
A Simple and Practical Method for Interactive Ray Tracing of Dynamic Scenes

Ingo Wald Carsten Benthin Philipp Slusallek
Saarland University

{wald,benthin,slusallek}@graphics.cs.uni-sb.de

Abstract

Recently developed interactive ray tracing systems com-
bine the high-performance of todays CPUs with new algo-
rithms and implementations to achieve a flexible and high-
performance rendering system offering high-quality, inter-
active 3D graphics. However, due to its history in off-line
rendering, interactive ray tracing has been limited to static
scenes and simple walkthroughs. However, in order to be-
come truly interactive ray tracing must support dynamic
scenes efficiently.

In this paper, we present a simple and practical approach
for ray tracing of dynamic scenes. It separates the scene
into independent objects with common properties concern-
ing dynamic updates — similar to OpenGL display lists and
scene graph libraries. Three classes of objects are distin-
guished: Static objects are treated as before, objects un-
dergoing affine transformations are handled by transform-
ing rays, and objects with unstructured motion are rebuild
whenever necessary.

Using this approach, an interactive ray tracing system is
able to efficiently support a wide range of dynamic scenes,
which is demonstrated with many examples.

1 Introduction

Methods for creating computer generated images can be
broadly classified into two different approaches, both with
different strengths and weaknesses. On one side, triangle
rasterization is easy to build in hardware, is cheaply avail-
able on todays graphics cards, and clearly dominates todays

interactive graphics market. On the other side, ray tracing is
well-known for achieving superior image quality, but is also
infamous for its high computational cost, and has therefore
traditionally been used only for off-line rendering.

Recently, the speed of ray tracing has been improved to
interactive rates [24, 18]. For a number of application, in-
teractive ray tracing even starts to challenge the dominat-
ing role of triangle rasterization: Due to its logarithmic be-
havior in scene complexity, ray tracing becomes increas-
ingly efficient for complex environments [26]. It offers a
much more flexible image generation algorithm than ras-
terization, supporting features that are hard to achieve with
rasterization hardware, including exact reflections, refrac-
tions, shadows, arbitrary procedural shaders, and recently
even global illumination at interactive rates [25]. Several
research projects have even started to investigate new hard-
ware architectures for real-time ray tracing [19, 21].

1.1 Ray Tracing in Dynamic Environments

Interactive ray tracing is relatively new field of research.
Most ray tracing research had been concentrated on accel-
erating the process of creating a single image, which could
take from minutes to hours. Most of these approaches relied
on doing extensive preprocessing by building up complex
data structures to accelerate tracing a ray. This preprocess-
ing was then amortized over the remainder of a frame.

This approach was very successful for off-line computa-
tions, where the cost for building the data structures was
negligible compared to the cost for the actual rendering
phase. However, when the time required for tracing rays
was reduced by more than an order of magnitude [24] and

1

when ray tracing was used in an interactive setting, this ap-
proach was not feasible any more.

Building the acceleration data structure became a bottle-
neck due to its super-linear behavior with respect to scene
complexity. In dynamic scenes, where the acceleration
structure would need to be rebuilt for every frame, this pre-
processing alone would often exceed the total time available
per frame.

Without methods for interactively modifying the scene,
interactive ray tracing systems are limited to simple walk-
throughs of static environments, and can therefore hardly
be termed truly interactive, as real interaction between the
user and the environment was impossible. In order to be
truly interactive, ray tracing must be able to efficiently sup-
port dynamic environments.

1.2 Paper Outline

We start this paper with an overview over previous work
on fast and interactive ray tracing (Section 2). We then
present the general approach (Section 3) as well as some
implementation details (Sections 4) and report results of ap-
plying the techniques to a number of test scenes (Section 5).
This is followed by a detailed discussion of the strengths
and weaknesses of our approach (Section 6) before offering
conclusions and ideas for future work (Section 7 and 8).

2 Previous Work

Ray tracing has first been used by Appel [1], and has
been adopted and extended by many other researchers [27,
3, 4]. Since then, speeding up ray tracing has attracted a
lot of attention, and has lead to dozens of algorithms. Most
of these algorithms rely on reducing the required ray/object
intersection tests by building an acceleration or index struc-
ture over the scene’s geometry.

Many different data structures have been proposed, in-
cluding regular and hierarchical grids, bounding volume hi-
erarchies (BVHs [7]), octrees, BSP trees [22] and kd-trees,
and even directional techniques such as ray classification.
Dozens of variations of these basic algorithms exist. For a
survey of these techniques, see e.g. [4, 8].

Quite recently, ray-tracing has been improved to the
point where interactive frame rates could be achieved at
least for moderate screen resolutions. By exploiting the in-
herent parallelism of ray-tracing Muuss [14, 13] and Parker
et al. [18, 16, 17] achieved interactive ray tracing perfor-
mance on shared memory supercomputer systems by mas-
sive parallelization and low-level optimizations.

Last year, Wald et al. [24] showed that interactive ray-
tracing performance can also be obtained on inexpensive,
off-the-shelf PCs. Their implementation is designed for
good cache performance using optimized intersection and

traversal algorithms as well as a careful layout and align-
ment of core data structures. Together these techniques
increased the performance of ray-tracing by more than
an order of magnitude compared to other software ray-
tracers [24]. In a related publication it was shown that ray-
tracing also scales well in a distributed memory environ-
ment using commodity PCs and networks [26].

Unfortunately, all the available acceleration structures
have been designed for static environments, thus limiting
interactive ray tracing systems to simple walkthroughs of
static environments.

Some methods have been proposed for the cases with
predefined animation paths known in advance (e.g. [5, 6]).
Little research is available for truly interactive systems. In
their system Parker et al. [18] keep moving primitives out
of the acceleration structure and check them individually
for every ray. Of course, this is only feasible for a small
number of moving primitives.

Another approach concentrates on efficiently updating
an acceleration structures when objects move. Because ob-
jects may occupy a large number of cells in an acceleration
structure this may require costly updates to large part of the
acceleration structure for each moving primitive. To over-
come this problem, Reinhard et al. [20] proposed a dynamic
acceleration structure based on a hierarchical grid. In order
to quickly insert and delete objects independently of their
size, larger objects are being kept in coarser levels of the
hierarchy. As a result, objects always cover approximately
a constant number of cells, thus allowing to update the ac-
celeration structure in constant time. However, their data
structure had to be rebuilt once in a while in order to clean
up after the updates.

Excellent research on ray tracing in dynamic environ-
ments has also been performed by Lext et al. [12]. They
provide an excellent analysis and classification of the prob-
lems arising due to dynamic environments. They proposed
a representative set of test scenes designed to stress the dif-
ferent aspects of ray tracing in dynamic scenes. The BART
benchmark provides an excellent tool for evaluating a dy-
namic ray tracing engine, and will be used extensively in
our experiments.

In their research the behavior of dynamic scenes was
classified into two inherently different classes [12]: One
form is hierarchical motion, where a whole group of primi-
tives is subject to the same transformation, which may also
be organized hierarchically. The other class is unstructured
motion, where a set of triangles moves in an unstructured
way without relation to each other. For a closer explana-
tion of the different kinds of motion, also see the BART
paper [12]. Our method builds on these ideas as proposed
independently by Lext et al. [11].

2

3 Our Approach

Our approach is motivated by the same observations as
Lext et al. of how applications typical use a scene graph.
Large parts of a scene often remain static over long peri-
ods of time. Other parts of a scene undergo well-structured
transformations such as rigid motion or affine transforma-
tions. Yet other parts receive completely unstructured trans-
formations. This common structure within scenes can be
exploited maintaining geometry in separate objects accord-
ing to their dynamic properties.

Each object has its own acceleration structures and can
be updates independently of the rest of the scene. An ad-
ditional top-level acceleration structure must be maintained
that accelerates ray traversal between the objects in a scene.
For static objects ray traversal simply proceeds within an
object if its bounding box is hit during traversal of the top-
level structure.

For hierarchical motion, all triangles that are subject to
the same set of transformations (e.g. all the triangles form-
ing the head of the animated robot in Figure 1) must be
grouped by the application into the same object. We simply
store a transformation that will be applied to the ray before
traversal continues.

Transforming such an object simply requires simply up-
dating its transformation matrix. This way, whole groups
of triangles can be transformed without modifying their ac-
celeration structure at all. Only the top-level acceleration
structure must be updated to reflect the new position of the
object.

Figure 1. Two robots (left), with color-coded
objects (right). All triangles of the same color
belong to the same object.

For unstructured motion, we rebuilt the acceleration
structure for every frame with motion. As such, objects or-
ganize triangles subject to similar unstructured motion (e.g.
during the same time spans). The local acceleration struc-
tures of these objects are discarded and rebuilt from the
transformed triangles whenever necessary. Even though this
process is costly, it is only required for objects with unstruc-
tured motion and does not affect any of the other objects.

Because the implementation the three types of objects

are identical, the application is free handle object as re-
quired for the current frame — keeping it, updating its trans-
formation, or redefining it.

The top-level acceleration structure is highly-likely to
be rebuilt for very frame — whenever any object has been
changed. For this case we use a BSP tree that offers highly
optimized algorithms for building and traversing (see be-
low).

4 Implementation

Before discussing the actual algorithms for quickly
building and traversing acceleration structures, we first give
an overview of how objects may be specified by an appli-
cation. This description is based on the proposed OpenRT
API for interactive ray tracing [23]. Similar to OpenGL,
OpenRT operates on a very low level that allows it to be
used from almost any application or scene graph library. For
this paper we concentrate on only a small aspect of OpenRT
relevant for dynamic scenes.

4.1 OpenRT API

Our method is similar to the way optimized application
make use of OpenGL [15, 2]. Primitives are grouped into
display lists depending on their (dynamic update) proper-
ties. All triangles inside display lists can then be trans-
formed efficiently adjusting the current transformation call-
ing the display list. Triangles with unstructured motion
would simply be rendered in immediate mode.

With OpenRT application operate in a similar way us-
ing objects instead of display lists. The main difference be-
tween them is that OpenRT objects do not allow for side
effects. In both cases, it is the application that need to orga-
nize its geometry accordingly. This organization would be
similar for OpenGL and OpenRT, but might require adjust-
ment due to the semantic differences between objects and
display lists. Instead of using OpenGL’s immediate mode
for primitives with unstructured motion, special objects are
used that may be redefined when necessary.

In OpenRT, objects are defined by calls to rtNewObject,
rtBeginObject, and rtEndObject, which closely correspond
to the OpenGL functions for specifying display lists. This
similarity simplifies porting of OpenGL based applications.
We also use similar calls for specifying geometry within an
object, using functions like rtBegin/End(RT_TRIANGLE),
rtVertex3f(), with all the functionality for transformations
(e.g. rtRotatef()) and matrix stack handling (e.g. rtPushMa-
trix()) being supported.

After an object has been defined, it can be instantiated
any time with a call to rtInstantiateObject() using the trans-
formation currently on the transformation stack. Each in-
stance of an object consists of a reference to the original

3

object and the applied transformation. Affine transforma-
tion of objects can then be implemented by simply reinstan-
tiating the object with a different transformation matrix.

Transformatin Obj−ID

Transformatin Obj−ID

Transformatin Obj−ID

Transformatin Obj−ID

Geometry BSP

Geometry BSP

Geometry BSP
BSP

of

Instances

Object List

Instance List

Figure 2. Two-level hierarchy as used in our
approach: A top-level BSP contains refer-
ences to instances, which contain a transfor-
mation and a reference to an object. Object
in turn consist of geometry and a local BSP
tree.

A typical scene then consists on a set of objects with
associated acceleration structure and a set of instances (Fig-
ure 2). During rendering, each ray is traversed through this
data structure. In order to support efficient traversal, we
use a two-level approach with specialized data structures
for each object and an additional acceleration structure for
the list of instances.

4.2 Object Construction and Traversal

During traversal of the data structure, rays have to be
intersected with objects. As described above, each object
consists of a set of geometric primitives as well as its own
acceleration structure for fast traversal within that object.

Within each object the approach is identical to traditional
ray tracing in static environments. Consequently, we use
exactly the same algorithms for building and traversing that
data structure. In our case, we use the BSP tree and data
structures described in [24].

For static objects or those with hierarchical motion, the
local BSP tree must only be built once directly after the ob-
ject definition. The time for building these objects is not
an issue, allowing us to use sophisticated and slow algo-
rithms for building the acceleration structures1 already used
in [24]. An extensive study of such algorithms can for ex-
ample be found in [8].

1Though the objects (and thus its BSP) remains static in its local co-
ordinate system, its instance in the world coordinate system can still be
transformed with rigid-body transformations.

4.3 Fast Handling of Unstructured Motion

The mentioned algorithms for creating highly optimized
BSP trees may require several seconds even for moderately
complex objects. Thus they are not applicable for unstruc-
tured motion, where object may have to be rebuilt for every
frame. For these cases sacrifice traversal speed for construc-
tion speed. This is accomplished by using less expensive
heuristics for BSP plane placement, and by using different
quality parameters for BSP construction.

A particularly important cost factor for BSP tree con-
struction is the subdivision depth of the BSP. The subdivi-
sion criteria typically consists of a maximum tree depth and
a target number of triangles per leaf cell. Subdivision con-
tinues on cells with more than the target number of triangles
up to the maximum depth. Typical criteria specify 2 or 3 tri-
angles per cell and usually results in fast traversal times, but
also in deeper BSPs, which are more costly to create. Partic-
ularly costly are degenerate cases, in which subdivision can
not reduce the number of triangles per cell, for example if
too many primitives occupy the same point in space, e.g. at
vertices with a valence higher than the maximum numbers
of triangles.

In order to avoid such excessive subdivision in degen-
erate regions, we modified the subdivision criterion: The
deeper the subdivision, the more triangles will be tolerated
per cell. We currently increase the tolerance threshold by
a constant factor for level of subdivision. Thus we gen-
erally obtain significantly lower BSP trees and larger leaf
cells than for static objects.

With these compromises on BSP tree construction, un-
structured motion for moderate-sized objects can be sup-
ported by rebuilding the respective object BSP at every
frame. However, these compromises also lead to more tri-
angles per cell, and therefore to a somewhat slower traversal
speed.

4.4 Efficient Traversal

Having a separate acceleration structure for every object
allows for efficiently intersecting each ray with its geome-
try. However, a scene may contain many object instances
requiring an additional data structure for efficiently travers-
ing the list of instances.

We also use a BSP tree for the top-level acceleration
structure (Figure 2), which allows us to use the same effi-
cient, stable, and reliable algorithms for traversing the top-
level BSP as for objects. The only difference is that each
leaf cell of the top-level BSP tree contains a list of instance
ids instead of triangle ids. Only minor changes where re-
quired to implement this modified traversal code.

As with the original implementation, a ray is first clipped
to the scene bounding box and is then traversed iteratively

4

through the top-level BSP tree. As soon as it encounter a
leaf cell, it sequentially intersects the ray with all instances
in this cell: For each instance, the ray is first transformed
to the local coordinate system of the object, and the trans-
formed ray is then being intersected with the object using
the original algorithms. Traversal stops as soon as a valid
hit point is found inside the current top-level cell. The cost
of intersecting a ray with the same object multiple times can
efficiently be avoided with mail-boxing [10].

4.5 Fast Top-Level BSP Construction

While traversal of the top-level BSP required only minor
changes to the original implementation, this is not the case
for the construction algorithm. As described above, a scene
can easily contain several thousand instances. A straight-
forward BSP construction approach would be too costly for
interactive use. On the other hand, the top-level BSP is tra-
versed by every ray, and thus has to be sufficiently efficient
for ray traversal.

Fortunately, the task of building the top-level BSP is dif-
ferent than for object BSPs thus simplifying the problem:
Object BSPs require costly triangle-in-cell computations,
careful placement of the splitting plane, and handling of
degenerate cases. In contrast, the top-level BSP contains
only instances represented by an axis-aligned bounding box
(AABB) of its transformed object. Considering only the
AABBs, optimized placement of the splitting plane be-
comes much easier, and problematic cases can be avoided.

For splitting a cell, we incorporate several observations:

1. It is usually beneficial to subdivide a cell in the dimen-
sion of its maximum extent, as this usually yields the
most well-formed cells [8].

2. Placement of the BSP plane only makes sense at the
boundary of objects contained within the current cell.
This is due to the fact that the cost-function can be
maximal only at such boundaries, see [8].

3. It can been shown that the optimal position for the
splitting plane lies between the cells geometric center
and the object median [8]

Using these three observations, the BSP tree can be built
in a way that it is both suited for fast traversal by opti-
mized plane placement, and can still be built quickly and ef-
ficiently: For each subdivision step, we try to find a splitting
plane in the dimension of maximum extent (observation 1).
As potential splitting planes, only the AABB borders will
be considered (observation 2). In order to find a good split-
ting plane, we first split the cell in the middle, and decide
which side contains more objects, i.e. which contain the ob-
ject median. From this side, we choose the object boundary
that is closest to the center of the cell. As such, the splitting

plane lies between cell center and object median, which is
generally a good choice (observation 3).

If no splitting plane can be found in the dimension of
maximum extent, the other two dimensions will be checked
in turn. If neither dimension yields a valid splitting plane,
no subdivisions are necessary any more, and a leaf cell will
be created (see Algorithm 1).

Algorithm 1 Algorithm for building the top-level BSP tree.
BuildTree(instances,cell)

for d = x,y,z in order of maximum extent
P =

�
i �mind � i �maxd � i � instances �

c = center of cell
if (more instances on left side of c than on right)

p = max(
�

p � P � p � c �)
else

p = min(
�

p � P � p �
	 c �)
if (p inside cell)

{leftvox,leftinst,rightvox,rightinst}
= SplitCell(instances,cell,p)

BuildTree(leftinst,leftvox);
BuildTree(rightinst,rightvox);
return;

no valid splitting plane found
cell = Leaf(instances)

This way, the construction algorithm yields an optimized
BSP subdivision that be traversed quickly while using a fast
and efficient algorithm for BSP tree creation. As each sub-
division step removes at least one potential splitting plane,
termination of the subdivision can be guaranteed, and no
special measures have to be taken to avoid excessive sub-
division. Choosing the splitting plane in the described way
also yields relatively small and well-balanced BSP trees. Fi-
nally, degenerate cases as for triangles cannot happen for
axis aligned bounding boxes as only boundaries are consid-
ered, and not the overlapping space itself.

5 Results

For testing our system, we have chosen to use the BART
benchmark scenes, which represent a wide variety of stress
factors for ray tracing of dynamic scenes [12]. Additionally,
we use several of the scenes that we encountered in practical
applications [25], and a few custom-made scenes for stress-
testing. Snapshots of test scenes can be found in Figure 6.

All of the following experiments have been performed
on a cluster of dual AMD AthlonMP 1800+ machines
with a FastEthernet network connection. The network is
fully switched with a gigabit ethernet connection to a dual
AthlonMP 1700+ server. The application is running on the
server and is unaware of the distributed rendering happen-
ing in the rendering engine. It manages the geometry in a

5

Figure 3. Two snapshots from the BART
kitchen. Left: OpenGL-like shading running
at >26 fps on 32 CPUs. Right: fully-featured
ray tracing with shadows and reflections (re-
flection depth 3) running at >4 fps on 32 CPUs.

scene graph, and transparently controls rendering via calls
to the OpenRT API. All examples are rendered at a resolu-
tion of 640 � 480.

5.1 BART Kitchen

The Kitchen scene contains hierarchical animations of
110.000 triangles divided across 5 objects. This results in
negligible network bandwidth and BSP construction over-
head. Overlap of bounding boxes may results in a certain
overhead, which is hard to measure exactly but is definitely
not a major cost factor.

The main cost of this scene is due to the need to trace
many rays due to shadows from 6 point lights and a high
degree of reflectivity on many objects. Due to fast cam-
era motion and highly curved objects (see Figure 3), these
rays are rather incoherent. However, these aspects are com-
pletely independent of the dynamic nature of the scene and
are handled efficiently by our system.

We achieve interactive frame rates even for the large
amount of rays to be shot. A reflection depth of 3 results
in a total of 3.867.661 rays/frame. At a measured rate of
526.000 rays traced per second and CPU in this scene, this
translating to a frame rate of 4.3 fps on 32 CPUs. Scala-
bility is almost linear (see Table 1) – using twice as many
CPUs results in roughly twice the frame rate.

CPUs 2 4 8 16 32
OpenGL-like 1.7 3.4 6.8 13.6 >26
Ray Tracing 0.25 0.5 1.05 2 4

Table 1. Scalability in the Kitchen scene in
frames/sec.

5.2 BART Robots

The Robots scene was mainly designed for stressing hi-
erarchical animation. 16 Robots move through a complex
city with hierarchical animation of their body parts orga-
nized into 161 different objects. All dynamic motion is hi-
erarchical with no unstructured motion. Therefore, the BSP
trees for all objects have to be built only once, and only the
top-level BSP must be rebuilt for every frame.

Scene num. num. reconstruction
objs triangles time (in msec)

Robots 161 100K 1
Office 9 34K <1
Terrain 661 8M 4

Table 2. Reconstruction time of the top-level
BSP: Using our optimized algorithm, recon-
struction time remains in the order of a few
milliseconds. Other scenes are even less ex-
pensive.

Using the algorithms described above, rebuilding the
top-level BSP is very efficient taking less than one millisec-
ond (see Table 2). Furthermore, updating the transformation
matrices requires only a well tolerable network bandwidth
of 20 kB/frame for each client.

CPUs 2 4 8 16 32
OpenGL-like 1.25 2.49 5.1 10 20
Ray Tracing 0.24 0.48 1.01 2.01 4

Table 3. Scalability in the Robot scene in
frames/sec.

With such a small transmission and reconstruction over-
head, we again achieve almost-linear scalability (see Ta-
ble 3) and high rendering performance. Using 32 CPUs,
we achieve a frame rate of 4 frames per second. Again, the
high cost of this scene is due to the large number of reflec-
tion and shadow rays. Using a simple OpenGL-like shader
(see Figure 4) results in frame rates of more than 20 frames
per second.

5.3 BART Museum

The museum has been designed mainly for testing un-
structured motion and is the only BART scene featuring
non-hierarchical motion. In the center of the museum, sev-
eral triangles are animated on predefined animation paths
to form differently shaped objects. The number of triangles
undergoing unstructured motion can be configured to 64,
256, 1k, 4k, 16k, or 64k.

6

Figure 4. The Bart Robots: 16 robots consist-
ing of 161 objects rendered interactively. Left
image: OpenGL-like shading at >20 fps on 32
CPUs. Center image: standard ray tracing
(reflection depth of 3) at >4 fps at 32 CPUs.
Right image: a color-coded version showing
the different objects.

Even though the complete animation paths are specified
in the BART scene graph, we do not make use of this in-
formation. User controlled movement of the triangles, i.e.
without knowledge of future positions, would create the
same results.

As can be expected, unstructured motion becomes costly
for many triangles. Building the BSP tree for the complex
version of 64k triangles already requires more than one sec-
ond (see Table 4). Note, however, that our current algo-
rithms for building object BSP trees still leaves plenty of
room for further optimizations.

Furthermore, the reconstruction time is strongly affected
by the distribution of triangles in space: In the beginning of
the animation, all triangles are equally and almost-randomly
distributed. This is the worst case for BSPs, which are best
at handling highly uneven distributions, and construction is
consequently costly. During the animation, the triangles or-
ganize themselves to form a single surface. This results in
much faster reconstruction time. The numbers given in Ta-
ble 4 are taken at the beginning of the animation, and are
thus worst-case results.

Apart from raw reconstruction cost, significant network
bandwidth is required for sending all triangles to every
client for every frame. Since we use reliable unicast for
network transport, 4096 triangles and 16 clients (32 CPUs),
resulting roughly 6.5 MB have to be transferred (Table 4).
Though this does not yet saturate the network, the perfor-
mance of the server is already affected. Consequently, we
do not scale completely linearly any more (see Table 6).

This scene also requires the computation of shadows
from two point lights as well as large amounts of reflection
rays. All of the moving triangles are reflective and inco-
herently sample the whole environment (see Figure 5). As
the dynamic behavior of a scene is completely transparent
to the shaders, integrating all these effects does not require

num. reconstruction data sent/client
triangles time (in msec) (in bytes)

museum3 64 1 6,4k
museum4 256 2 25,6k
museum5 1k 8 102k
museum6 4k 34 409k
museum7 16k 101 1,6M
museum8 64k >1s 6,5M

Table 4. Unstructured motion in different con-
figurations of the museum scene. The num-
ber of triangles only specifies the number of
triangles undergoing unstructured motion.

any additional effort except for the cost for tracing the rays.
Even with all these effects – unstructured motion, shad-

ows, and highly incoherent reflections on moving objects –
the museum can be rendered interactively: Using 8 clients,
we achieve 4.8 fps for 1024 triangles, and still 4.2 fps for
4096 triangles in video resolution. Again, the frame rate is
dominated by the cost for shadows and reflections. Using an
OpenGL-like shader without these effects allows to render
the scene at 19 frames per second on 8 clients.

Figure 5. Unstructured motion in the BART
museum: Up to 64.000 triangles are moving
incoherently through the room. Note espe-
cially how the entire environment reflects in
these moving triangles (right).

5.4 Outdoor Terrain

The Terrain scene has been specifically designed to test
the scalability with a large number of instances and trian-
gles. It contains up to 661 instances of 2 different trees,
which corresponds to roughly 10 million triangles after in-
stantiation. A point light source creates highly detailed
shadows from the leaves (see Figure 6). All trees can be
moved around interactively, both in groups or individually.

The large number of instances results in construction
times for the top-level BSP of up to 4 msec per frame. This

7

cost — together with the transmission cost for updating all
661 instance matrices on all clients — limits the scalability
for a large number of instances and clients (see Table 6).

6 Discussion

The above scenes stress our dynamic ray tracing system
in different areas. Together with the terrain experiment, our
test scenes contain a strong variation of parameters, rang-
ing from 5 to 661 instances, from a few thousand to several
million triangles, from simple shading to lots of shadows
and reflections, and from hierarchical animation to unstruc-
tured motion of thousands of triangles (for an overview, see
Figure 6). Taken together, these experiments allow to ana-
lyze and evaluate our method with respect to many different
aspects.

Transformation Cost The core idea of our method was
to avoid rebuilding the complete data structure, but rather
transform the rays to the coordinate system of each object
whenever possible. This implies that every ray intersecting
a object has to be transformed to that objects local coordi-
nate system via matrix-vector multiplications for both ray
origin and direction, resulting in several matrix operations
per ray. As our system shoots approximately half a mil-
lion rays per second on an AthlonMP 1800+ CPU, this can
amount to hundreds of thousands of matrix-vector multipli-
cations per frame (see Table 5). Furthermore, more trans-
formations are often required during shading, e.g. by trans-
forming the shading normal or for calculating procedural
noise in the local coordinate system.

Office Terrain Robots
objects 9 661 161

matrix ops 480K 1600K 1000K

Table 5. Number of the matrix-vector multi-
plies for the scenes in our benchmark scenes
(resolution 640x480). Note, a matrix opera-
tion can be performed in only 23 cycles even
in plain C code, which is negligible compared
to traversal cost.

However the cost for these transformation is rather low
in practice. Even for a straight-forward C-code implemen-
tation, a matrix-vector operation costs only 23 cycles on an
AMD Athlon MP CPU, which is almost negligible com-
pared to the cost for tracing a ray, which is in the order of
several hundred to a thousand cycles. The cost for matrix
operations could be further reduced by replacing the matrix-
vector multiplications by SSE code [9].

Unstructured Motion As could be expected, the Mu-
seum scene has shown that unstructured motion remains
costly for ray tracing. A moderate number of a few thou-
sand independently moving triangles can be supported, but
larger numbers would lead to intolerable reconstruction
times for the respective objects (see Table 4). As such, our
method is still not suitable for scenes with strong unstruc-
tured motion.

To support such scenes, algorithms for faster reconstruc-
tion of dynamic objects have to be developed. Note that
our method could also be combined with Reinhards ap-
proach [20] by using his method only for the unstructured
objects. Even then, lots of unstructured motion would still
create a performance problem due to the need to send all
triangle updates to the clients. This is not a limitation of
our specific method, but would be similar for any kind of
algorithm in a distributed environment.

Bounding Volume Overlap One of the stress cases de-
fined in [12] was Bounding Volume Overlap. In fact, this
results in some form of overhead, as it limits early ray ter-
mination. All instances must be tested sequentially in the
overlap area as a valid intersection computed in the first ob-
ject might not be visible due to being occluded by another
instance.

Though it would be easy to construct scenarios where
this would lead to excessive overhead, this is rarely signifi-
cant in practice. Bounding volume overlap does happens in
all our test cases, but has not proven a major performance
problem. In fact, overlapping objects are identical to using
bounding volume hierarchies (BVHs) [7] as an acceleration
structure, which have proven to work well in practice.

Over-Estimation of Object Bounds Building the top-
level BSP requires an estimate of the bounding box of each
instance in world coordinates. As transforming each indi-
vidual vertex would be too costly, we conservatively esti-
mate this bounds based on the transformed bounding box of
the original object.

This sometimes over-estimates the correct bounds and
results in some overhead: During top-level BSP traversal, a
ray may be intersected with an object that it would not have
intersected otherwise. However, this overhead is restricted
to only transforming and clipping the ray: After transfor-
mation to the local coordinate system, such a ray is first
clipped against the correct bounding box, and can thus be
immediately discarded without further traversal.

Teapot-in-a-Stadium Problem The teapot-in-a-stadium
problem is handled very well by out method: BSP trees
adapt automatically to varying object density in a scene [8],
which solves the problem for both objects and top-level

8

BSP. In fact, our method even allows to increase perfor-
mance for these cases: If the ’teapot’ is contained in a sepa-
rate object, the shape of the ’stadium’ BSP is usually much
better: The teapot object is already enclosed in tightly fit-
ting bounds, without using several additional BSP levels to
tightly enclose the teapot.

Scalability with the number of Instances Apart from
unstructured motion, the main cost of our method results
from the need to recompute the top-level BSP tree. As such,
a large number of instances becomes expensive, as can be
seen in the Terrain scene. Still, even the thousand complex
instances can be rendered interactively, and using only a few
dozen instances has negligible impact.

As such, the number of instances should be minimized
in order to achieve optimal performance. It is generally
much faster to use a few, large objects instead of many
small ones. All static triangles in a scene should best be
stored in a single object, instead of using multiple objects.
This is completely different to OpenGLs approach of using
many, small display lists, and still requires some amount of
manual porting and optimization when porting applications
from OpenGL to OpenRT.

On the other hand, supporting instantiation (i.e. using ex-
actly the same object multiple times in the same frame) is
a valuable feature of our method, as this allows to render
complex environments very efficiently: With instantiation,
memory is required for storing only the two original trees
and the top-level BSP, allowing to render even that many
triangles with a small memory footprint. For OpenGL ren-
dering, all triangles would still be handled individually by
the graphics hardware even when using display lists.

Scalability in Distributed Environments As could be
seen by the experiments in Section 5, we achieve rather
good scalability even for many clients except for scenes that
require to update a lot of information on all clients, i.e. for
a high degree of unstructured motion (where every moving
triangle must be transmitted), and for a large number of in-
stances.

In the terrain scene, using 16 clients would require to
send 676 KB2 per frame simply for updating the 661 trans-
formation matrices on the clients. Though this data can be
sent in a compressed form, load balancing and client/server
communication further adds to the network bandwidth.
Without broadcast/multicast functionality on the network,
the server bandwidth increases linearly with the number of
clients. For many clients and lots of updated data, this cre-
ates a bandwidth bottleneck on the server, and severely lim-
its the scalability (see Table 6).

2661 instances � 16 clients � (4 � 4) floats

In principle, the same is true for unstructured motion,
where sending several thousand triangles to each client also
creates a network bottleneck. On the other hand, both prob-
lems are not specific to our method, but apply for any kind
of distributed rendering.

OpenGL-like 1 2 4 8 16
Robots 1.25 2.49 5.1 10 20
Kitchen 1.7 3.4 6.8 13.6 26(-)
Terrain 0.68 1.34 2.55 4.76 8.33
Museum/1k 2.7 5.4 10.2 19.5 26(-)
Museum/4k 2.5 4.5 7.5 4.5 2.5
Museum/16k 1.6 2.4 1.7 1 0.5

Ray Tracing 1 2 4 8 16
Robots 0.24 0.48 1.01 2.01 4
Terrain 0.3 0.6 1.19 2.29 4.26
Kitchen 0.25 0.5 1.05 2 4
Museum/1k 0.6 1.2 2.4 4.8 9.3
Museum/4k 0.55 1.1 2.2 4.2 2.5
Museum/16k 0.45 0.9 1.65 0.98 0.53

Table 6. Scalability of our method in the
different test scenes. ’-’ means that the
servers network connection is completely
saturated, and thus no higher performance
can be achieved. The numbers in the upper
table correspond to pure OpenGL like shad-
ing, the lower one is for full ray tracing includ-
ing shadows and reflections.

Total Overhead In order to estimate the total overhead
of our method, we have compared several scenes in both
a static and dynamic configuration. As there are no static
equivalents for the BART benchmarks, we have taken sev-
eral of our static test scenes, and have modified them in a
way that they can be rendered in both a static configura-
tion with all triangles in a single, static BSP tree, and in
a dynamic configuration, where triangles are grouped into
different objects that can then be moved dynamically.

Note, however, that the total performance is affected by
several factors. Even though transformation and reconstruc-
tion cost lead to overhead, using a hierarchy can also have
positive side effects. For example, having small and compli-
cated objects (e.g. teapots in a stadium) contained in sep-
arate objects can lead to BSP trees that are actually better
situated than those for a single static BSP tree, and can even
result in faster traversal.

9

For the scenes that are available in both static and dy-
namic configurations, we find that our method creates an
overhead of only 10 to 20 percent for typical scenes. We
consider this overhead tolerable for the added flexibility
gained through supporting dynamic scenes.

7 Conclusions

We have presented a simple and practical method for in-
teractive ray tracing of dynamic scenes. It supports a large
variety of dynamic scenes, including all the BART bench-
mark scenes (see Figure 6). It imposes no limitations on the
kind of rays to be shot, and as such allows for all the usual
ray-tracing features like shadows and reflections.

For unstructured motion, our method still incurs a high
reconstruction cost per frame, that makes it infeasible for a
large number of incoherently moving triangles. For a mod-
erate amount of unstructured motion in the order of a few
thousand moving triangles, however, it is well applicable,
and results in frame rates of several frames per second at
video resolution.

For mostly hierarchical animation — as often applied in
scene graphs — our method is highly efficient, and allows to
interactively render even highly complex models with hun-
dreds of instances, and millions of triangles per object [23].

With our proposed method, we have been successfully
able to interactively ray trace all the dynamic scenes we
have encountered so far. To our knowledge, this is the first
time that the BART benchmark suite has been interactively
ray traced at all. Using only an OpenGL like shading model
and a small cluster of commodity PCs, more than 15 to 20
frames per second can be achieved in most scenes.

With the unique advantages of ray tracing — now com-
bined with the flexibility to handle dynamic environments
— we believe that interactive ray tracing is a significant step
closer to be a viable alternative to triangle rasterization for
future interactive 3D graphics.

8 Future Work

Even though rebuilding the top-level BSP has not proven
to be a major problem, we would be able to organization
objects into a hierarchy instead of a flat list. This would fur-
ther limit the number of objects affected by a local change.
As most of the updated data is the same for every client,
the support of network broadcast/multicast would be a very
simple solution to the bandwidth problem, as the transmis-
sion time would not be affected by the number of clients.

In order to avoid the scalability bottleneck due to trans-
mission cost on the network and BSP construction cost on
all clients, future work will investigate algorithms for lazy
loading of the geometry and for lazy construction of the

BSP trees. Unstructured motion could be improved by de-
signing specialized algorithms for cases where motion is
spatially limited in some form, such as for skinning.

We are also investigating how existing applications can
be mapped to our method, e.g. by evaluating how a scene
graph library such as OpenInventor or VRML can be effi-
ciently implemented on top of our system.

References

[1] A. Appel. Some Techniques for Shading Machine Renderings of
Solids. SJCC, pages 27–45, 1968.

[2] OpenGL Architecture Review Board. OpenGL Reference Manual:
The Official Reference Document for OpenGL, Release 1, 1993.

[3] Robert Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. In ACM SIGGRAPH Computer Graphics, volume 18, pages
137–144, 1984.

[4] Andrew Glassner. An Introduction to Raytracing. Academic Press,
1989.

[5] Andrew S. Glassner. Spacetime ray tracing for animation. IEEE
Computer Graphics and Applications, 8(2):60–70, 1988.

[6] Eduard Gröller and Werner Purgathofer. Using temporal and spatial
coherence for accelerating the calculation of animation sequences.
In Proceedings of EUROGRAPHICSt’91, pages 103–113. Elsevier
Science Publishers, 1991.

[7] Eric Haines. Efficiency improvements for hierarchy traversal in ray
tracing. In James Arvo, editor, Graphics Gems II, pages 267–272.
Academic Press, 1991.

[8] Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis,
Czech Technical University, 2001.

[9] Intel Corp. Intel Pentium III Streaming SIMD Extensions.
http://developer.intel.com/vtune/cbts/simd.htm.

[10] David Kirk and James Arvo. Improved ray tragging for voxel-based
ray tracing. Graphics Gems II, 1991.

[11] Jonas Lext and Tomas Akenine-Möller. Towards rapid reconstruc-
tion for animated ray tracing. In Eurographics 2001 – Short Presen-
tations, pages pp. 311–318, 2001.

[12] Jonas Lext, Ulf Assarsson, and Tomas Moeller. BART: A benchmark
for animated ray tracing. Technical report, Department of Computer
Engineering, Chalmers University of Technology, Goeteborg, Swe-
den, May 2000. Available at http://www.ce.chalmers.se/BART/.

[13] Michael J. Muuss. Towards real-time ray-tracing of combinatorial
solid geometric models. In Proceedings of BRL-CAD Symposium
’95, June 1995.

[14] Michael J. Muuss and Maximo Lorenzo. High-resolution interactive
multispectral missile sensor simulation for atr and dis. In Proceed-
ings of BRL-CAD Symposium ’95, June 1995.

[15] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming
Guide. Addison-Wesley, Reading MA, 1993.

[16] Steven Parker, Michael Parker, Yaren Livnat, Peter Pike Sloan,
Chuck Hansen, and Peter Shirley. Interactive ray tracing for vol-
ume visualization. IEEE Transactions on Computer Graphics and
Visualization, 5(3):238–250, July-September 1999.

[17] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and
Peter Pike Sloan. Interactive ray tracing for isosurface rendering. In
IEEE Visualization ’98, pages 233–238, October 1998.

[18] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Pe-
ter Pike Sloan. Interactive Ray Tracing. In Symposium on Interactive
3D Graphics, pages 119–126. ACM SIGGRAPH, 1999.

10

[19] Timothy John Purcell, Ian Buck, William R. Mark, and Pat Hanra-
han. Ray tracing on programmable graphics hardware. In Proceed-
ings of SIGGRAPH, 2002. (to appear).

[20] Erik Reinhard, Brian Smits, and Chuck Hansen. Dynamic accelera-
tion structures for interactive ray tracing. In Proceedings Eurograph-
ics Workshop on Rendering, pages 299–306, Brno, Czech Republic,
June 2000.

[21] Joerg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR – A
Hardware Architecture for Realtime Ray-Tracing. submitted for pub-
lication, also available as a technical report, http://graphics.cs.uni-
sb.de/Publications, 2002.

[22] K. Sung and P. Shirley. Ray Tracing with the BSP-tree. In D. Kirk,
editor, Graphics Gems III, pages 271–274. Academic Press, 1992.

[23] Ingo Wald, Carsten Benthin, and Philipp Slusallek. OpenRT - a
Flexible and Scalable Rendering Engine for Interactive 3D Graph-
ics. submitted for publication, also available as a technical report,
http://graphics.cs.uni-sb.de/Publications, 2002.

[24] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek.
Interactive rendering with coherent ray tracing. Computer Graphics
Forum, 20(3), 2001.

[25] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller, and
Philipp Slusallek. Interactive Global Illumination. submitted for pub-
lication, also available as a technical report, http://graphics.cs.uni-
sb.de/Publications, 2002.

[26] Ingo Wald, Philipp Slusallek, and Carsten Benthin. Interactive dis-
tributed ray tracing of highly complex models. In Proceedings of the
12th EUROGRPAHICS Workshop on Rendering, June 2001. London.

[27] T. Whitted. An improved illumination model for shaded display.
CACM, 23(6):343–349, June 1980.

11

Figure 6. Some example frames from several dynamic scenes. From top to bottom: The BART robots
scene contains roughly 100.000 triangles in 161 moving objects. Below that, is the BART kitchen
scene. The museum scene contains unstructured motion of several thousand triangles. Note how
the entire museum reflects in these triangles. The terrain viewer application uses up to 661 instances
of 2 trees, would contain several million triangles without instantiation, and even calculates shadows.
The office scene is a practical application from interactive lighting simulation, and demonstrates that
the method works fully automatically and completely transparently to the shader.

12

