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Abstract

We describe a methodology for implementing
a ray tracer which provides both a convenient
testbed for developing new algorithms and a way
to exploit the growing number of acceleration
techniques. These benefits are a natural conse-
quence of a collection of data abstractions called
the ray tracing kernel. By defining an object in
a broad sense, the kernel allows a single abstrac-
tion to encapsulate a wide spectrum of concepts
including geometric primitives, acceleration tech-
niques, CSG operators, and object transforma-
tions. Through hierarchical nesting of instances
of these objects we are able to construct and effi-
ciently render complex environments.

Introduction

Ray tracing has become a popular research topic
since the early work in this area [14, 21] and rapid
development continues in all aspects of the algo-
rithm. The flexibility and generality of ray tracing
is exemplified by the wide assortment of geometric
primitives which have been investigated. These
include procedural models [11], fractals [11, 3],
swept surfaces [19], bicubic patches [18], and sur-
face tesselations [17]. The problem of efficiently
rendering environments comprised of large num-
bers of these geometric primitives has received
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even more attention in recent years. The re-
sult is an equally diverse assortment of aggre-
gate techniques, including bounding volume hi-
erarchies [15, 20], octrees [7, 8], uniform grid
subdivision [7], plane sets [12], directional tech-
niques [1, 13], and grid hierarchies [17].

Even the geometric transformations applied to
objects have yielded a variety of approaches. In
addition to common affine transformations, sur-
face deformations can be performed through non-
linear transformations [2]. The simulation of mo-
tion blur introduces the need for time-varying
transformations [5].

These trends have motivated the design of
a software environment for developing, testing,
benchmarking, and combining various ray trac-
ing techniques. Of particular interest to us are
acceleration methods such as spatial subdivision
algorithms. Though the need for flexible develop-
ment environments has also been addressed in [6],
[10], and [22], our approach has the additional fo-
cus of creating novel hybrid algorithms from di-
verse techniques. The ability to freely mix radi-
cally different algorithms results in a powerful tool
for constructing and efficiently rendering complex
scenes.

We achieve these goals by encapsulating the
common features of many important techniques
into a single conceptual model. Of central im-
portance is a data abstraction which allows ge-
ometric primitives, transformations, acceleration
techniques, and other mechanisms to be viewed as
“black boxes” with identical interfaces. This data



abstraction defines an object which is a procedu-
ral entity capable of a small number of elementary
operations.

Objects and Object Classes

Within the kernel, an object is a data abstrac-
tion for geometrical entities and operations. Fig-
ure 1 shows the routines which are required to
define a parametric family of objects, or an object
class. Fach of these routines accepts a pointer to
class-specific data, or parameters, which select a
particular member from the object class. In the
case of simple geometric entities, or primitive ob-
jects, the parameters can range from a center and
radius for the class of spheres to a set of control
points for the class of bicubic patches. The object
class routines are then responsible for performing
operations on the specified objects in the class.
In practice it is convenient to implement object
classes as records of function pointers.
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Figure 1: Selecting an object from a class.

The “intersect” routine of the object class
checks for intersection between a given ray and
an object. If the ray hits the object, the distance
and point of intersection are returned. The “local
geometry” routine computes additional geomet-
ric information at the point of intersection, such

as the normal vector and possibly tangent vec-
tors (for texture mapping). The “inquire bounds”
routine returns a bounding box (or some other
bounding volume) for an object and the “interior”
routine tests whether a given point is contained
within the object. Most primitive objects fit eas-
ily into this framework.

Another type of object, one which manages a
collection of subordinate objects, or children, is
called an aggregate object. The simplest exam-
ple of an aggregate object is the list object which
employs a linked list to maintain the collection
of references to its children. These references are
called object instances, or simply instances. The
“add child” routine, which is implemented only by
aggregate objects, here simply inserts instances
into the linked list. The intersect operation of the
list performs “exhaustive” ray tracing by invoking
the intersect operator of each child in the list se-
quentially and retaining the nearest intersection.
Both the “inquire bounds” and “in interior” rou-
tines of the list object proceed by applying the
corresponding operation to each of the children
and processing the results.

More “intelligent” aggregate objects, such as
octrees or uniform grids, can perform these op-
erations without resorting to exhaustive search.
This is the first examples of the value of the ob-
ject class data abstraction. Aggregate objects
present the same interface to the outside world
as primitive objects and therefore hide their spe-
cific algorithms. That is, from the level of abstrac-
tion of the kernel, all objects are indistinguishable
even though some contain collections of other ob-
jects. Because the method used to store and trace
through a subordinate collection of objects is com-
pletely embodied inside the object class routines,
all of the acceleration techniques discussed in the
introduction can be easily implemented as aggre-
gate objects. An immediate and important conse-
quence is that seemingly unrelated algorithms can
be nested to any depth in a consistent manner.

The object abstraction is also broad enough
to include binary operations such as the “dif-

ference’,” “intersection,” and “union” operations



used in constructive solid geometry (CSG). For
instance, a CSG difference object may accept ex-
actly two children and apply different semantics
to the first and second child. In out implemen-
tation, the CSG difference object computes the
difference (child#1 - child#2) by returning only
intersections with the first child which are not
contained within the second child. By perform-
ing this operation strictly through the object class
routines we allow the possibility of subtracting ag-
gregate as well as primitive objects.

Certain transformations can be expressed as
aggregate objects which accept exactly one child
and take modeling matrices as parameters. By
transforming rays “going in” and data such as
normals, points, and bounds “going out,” these
objects implement the well-known technique for
transforming objects by inverse transforming the
rays instead. This is applicable for all affine trans-
formations.

This approach has many of the features of ob-
ject oriented programming [9]. In particular, each
object has a private memory which can only be
manipulated through its set of operations, and all
of the objects from a single class share the same
interface. However, the kernel as we have defined
it provides no mechanism for inheritance from one
class to another. The operations required of all
object classes are essentially the same and must
be directly supported by each class. Another dif-
ference is that there is no true message passing.
All operations are carried out by direct function
calls and are strictly synchronous. Finally, the
term “instance” has a different meaning than in
the context of object oriented programming. Here
it implies both selecting a member from a class
and making that member a child of another ob-
ject. Because the latter operation can include
a geometrical transformation, and environment
may contain many instances of a single object.

Shaders

In addition to object classes which encapsulate
geometrical algorithms, another important role is

played by shaders. A shader is an encapsulation
of an illumination model and, in the context of
ray tracing, it is the agent which creates creates a
ray tree by casting rays in directions determined
by the laws of reflection and refraction [21] or de-
termined stochastically [5]. For greater generality
we allow a variety of shaders to be used in the ren-
dering of a single environment. The value of this
practice is made clear in [4]. We note that the
flexibility of the “shade trees” described therein
could be embodied within one of potentially many
shaders accessed through the kernel.

Aggregate objects are free to impose differ-
ent policies for application of shaders and surface
properties, or attributes, to their children. We
have found it convenient to associate pointers to
shaders and their compatible attribute blocks di-
rectly with object instances. To facilitate this, the
“add child” operation, which creates an instance,
must be allowed to pass additional object-specific
data to the parent aggregate object. This data
may also contain transform information in the
case of aggregate objects which gain efficiency by
implementing operations of this nature directly.

An Example

As a concrete example, we will describe the func-
tions required to implement the simple list object
mentioned earlier. These are:

e List_Add_Child( data, child, inst_data )

List_Intersect( data, ray, hit_info )

List_Local_Geom( data, hit_info, geom )

List_Inq_Bounds( data, type, bounds )
e List_In_Interior( data, point )

Both List_Intersect and List_In_Interior return a
boolean value as their function value indicating
success or failure. Here “data” is a pointer to pri-
vate data (i.e. the parameters) which is accessed
and modified exclusively through these opera-
tions. The list object’s private data will contain



a pointer to the head of the list of children, and
this is updated as new children are added. The
argument encoding object-specific instance data,
“inst_data”, may be omitted by some aggregate
objects, though it is commonly used for trans-
form and attribute information. The “hit_info”
argument is used to store information for com-
puting the local geometry at the point of intersec-
tion if it is needed. For most aggregate objects,
this information will include the child which pro-
duced the closest intersection and the “hit_info”
returned by its intersect operator. The aggre-
gate’s local geometry routine then invokes the cor-
responding routine of that child, passing it the ap-
propriate “hit_info”. We found it useful to imple-
ment “hit_info” as a stack, allowing the intersect
operators to return arbitrary amounts of data.

The forms of the remaining arguments are
fixed among all the object classes, and their defi-
nitions constitute part of the kernel. The “child”
argument consists of two pointers: one to the ob-
ject class (a record of function pointers) and one
to the object-specific parameters. The “ray” ar-
gument encodes a 3D origin, a unit vector, and
other information such as “time” and minimum
and maximum distance limits. The “geom” argu-
ment encodes the surface normal, tangents, etc.,
and is used strictly as input to a shader. Making
this uniform allows all shaders to be applied to all
objects.

The “type” argument selects which bounding
volume is to be returned an, in some cases con-
tains additional data (e.g. plane-set normals [12]).
Aggregate objects may require any or all of these
bounding volumes for a child and may perform a
wide variety of operations on them. For instance,
an aggregate object implementing a bounding vol-
ume hierarchy may construct additional volumes
enclosing two or more of these volumes, a BSP
tree object may need to determine if a volume is
intersected by a plane, and an octree object may
need to identify voxels which are intersected by
a volume. Rather than anticipating and encapsu-
lating these operations into a procedural interface,
the exact encodings of these bounding volumes

are made public as part of the kernel definitions.
Four bounding volume types are supported in our
implementation: boxes, spheres, and two forms of
polyhedra (hull points and intersections of slabs).

The Trace Procedure

The ray tracing kernel attempts to separate the
high-level operations of ray tracing from the pure
mechanics of specific algorithms. The kernel itself
implements no specific objects, transformations,
or shaders, and has no policy concerning how a
collection of objects is stored or rendered. In fact,
at the level of the kernel there is only one object
exporting the generic interface. This single object
is responsible, directly or indirectly, for managing
the rest of the objects in the environment. This is
most vividly demonstrated by the one procedure
which is formally part of the kernel; the procedure
Trace:

e Trace( Ray, Object, Color )

This procedure intersects a given ray with an
object and returns the resulting color. It re-
quires almost no actual code outside of the objects
and shaders themselves and serves essentially as
a guide for how shaders communicate with ob-
jects. The kernel is therefore little more than a
set of interface definitions and data types which
allow all of the details specific to geometry and
illumination to be hidden within the objects and
shaders.

Hybrid Algorithms

The kernel abstractions allow us to easily add new
object classes and modify existing objects with-
out affecting the rest of the ray tracer. More im-
portantly, however, by allowing us to mix diverse
acceleration techniques as easily as we can mix
diverse primitive objects, it also furnishes a new
approach to dealing with complex environments.

For example, we can combine any of the accel-
eration techniques listed in the introduction into



a meta hierarchy for ray tracing a single environ-
ment. Though Snyder and Barr [17] described a
restricted form of this nesting, the ray tracing ker-
nel allows any aggregate object to be the child of
any other aggregate object. The nested aggregate
appears essentially as a bounding volume and in-
tersection technique to its parent and is therefore
handled as easily as a primitive object.

Different aggregate objects will invariably
present different trade-offs in terms of space and
time. Techniques whose memory usage grows
rapidly with the number of objects can be given
a coarser world by making use of more levels of
hierarchy.

The role of spatial subdivision techniques is to
change large problems into small problems within
the voxels. Though it is common practice to use
“exhaustive” ray tracing on the small collection
of objects found within the voxels, this needn’t
be the case. Bounding volume hierarchies as well
as any other optimization technique can also be
applied in this context. Object nesting provides
a simple means of accomplishing this. Care must
be taken, however, to ensure that objects which
intersect more than one voxel are not intersected
multiple times with a single ray. If the object
happens to be an aggregate, this intersection can
be arbitrarily expensive.

Nested Transforms

An interesting benefit which can be derived from
nested objects is that it is possible to take bet-
ter advantage of sparse transformations. That
is, we can transform a ray or normal vector with
fewer arithmetic operations by taking advantage
of matrices which contain many zeros. This is a
consequence of being able to apply transforma-
tions at multiple levels in an instancing hierarchy;,
thereby creating a hierarchy of coordinate spaces.
Though this can mean transforming each ray sev-
eral times before it even reaches a primitive ob-
ject, frequently the transforms which are lower in
the hierarchy are very simple, consisting of scale
and translate operations. There are cases when a

single dense transform places the ray in a coordi-
nate space relative to which most of the objects
have sparse transforms.

If N objects are tested before finding the clos-
est intersection, the same operation can some-
times be done using one dense transform followed
by N sparse transforms instead of N dense trans-
forms. This is particularly true for a complex ob-
ject which is built largely from scaled and trans-
lated primitives and then rotated into some ar-
bitrary final orientation. However, if it is feasi-
ble to make N very small on average, it may be
more efficient to pre-concatenate the transforms
and place the autonomous objects along with the
resulting dense transforms directly into the par-
ent object. The nesting mechanism is not without
its own cost, so it must be used judiciously.

Nesting of transforms can be very advanta-
geous when dealing with motion blur and other
situations requiring time-dependent transforms.
A single time-dependent transform object can be
used to transform a collection of objects under-
going rigid motion. That is, by creating an ag-
gregate from objects which are moving as a group
but not relative to one another, then applying a
single time-dependent transformation, we avoid
multiple applications of a potentially expensive
transform.

Building a Hierarchy

Thus far we have focused on the high-level ab-
stractions of the ray tracing kernel and have seen
how this allows convenient implementation and
use of objects. We now describe how the object
hierarchy is built. Since the kernel provides no as-
sistance here, we introduce another software layer
called the shell. Given a set of shaders and a set of
object classes such as spheres, polygons, patches,
and so on, the shell allows us to construct a hi-
erarchy whose root is the “world” object initially
passes to the procedure “Trace.”

The object hierarchy actually forms a directed
acyclic graph, or DAG. The hierarchy is not nec-
essarily a tree since objects may have more than



one parent. Note that we can actually relax the
requirement that the graph be acyclic if the object
class intersectors have a mechanism for terminat-
ing recursion. Such a mechanism can be based
upon a ray generation counter, for example.

The process of creating the DAG can be
phrased in terms of a succession of open, cre-
ate, instance, and close operations which per-
form elementary bookkeeping functions. Open-
ing an aggregate object means that subsequent
instance operations will create children of this ob-
ject. When an open operation is performed, the
object is pushed onto a stack, superseding the pre-
viously opened object. The close operation pops
the stack. These operations are meaningless to
the kernel and merely serve to create the structure
which it will recognize. Note that the create oper-
ation must handle the object-specific parameters
of the created object, and the instance operation
must handle the object-specific data associated
with the add child operation.

Since the shell is entirely in control of placing
the objects in the hierarchy, it can also implement
dynamic loading of objects. In such a scheme, the
ray tracer contains only the kernel software, and
the shell loads at runtime only those objects which
are used in the scene. This mechanism is visible
only to the shell.

It is useful to have another construct which is
visible only to the shell. This is a modeling hier-
archy used only as a convenience and not reflected
in the final object hierarchy seen by the ker-
nel. In other words, the shell provides “dummy”
aggregate and transform objects which function
as macros. The shell must assume the burden
of copying objects and concatenating modeling
transforms when these objects are instanced.

Applications

As an example of the benefits of the kernel we de-
scribe a 2.75 minute animated film entitled “Fair
Play” [16] which was rendered using a ray tracer
built upon the kernel concept. The environment
consisted of an amusement park with a number

of fairly detailed rides and attractions. Also in-
cluded were trees, a fractal landscape, and two
characters whom we follow through the park. Fig-
ures 2 through 4 are frames from the film. Fig-
ure 2 is the view from high atop a ride and gives
a sense of the overall layout of the park. Figure 3
is a closeup of the characters beneath one of the
rides. The red balloon and portions of the charac-
ters show reflections of the rest of the park. Fig-
ure 4 shows the interior of the house of mirrors.
Some of the “corridors” are formed by reflection
paths more than 30 deep. The exterior of this at-
traction is seen in the distance in Figures 2 and 3.

There are approximately 10,000 object in-
stances in the park environment, not including
the fractal mountains. Though this can no longer
be considered a “large” database in view of the
models reported in [1] and [17] containing millions
of objects, it nonetheless represents a significant
challenge for creating a several-minute ray traced
animation sequence. “Fair Play” required almost
3,000 unique anti-aliased frames at 512x384 pixel
resolution. Efficient rendering was crucial despite
the fact that we employed a network of over 500
Apollo workstations for final production.

The organization of the amusement park envi-
ronment suggested three very natural levels of de-
tail: T) The entire park, consisting of rides, trees,
and mountains, IT) The individual rides, and III)
small but detailed elements of the rides, such as
the horses on a merry-go-round. Clearly a single
uniform grid [7] would not have performed well
here because of the scale involved. Large numbers
of primitive objects would have been collected in
a small number of voxels. Octrees, on the other
hand, can deal with this problem through adap-
tive subdivision but cannot pass rays through
empty voxels with the efficiency of uniform grids.
This suggested a compromise.

Our initial approach was to place a coarse uni-
form grid around the entire park, and another uni-
form grid or octree around each ride. Frequently
we placed a bounding box hierarchy around small
clusters of primitive objects which would have
fallen entirely within a voxel of the second-level



grid. The low-level bounding box hierarchies were
also a way of grouping repeated sub-structures
into objects which could be instanced without
replicating all the data.

Concurrently with the movie production we
developed and tested a new acceleration tech-
nique [1]. This was integrated almost effortlessly
into the ray tracer as another aggregate object
indistinguishable from the others. Therefore, we
were able to immediately substitute the new ag-
gregate object for the top level uniform grid. This
increased overall efficiency because the new algo-
rithm took advantage of directional information
and performed additional optimizations on first-
generation rays.

Because the new algorithm performed adap-
tive subdivision in five-dimensional space, it re-
quired large amounts of virtual memory when
processing complex environments. Therefore, we
sometimes gave this object a coarser view of the
world by grouping primitive objects into larger ag-
gregates in a fashion similar to building a bound-
ing box hierarchy. This drastically cut down the
amount of storage consumed, allowing the ray
tracer to run well on smaller machines. This strat-
egy has the disadvantage of preventing the par-
ent object from differentiating between objects
within its aggregate children. This is typical of
space/time trade-offs in which one form of op-
timization must be sacrificed in order to avoid
the greater penalty of paging. The ability to eas-
ily nest various objects provided the flexibility to
make trade-offs of this nature.

Summary

The ray tracing kernel approach provides both a
flexible research platform which can easily accom-
modate new features, and a production tool which
can take advantage of many acceleration tech-
niques simultaneously in the rendering of a single
environment. A ray tracer built using the kernel
paradigm was used to produce a large-scale ray
traced animation through a combination of accel-
eration algorithms. It also served as an effective

Figure 3: The characters beneath a ride.

tool for the development and benchmarking of a
new acceleration algorithm.
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