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ABSTRACT. An algorithm, one tha t  is economical and fast, for generating the convex polytope 
of a set  S of points  lying in an n-dimensional Euclidean space E" is described. In the existing 
brute force method for determining the convex hull of a set  of points lying in a two-dimen- 
sional space, one computes all possible s t ra ight  lines joining each pair of points of S and tests 
whether  the lines bound the given set S. This method can easily be generalized for computing 
the convex hull of a set S C E", n > 2. However, it  turns out tha t  this approach is not feasible 
due to excessive computer  run time for a set  of points lying in E n when n > 3. The algorithm de- 
scribed in this paper avoids all the unnecessary calculations, and the convex polytope of a set 
S C E n is generated by systematical ly computing the faces from the edges of the desired con- 
vex polytope. A numerical comparison indicates tha t  this new approach is far superior to the 
existing brute force technique.  
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Introduction 

The study of convex polytopes has received a considerable impetus from its applica- 
tion to engineering problems. However, a search through the available published 
literature seems to indicate tha t  practically no effort has been made to develop 
numerically efficient procedures to determine the convex hull of a finite set S of 
points lying in E ~. 

The existing brute force technique for computing the faces of the convex poly- 
tope of a given set of points in E n, n > 2, is not feasible due to excessive computer 
run time even when the size of the set is reasonably small. The approach presented 
here is essentially a systematic way for computing the faces sequentially from the 
edges of the desired convex polytope. 

The algorithm is based on the observation that  exactly two faces of the convex 
polytope C(S)  of a set S c E ~ intersect along each edge of C (S ) .  If one edge and 
one of the two faces containing this edge are known, then the second face can be 
computed by a process which is practically equivalent to a rotation of the known 
face about the known edge through an appropriate angle. The determination of 
each new face gives rise to at least (n -- 1) edges of C (S )  that  are different from 
the known edge. This process is continued until each edge is the intersection of two 
adjacent faces of the convex polytope. A method is presented for generating the 
first face that  is needed to initiate the algorithm. 

A FORTRAN program was developed, which is being used at Lockheed-Georgia 
Company. The computer run time is reasonably low to treat  practical problems 
consisting of one thousand six-dimensional points. 
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Mathematical Analys i s  

Let S be a set of (m + 1) distinct points P~ = (pl ~, p 2  i ,  • • • , phi), i = 0, 1, • • • , m 
lying in E n. 

Definition 1. An r-fiat is a region determined by (r + 1) points and having 
dimension r. An r-fiat (r > n) is herein called a hyperplane of r dimensions and is 
denoted by  H rr. 

Definition 2. A hyperplane H n-1 is the set of points X = (x~, x2, " . .  , x~) 
which satisfy an equation of the form ~ = 1  0/ixi - l~ = O, where not all ai are zero. 
A hyperplane H ~-I separates the space E ~ into two half-spaces. 

Definition 3. A normal to the hyperplane H ~-1 is a vector parallel to n, where 
n = (0/1 , O/2 , " ' "  , 0/n ) .  The unit normal to H ~-~ is denoted by fl and is given by 

1 

] ? 1 -  ( i ~ 1 0 / i 2 ) ½  (0/1, 0/2, "*',0/n)* 

Definition 4. A hyperplane H ~-~ bounds the set S c E n if and only if all points 
of S lie either on H n-~ or in one half-space. If  ~ denotes a unit vector along QP~, 
Q C S n - i ,  and P~ C S, then we say tha t  H ~-1 bounds the set S iff either the 
inner product  (fi-Vi) ~ 0 for i = 0, 1, . . .  , n or the inner product ( f i ' ¢ i )  _< 0 
for i = 0, 1, • - • , m; fi being the unit normal to H "-1. 

Definition 5. A hyperplane H "-~ is called a support  plane of S if H ~-~ bounds S 
and at  least one point of S lies on H ~-~. 

Definition 6. A system of (1 + 1) points is said to be linearly independent if no 
set of (r  + 1 ) points lies in the same (r  - 1) -fiat (r < l). 

Definition 7. The convex polytope C ( S ) ,  to be called the n-polytope, of the set 
S c E ~ is the set of points which is the intersection of all the convex sets in E n 
that contain S. 

Definition 8. A support  plane H "-~ of S is said to be an n-face of C ( S )  if n 
independent points of S lie o n  H n-1. 

Definition 9. An n-edge of C ( S )  is an (n - 2)-fiat contained in a support  plane 
of C(S )  which is not an n-face of C ( S ) .  

THEOREM 1. Each n-edge of the n-polytope C ( S )  lies in two and exactly two n-faces 
0f c(s) .  

PROOF. Let  E be an n-edge of the n-polytope C(S ) .  The proof of this theorem is 
constructive. Tha t  is, the two adjacent n-faces of C ( S )  intersecting along the edge 
E are constructed. 

Let p0, p~, . . .  , p~-~ be (n -- 1) linearly independent points of S tha t  define 
the n-edge E. The definition of E asserts the existence of a support  plane H of S, 
containing E, which is not an n-face of C ( S ) .  Let  fi be the unit normal to the sup- 
port plane H tha t  is directed toward the points in S. Tha t  is, if ~ denotes the unit 
vector along pop~ then 

( f i . ~ )  > 0, i = 1, 2, - . -  , m. (1.1) 

As pointed out in the Introduction,  we need to compute the two appropriate  
angles through which the support  plane H is to be rotated about  E so as to generate 
the desired two adjacent n-faces of C ( S ) .  A three-dimensional case shown in Figure 
1 suggests tha t  we compute the angles between the support  plane H and each of 
the hyperplane Hi ' s  obtained by adjoining a point P~ ~ S to the points of E such 
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p' * 

^ 

FIG.  1 F IG.  2 

I f  fi~ = Xh + u ~  t h e n  t a n  0 = X/#. 

that  the new system has n linearly independent points. Clearly the hyperplanes 
corresponding to the maximum angle and the minimum angle are the desired n- 
faces of C(S) .  

To determine the angle between the support plane H and the hyperplane H~ one 
needs to know the normals fi and fii to H and Hi respectively, and a normal fi~ to 
Hi is determined by solving an (n - 1) X n linear homogeneous system. Thus to 
compute the desired maximum and minimum angles, one needs to generally solve 
the (n -- 1 ) ,n  linear system (m - n - 1) times. But in the approach described 
here the desired two adjacent n-faces are computed by solving an (n - 1 ) ,n  linear 
system exactly once. 

To minimize numerical computation we extremize the tangent of the angle be- 
tween the vector &, to be constructed, and the normals to hyperplanes H,, as follows 
(see Figure 2) : Construct a unit vector ~ = (e~, e2, - • • , e,) such that  

( i )  ( ~ . f i )  = O, (1.2)  

( i i )  ( ~ ' ¢ i )  = O, i = 1 , 2 , . . - ,  ( n - - 2 ) .  

The components ei of 4 are calculated by solving the linear homogeneous system 
(1.2) of (n -- 1) equations in n variables. 

Since the n vectors ¢ , ,  ¢2, • " • , ¢,,-2, fi, 4 form a basis, any vector in E " can be 
expressed linearly in terms of these. For each k such that  pk C S and pk ~ H, 
let fit denote the unit normal to the hyperplane Hk spanned by n independent points 
p0, p 1 ,  . . . , p ( ~ - 2 ) ,  p k .  The direction of iik is specified by the relation 

(fi~.¢~) > 0. (1.:~) 

Since nk is normal to the n-edge E it must lie in the plane spanned by ii and 4. 
Therefore, fik = Xkfi + ~:6, where Xk, m. are constants satisfying the relations: 
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(i) Xk 2 + . k :  = 1, 

(ii) ~k = (fik'fi),  

(iii) ~ = ( i lk ' t )  > 0, 

Further, fi~ being orthogonal to V~ implies 

( [ x ~  + , ~ ] . ~ )  = o 

o r  

x~(~.v~) = - ,~(~ .v~) .  

Using (1.1) and (1.4) we obtain 

using ( 1.3 ). 

(1.4) 

(1.5) 

We know a hyperplane Hm will be an n-face of C(S)  if either (tim'Ok) __> 0 or 
(fim'Vk) _< 0 holds for each P~ C S. But  

= ~(f i -Vk) [ ~  X~I ' using (1.5). 

Since/urn > 0 and (fi'~k) ~ 0, for each pk C S, it follows that  Hm will be an n-face 
of C(S) if and only if either Xm//~m >__ X~/m or Xm//~,~ __< Xk//~k holds for each pk E S 
and pk ~ H. Thus we have shown the existence of exactly two n-faces, say F~ and 
F~, each containing the edge E, whose normals fiE1 and f i~  are given by the relations 

where 

~E1 

NE2 

the minimum and the maximum are taken over all k such that  pk E S and pk ~ H;  

_ ° 

~k ( f i ' v k )  ' 

and X 2 = k -~ ~k 2 1. 
THEOREM 2. Let SF be a subset of S consisting of points lying on an n-face F of 

C(S). Then an (n - 1)-face of C(Sr)  is an n-edge of C(S) .  
PnOOF. Let fi be the normal to the n-face F such that  

(fi '~k) _> 0, k = 1, 2, . . .  , n, (2.1) 
) 

Vk being a unit vector along pOpk. 
Suppose pO, p1, . . .  , p~ are (r + 1) points (r > n - 1) of S that  form the sub- 

set S~. Determine the convex hull C(Sr)  of the set SF in the (n -- 1)-dimensional 
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subspace F. Suppose pO, p~, . . .  , p~,-2 are (n - 1) independent points that  define 
an (n - 1)-face f of C (SF). Let  8 be a unit vector normal to f such that  (8.  ~7~) ~_ 0, 
k = 1, 2, - • • , r. Since 8 lies in the subspace F, it follows that  (¢8.fi) = 0 and thus 
this vector 8 is identical to the vector 8 constructed in Theorem 1 and satisfies the 
extra condition 

(8.9k) ~ 0, k = 1, 2, . . .  , m. (2.2) 

Proceeding as in the proof of Theorem 1, the unit normal fik to the hyperplane, 
generated by adjoining pk C S, pk ~ F, to the points defining f,  can be expressed 
linearly in terms of fi and 8. Tha t  is, 

fik = ~kfi -}- ~kS, (2.3) 

where 1 = ),k 2 + ~k 2. 
The direction of fik is specified by the relation 

~k = (ilk-8) > 0. (2.4) 

The condition that  fik is orthogonal to 0k can be expressed in the form 

x~ _ ( 8 . ~ )  (2.5) 

Let P "  ~ S be a point such tha t  

- max , (2.6) 
~m 

where the maximum is taken over each k such that  pk ~ S. Then, using (2.5), 

Using relations (2.1), (2.4), and (2.6) it follows that  (fim'Vk) >__ 0 for each pk ~ S. 
This shows that  the hyperplane obtained by adjoining the point pm ~ S to the 
points defining f is an n-face F* of C(S) .  

Consider the hyperplane H passing through the (n - 1) points p0, p1, . . .  , pn-2 
whose normal n* is given by the relation n* = aft + ( 1 - a)fim, with 0 ~ a ~ 1. 
Clearly the hyperplane H bounds the set S and contains the (n - 1)-face f of 
C (S r ) .  Since H is not an n-face of C (S )  it follows that  the (n - 1)-face f is an 
n-edge of C (S ) .  

COROLLARY 1. Suppose an n-edge E and ann n-face F of C(S)  containing E are 
given. Then an n-face F* of C(S) ,  distinct f rom F and adjacent to F along the n-edge 
E, may be generated as follows. Let  fi be the unit  normal to F and 8 be a unit  vector 
orthogonal to fi and normal to E such that (fi '~k) ~ 0 and (8.~k)  ~_ O, k = 1, 2, 
• . .  , m. Define hk/~k = - - (8"ek) / ( f i '~k) ,  lC = 1, 2, " "  , m. Let pm ~ S be a point 
such that hm/Um = max  { hk/#k}. Then the hyperplane obtained by adjoining the point 
pm to the points defining E is an n-face of C(S)  whose normal fi* is given by the rela- 
tion fi* = h,~fi Jr urnS, with 1 = ~m ~ -~ Um 2. 
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Determination of Edges 

If an n-edge of the desired convex polytope C(S)  is given, and if a support plane 
H of S containing the given edge, which may or may not be an n-face of C(S) ,  is 
known, then the proof of Theorem 1 or Corollary 1 determines a new n-face F of 
C(S) which intersects the support plane H along the known edge. The n-edges of 
C(S) lying on F can be found, according to Theorem 2, by computing the (n - 1) -  
faces of the convex polytope of points of S lying on F in the (n - 1)-dimensional 
subspace. If exactly n points of S lie on an n-face of C(S)  then there exist exactly 
n n-edges of C (S )  tha t  lie on that  n-face and these n n-edges are determined by 
taking all combinations of (n - 1) points from these n points. Thus an n-edge and 
a support plane of S containing this n-edge of C(S)  produces an n-face of C(S)  
which in turn gives rise to new n-edges of C(S) .  The process may be repeated by 
choosing one of the new n-edges and the n-face containing this n-edge to produce a 
new n-face of C (S )  and thereby new n-edges. Theorem 1 asserts that  each n-edge 
of C(S)  lies in exactly two n-faces of C ( S ) ;  therefore, once the two adjacent n-faces 
of C(S)  containing an n-edge of C (S )  are found, then that  n-edge should be omitted 
from further consideration. Hence, a repeated application of Theorems 1 and 2 and 
Corollary 1, as suggested above, should generate all the n-faces of the desired convex 
polytope C (S) ,  provided a starting n-edge and a support plane of S containing this 
n-edge are known. 

THEOREM 3. Let H be a support plane of S, containing r (r < n) linearly inde- 
pendent points of S, whose normal fi is of the form fi = ( e~l , c~2 , " "  , ~ , O, . . .  , 0). 
Then there exists at least one point of S which when adjoined to the r points of S on H 
form a linearly independent subset S* of S which lies in a support plane H* of S whose 

normal is of the form fi* = (Bi, B2, " "  , ~ ,  ~r+l , 0, " '" , 0). 
PROOF. Suppose / ° ° ,  p 1 ,  . . .  , pr-1 are r linearly independent points of S lying 

on the support plane H whose normal is the unit vector fi such that  (fi '*k) _~ 0. 
As in the proof of Theorem 1, construct a unit vector ~ of the form ~ = ( o ,  e2, 
• .. , e~, e~+l, 0, - . .  , 0) such that  

( ~ . n )  = 0 (3.1) 

and (~.*~) = O, i = 1,2,  . . .  , (r - 1), *g as usual being the unit vector along 

pOp~. Observe (3.1) is a linear system of r equations in (r + 1) variables. 
For each point P~ ~ S, k > (r - 1), compute the ratio 

x~ _ (~.*k) (3.2) 

provided (ft.*k) > 0. 
Let P~ C S be a point such that  

- -  l n a X  
~l,r k ~. r 

Consider the hyperplane H* whose normal fi* is given by 

AS 
n = X~fi + ~r~, 

( 3 . 3 )  
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with 

1 = X~ 2 + ~2 (3.4) 

and 

t , ~  = (fi*.¢~) > O. 

We show t h a t  H* is the desired suppor t  hyperplane  of S containing r + 1 linearly 
independent  points  of S and its normal  is of the form (5~, 52, • • • , fir+*, 0, • " • , 0). 

Clearly, for ]c = 0, 1, • . .  , r -- 1 

( f i * ' V k )  = Xr ( f i °~k )  "q- /a r (~ 'Vk)  = 0, u s i n g  ( 3 . 1 ) ,  

and 

(fi*.v~) = Xr(fi°V~) + ~ ( ~ ' ~ )  = 0, using (3.2).  

Therefore,  H passes th rough  (r -k 1) points  pO, p,,  . . .  , p,.. 
For  a n y P k  ~ S, k > r - -  1, 

Using (3.2), (3.3), and (3.4), it follows tha t  ( f i* .%) > 0. Thus  (f i*.%) > 0, ]c = 
0, 1, 2, . . .  , m. Hence H is a suppor t  plane of S. Finally,  f rom (3.4) it is evident 
t ha t  fi* has the desired form (Oh, ¢h, " "  , ¢~+~, 0, . . -  , 0). 

Starting Edge 

The following procedure m a y  be used for comput ing  a s tar t ing  n-edge of C ( S ) .  
Determine  poin t ( s )  of the set S with least first component .  Then  the hyperplane 

H~,  defined by x~ = min {p i}, passes th rough  all points of S with least first com- 
ponent  and its normal  is of the form fil = (1, 0, 0, . - .  , 0).  N o w  Theorem 3 can 
be used repeatedly  to generate  suppor t  planes H~ of S whose normals  are of the 
fo rmf i~  = ( a l ,  c~=, . . .  , a~, 0, . . . , 0 )  unti l  r = n. Clearly H,, is an n-face of 
C ( S )  and the n-edges of C ( S )  lying on H,~ can be found by  using Theorem 2. 

A L G O R I T H M  

T h e  convex p o l y t o p e  C(S)  of the  se t  S is gene ra t ed  by r epea t i ng  a cycle of s teps;  each  cycle 
c o m p u t e s  a new face of the  des i red  p o l y t o p e  unt i l  all t he  faces  are  de te r in ined .  

Le t  Sc deno te  t he  subse t  of S whose  convex  po l y t ope  is be ing gene ra t ed  and  let  nc denote  
the  cu r r en t  d imens ion  of t he  space.  Le t  mc deno te  the  n u m b e r  of po i n t s  of S~.  

S tep  1. S e t S ~  = S,  n~ = n,  m~ = m -4- 1. 

Step  2. D e t e r m i n e  po in t ( s )  of S~ w i t h  l eas t  f i rs t  componen t .  Le t  Sb be the  se t  cons i s t ing  of 
po in t s  p i  C S~ such  t h a t  p** = I n . i n l l ~ i ~ m  c {pli}. The  h y p e r p l a n e  H,  x~ = pr,  is a suppor t  
h y p e r p l a n e  of S and  i ts  normM is para l le l  to t he  vec to r  h = (1, 0, 0, . . . ,  0). 

S tep  3. C o n s t r u c t  a un i t  vec to r  ~ such  t h a t  (g~.fi) = 0, (~.¢-,) = 0, .~i E Sb, v, be ing a unit  

vec to r  along prp i  and  ( ~ . ~ )  _> 0, Pk E S~ . 

S tep  4. F o r  each  p o i n t  P~ C S c ,  compu t e  t he  ra t io  

= - (a.;~) 
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and determine point(s) PJ  ~ S~ such lhat  

where the maximum is taken over all k such that  pk C S~.. 
The normal to the d-flat defined by adjoining to Sb the points for which the ratio of X and ~ 

is maximum, is given by h* = Xjh + ~j~, where 1 = Xj 2 + ~j2. 

Step 5. i f  d < n~ the s tar t ing face of C(Sc) has not been computed yet ;  therefore, replace S~ 
by the points on d-flat and return to s tep 3wi th  fi = fi*. If d > n~ an he-face of C(S~) has been 
computed. In the case d > n~ let S~ denote the points  on the d-flat and return to step 2 wi th  
n~ = n~ -- 1. When d = n~ proceed to step 6. 

Step 6. Check whether  the n~ edges of the computed face are in storage. An edge in store im- 
plies that  one face containing this edge was found before and now tha t  the second face has 
been computed this edge will be omit ted from further  consideration. If some edges are not 
already in storage, store all except one. Return to step 3 with S~ consisting of points  defining 
this edge and wi th  fi~ = fi*. However, if all edges are in storage, proceed to step 7. 

Step 7. Search the storage for an edge. Pick an edge and compute the normal h to the face 
containing this edge. Return to s tep 3 wi th  S~ consisting of points on this edge. If no edge 
exists in tile storage then the n¢-polytope has been computed; proceed to step 8. 

Step 8. Check whether  nc = n. If yes, the desired convex polytope C(S) has been generated. 
If n0 < n return to s tep 6wi th  the faces of the n~-polytope being the edges of the n~ = (n~ -I- 1)- 
polytope. 
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Numerical Results 

A FORTRAN" program was developed and is being used as a production program at 
Lockheed-Georgia Company. Figure 3 shows that the results obtained are signifi- 
eantly superior to the brute force technique mentioned in the Introduction. 
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