
Spacetime Ray Tkacing for 
Animation 

Andrew S. Glassner 
University of North Carolina at Chapel Hill 

We are presenting techniques for the efficient ray 
tracing of animated scenes. These techniques are 
based on two central concepts: spacetime ray tracing, 
and a hybrid adaptive space subdivision/bounding vol- 
ume technique for generating efficient, nonoverlapping 
hierarchies of bounding volumes. 

In spacetime ray tracing, instead of rendering dynam- 
ically moving objects in 30 space, we render static 
objects in 4D spacetime. To support spacetime ray trac- 
ing, we use 4-dimensional analogues to familiar 
3-dimensional ray-tracing techniques. 

Our new bounding volume hierarchy combines ele- 

ments of adaptive space subdivision and bounding vol- 
ume techniques. The quality of the hierarchy and its 
nonoverlapping character make it an improvement over 
previous algorithms, because both attributes reduce 
the number of ray/object intersections that must be 
computed. These savings are amplified in animation 
because of the much higher cost of computing 
ray/object intersections for motion-blurred animation. 

We show it is possible to ray trace large animations 
morequickly with spacetime ray tracing using this hier- 
archy than with straightforward f rame-by-f rame ren- 
dering. 

R a y  tracing is a powerful and popular technique for 
image synthesis. When first introduced for computer 
graphics,’,’ ray tracing was comparable in power to 
scan conversion, but less attractive because of its high 
computational cost. 

Survey 
The effects of reflections, refractions, and shadows 

were estimated by adding recursion to the original ray- 

tracing a l g ~ r i t h m . ~ . ~  Unfortunately, some notable com- 
binations of these effects were incorrect. 

Image synthesis and ray tracing 
For example, if a shadow-testing ray encountered a par- 

tially transparent sphere, there was no proper single 
direction in which to send the ray after passing through 
the sphere’s surface. Either this shadow was rendered as 
though blocked by an opaque object, or the modeler 

60 0272-1716/88/0300-0060$01.00 1988 IEEE IEEE Computer Graphics & Applications 



introduced ad hoc techniques into the algorithm to han- 
dle particular situations correctly. 

A solution to some of these problems was introduced 
in the form of distributed ray t r a ~ i n g . ~  Whenever there 
was no single correct value for a ray parameter (such as 
the direction of the shadow ray discussed above), the 
domain of useful values was searched for an “appropri- 
ate” choice. This choice was made on the basis of the 
shape of the parameter space being sampled and the 
expected number of samples to be taken. Soft shadows 
and antialiasing in all dimensions were now available in 
a single, conceptually elegant algorithm. A technique for 
dynamically optimizing the number of rays cast when 
generating an image was presented by Lee and Uselton.‘ 

The ray-tracing algorithm was theoretically unified 
and extended again by Kajiya.’ Ray tracing was formal- 
ized as a technique for solving the “rendering equation,” 
which describes light distribution and energy balancing 
in an environment. This work suggested ways to include 
caustics and diffuse interreflections in a ray-tracing envi- 
ronment. 

Unfortunately, a straightforward implementation of 
ray tracing is prohibitively expensive in computer 
resources and time. Finding efficient techniques to 
implement ray tracing is an active research area. 

A brief survey of single-image rendering 
speedup techniques 

Efforts to improve the efficiency of the technique have 
taken place on two major fronts: bounding volumes and 
space subdivision. Both of these efforts have seen inves- 
tigation of important subissues: hierarchies for bound- 
ing volumes and the style of decimation for space 
subdivision. 

A central idea behind bounding volumes is that it is 
often cheaper to intersect a ray with several mathemati- 
cally simple objects than a single complex one. So com- 
plex objects are surrounded by simple objects (the 
bounding volumes], and these are recursively grouped 
together and enclosed within larger bounding volumes, 
forming a hierarchy. Rays that miss a bounding volume 
save a lot of work: they needn’t examine any object 
within. Rays that do strike a bounding volume must then 
be intersected with everything inside the volume (which 
might include smaller bounding volumes). Such rays suf- 
fer the penalty of having computed the bounding volume 
intersection; the details of this intersection are useless 
except to signal that the internal objects must be tested. 
Bounding volume approaches to ray tracing are 
described in a number of  work^.^.'^ 

A different approach to speeding up ray tracing is 
called space subdivision. The central idea here is to deci- 
mate space into a collection of disjoint simple volumes 
(often boxes), which are chosen so that each encloses 
only a small number of objects. When a ray enters a given 
box, it is intersected only with the objects within that 

box. If no objects are hit within the box, the ray moves 
to the next box on its path and repeats the procedure. 
Several approaches that use space subdivision have been 
p~blished.’~-’’ 

Both techniques address the issue of rendering a sin- 
gle image. In this article we propose combining these 
methods and extending them into the realm of animated 
sequences. 

A hybrid technique combining 
adaptive space subdivision and 

bounding volumes 
In this section we present a technique for the creation 

of efficient bounding volume hierarchies. The technique 
is a hybrid of adaptive space subdivision and bounding 
volume techniques. 

The advantages of bounding volume techniques lie in 
their ability to easily avoid computing ray-object inter- 
sections for all objects within a bounding volume not 
penetrated by a particular ray. If the volume is entered, 
then all of its immediate children must be intersected. 
If the bounding volumes can overlap, then it is not suffi- 
cient simply to proceed with the nearest of these chil- 
dren, since the nearest bounding volume may not 
contain the nearest ~ b j e c t . ~  In this context, the biggest 
drawback to bounding volume techniques is that some- 
times ray-object intersections are ignored; such compu- 
tations (which may be very expensive for complex 
objects) are unnecessary. A recent paperI4 presents 
some techniques for measuring and building a hierarchy, 
but the definition and construction of good hierarchies 
is still poorly understood. 

The other popular speedup technique is space subdi- 
vision. Many space subdivision schemes use rectangu- 
lar prisms (called cells) for the unit element of space. The 
hierarchy created by adaptive space subdivision tech- 
niques is excellent: No cells at any given level overlap, 
and cells are dense only where the database is dense. On 
the other hand, rectangular prisms can perform poorly 
as bounding volumes compared to sets of slabs and other 
techniques. 

To summarize, bounding volumes offer tight bounds 
but poor hierarchies, while adaptive space subdivision 
offers poor bounds but very good hierarchies; the 
approaches are complementary in their strengths and 
weaknesses. Our technique is to use the excellent hier- 
archy created by space subdivision as a guide to control 
the structure of the tighter bounding volume hierarchy. 
We will now present an overview of the algorithm, and 
then discuss some variations. 

The general theme of our approach can be summa- 
rized as constructing a bounding volume hierarchy in 
the order “space subdivision down, bounding volumes 
up.” For simplicity, we will often refer to a bounding vol- 
ume simply as a “bound.” 

March 1988 61 



L 

7 @$$ 5 

0 .L;i 
Figure 1. The subdivision of a rectangular prism into 
eight smaller prisms. On the left is the prism showing 
the locations of the cutting planes. On the right is an 
exploded view of the subdivided prism showing the 
labels of the eight smaller prisms. 

We begin by finding an enclosing box for the entire 
database, including light sources and the eye. We then 
evaluate a subdivision criterion (discussed below) for 
that box and its contents. If we decide to subdivide, then 
that box is split into eight new, smaller boxes, as shown 
in Figure 1. It is important to note that these boxes do not 
overlap. We then examine each new box in turn, deter- 
mining which objects within the parent box are also 
within each child. We then evaluate the subdivision 
criterion for each child box, and recursively apply the 
subdivision procedure for each box that must be split. 
The recursion terminates when no boxes need to be sub- 
divided. 

This concludes the “space subdivision down” step. We 
now build the bounding volume hierarchy as we return 
from the recursive calls made by the space subdivision 
process. Each node is examined, and a bounding volume 
is built which encloses all the objects contained within 
that node, within the bounds of that node. One way to 
visualize this process is to consider building a bounding 
volume for all objects within a node, and then clipping 
that volume to lie within the walls of the space subdivi- 
sion box, as shown in Figure 2 (note that implementa- 
tions may use a simpler and more direct method). As we 
work our way back up the space subdivision tree, we 
build bounding volumes that contain the bounds and 
primitives of the child boxes at each node. We note that 
if a cell has only one child, then we may replace that cell 
by its child to improve efficiency when rendering. 

This completes the “bounding volume up” step. The 
result is a tree of bounding volumes that has both the 
nonoverlapping hierarchy of the space subdivision tech- 
nique and the tight bounds of the bounding volume tech- 
nique. Thus the new hierarchy shares the strengths of 
both approaches while avoiding their weaknesses. The 
result is that when we trace a ray, we can always exam- 
ine the nearest bounding volume at all levels in the hier- 
archy. If we find an intersection in that volume then we 

rd 
..... 

-- 

Figure 2. On the top is an  object surrounded by a sin- 
gle bounding volume (for clarity the bounding 
volumes are rectangular prisms in this figure). On the 
bottom is the same object after the surrounding 
bounding volume has been subdivided. Note that the 
new, smaller bounding volumes are contained within, 
but not equal to, the smaller prisms created by the sub- 
division of the original bounding volume. 

I A I 

a b 

C d 

Figure 3. (a) shows a scene of 10 objects. (b) shows an  
adaptive space subdivision grid placed on those 
objects, subdividing any cell that contains more than 
two objects. (c) shows octagonal bounds (four slabs) 
placed around each primitive. (d) shows the final 
bounding hierarchy formed by the bounds in (c) and 
the subdivision tree in (b). 

can immediately stop. Figure 3 summarizes the hierar- 
chy creation process. 

If no intersection is found, we then proceed to the next 
bounding volume, using either the bounding volume or 

62 IEEE Computer Graphics & Applications 



Figure 4. This diagram shows a 3D spacetime. Thc 
two space axes are labeled X and Y. Each slice of this 
spacetime volume parallel to the X and Y axes selects 
the world at a particular instant of time. Inhabitants 
of this world would experience the flow of time if they 
were moving along the time axis at a steady rate. 

space subdivision structure to guide the ray propagation. 
It is important to note that since our bounding volumes 
might not completely enclose their objects, we must 
check that the intersection is indeed within the limits of 
the current bound. 

There are many ways to apply adaptive space subdi- 
vision and bounding volumes: we will briefly mention 
some of the variations. The space subdivision cells may 
be axis-oriented,I5 or oriented arbitrarily in space.I3 The 
adaptive subdivision may be performed by equal cuts in 
all directions,lS in a BSP meth~dology,’~ or with the 
median cut a l g ~ r i t h m ’ ~  based on the distribution of 
objects in the cell. The subdivision criteria may be based 
on the amount of projected “void area,”” the object 
count in a cell,15 or on the density ratio of the total vol- 
ume enclosed by the objects to the total volume of the 

The last technique is useful when working with 
“intelligent” objects, which may represent themselves 
with different bounding volumes, depending on the level 
of the bounding hierarchy. 

The bounding volume construction may use rectangu- 
lar boxes,13 polyhedrons,” parallel slabs,g or surfaces of 
revolution.’’ Because the bounds constructed at each 
cell are a union of the bounds of all child cells and prim- 
itive objects in that cell, the style of bound at each cell 
may be different, enabling one to “tune” the bounds of 
each object individually. 

Spacetime ray tracing 
The central idea in our solution to the ray tracing of 

animated sequences is to consider the time-varying 
geometry of the 3D database as a static structure in 4D 
spacetime.” Since many people find it difficult to 
visualize 4D spaces directly, we will approach the 4D 
spacetime algorithm by analogy with 3D spacetime. 

March 1988 

Figure 5. (a) To ray trace a frozen instant of 3D space- 
time, we choose a 2D slice along the space axes. This 
entire slice has the same time value. We then project 
this 2D world onto a 1D image line, with the observer 
at the apex of this 2D viewing pyramid (a triangle). (b) 
To approximate motion blur, different samples in the 
image are taken at different times. This has the effect 
of thickening our sampling plane into a sampling 
volume. 

3D spacetime 
Three-dimensional spacetime can be thought of as a 

3D space, containing a 2D space translated continuously 
in time.23 Figure 4 shows a 2D world (a section of a 
plane), changing with time. In an animated sequence, 
objects will move about in this 2D space as time 
progresses. 

Most of the rendered animation we usually produce 
consists of the projection of worldly 3D objects onto a 
2D image plane. In a world of one less dimension (the 2D 
world of Figure 4), we render 2D objects onto a 1D image 
line, as shown in Figure 5a. Let’s say we want to use ray 
tracing to produce a movie of this changing 2D world. 
Our rays that sample the 3D spacetime may start at any 
point (say an intersection with an object) and move in any 
direction. If we want to include motion blur in our 
movie, then these rays may also start at any time during 
a frame, as shown in Figure 5b. 

63 



The question now becomes one of quickly tracing the 
3D ray in spacetime, intersecting it with each 2D object 
in its spacetime path. Each intersection of a ray and 
object is denoted by the three coordinates (X,Y,T). Each 
(X,Y) location in pure space is called a space point. Each 
(X,Y,T) location in spacetime is called a spacetime 
e ~ e n t . ‘ ~  

To make our movie of the motion depicted in Figure 
4, we could simply shoot rays from the eye, at various 
times and in various directions, into the 3D spacetime 
structure and try intersecting the rays with each object, 
searching for the first event along the ray’s path. This 
naive approach would be very expensive computation- 
ally. Alternatively, we can adapt the bounding volume 
hierarchies described in the previous section. Instead of 
building spatial bounding volumes in 3D space, we will 
build spacetime bounding volumes in 3D spacetime. As 
long as we know the 3D spacetime structure, we can 
rename one of the axes in the 3D space algorithm as time. 
When we subdivide along the time axis, we are actually 
now subdividing the amount of time for which this 
bounding volume encloses its child objects. 

One way to see this is to envision Figure 1 as bound- 
ing volume for a 2D object in 3D spacetime. With this 
interpretation, nodes 0 through 3 now contain the first 
half of the time interval, and nodes 4 through 7 contain 
the second half (visualize the time axis as moving from 
the bottom to the top of the page). Now we can restrict 
our intersection tests only to those objects that occupy 
the same region of space and time that the ray is 
sampling. 

Subdivision in higher dimensions 
So far we have looked at a 3D spacetime containing a 

2D world, rendered onto a ID  image line. The techniques 
discussed above extend easily into a 4D spacetime of 
three spatial dimensions plus time. Higher dimensions 
are also straightforward, and may be useful in situations 
where objects change along dimensions that are being 
sampled other than just space and time, such as wave- 
length. 

Animation in 4D spacetime 
When we pierce a spacetime bounding volume with 

a 4D ray, we don’t yet actually have the ray/object inter- 
section event. Since collections of objects and other 
bounding volumes may reside within a single bounding 
volume, we must look into the volume and test the ray 
against its contents. Because objects may move in com- 
plicated ways over time, we feel that 4D ray tracing is best 
handled by an object-oriented environment, which 
allovvs intelligent objects to perform their own intersec- 
tions. After describing such an environment, we will 
describe how to achieve the same function (though with 
greater effort) from data-driven animation in a proce- 

dural environment, such as a traditional keyframe ani- 
mation system. 

Bounding volumes and intersection events 
from intelligent objects 

In our technique the bounding volumes are created by 
the objects themselves, in response to requests by the 
hierarchy construction p rep rocess~r .~~  Requests consist 
of asking an object for its enclosing spacetime volume 
within some region of spacetime. Many objects can eas- 
ily respond with one of the bounding volumes discussed 
earlier. 

An advantage of this intelligent object approach (such 
as described by Amburn, et is that objects can 
determine their own most efficient representations. For 
example, a group of stars may represent itself by a sin- 
gle bounding volume when the subdivision begins. 
When the bounding volume requests enclose smaller 
spacetime volumes, the star group may improve its rep- 
resentation by describing itself as several smaller 
clusters, returning several bounding volumes instead of 
one. Another advantage is the simplicity of the program 
itself, and the ease of adding new objects. Objects are 
also able to respond to requests to intersect themselves 
with a particular 4D ray, returning the first such event 
along the ray if one exists. 

If the application environment of the ray tracer does 
not support such intelligent objects, then the work of 
building bounding volumes and finding intersection 
events must be made by the animation manager. For 
example, a keyframe animation system would need to 
construct the bounding volumes for objects in given 
ranges of space and time according to the interpolation 
techniques it used to build the animation. When build- 
ing a particular bounding volume, such a system needs 
to examine the object carefully throughout the time dura- 
tion of the request to which it is responding. In a com- 
plicated animation system objects may move and change 
in complicated ways; one must be careful to insure that 
each bound completely encloses the object for the entire 
time interval. Similar care must also be taken when 
determining intersection events. 

Summary of the 4D spacetime algorithm 
The creation of a piece of animation begins with a 

preprocessing step. This step recursively builds an adap- 
tive space subdivision tree on the static 4D spacetime 
structure of the moving objects. When we return back up 
the tree, we build bounding volumes that enclose the 
objects at each cell. 

To render this structure we fire 4D rays into the bound- 
ing volume hierarchy. Because of the nonoverlapping 
nature of the hierarchy, we are guaranteed that we may 
choose the nearest bounding volume at every level. If we 
strike an object in this nearest volume, then we need not 
also test other, further volumes. 

64 IEEE Computer Graphics & Applications 



Motion blur due to camera motion is naturally accom- 
modated by using different starting times and positions 
for the primary rays. 

The sources of efficiency 
The spacetime rendering algorithm is efficient for ani- 

mation for the same reason that space subdivision and 
bounding volumes are efficient for single frames. Con- 
sider that in ray tracing, a ray must find its nearest object: 
This requires searching the entire database. Space sub- 
division sorts the database almost completely in a 
preprocessing step. Now each ray need only search the 
objects in a given volume. Any bounding volume hierar- 
chy in fact does the same thing, although the sorting may 
be more complicated. With these techniques, each ray 
needs only to search through a small number of objects, 
each with a high probability of intersection. In single- 
frame techniques the bulk of the searching was dis- 
tributed to the preprocessing sort that built the hierar- 
chy of space enclosures. 

Space subdivision and bounding volumes speed ren- 
dering by sorting the database once at the start of the 
frame, instead of for every ray. The technique introduced 
in this article speeds rendering by using a single, nearly 
complete spacetime sort instead of many space sorts. It 
performs this one sort at the start of the animation, 
instead of for every frame. 

Another important source of efficiency is the reduc- 
tion in the number of object transformation calculations 
that must be performed. When we shoot rays at differ- 
ent times to approximate motion blur, those rays inter- 
sect the objects in the database at different times. To 
intersect the ray and each object properly, the object 
must be transformed to the correct position, orientation, 
and shape for that time. If the object motion is complex, 
the transformation may include deformations and other 
sophisticated changes. These transformations may be 
very expensive to compute. Because our bounding vol- 
ume hierarchy is nonoverlapping, we avoid computing 
intersection events along hierarchy descent paths that 
don't lead to the first intersection. This reduction in the 
number of intersections that we must compute can 
become significant for complex object transformations 
in dense regions of the database. 

Implementation 
The algorithm generating the hierarchy of spacetime 

bounding volumes requires a technique of bounding 
volumes and a technique of adaptive space subdivision. 
In our implementation, we chose slab bounding 
volumesg and equal ~ubdivision. '~ Both algorithms are 
easily extended to work in spacetime instead of just 
space. 

Spacetime rays are represented by a pair of 4D events 
giving the origin and direction of the ray. When render- 

ing at normal scales, the time component of the direc- 
tion vector may be set to 0, implying that the light ray has 
infinite speed. At extremely large and small scales, we 
may instead set the time component to a value consis- 
tent with the speed of light in the database. With suitable 
enhancements to the ray-tracing geometry, we can then 
handle relativistic effectsz4 

In the 3D environment, a good set of bounding planes 
consists of the seven planes generated from the three 
axes and the eight octants they form.g The three axes 
give rise to three principal planes (each containing one 
unique pair of axes: XU, XZ, or YZ), plus four auxiliary 
planes that each diagonally slice two octants. 

In 4D we have four principal axes, which cut space- 
time into 16 subspaces, which we call hexants. Eight of 
these hexants contain the first half of the time interval, 
while the other eight cover the latter half of the time 
interval. We now have four principal planes (containing 
XYZ, XYT, XZT, YZT), plus eight auxiliary planes that 
diagonally slice half of the hexants, for a total of 12 
planes. 

Our principal planes have normals: 

Note that these slabs are required if we are using axis- 
oriented subdivision, since they form the walls that sep- 
arate adjacent cells. The auxiliary planes have normals 

(.5,.5,.5,.5) (.5,.5,.5,-.5) (.5,.5,-5,.5) 
(.5,.5,-.5, - . 5 )  

(.53-.5,.5,.5) (.5,-.5,.5,-.5) (.5,-,5,-.5,.5) 
(.5, - .5, - .5, - .5) 

Using planes formed by these normals we effectively 
enclose each spacetime path in a convex, bounding poly- 
hedron formed by the intersection of 12 slabs, each com- 
posed of two parallel planes. We may add additional 
spacetime slabs to those above if we desire even tighter 
bounding volumes. 

The cost of the 4D spacetime ray/slab intersection is 
virtually the same as for the 3D case. The difference is 
an extra pair of multiplies and additions once per ray per 
normal to compute both of the dot products of the space- 
time normal with the ray origin and direction.g But we 
consider that cost negligible, since it is amortized over 
the life of the ray. 

Our system is implemented in the C programming lan- 
guage under Unix, which is not the most natural envi- 
ronment for object-oriented programming. We thus use 
indirect procedure calls and consistent methodology to 
achieve an object-oriented flavor in the system. For exam- 
ple, our objects are able to respond to messages request- 
ing bounding volumes within a given 4D box, 
intersections with a given ray, and intersection comple- 

March 1988 65 



Figure 6. The upper photo shows a cyclic 64-frame 
animation of six small spheres (“electrons”) spinning 
in different speeds in complicated motion around a 
larger central sphere (the “nucleus”). The lower photo 
is an enlargement of the 25th frame, showing the 
effect of motion blur on the small balls and their 
shadows. 

tions (e.g., determining surface normal). Our objects also 
perform a variety of householding tasks such as main- 
taining their own motion paths, managing time-varying 
surface deformations and texturing, and so on. 

Results 
Figures 6, 7, and 8 show three animations we have 

produced with these techniques. Because of the limita- 
tions of the print medium, we present the animations by 
grids of frames equally spaced in time. Read the anima- 
tion grids as you would read a book: starting at the upper 
left, moving left to right and top to bottom. 

Figure 6 shows 64 samples from a cyclic animation of 
an atomic model. Six spheres spin about each other and 
about a central nucleus in a complicated ballet. Motion 
blurring is evident in the faster moving balls and their 
shadows. 

Figure 7 shows 16 samples from a cyclic animation of 
a group of spheres, moving on the surface of an 
octagonal prism. This figure was generated with four 
samples per pixel, distributed in space and time. 

Figure 8 is a 64-frame synopsis of the short film Dino’s 
Lunch. 

Tables 1 and 2 summarize the statistics we have mea- 
sured for Figures 6 and 8. All frames were generated at 
126-by-126 pixels. Each frame of Figure 6 contains seven 
spheres and one polygon, and was sampled with a con- 
stant 32 eye-rays per pixel. Each frame of Figure 8 con- 
tains 47 spheres and 2 1  polygons, and was sampled with 
a constant four eye-rays per pixel. All eye-rays were dis- 
tributed in the 3D spacetime volume occupied by the 
frame. 

The columns labeled “Frame-by-frame” report the 
costs for the entire animation when generating purely 
spatial bounding volumes anew for each frame. These 

66 IEEE Computer Graphics & Applications 



Figure 7. The upper photo shows a cyclic 16-frame 
animation of eight spheres bounding on the surface 
of an octagonal prism in a small box. The lower photo 
is an enlargement of the 12th frame, showing the 
speckled pattern characteristic of low-density dis- 
tributed ray tracing with motion blur (each pixel fired 
four rays). 

gration techniquesz7 to estimate the volumes). The 
column labeled “Spacetime to frame-by-frame ratio” con- 
tains the ratios of the animation totals for the two tech- 
niques, and is graphed in Figure 9. 

Clock timings are not presented in the tables, since 
actual rendering times are strongly influenced by pro- 
gramming style and code tuning. Specifically, our code 
is not optimized for the algorithms in this article, since 
it performs many other tasks as part of a much larger 
system. 

We have thus normalized all time measurements to an 
arbitrary unit time. Our unit time was the average time 
to render one frame of Figure 8. All measurements below 
the heavy horizontal line in the Tables are reported rela- 
tive to this time unit. The proper statistics for compari- 
son lie not in the elapsed time, but in the other columns, 
reporting the number of bounding volumes made and 
intersected, and the number of ray/object intersections 
with their accompanying expensive object transfor- 
mation. 

bounds were taken to encompass the object for the dura- 
tion of the frame, created and arranged in a hierarchy as 
in Kay and K a j i ~ a . ~  The column labeled “Spacetime” 
reports the equivalent costs using the techniques in this 
paper. 

Figures 6, 7, and 8 were all computed using a hybrid 
subdivision criterion. At the upper levels of the tree, we 
subdivided until no more than three objects were in a 
cell. After meeting that criterion, we used a density mea- 
sure: If the ratio of the volume enclosed by the objects 
in a cell to the volume of the cell was less than 0.3, the 
cell was subdivided (we used standard numerical inte- 

Discussion 
The ratios in the comparison columns in Tables 1 and 

2 are encouraging. They reveal that even in animations 
of modest complexity spacetime ray tracing with a 
hybrid hierarchy yields savings over frame-by-frame ren- 
dering. 

From Table 1 we see that spacetime ray tracing was 
able to cut the rendering cost of Figure 6 to about 50 per- 
cent of that required by frame-by-frame techniques. Table 
2 shows that spacetime ray tracing reduced the cost of 
Figure 8 to about 80 percent of frame-by-frame methods. 

March 1988 67 



Figure 8. This is a 64-frame sample of the 
short film Dino's Lunch. 

I Table 2. Rendering statistics for Figure 8. 1 I Table 1. Rendering statistics for Figure 6. 
FRAME-BY-FRAM€ SPACEllhQ 

ArwMUOn 
T d  

spaanmc w 
Framc-by-Ftam 

Ran0 

193.637 50.792.195 #rays 22.148 50,792.794 I O  

# bounding volumcs 1 bulit 
U taundmg volumes 

~ bul l  468 
7 . 3  I I I  I 

66,030,634 0.565 1,825,365 I 116,823,428 

IT- - - - - - -  
2,857.093 182,854.062 + 0.583 106.664.869 

1 .3  0.565 
average primitive 
rntcrrcctions pcr ray 

avcngc pnrmuvc 
rn iemct ions  perray 

12.13 
avcnge b o u n d n g  
volume inerscc t ions  
Dcr ny 

3.6 I 3.6 2.1 0 583 

~~ 

0011 1 0 7 1 0  
t a u n d r n g  volumc 
h i c m h y  crcauon umc t u c m h y  crcauon nmc 

34 8 I 2233 

I 
35 I I 2234 1180 I 0 5 2 8  

io& animmon 
gcncnnon Qm 

number of ray-object intersections; this figure also 
decreases in spacetime ray tracing, thanks to the addi- 
tional information provided by the time component in 
the spacetime bounding volumes. 

Thus even in these simple animations, spacetime ray 
tracing can offer us significant savings in time by reduc- 

Since spacetime ray tracing builds bounding volumes 
only once at the start of the animation, we would expect 
that it should generate fewer bounding volumes over the 
course of the animation than frame-by-frame techniques. 
The results show that we indeed observed such an effect 
in both animations. The most important statistic is the 

IEEE Computer Graphics & Applications 68 



Figure 9. Percentage of work 
required by new technique relative 
to frame-by-frame techniques. 
Light shaded boxes are for Figure 
6; dark boxes are for Figure 7. 

# bounding volumes built 

average primitive object 
intersections per ray 

werage bounding volume 
intersections per ray 

iunding volume hierarchy 
creation time 

rendering time 

1 
total animation 

generation time 

ing the number of complex intersection operations that 
must be performed. 

We note that several factors strongly affect these statis- 
tics, such as the distribution of objects in the scene, the 
complexity of each ray-object intersection, the complex- 
ity of the animation and database transformations, and 
the length of the animation in frames. 

Consider a complex object changing in complex ways 
over time, such as a boiling fractal volcano with flowing 
lava. It can be very expensive to intersect such an object 
with a ray at a given time. This is because time- 
dependent intersections require positioning an object 
along its motion path, interpolation of all object descrip- 
tion parameters, and then construction of the object 
itself (at least to a level sufficient to reject the ray). With- 
out spacetime bounds all of this work will have to be per- 
formed for each object, even for rays that cannot possibly 
hit the object because they are in the wrong place at the 
wrong time. Spacetime bounds eliminate the majority of 
these useless intersection calculations, eliminating also 
their associated complex object positioning and con- 
struction operations. 

We therefore expect that complex animation, involv- 
ing many complex objects in sophisticated motion, will 
yield substantially higher savings than the examples 
presented here; indeed, we expect that as the animation 
grows more complex, the savings will become greater. 
This is based on the above discussions about the sources 
of efficiency, and by analogy to the performance of space 
subdivision and bounding volume algorithms. We are 
currently planning an elaborate animation called Dino 
and the Windmill (the sequel to Dino‘s Lunch) to test this 

expectation. Din0 and the Windmill will also include 
extensive movement of the lights and camera. 

Future work includes lazy evaluations of the bound- 
ing hierarchy (constructed of only those bounds needed 
as the animation progresses). We also plan to synthesize 
our methods with other multidimensional ray-tracing 
acceleration techniques, such as that described by Arvo 
and Kirk.” 

Summary and conclusion 

We have presented techniques for efficient ray tracing 
of animated scenes. We view the animation problem as 
a spacetime rendering problem. Thus, instead of render- 
ing dynamically moving 3D objects in space, we render 
static 4D objects in spacetime. To trace rays in spacetime 
efficiently, we developed a hybrid technique of adaptive 
spacetime subdivision and spacetime bounding 
volumes, which generates an excellent hierarchy of 
nonoverlapping bounding volumes. The spacetime sub- 
division is also used during preprocessing to help intel- 
ligent objects select the most appropriate bounding 
volume for differently sized spacetime hypervolumes 
built as the subdivision progresses. We then trace 4D rays 
in this static spacetime to find ray-object intersection 
events. 

We are able to ray trace a piece of animation more 
quickly with this spacetime algorithm and bounding 
hierarchy than with straightforward frame-by-frame ren- 
dering. rn 

March 1988 69 



Acknowledgments 
This work was developed and implemented in the 

Computer Graphics Lab at the University of North Caro- 
lina at Chapel Hill. 

Thanks go to my advisor, Henry Fuchs, for his support 
of independent research. The idea of incorporating com- 
posite spacetime information into an animation system 
came out of discussions with Larry Bergman. Both a 
preliminary and a revised version of this article were 
carefully reviewed by a host of my fellow students in the 
Department of Computer Science; my thanks go to Marc 
Levoy, Pete Litwinowicz, Chuck Mosher, Tom Palmer, 
and Lee Westover. Kevin Novins of the Department of 
Radiology also provided insightful comments. Mark 
Harris and Doug Turner helped with the phrasing of 
important passages, and Margaret Neal helped make the 
article cohesive and clear. The observations and sugges- 
tions of these volunteer reviewers helped give this arti- 
cle structure and focus. Their friendly companionship 
in the Lab helped make the work a pleasure. Lakshmi 
Dasari provided key assistance in the production of the 
animations. 

References 
1. A. Appel, "Some Techniques for Shading Machine Renderings of 

Solids." Proc. AFIPS Conf., Vol. 32,  1968, pp. 37-45. 

2.  W, Bouknight and K. Kelley, "An Algorithm for Producing Half- 
Tone Computer Graphics Presentations with Shadows and  Mov- 
able Light Sources," Proc. AFIPS Conf., Vol. 36, 1970, pp. 1-10, 

3. D. Kay. "Transparency. Refraction, and Kay Tracing for Computer 
Synthesized Images," master's thesis, Cornell University, Ithaca, 
NY, 1979. 

4. T. Whitted. "An Improved Illumination Model for Shaded Dis- 
play," CAChl, June 1980, pp. 343-349. 

5. R.L. Cook, T. Porter, and I,. Carpenter, "Distributed Ray Tracing," 
Computer Graphics (Proc. SIGGRAPH), July 1984, pp. 137-145. 

6. M E .  Lee, R.A. Kedner, and  S.P. Uselton, "Statistically Optimized 
Sampling for Distributed Ray Tracing," Computer Graphics (Proc. 

7. J.T. Kajiya, "The Rendering Equation." Computer Graphics (Proc. 

8.  E.A. Haines and  D.P. Greenberg, "The Light Buffer: A Shadow- 
Testing Accelerator," CGE.A, Sept. 1986, pp. 6-16. 

9. T. Kay and  J.T. Kajiya, "Ray Tracing Complex Scenes," Computer 
Graphics (Proc. SIGGRAPH), July 1986, pp. 269-278. 

10. H. Weghorst, G. Hooper, and  D. Greenberg, "Improved Computa- 
tional Methods for Ray Tracing," ACM Trans. on Graphics, Jan. 
1984, pp. 52-69. 

11. 1.T. Kajiya, "New Techniques for Ray Tracing Procedurally Defined 
Objects," Computer Graphics (Proc. SIGGRAPH), July 1982, pp. 

12. S. Roth, "Ray Casting for Modelling Solids," Computer Graphics 
and lrnage Processing, Vol. 18., 1982, pp. 109-144. 

13. S.M. Rubin and T Whitted, "A 3-Dimensional Representation for 
Fast Rendering of Complex Scenes," Computer Graphics (Proc. 

SIGGRAPH), July 1985, pp. 61-67. 

SIGGRAPH), July 1986, pp. 143-150. 

245-254. 

SIGGRAPH), July 1980, pp. 110-116. 

14. J. Goldsmith and J.  Salmon, "Automatic Creation of Object Hier- 
archies for Ray Tracing," CGGA, May 1987, pp. 14-20. 

15. A S .  Glassner, "Space Subdivision for Fast Ray Tracing," CG&A, 
Oct. 1984. pp. 15-22. 

16. M. Dippe and  J. Swenson, "An Adaptive Subdivision Algorithm 
and Parallel Architecture for Realistic Image Synthesis," Computer 
Graphics (Proc. SIGGRAPH), July 1984, pp. 149-158. 

17. M. Kaplan, "Space Tracing: A Constant Time Ray Tracer," SIG- 
GRAPH 85 Tutorial on the State of the Art in Image Synthesis, July 
1985. 

18. A. Fujimoto, T. Tanaka, and  K. Iwata, "ARTS: Accelerated Ray- 
Tracing System,'' CG&rA, Apr. 1986, pp. 16-27. 

19. I? Heckbert, "Color Image Quantization for Frame Buffer Display," 
Computer Graphics (Proc. SIGGRAPH), July 1982, pp. 297-307. 

20. AS .  Glassner, "Spacetime Ray 'Tracing for Animation," Introduc- 
tion to Ray Tracing, course notes #13 [SIGGRAPH), ACM, New 
York, 1987. 

21. 1.T Kajiya, "New Techniques for Ray Tracing Procedurally Defined 
Objects," Computer Graphics (Proc. SIGGRAPH) July 1983, pp. 
91-102. 

22. K. Rucker, The Fourth Dimension, Houghton Evlifflin, Boston, 1984. 

23. A. Abbott, Flatland, Dover Publications, Mineola, N.Y., 1952 (origi- 
nal copyright 1884). 

24. P. Bergmann, Introduction to the Theory of Relativity, Dover Pub- 
lications, Mineola, N.Y., 1975. 

25. AS.  Glassner, "Supporting Animation in Rendering Systems, Proc. 
CHI+GI, Canadian Information Processing Soc., Toronto, 1987. 

26. P. Amburn, E. Grant, and T. Whitted, "Managing Geometric Com- 
plexity with Enhanced Procedural Models," Computer Graphics 
(Proc. SIGGRAPH), July 1986, pp. 189-195. 

27. W. Press, B. Flannery, S. Teukolsky, and  W. Vetterling, Numerical 
Recipes, Cambridge University Press, N.Y., 1986. 

2 8 J. Arvo and  D. Kirk, "Fast Ray Tracing by Ray Classification, Com- 
puter Graphics [Proc. SIGGRAPH!, [uly 1987, pp. 55-64. 

Andrew S. Glassner is a PhD student in Com- 
puter Science at the University of North Caro- 
lina at Chapel Hill, where he studies 
algorithms for image synthesis, modeling, 
and animation. He  spent recent summers 
working on computer graphics at a variety of 
research institutions, including the Delft Uni- 
versity of Technology, Xerox PARC, IBM TJ  
Watson Research Laboratory, Bell Communi- 
cations Research, and the New York Institute 

of Technology. 
Glassner writes on computer graphics for both the technical and 

popular literature. His book for artists, Computer Graphics User's 
Guide, has recently been translated into Japanese. He  is presently 
working on  two new books, describing procedural geometric 
methods for graphics programmers, and  symmetry design for 
artists. Glassner's current research interests include image syn- 
thesis, geometrical methods for designing computer graphics 
algorithms, and the theory of certain knotwork patterns. He is also 
interested in other uses of computers for enhancing and support- 
ing creativity, including music, multimedia displays, and  interac- 
tive fiction, both verbal and  visual. 

Glassner can  be reached at the Department 'of Computer 
Science, Sitterson Hall, Box 3175, UNC-CH, Chapel Hill, NC 
27599. 

70 IEEE Computer Graphics & Applications 


