding box;
left, right : ↑ray_node;

    end    ;
object_node :     record    

box : axis-aligned bounding box;
left, right : ↑object_node;

    end    ;

   function     nonlinear_ray_intersection (r:ray_node, o:object_node):point_of_intersection
    var     I1, I2: point_of_intersection;
    begin    

   if    r.box overlaps o.box
   then    

   if    (o is a leaf node)
   then    

   if    (r is a leaf node)
   then    

usual linear ray-object intersection;
    return     point of intersection if any

    else    
construct r.left, r.right (if not yet existing);
I1 := nonlinear_ray_intersection (r.left, o);
   If    I1 < + ∞
   then    

return (I1)
    else    

I2 := nonlinear_ray_intersection (r.right, o);
    return     (I2)

    else    
   if    (r is a leaf node)
   then    

I1 := nonlinear_ray_intersection (r, o.left);
I2 := nonlinear_ray_intersection (r, o.right);
   If    (I1 < I2)    then         return     (I1)     else         return     (I2)

    else    
construct r.left, r.right (if not yet existing)
I1 := nonlinear_ray_intersection (r.left, o.left);
I2 := nonlinear_ray_intersection (r.left, o.right);
   If    (I1 < I2)    then         return     (I1)     else        if    (I2 < I1)    then         return     (I2);
   If    I1 < + ∞
   then         return     (I1)
    else    

I1 := nonlinear_ray_intersection (r.right, o.left);
I2 := nonlinear_ray_intersection (r.right, o.right);
   If    (I1 < I2)    then         return     (I1)     else         return     (I2)

    else    
    return     (+ ∞ ) /* point of intersection does not exist */

    end    ;

Figure 10: declarations and algorithm "bvh/hier"
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Furthermore the binary tree of a curved ray is constructed on the fly. Portions of this tree are
only built when needed. This approach is advantageous as pieces of the curved ray beyond the
first point of intersection are not of interest anyway. In Figure 10 data structures and the
intersection algorithm are outlined. ray_node is a node of the binary tree that stores the curved
ray and object_node is a node of the hierarchical bounding volume structure that stores the
objects of the scene. Using hierarchical data structures (if possible) results in more complicated
algorithms that are, however, more efficient than, for example, iterative algorithms.

5. Implementation and results

A test system has been implemented in C++. Test runs have been done on a PC 486 although
the system is easily portable to a graphics workstation. Images 1-10 were calculated with a
resolution of 550x550, images 11 - 14 with a resolution of 640x480. Anti-aliasing was done by
oversampling. Figure 11 shows some statistics of the sample images. Image 2 shows a regular
arrangement of small cubes covering the part of object space we are interested in. Images 3 and
4, 5 and 6 as well as 7 and 8 were generated due to the same source of nonlinearity. Taking the
regular cube structure of image 2 as object scene clearly illustrates the distortions introduced by
the different sources of nonlinearity. So images 3, 5 and 7 show the effect of using curved rays
on a more complicated object, whereas images 4, 6, 8 illustrate the overall effect of these curved
rays on object space. Uniform subdivision of object space and the use of bounding volume
hierarchies produce algorithms of comparable efficiency.
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image # algorithm remarks

1 linear ray tracing reference image, object scene contains 44 objects

2 linear ray tracing reference image, object scene contains 65 objects

3 "bvh/iter" one strong gravity center with global influence, the gravity center
is positioned close to the tower farthest in the background

4 "bvh/iter" same source of nonlinearity as in image 3, different object scene

5 "sub/iter" one gravity center with local influence, the gravity center is
positioned close to the rightmost tower

6 "sub/iter" same source of nonlinearity as in image 5, different object scene

7 "sub/iter" one gravity line with global influence, the gravity line is
perpendicular to the image plane and runs through the center of
the image

8 "sub/iter" same source of nonlinearity as in image 7, different object scene

9 "sub/iter" one gravity line with local influence, the gravity line is parallel to
the image plane and runs from the upper-left side of the image to
the lower-right side

10 "sub/iter" nonlinearity due to Rössler attractor

11 linear ray tracing reference image, object scene contains 12 objects

12 "bvh/iter" nonlinearity due to Lorenz attractor

13 "bvh/hier" parametric curve: x(t)=t2, y(t)=t, z(t)=2, curves are translated so
that for t=0 they run through the center of the image

14 "bvh/hier" parametric curve: x(t)=cos(2t), y(t)=t, z(t)=sin(2t), curves are
translated so that for t=0 they run through the center of the image

Figure 11: statistics of sample images

6. Further topics in nonlinear ray tracing

So far the intersection test of curved rays with objects of the scene has been discussed in detail.
Ray tracing, however, includes more than just calculating the first point of intersection between
primary rays and objects. Shading, shadowing, reflection and transparency effects may be
calculated as well. These tasks become a little bit tricky with nonlinear ray tracing. With linear
ray tracing shadow testing is easy: a linear shadow ray between the point of intersection and the
(point) light source is processed. If this shadow ray pierces an opaque object, then the point of
intersection is assumed to be in shadow. With nonlinear ray tracing there is the difficulty to
even come up with such a shadow ray. Although the endpoints of the shadow ray (point of
intersection and position of the light source) are known, due to nonlinear light propagation, it is
not obvious from which direction light will reach the point of intersection. This is some sort of
inverse problem. Given two points in space, find a curved ray that obeys the underlying laws of
nonlinearity and passes through the two defining points. If a nonlinear ray results from a
system of differential equations then the above problem is a boundary value problem for which
methods do exist in applied mathematics. The determination of such a ray seems to be nontrivial
but the situation is even worse. One cannot even be assured of the existence of such a ray, i.e.,
a point of intersection might be in shadow although there are no other possibly shadowing
objects. A simple example is a massive gravity center (black hole) close to the light source that
prevents light from reaching certain parts of object space. Most shading models take into
account the angle of incidence (angle between the normal vector and the incoming light ray).
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The determination of this angle of incidence poses the same problems for nonlinear ray tracing
as shadow testing. There are different strategies to overcome the above mentioned limitations to
nonlinear ray tracing.

One strategy is to assume linear light propagation for shading and shadow calculation. One
can think of light particles as being massless (therefore traveling in straight lines as unaffected
by nonlinear forces) until they hit an object. If they strike an object they pick up some mass and
their paths are henceforth influenced by the underlying laws of nonlinearity (e.g., gravity center
or gravity line). This model was used in our implementation although it clearly does not
correspond to physical reality.

One other strategy is to simply avoid these problems by omitting shading, shadowing,
reflection and transparency calculations. The additional information gained by considering these
global lighting effects may not be useful in certain situations. Visualizing the nonlinear behavior
of "strange" attractors can produce distorted images of objects that may not be easy to interpret.
Taking into account global lighting effects can make the interpretation task even more difficult.

The following idea is a first approach to approximately calculate the correct direction of
incoming light at a point of intersection. Object space is subdivided into a regular grid of
voxels. Starting at each light source curved light paths are traced through the voxel structure to
give an approximate direction of incoming light for all objects within a given voxel. This
structure is generated during a preprocessing step. The angle of incidence is then taken to be the
angle between the normal of the point of intersection and the approximate light direction of the
voxel which contains the point of intersection.

Aliasing may be more severe with nonlinear ray tracing than with linear ray tracing. All the
anti-aliasing techniques developed for linear ray tracing are applicable to nonlinear ray tracing as
well. We have achieved good results with oversampling or adaptive sampling. It has to be
pointed out, however, that there are situations where supersampling could fail. One can think,
for example, of chaotic dynamical systems with basins of attraction so well mixed in a given
domain that any pair of adjacent rays will diverge in that domain. In that case convergence of
the sampling process can not be expected and sampling has to be stopped after an upper limit of
sample points has been calculated. The systems we investigated so far were not too much of a
problem in that respect.

Further research topics include reflection and transparency calculations which have not been
considered up to now. With nonlinear ray tracing the user may also define his own laws of
nature and laws of light propagation. Some possibilities are: more than one direction of
reflection and/or transparency, anti-gravity centers, i.e., gravity centers that are repelling, etc.
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