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Abstract

We describe a methodology for implementing
a ray tracer which provides both a convenient
testbed for developing new algorithms and a way
to exploit the growing number of acceleration
techniques� These bene�ts are a natural conse�
quence of a collection of data abstractions called
the ray tracing kernel� By de�ning an object in
a broad sense� the kernel allows a single abstrac�
tion to encapsulate a wide spectrum of concepts
including geometric primitives� acceleration tech�
niques� CSG operators� and object transforma�
tions� Through hierarchical nesting of instances
of these objects we are able to construct and e��
ciently render complex environments�

Introduction

Ray tracing has become a popular research topic
since the early work in this area ���� ��	 and rapid
development continues in all aspects of the algo�
rithm� The 
exibility and generality of ray tracing
is exempli�ed by the wide assortment of geometric
primitives which have been investigated� These
include procedural models ���	� fractals ���� �	�
swept surfaces ���	� bicubic patches ��	� and sur�
face tesselations ���	� The problem of e�ciently
rendering environments comprised of large num�
bers of these geometric primitives has received
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even more attention in recent years� The re�
sult is an equally diverse assortment of aggre�

gate techniques� including bounding volume hi�
erarchies ���� ��	� octrees ��� 	� uniform grid
subdivision ��	� plane sets ���	� directional tech�
niques ��� ��	� and grid hierarchies ���	�

Even the geometric transformations applied to
objects have yielded a variety of approaches� In
addition to common a�ne transformations� sur�
face deformations can be performed through non�
linear transformations ��	� The simulation of mo�
tion blur introduces the need for time�varying
transformations ��	�

These trends have motivated the design of
a software environment for developing� testing�
benchmarking� and combining various ray trac�
ing techniques� Of particular interest to us are
acceleration methods such as spatial subdivision
algorithms� Though the need for 
exible develop�
ment environments has also been addressed in ��	�
���	� and ���	� our approach has the additional fo�
cus of creating novel hybrid algorithms from di�
verse techniques� The ability to freely mix radi�
cally di�erent algorithms results in a powerful tool
for constructing and e�ciently rendering complex
scenes�

We achieve these goals by encapsulating the
common features of many important techniques
into a single conceptual model� Of central im�
portance is a data abstraction which allows ge�
ometric primitives� transformations� acceleration
techniques� and other mechanisms to be viewed as
�black boxes� with identical interfaces� This data
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abstraction de�nes an object which is a procedu�
ral entity capable of a small number of elementary
operations�

Objects and Object Classes

Within the kernel� an object is a data abstrac�
tion for geometrical entities and operations� Fig�
ure � shows the routines which are required to
de�ne a parametric family of objects� or an object

class� Each of these routines accepts a pointer to
class�speci�c data� or parameters� which select a
particular member from the object class� In the
case of simple geometric entities� or primitive ob�

jects� the parameters can range from a center and
radius for the class of spheres to a set of control
points for the class of bicubic patches� The object
class routines are then responsible for performing
operations on the speci�ed objects in the class�
In practice it is convenient to implement object
classes as records of function pointers�
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Add_Child
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Figure �� Selecting an object from a class�

The �intersect� routine of the object class
checks for intersection between a given ray and
an object� If the ray hits the object� the distance
and point of intersection are returned� The �local
geometry� routine computes additional geomet�
ric information at the point of intersection� such

as the normal vector and possibly tangent vec�
tors �for texture mapping�� The �inquire bounds�
routine returns a bounding box �or some other
bounding volume� for an object and the �interior�
routine tests whether a given point is contained
within the object� Most primitive objects �t eas�
ily into this framework�

Another type of object� one which manages a
collection of subordinate objects� or children� is
called an aggregate object� The simplest exam�
ple of an aggregate object is the list object which
employs a linked list to maintain the collection
of references to its children� These references are
called object instances� or simply instances� The
�add child� routine� which is implemented only by
aggregate objects� here simply inserts instances
into the linked list� The intersect operation of the
list performs �exhaustive� ray tracing by invoking
the intersect operator of each child in the list se�
quentially and retaining the nearest intersection�
Both the �inquire bounds� and �in interior� rou�
tines of the list object proceed by applying the
corresponding operation to each of the children
and processing the results�

More �intelligent� aggregate objects� such as
octrees or uniform grids� can perform these op�
erations without resorting to exhaustive search�
This is the �rst examples of the value of the ob�
ject class data abstraction� Aggregate objects
present the same interface to the outside world
as primitive objects and therefore hide their spe�
ci�c algorithms� That is� from the level of abstrac�
tion of the kernel� all objects are indistinguishable
even though some contain collections of other ob�
jects� Because the method used to store and trace
through a subordinate collection of objects is com�
pletely embodied inside the object class routines�
all of the acceleration techniques discussed in the
introduction can be easily implemented as aggre�
gate objects� An immediate and important conse�
quence is that seemingly unrelated algorithms can
be nested to any depth in a consistent manner�

The object abstraction is also broad enough
to include binary operations such as the �dif�
ference��� �intersection�� and �union� operations
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used in constructive solid geometry �CSG�� For
instance� a CSG di�erence object may accept ex�
actly two children and apply di�erent semantics
to the �rst and second child� In out implemen�
tation� the CSG di�erence object computes the
di�erence �child�� � child��� by returning only
intersections with the �rst child which are not
contained within the second child� By perform�
ing this operation strictly through the object class
routines we allow the possibility of subtracting ag�
gregate as well as primitive objects�

Certain transformations can be expressed as
aggregate objects which accept exactly one child
and take modeling matrices as parameters� By
transforming rays �going in� and data such as
normals� points� and bounds �going out�� these
objects implement the well�known technique for
transforming objects by inverse transforming the
rays instead� This is applicable for all a�ne trans�
formations�

This approach has many of the features of ob�
ject oriented programming ��	� In particular� each
object has a private memory which can only be
manipulated through its set of operations� and all
of the objects from a single class share the same
interface� However� the kernel as we have de�ned
it provides no mechanism for inheritance from one
class to another� The operations required of all
object classes are essentially the same and must
be directly supported by each class� Another dif�
ference is that there is no true message passing�
All operations are carried out by direct function
calls and are strictly synchronous� Finally� the
term �instance� has a di�erent meaning than in
the context of object oriented programming� Here
it implies both selecting a member from a class
and making that member a child of another ob�
ject� Because the latter operation can include
a geometrical transformation� and environment
may contain many instances of a single object�

Shaders

In addition to object classes which encapsulate
geometrical algorithms� another important role is

played by shaders� A shader is an encapsulation
of an illumination model and� in the context of
ray tracing� it is the agent which creates creates a
ray tree by casting rays in directions determined
by the laws of re
ection and refraction ���	 or de�
termined stochastically ��	� For greater generality
we allow a variety of shaders to be used in the ren�
dering of a single environment� The value of this
practice is made clear in ��	� We note that the

exibility of the �shade trees� described therein
could be embodied within one of potentially many
shaders accessed through the kernel�

Aggregate objects are free to impose di�er�
ent policies for application of shaders and surface
properties� or attributes� to their children� We
have found it convenient to associate pointers to
shaders and their compatible attribute blocks di�
rectly with object instances� To facilitate this� the
�add child� operation� which creates an instance�
must be allowed to pass additional object�speci�c
data to the parent aggregate object� This data
may also contain transform information in the
case of aggregate objects which gain e�ciency by
implementing operations of this nature directly�

An Example

As a concrete example� we will describe the func�
tions required to implement the simple list object
mentioned earlier� These are�

� List Add Child� data� child� inst data �

� List Intersect� data� ray� hit info �

� List Local Geom� data� hit info� geom �

� List Inq Bounds� data� type� bounds �

� List In Interior� data� point �

Both List Intersect and List In Interior return a
boolean value as their function value indicating
success or failure� Here �data� is a pointer to pri�
vate data �i�e� the parameters� which is accessed
and modi�ed exclusively through these opera�
tions� The list object�s private data will contain
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a pointer to the head of the list of children� and
this is updated as new children are added� The
argument encoding object�speci�c instance data�
�inst data�� may be omitted by some aggregate
objects� though it is commonly used for trans�
form and attribute information� The �hit info�
argument is used to store information for com�
puting the local geometry at the point of intersec�
tion if it is needed� For most aggregate objects�
this information will include the child which pro�
duced the closest intersection and the �hit info�
returned by its intersect operator� The aggre�
gate�s local geometry routine then invokes the cor�
responding routine of that child� passing it the ap�
propriate �hit info�� We found it useful to imple�
ment �hit info� as a stack� allowing the intersect
operators to return arbitrary amounts of data�

The forms of the remaining arguments are
�xed among all the object classes� and their de��
nitions constitute part of the kernel� The �child�
argument consists of two pointers� one to the ob�
ject class �a record of function pointers� and one
to the object�speci�c parameters� The �ray� ar�
gument encodes a �D origin� a unit vector� and
other information such as �time� and minimum
and maximum distance limits� The �geom� argu�
ment encodes the surface normal� tangents� etc��
and is used strictly as input to a shader� Making
this uniform allows all shaders to be applied to all
objects�

The �type� argument selects which bounding
volume is to be returned an� in some cases con�
tains additional data �e�g� plane�set normals ���	��
Aggregate objects may require any or all of these
bounding volumes for a child and may perform a
wide variety of operations on them� For instance�
an aggregate object implementing a bounding vol�
ume hierarchy may construct additional volumes
enclosing two or more of these volumes� a BSP
tree object may need to determine if a volume is
intersected by a plane� and an octree object may
need to identify voxels which are intersected by
a volume� Rather than anticipating and encapsu�
lating these operations into a procedural interface�
the exact encodings of these bounding volumes

are made public as part of the kernel de�nitions�
Four bounding volume types are supported in our
implementation� boxes� spheres� and two forms of
polyhedra �hull points and intersections of slabs��

The Trace Procedure

The ray tracing kernel attempts to separate the
high�level operations of ray tracing from the pure
mechanics of speci�c algorithms� The kernel itself
implements no speci�c objects� transformations�
or shaders� and has no policy concerning how a
collection of objects is stored or rendered� In fact�
at the level of the kernel there is only one object
exporting the generic interface� This single object
is responsible� directly or indirectly� for managing
the rest of the objects in the environment� This is
most vividly demonstrated by the one procedure
which is formally part of the kernel� the procedure
Trace�

� Trace� Ray� Object� Color �

This procedure intersects a given ray with an
object and returns the resulting color� It re�
quires almost no actual code outside of the objects
and shaders themselves and serves essentially as
a guide for how shaders communicate with ob�
jects� The kernel is therefore little more than a
set of interface de�nitions and data types which
allow all of the details speci�c to geometry and
illumination to be hidden within the objects and
shaders�

Hybrid Algorithms

The kernel abstractions allow us to easily add new
object classes and modify existing objects with�
out a�ecting the rest of the ray tracer� More im�
portantly� however� by allowing us to mix diverse
acceleration techniques as easily as we can mix
diverse primitive objects� it also furnishes a new
approach to dealing with complex environments�

For example� we can combine any of the accel�
eration techniques listed in the introduction into
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a meta hierarchy for ray tracing a single environ�
ment� Though Snyder and Barr ���	 described a
restricted form of this nesting� the ray tracing ker�
nel allows any aggregate object to be the child of
any other aggregate object� The nested aggregate
appears essentially as a bounding volume and in�
tersection technique to its parent and is therefore
handled as easily as a primitive object�

Di�erent aggregate objects will invariably
present di�erent trade�o�s in terms of space and
time� Techniques whose memory usage grows
rapidly with the number of objects can be given
a coarser world by making use of more levels of
hierarchy�

The role of spatial subdivision techniques is to
change large problems into small problems within
the voxels� Though it is common practice to use
�exhaustive� ray tracing on the small collection
of objects found within the voxels� this needn�t
be the case� Bounding volume hierarchies as well
as any other optimization technique can also be
applied in this context� Object nesting provides
a simple means of accomplishing this� Care must
be taken� however� to ensure that objects which
intersect more than one voxel are not intersected
multiple times with a single ray� If the object
happens to be an aggregate� this intersection can
be arbitrarily expensive�

Nested Transforms

An interesting bene�t which can be derived from
nested objects is that it is possible to take bet�
ter advantage of sparse transformations� That
is� we can transform a ray or normal vector with
fewer arithmetic operations by taking advantage
of matrices which contain many zeros� This is a
consequence of being able to apply transforma�
tions at multiple levels in an instancing hierarchy�
thereby creating a hierarchy of coordinate spaces�
Though this can mean transforming each ray sev�
eral times before it even reaches a primitive ob�
ject� frequently the transforms which are lower in
the hierarchy are very simple� consisting of scale
and translate operations� There are cases when a

single dense transform places the ray in a coordi�
nate space relative to which most of the objects
have sparse transforms�

If N objects are tested before �nding the clos�
est intersection� the same operation can some�
times be done using one dense transform followed
by N sparse transforms instead of N dense trans�
forms� This is particularly true for a complex ob�
ject which is built largely from scaled and trans�
lated primitives and then rotated into some ar�
bitrary �nal orientation� However� if it is feasi�
ble to make N very small on average� it may be
more e�cient to pre�concatenate the transforms
and place the autonomous objects along with the
resulting dense transforms directly into the par�
ent object� The nesting mechanism is not without
its own cost� so it must be used judiciously�

Nesting of transforms can be very advanta�
geous when dealing with motion blur and other
situations requiring time�dependent transforms�
A single time�dependent transform object can be
used to transform a collection of objects under�
going rigid motion� That is� by creating an ag�
gregate from objects which are moving as a group
but not relative to one another� then applying a
single time�dependent transformation� we avoid
multiple applications of a potentially expensive
transform�

Building a Hierarchy

Thus far we have focused on the high�level ab�
stractions of the ray tracing kernel and have seen
how this allows convenient implementation and
use of objects� We now describe how the object
hierarchy is built� Since the kernel provides no as�
sistance here� we introduce another software layer
called the shell� Given a set of shaders and a set of
object classes such as spheres� polygons� patches�
and so on� the shell allows us to construct a hi�
erarchy whose root is the �world� object initially
passes to the procedure �Trace��

The object hierarchy actually forms a directed
acyclic graph� or DAG� The hierarchy is not nec�
essarily a tree since objects may have more than
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one parent� Note that we can actually relax the
requirement that the graph be acyclic if the object
class intersectors have a mechanism for terminat�
ing recursion� Such a mechanism can be based
upon a ray generation counter� for example�

The process of creating the DAG can be
phrased in terms of a succession of open� cre�

ate� instance� and close operations which per�
form elementary bookkeeping functions� Open�
ing an aggregate object means that subsequent
instance operations will create children of this ob�
ject� When an open operation is performed� the
object is pushed onto a stack� superseding the pre�
viously opened object� The close operation pops
the stack� These operations are meaningless to
the kernel and merely serve to create the structure
which it will recognize� Note that the create oper�
ation must handle the object�speci�c parameters
of the created object� and the instance operation
must handle the object�speci�c data associated
with the add child operation�

Since the shell is entirely in control of placing
the objects in the hierarchy� it can also implement
dynamic loading of objects� In such a scheme� the
ray tracer contains only the kernel software� and
the shell loads at runtime only those objects which
are used in the scene� This mechanism is visible
only to the shell�

It is useful to have another construct which is
visible only to the shell� This is a modeling hier�
archy used only as a convenience and not re
ected
in the �nal object hierarchy seen by the ker�
nel� In other words� the shell provides �dummy�
aggregate and transform objects which function
as macros� The shell must assume the burden
of copying objects and concatenating modeling
transforms when these objects are instanced�

Applications

As an example of the bene�ts of the kernel we de�
scribe a ���� minute animated �lm entitled �Fair
Play� ���	 which was rendered using a ray tracer
built upon the kernel concept� The environment
consisted of an amusement park with a number

of fairly detailed rides and attractions� Also in�
cluded were trees� a fractal landscape� and two
characters whom we follow through the park� Fig�
ures � through � are frames from the �lm� Fig�
ure � is the view from high atop a ride and gives
a sense of the overall layout of the park� Figure �
is a closeup of the characters beneath one of the
rides� The red balloon and portions of the charac�
ters show re
ections of the rest of the park� Fig�
ure � shows the interior of the house of mirrors�
Some of the �corridors� are formed by re
ection
paths more than �� deep� The exterior of this at�
traction is seen in the distance in Figures � and ��

There are approximately ������ object in�
stances in the park environment� not including
the fractal mountains� Though this can no longer
be considered a �large� database in view of the
models reported in ��	 and ���	 containing millions
of objects� it nonetheless represents a signi�cant
challenge for creating a several�minute ray traced
animation sequence� �Fair Play� required almost
����� unique anti�aliased frames at ���x�� pixel
resolution� E�cient rendering was crucial despite
the fact that we employed a network of over ���
Apollo workstations for �nal production�

The organization of the amusement park envi�
ronment suggested three very natural levels of de�
tail� I� The entire park� consisting of rides� trees�
and mountains� II� The individual rides� and III�
small but detailed elements of the rides� such as
the horses on a merry�go�round� Clearly a single
uniform grid ��	 would not have performed well
here because of the scale involved� Large numbers
of primitive objects would have been collected in
a small number of voxels� Octrees� on the other
hand� can deal with this problem through adap�
tive subdivision but cannot pass rays through
empty voxels with the e�ciency of uniform grids�
This suggested a compromise�

Our initial approach was to place a coarse uni�
form grid around the entire park� and another uni�
form grid or octree around each ride� Frequently
we placed a bounding box hierarchy around small
clusters of primitive objects which would have
fallen entirely within a voxel of the second�level
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grid� The low�level bounding box hierarchies were
also a way of grouping repeated sub�structures
into objects which could be instanced without
replicating all the data�

Concurrently with the movie production we
developed and tested a new acceleration tech�
nique ��	� This was integrated almost e�ortlessly
into the ray tracer as another aggregate object
indistinguishable from the others� Therefore� we
were able to immediately substitute the new ag�
gregate object for the top level uniform grid� This
increased overall e�ciency because the new algo�
rithm took advantage of directional information
and performed additional optimizations on �rst�
generation rays�

Because the new algorithm performed adap�
tive subdivision in �ve�dimensional space� it re�
quired large amounts of virtual memory when
processing complex environments� Therefore� we
sometimes gave this object a coarser view of the
world by grouping primitive objects into larger ag�
gregates in a fashion similar to building a bound�
ing box hierarchy� This drastically cut down the
amount of storage consumed� allowing the ray
tracer to run well on smaller machines� This strat�
egy has the disadvantage of preventing the par�
ent object from di�erentiating between objects
within its aggregate children� This is typical of
space�time trade�o�s in which one form of op�
timization must be sacri�ced in order to avoid
the greater penalty of paging� The ability to eas�
ily nest various objects provided the 
exibility to
make trade�o�s of this nature�

Summary

The ray tracing kernel approach provides both a

exible research platform which can easily accom�
modate new features� and a production tool which
can take advantage of many acceleration tech�
niques simultaneously in the rendering of a single
environment� A ray tracer built using the kernel
paradigm was used to produce a large�scale ray
traced animation through a combination of accel�
eration algorithms� It also served as an e�ective

Figure �� A view of the amusement park�

Figure �� The characters beneath a ride�

tool for the development and benchmarking of a
new acceleration algorithm�
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