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A theorem is proven for quantum information theory that is analogous to the noiseless coding
theorem of classical information theory. In the quantum result, the von Neumann entropy S of the den-

sity operator describing an ensemble of pure quantum signal states is equal to the number of spin- —sys-

tems ("quantum bits" or "qubits") necessary to represent the signal faithfully. The theorem holds
whether or not the signal states are orthogonal. Related results are also presented about the 6delity of
quantum coding and about representing entangled quantum states.

PACS number(s): 03.65.Bz, 05.30.—d, 89.70.+c

I. ENTROPY AND INFORMATION

In the classical information theory developed by Shan-
non and others, the central problem is coding [I]. For ex-
ample, suppose that A is a message source that produces
the message a with probability p (a), and further suppose
that we wish to represent the messages with sequences of
binary digits (bits) that are as short as possible. It can be
shown that the mean length L of these bit sequences is
bounded below by the Shannon entropy H( A) of the
source: L )H(A), where

can be interpreted as the number of bits that would be re-
quired to specify the microstate of the system. (Of
course, in classical statistical mechanics the phase space
of states is a continuum, so that the number of bits need-
ed to specify a microstate comp/etely is infinite. This can
be avoided in the usual way by specifying the microstate
to a finite, and arbitrary, resolution in phase space. )

In quantum systems, however, the expression for en-
tropy (first proposed by von Neumann [3]) is not identical
to the Shannon entropy. Suppose p is the density opera-
tor describing an ensemble of states of a quantum system;
then the von Neumann entropy S(p) is

H ( A ) = —g p (a)log2p (a) .
S(p)= —Trp log2p . (2)

(Throughout this paper, we use base-2 logarithms. ) Fur-
thermore, if we allow ourselves to code entire blocks of
independent messages together, - it turns out that the
mean number L of bits per message can be brought arbi-
trarily close to H ( A ).

This noiseless coding theorem shows the importance of
the Shannon entropy H( 2) for information theory. It
also provides an interpretation of H ( 2 ) as the mean num-
ber of bits necessary to code the output of A using an
ideal code. We might imagine that each bit has a fixed
"cost" (in units of energy or space or money), so that
H ( A ) is a measure of the tangible resources necessary to
represent the information produced by A.

The "entropy" is also of central importance in statisti-
cal mechanics, where it is a measure of the disorder of a
physical system. In classical statistical mechanics, in
fact, the statistical entropy is formally identically to the
Shannon entropy. This has led to a considerable efFort to
give statistical mechanics an information-theoretic foun-
dation [2]. In this approach, the entropy of a macrostate
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This has obvious analogies to the Shannon entropy; in
fact, if we can interpret the probabilities p (a) in Eq. (I) as
eigenvalues of the density operator p, then S(p) is numer-
ically equal to H ( A ).

Despite their formal similarity, however, these two
quantities are quite difFerent. We can see this difFerence
easily by considering a quantum signal source, which
might be part of a quantum communication system. This
is a device that codes each message a from the source A
into a "signal state" ~aM ) of a quantum system M. Then
the ensemble of signals from the signal source will be
represented by the density operator

p= gp(a)m, ,

where the density operators m., are the projections
m, =

~ a~ ) ( aM ~. The von Neumann entropy of p will
equal the Shannon entropy of the message source only in
the special case when the signals ~a~ ) are orthogonal to
one another, in which case the signal states are eigen-
states of p. If the signals are not orthogonal, then
S(p) (H(A), and the eigenstates of p may have no sim-
ple relation to the signal states [4].

Of course, if the signal states are not orthogonal it will
not be possible to distinguish between them perfectly. In
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other words, no "decoding observable" will be sufficient
to recover the entire information content of the message
in the quantum signal source. It might therefore be more
appropriate to consider the accessible information, the
maximum amount of information about the message that
can be recovered in a measurement performed on M. The
proper measure of recovered information is the mutual
information, which for a pair of random variables X and
F is defined to be

H (X:Y) =H (X)+H ( Y) H(—X, Y) .

In classical information theory, the mutual information is
the amount of information about X that is acquired by
determining the value of K Thus, if we denote by B the
outcome of a measurement of an observable on M, the
quantity H ( A:8) measures the information about the
message source A that is acquired by measurement of the
observable. The maximum accessible information is the
maximum of H( A:8) over all choices of decoding ob-
servable.

An important theorem of Kholevo and Levitin [5]
places an upper bound on H(A:8) for a quantum chan-
nel. To state the theorem most generally, suppose the
signal states are described by density operators p, and are
not necessarily pure states. Then the mutual information
obtained by the measurement of any "positive operator"
observable (of which ordinary quantum observables are a
special case) is bounded by

H(A:8) S~(p) —gp(a)S(p, ) .

In our case, the signals p, =m, are pure states with zero
entropy and Kholevo's theorem simply states that, if p is
the density operator for the signal ensemble,

H(A:8) ~S(p) .

That is, although the Shannon entropy H( A ) of the mes-
sage source is in general greater than the von Neumann
entropy S(p) of the signal ensemble, the accessible infor-
mation is bounded by S(p). Kholevo's theorem provides
a connection between the von Neumann entropy of a
quantum ensemble and the Shannon mutual information
of a quantum communication channel [6].

This connection, however, is a fairly weak one.
Kholevo's theorem is an inequality, and it is possible to
construct simple quantum signal sources for which the
mutual information H ( A:8) does not approach S (p )

closely for any choice of decoding observable [7]. Thus,
although Kholevo's theorem gives an information-
theoretic significance to S(p), it does not provide an in-
terpretation of S(p) in terms of classical information
theory. We could not use Kholevo's theorem, for exam-
ple, to interpret the quantum entropy of some macrostate
of a thermodynamic system as a measure of the resources
necessary to represent information about the system's
quantum microstate.

In this paper we will prove a "quantum coding
theorem" that does allow exactly this sort of interpreta-
tion. This is accomplished by replacing the classical idea
of a binary digit with a quantum two-state system, such
as the spin of an electron. These quantum bits, or

"qubits, " are the fundamental units of quantum informa-
tion. We will show that the von Neumann entropy S(p)
of an ensemble is just the mean number of qubits neces-
sary to encode the states in the ensemble in an ideal cod-
ing scheme. This theorem can be viewed as the kernel of
an alternative approach to quantum information theory:
instead of simply applying classical information theory to
probabilities derived from quantum rules, we can adopt
notions of coding and measures of information that are
themselves distinctly quantum mechanical.

Section II provides some background about the Shan-
non entropy and classical ideas of "likely" and "unlikely"
binary sequences. Section III distinguishes between the
copying of quantum information, which is in general im-
possible, and the transposition of that information from
one system to another. The fidelity of a transposition
scheme is defined in Sec. IV, and two useful lemmas
about fidelity are proven in Sec. V. These lemmas lead
directly to the proof of the main theorem in Sec. VI. Sec-
tion VII discusses issues related to entangled quantum
states, and Sec. VIII presents some general remarks.

II. ENTROPY AND LIKELY SEQUENCES

It will be useful here to review basic concepts of proba-
bility, particularly those relating to the Shannon entropy
H ( A ). We will also outline a proof of the noiseless cod-
ing theorem of classical information theory [8].

Suppose x &, . . . , xz are N independent, identically dis-
tributed random variables, each with mean x and finite
variance. Given 5, e&0, there exists No such that, for
N +No,

P —gx, —x &5 (e.1

The weak law then tells us that, if e, 5&0, then for
sufBciently large N

P ——log P(a) H(A) &5 (e—1

N
(7)

for N sequences a. We can therefore partition the set of
all N sequences into two subsets:

This standard result is known as the weak law of large
numbers. It tells us that a sufficiently long sequence of
independent, identically distributed random variables
will, with a probability approaching unity, have an aver-
age that is close to the mean of each variable.

We can use the weak law to derive a relation between
the Shannon entropy H(A) and the number of "likely"
sequences of N identical random variables. Suppose, as
before, that a message source A produces the message a
with probability p (a ). A sequence a =a i a 2 a& of N
independent messages from the same source will occur in
an ensemble of all N sequences with probability
P(a)=p(ai) .p(az). We can now define a random
variable for each message by x = —log2p(a), so that
H ( A ) =x. It is easy to see that

—1og~P(a)= gx; .
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(i) A set A of "likely" sequences, for which

——log P (a) H—( A ) & 5 .1
2

(ii) A set of "unlikely" sequences with total probability
less than e, for which this inequality fails.

which in turn implies that

2
—N(H( A) —s) & p (a ) & 2 N(H( A—)+s)

How many likely sequences are there? Let v be the
number of sequences in A. Then, using the right-hand in-
equality above,

1& g P(a)
a (EA)

2 N(H( A)+—s)

a (EA)

2
—N(H( A)+5)

Therefore the number v of likely sequences is bounded by

(2N(H( A)+5)

By a similar argument, it turns out that

&)2N(H( A) —s) (10)

Long sequences of independent messages from the mes-
sage source A thus fall into two classes: a collection of
approximately 2 ' ' likely sequences, and a collection
of unlikely sequences with total probability approaching
zero. This suggests a strategy for coding. The likely se-
quences may be associated in a one-to-one fashion with
binary sequences of length NH(A); unlikely sequences,
though perhaps very numerous, are in some sense negligi-
ble.

More formally, we can prove the following theorem
about coding the output of 2 into binary sequences:

Theorem (noiseless coding theorem): Let A be a mes-
sage source as described above, and let 5, e & 0.

(i} Suppose H ( A }+5bits are available per A message.
Then for sufficiently large N, N sequences of messages
from A can be coded into binary sequences with proba-
bility of error less than e.

(ii) Suppose H(A) —5 bits are available per A mes-
sage. Then for sufficiently large X, if X sequences of mes-
sages from A are coded into binary sequences, the proba-
bility of error will be greater than 1 —e.

Part (i} is proved as follows. From our previous discus-
sion, we knpw that, for large enough %, the number of
likely sequences v~2 ' ' '+ . We can thus encode
each of the likely sequences into a unique sequence of the
N(H(A)+5) available binary digits. The remaining un-
likely sequences can be "erroneously" encoded in any
way, say, into the single binary sequence 000. . . 00. The

In other words, with probability greater than 1 —e a se-
quence a is in A and thus satisfies

—5 & ——log P ( a ) H( A—) & 5
1

total probability of error is thus the total probability of
the unlikely sequences, which can be made less than e.

The proof of part (ii) is slightly more involved. Let
g, g&0. For suKciently large N, we can distinguish be-
tween unlikely sequences, with total probability less than
g, and likely sequences, each one of which has probability

p ( ) & 2 N(H( A—)—g)

For coding we have 2 ' ' ) available binary se-
quences. We assign each of these binary sequences to a
sequence of A messages. Any leftover sequences of 3
messages will then have to be encoded in such a way that
they will not be correctly decoded —they will be errors.
Let Po be the probability that the message sequence is not
decoded erroneously. The set of correctly coded se-
quences is certainly smaller than all unlikely sequences
plus 2 ' ' "' likely sequences. Thus

p & + (2N(H( A) —s) }(2
—N(H( A) —g) }

P, &„+2 ~(~ ~)

Now let g=e/2, /=5/2, and choose N large enough so
that 2 ~ &e/2. Then Po&a, and the probability of er-
ror 1 —Po ) 1 —e, as we wished.

Consider the notion of the "probability of error" in
more detail. In itself, a coding scheme is incomplete; we
also require some prescription for decoding, for recover-
ing the original message from the binary string. If the
code is one-to-one, this can be done unambiguously. If
two possible messages are represented by the same binary
sequence, however, this sequence will sometimes be
decoded incorrectly.

We can define the fidelity F of the coding-decoding ar-
rangement as the probability that the decoded message is
the same as the message before coding. The probability
of error is thus 1 —F. A high fidelity means a low proba-
bility of error, and vice versa. Thus the noiseless coding
theorem states that, if more than H ( A ) bits per message
are allowed, the fidelity can be made arbitrarily close to
unity; and conversely, if fewer than H(A) bits per mes-
sage are allowed, the fidelity eventually approaches zero.
The fidelity F will have an analogue in the quantum
domain.

III. COPYING AND TRANSPOSITION

A quantum signal source generates the signal state
~a~ }of a quantum system M with probability p (a). The
signal states are not in general orthogonal. The ensemble
of possible signals is described by the density operator

p= gp(a)m, ,

where n.,=
~ aM }(aM ~, the density operator (for a pure

state, a projection) associated with the signal state vector

In quantum coding, we wish to represent the output of
the signal source in another quantum system X. Quan-
turn information theory, unlike its classical counterpart,
requires us to draw a distinction between the copying and
the transposition of information from M into X. In copy-
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ing, the original signal state of M is undisturbed and X is
brought into a state corresponding to the signal state;
that is, the combined system evolves according to

(12)

where ~0») is some standard "null" state of X and ~a»)
is the representation of the signal

~ aM ) in X.
As shown by Wootters and Zurek [9], copying a quan-

turn signal faithfully cannot be accomplished for all sig-
nal sources. The proof of this is elementary. Suppose a
device existed that claimed to copy arbitrary states of M
into states of X. That is, given two distinct signal states
aM ) and ~bM ) of M, the action of the device would be

~rtM 0X&~~rtM rtx &

Consider now the signal state ~cM ) = ~aM ) + ~bM ). (We
do not need to consider the normalization of

~
c ) . ) If the

resulting state of X is to be a faithful copy, then
cx ) =

~ ax ) +
~ b» ) . But from general considerations of

quantum mechanics, we know that the dynamical evolu-
tion of the system is linear —in fact, a unitary
transformation —so that

I &M 0x &
= 1aM 0» & + I&M 0» &

~ I~M, ~» &+ I bM, b» &

+ ICM CX &

because [cM, c» ) = (aM, a» ) + (aM, b» ) + [bM, ax )
+~bM, bx). That is, if two distinct states can be copied
faithfully, a superposition of the two states cannot be. '

Copying can be accomplished if the possible states are
mutually orthogonal —for example, we could measure an
observable whose eigenstates are the signal states and
then use the (classical) information about the outcome to
manufacture as many perfect copies as desired. Quantum
signal sources which have nonorthogonal signals, on the
other hand, cannot be duplicated perfectly.

Transposition is a diFerent matter. In transposition,
the signal state of M is transferred to X without leaving a
copy behind:

I~M, 0» &~10M,~»),
where ~0») and ~OM ) are fixed null states for X and M.
After transposition, the signal resides completely in the
coding system X and the original signal in M has been
erased. (The "quantum teleportation" discussed in [10] is
a rather exotic example of a transposition process. )

To be complete, we should include in this discussion the
change in state of the copying device, which in general may de-
pend upon the input state. The process is actually

l&M 0x Po)~l&M &x 0
where ~go) and ~g, ) are states of the copier and its environ-
ment. This refinement does not modify the general argument.

Transposition is completely unitary for arbitrary input
signal states of M, provided that the coded states in X
have the same inner products as their precursors:
( a» ~ b» ) = ( aM ~ bM ) for all signals

~

aM ) and
~ bM ) . This

can be accomplished if and only if the Hilbert space &»
has a dimension at least as large as the subspace of &
spanned by the signal states. (We can without loss of gen-
erality suppose that this subspace is the entirety of &M.)

To specify the unitary evolution U that accomplishes
transposition, we only need to specify how an orthogonal
basis for &M is mapped into an orthogonal basis for &».
The evolution of all other signals follows by linearity.
Transposition is invertible, since the signal state can be
transferred back from X to M via the unitary transforma-
tion U '. We can therefore imagine a communication
scheme based upon transposition. At the coding end, the
signal of a source system M is transposed via the unitary
evolution U into the coding system X. The system X is
conveyed from the transmitter to the receiver. At the
decoding end, the unitary evolution U ' is employed to
recover the signal state from X into M', an identical copy
of system M. Symbolically,

M~X~ M' .
U U

The system X is the quantum channel in this communica-
tion scheme, and supports the transposition of the state
of M into M'.

We are concerned here with the transposition of quan-
tum information. This process requires that the quantum
channel X be "large enough" (i.e., have a Hilbert space
&x of high enough dimension) to represent the signals in
M. For perfect transposition, this means that
dim&»~dime. It may be, however, that a perfect
transposition of the signal is unnecessary, so that we only
wish to perform an approximate transposition of quan-
tum information from M to M' via X. Depending on the
characteristics of the signal source, we may be able to
make do with a smaller quantum channel and still have
an adequately faithful representation of the signal. To
explore this question, we need to do two things: first, de-
scribe what we mean by an approximate transposition;
and second, define a measure of thegdelity of the process
and relate the fidelity to the size of the quantum channel.

IV. APPROXIMATE TRANSPOSITION
AND FIDELITY

Consider the quantum communication channel out-
lined above. The signal state of M is unitarily transposed
into X and can then be perfectly recovered into the sys-
tern M'. However, let us suppose that we do not send all
of the system X from the transmitter to the receiver. In-
stead, we will suppose that X is composed of two subsys-
tems, which we will call C (for "channel" ) and E (for "ex-
tra"). Only the channel subsystem C is conveyed to the
receiver to be used for decoding the signal into M', the
extra subsystem E is simply discarded. Clearly, the signal
cannot in general be recovered exactly from C alone,
since it may be that dim&ad &dinuVM. On the other
hand, it may be possible to recover some approximation
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of the signal. We will call this quantum communication
scheme approximate transposition from M to M' Uia the
limited channel C.

To recover the signal from C into M', we will add to
the channel system C an auxiliary system E' that is a
copy of the discarded extra system E, and then perform a
transposition from C +E' to M via the unitary evolution
operator U'. Symbolically, our scheme is

F= g p (a)Trn.,w,

= gp(a)Tr(U 'II, U)(U 'W, U)

= gp(a)Trll, W, , (15)

M—+C +E~C—+C+E'~M' .
U J, 1 U'

E E'
(It may be convenient to choose U'=U ' —in other
words, to decode the signal from C+E' into M' using
the inverse of the coding transposition operator. We will
not make this a general requirement. )

To determine the effectiveness of this transposition
scheme, we need a measure of its fidelity. Suppose the
original signal state of M is ~aM ), represented by the den-
sity operator m, = ~aM ) (aM ~. The final signal in M' will
be a state represented by the density operator w, . Be-
cause the system E has been discarded in the transfer
process, the final signal state is not necessarily a pure
state, and so w, is not generally a projection operator.

To check how close the final signal w, is to the original
m„we can perform a "validation measurement" of the
observable m, . The measurement has two possible re-
sults: 1, indicating that the final signal matches the origi-
nal; or 0, indicating that the final signal differs from the
original. The probability that w, passes this validation
test is Trm, w, . Let us define the fidelity F to be the
overall probability that a signal from the signal ensemble
in M that is transmitted to M' passes a validation test
comparing it to its original. That is,

F= gp(a)Tr~, w, . (14)

The fidelity F is clearly between 0 and 1, and equals unity
only in the case of perfect transposition of all possible sig-
nals. F will be close to unity if (1) signals with large prob-
ability p(a) are distorted very little in transmission, so
that w, nearly equals m, ; and (2) the set of signals which
are greatly distorted, having w, very different from m„
has a small total probability.

It is instructive to trace how the signal state changes
through this communication scheme. The first stage of
our communication scheme, the unitary coding transposi-
tion from M to C+E, is accomplished via the operator
U. If the original signal state of M is ~„ then the signal
state of C+E can be written II, =Um, U '. When we
discard the extra system E, the remaining system C must
be assigned a state TrEH„ the partial trace of 0, over E.
After E' (which is in some state ~OE ) ) has been adjoined
to the channel C, the combined system is in a state
W, =TrEII, ~OE )(Oz. ~. Finally, the unitary decoding
transposition occurs and w, = U'W, ( U') '. Suppose we
make the reasonable choice U'= U ', so that the decod-
ing transposition is just the operator inverse of the coding
transposition. Then the fidelity is

so that we can calculate the fidelity of the transposition
from M to M' by examining only the signal states of
C+E and C+E'.

V. TWO FIDELITY LEMMAS

Intuitively, we can say that, if the channel system C is
"too small" then the fidelity Fmust be "close to" 0. Con-
versely, if the channel system is "large enough" then we
will be able to make the fidelity F "close to" 1. Making
rigorous theorems out of the phrases "large enough, "
"too small, " and "close to" is the task of this section. We
will prove a pair of general lemmas that will in the next
section be central to the proof of our main coding
theorem.

We begin by considering a channel C that is "too
small. " That is, we will prove the following lemma:

Lemma 1. Suppose dirrdV'c=d, and suppose that the
ensemble of signals in M described by p=g, p (a)m, has
the property that, for any projection I onto a d-
dimensional subspace &M,

TrpI (g
for some fixed g. Then the fidelity F & g.

If the signal ensemble has small "weight" in every sub-
space of the same size as &c, then the fidelity of the
transposition will be correspondingly small. The proof of
this fact follows. Consider a signal state ~aM) that is
transposed according to our general scheme. Assuming
that the system E is initially in some pure state ~OE ), the
signal state W, of C+E' is supported only on a d-
dimensional subspace of &c+E =&cs&E, the subspace
of states of the form ~PC, Oz. ). Therefore the final decod-
ed signal state w, of M' is supported only on a d-
dimensional subspace of &~. Call the projection onto
this subspace I .

I.et ~Pk ) for k =1, . . . , d be the orthogonal basis for
this subspace that is composed of eigenstates of w, . We
can write w, as

where the qk are eigenvalues of w„ including all of the
nonzero ones. Clearly, qk

& 1. The projection I is simply

Now consider the term Trm, w„which appears in the ex-
pression for the fidelity.
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=Trm, I

The fidelity F is

k

generality if we suppose that P is a projection onto a sub-
space A of &M spanned by d eigenstates of p. Let us

number the eigenstates of p in such a way that the eigen-
states ~1), . . . , ~d ) span A, while ~d+1), . . . , ~Dt )
(where D =dim&M) are orthogonal to A and span the
orthogonal subspace A . Then we have

g ~n)&n~=l',
n=1

d

g P„&1—rj,

F= gp(a)Trvr, w,

~ gp (a)Trm. ,I

=Tr gp(a)~, I"
a

=TrpI

and therefore F & g.
If the system E' is not in a pure state, the final signal

state m, will be a mixture of states, each of which is sup-
ported on a d-dimensional subspace. The overall fidelity
will be a weighted average of terms that are bounded in
the above manner. Thus F & g in this more general situa-
tion as well, and the theorem holds.

It is worth remarking that the condition requiring
TrpI & q for all projections I can be rephrased in terms
of the eigenvalues of p. Let P„be the eigenvalues of p and
let ~n ) be the corresponding eigenstates. The quantities
Q„=&n~l ~n ) satisfy 0~Q„~ 1, and Q„Q„=Trl =d.
Then

TrpI = g P„Q„.

It is easy to see that this sum will be maximized if the Q„
are chosen to be 1 for the values of n corresponding to
the d largest eigenvalues P„, and zero for other values of
n. We can actually achieve this largest value by choosing
I to be the projection onto the subspace spanned by the
eigenstates with the d largest eigenvalues of p. Thus
TrpI & g if and only if the sum of any d eigenvalues of p
is less than g.

We next turn to the case in which the channel C is
large enough to allow transposition with high fidelity.

Lemma 2. Suppose that dim&c =d, and suppose that
there exists a projection I onto a d-dimensional subspace
of &M such that

TrpI )1—g.
Then there exists a transposition scheme with fidelity
F &1—2q.

If the signal ensemble has sufhcient weight on a sub-
space of the same size as &c, then it is possible to make a
transposition with a fidelity that is correspondingly close
to 1. To prove this, we will actually construct such a
transposition scheme and find its fidelity.

We first note that, from the remark above, we lose no

n =0+1

Our strategy is as follows. We transpose the eigenstates
of p that are in A in such a way that they will be faithful-
ly represented by states of the channel C and will be
correctly reconstructed in M'. We can do this since
dimA=dim&c. However, the eigenstates of p are not
necessarily signal states, and we have no guarantee that
any signal actually lies within A and is thus transposed
without distortion. Nevertheless, since A includes most
of the weight of the signal ensemble (except for a small
piece of measure less than g), we will be able to show that
enough of the signals are suSciently close to the subspace
A to achieve the required fidelity.

To specify the unitary transformation U that accom-
plishes the coding transposition, we specify how the or-
thogonal basis of p eigenstates is mapped into orthogonal
states of C +E. Consider the following mapping:

~nc, oz), n =1, . . . , d

Oc, nz), n =d+1, . . . , D,

where the ~nc ) and ~nz ) are orthogonal sets of states of
the systems C and E, respectively, and ~oc ) and ~oz ) are
fixed null states. We require that the null state ~oz ) be
orthogonal to each of the ~nz) for n =d+1, . . . , D.
Roughly speaking, states in A are mapped into states of C
and states in A are mapped into states of E. More pre-
cisely, the dist&nction between states in A is now made be-
tween states of C, and the distinction between states in A
is now made between states in E..

The extra system E is now discarded, and a new copy
E' is joined to the system. We specify that E' be initially
in the state ~oz. ), so that the p eigenstates are now

mapped into states

lnc~oz'&& n I& ' ' ' ~d

~0, , 0z, &, =d+1, . . . , D . (17)

Finally, we decode the signal into M' by using the inverse
U ' of the coding transformation.

How does a particular signal state ~aM ) of M fare in

this approximate transposition scheme? We can write
any state of M as a superposition of states

law&=~ l~( ) a&+MB ~p(a)M & (18)

where ~A, (a)M ) is in A and ~p(a)M ) is in A, and
~A,, ~ +~@, ~

=1.The states IA.(a)~) and Ip(a)xr) can be
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expanded in terms of the basis eigenstates of p:
d

1aM & =X, y &nit(a)~ & n &

n=1

TrpI = gp(a)Trm, l

= gp(a)IA, , I

D

& nip(a)~ & ln &

n =d+I

This state is mapped by the coding transposition U into a
state lac+@), where

n=1
& n A(a)~ ) nc, OE )

+p. g & nip(a)~ & Ioc, nz &

n =d+}

n. =lx. l'lz(a), ,0, &&a(a), ,0 I

+~,p,*l~(a)c,o, ) & oc,p(a)~ I

+A,,"p, Io,p(a) ) & &(a),0
I

+ p. I'Ioc, p(a)E & & oc,p(a)E I
. (19)

When E is discarded, the state of. the channel C is ob-
tained by performing a partial trace on II„yielding

Tr H, = A,.I'lk(a) ) &k(a)

+ Ip. I'loc & &oc I
.

Adjoining the system E' in the state loz ) yields W', :

w. =IX.l'lx(a), ,0,, ) &x(a), ,o,,
l

+ lp, IOc OE'&&oc oz I
. (20)

Since we decode this signal into M using the inverse of
the coding transposition, the overall fidelity is just
F =g,p (a)TrII, W, . For a given signal,

Trll. II'. =
I ~. I"+

I ~. I'I p. I'I & &«)c IOc & I'

=(1—
I p. I')'

~1—2lp. I' .

The fidelity is thus

F~ 1 —2+p(a)lp, I

We required that TrpI ) 1 —g. This is just

=A,, IA, (a)c,o~ ) +p, Ioc,p(a)~ ),
where IA(a)c) and p(a)z) have the obvious definitions.
Parenthetically, we note that & p(a)E loz ) =0.

The signal state of C +E can be written as a projection
operator II, = Iac+E ) & ac+E I

which is

= gp(a)(1 —Ip, l')

=1—
g p(a)lp, I

Therefore our requirement on TrpI amounts to requiring
that g,p (a) Ip, (g. This means that the fidelity of our
coding scheme satisfies

F &1—2q,
as we wished to prove.

To summarize, we have related the fidelity of our
transposition scheme to the dimension d of the Hilbert
state space of the channel system C. If d is small enough
that the signal ensemble p has weight less than q on every
d-dimensional subspace of &M, then the fidelity must
satisfy F (g. On the other hand, if we can find a d-
dimensional subspace of &~ on which p has a weight
greater than 1 —g, we can devise a transposition scheme
with fidelity F & 1 —2g. Furthermore, we can restrict our
attention to subspaces spanned by eigenstates of p, estab-
lishing the existence or nonexistence of suitable subspaces
by considering sums of d distinct eigenvalues of p. This
connection between the eigenvalues of p (which form a
probability distribution) and the fidelity of approximate
transposition through a limited channel C will be impor-
tant in the next section.

~1. QUANTUM BITS AND QUANTUM CODING

In the classical noiseless coding theorem, there are
three central features. First, we specified a single elemen-
tary coding system, the binary digit or "bit"; all messages
were encoded using bits. Second, we allowed ourselves to
encode, not individual messages, but entire sequences of
X messages from independent, identical sources. Third,
we did not require that the coding be completely error-
free; it suKced that we could make the classical fidelity
(the probability of encoding the message in a correctly
decodable way) arbitrarily close to unity.

Each of these three central ideas must be adapted to
our quantum context. We have already done this with
the third item, the fidelity criterion. In quantum coding,
the fidelity F is the probability that a transposed signal
state will pass a validation test comparing it to the origi-
nal signal. The fidelity lemmas of the previous section
give us bounds on F in various situations. It remains for
us to consider the quantum generalizations of the first
two features, the elementary coding system and the
"block coding" of long sequences of messages.

For our elementary coding system we choose the two-
level spin system, which we will call a "quantum bit" or
qubit. The qubit will be our fundamental unit of quan-
tum information, and all signals will be encoded into se-
quences of qubits. Let us denote a signal qubit system by
Q. Our quantum channel C will be composed of some
(possibly large) number K of copies of Q (denoted Q ), so
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that

~c=~@ ' ' ' ~g
with the number of factors equal to K. The dimension of
&c is 2 . The analogy between the bit and the qubit is
obvious. The qubit is more general, since there are more
possible coding states than just two (although there are
only two orthogonal ones), and since a collection of
qubits can exist in a nonclassically entangled quantum
state.

To discuss quantum block coding, we must consider an
extended quantum signal source. This is a system con-
sisting of N independent copies of the system M (which
we will denote M ). Each subsystem Mk is in a signal
state ~aI, ), generated according to the signal probability
distribution p (ak ). That is, the system M is in the state

with probability p (u) =p(a, )P (a2) P (az). Our job
will be to transpose the signal state of the joint system
M into an identical system (M') using a channel com-
posed of qubits.

The density operator p describing the signal ensemble
of M is simply the direct product of the density opera-
tors for the signal ensembles of the individual subsystems:

p =p&(3 . . (Sp&. This means that the eigenstates of p
will be products states

~
n &, . . . , nest ) of eigenstates of the

p;, and the eigenvalues of p will be products of eigenval-
ues of the p,-:P„„=P„.P„

Now, for the system M, the eigenvalues P„
(n = 1, . . . , D) of the signal ensemble density operator p
have all of the properties of a probability distribution
over the integers 1 D. (They are, in —fact, the probability
distribution for the outcomes of a complete measurement
with eigenstates

~
n ) .) Furthermore, the von Neumann

entropy of p is just the Shannon entropy of this distribu-
tion:

these (which we can call the likely subspace A) has a di-
mension of about 2 '~', and could be faithfully
transposed into the states of a collection of NS(p) qubits.
The other, A, has small weight with respect to p, and
therefore will not a6'ect the fidelity too much.

To be exact, we can now prove the following theorem:
Theorem (quantum noiseless coding theorem): Let M be

a quantum signal source with a signal ensemble described
by the density operator p and let 5, e & 0.

(i) Suppose that $(p)+5 qubits are available per M
signal. Then for sufficiently large N, groups of N signals
from the signal source M can be transposed via the avail-
able qubits with fidelity F & 1 —e.

(ii) Suppose that S(p)—5 qubits are available per M
signal. Then for sufficiently large X, if groups of 1V signals
from the signal source M are transposed via the available
qubits, then the fidelity F & e.

Part (i) is proved in this way. We first note that, if the
quantum channel C is N(S(p)+5) qubits Q, then
dim&c=2 ' 't'+ ~. From our proof of the classical
theorem and our probability-eigenvalue analogy, we
know that, for large enough X, the number of likely
eigenstate sequences v&2 ' 'i"+ ~ and the sum of the
remaining eigenvalues of p can be made less than e/2.
We can add a few additional eigenstate sequences if
necessary to the likely set to bring the total to exactly
v=dim&c, and this will not increase the sum of the
remaining eigenvalues. Let I be the projection onto the
v-dimensional subspace A spanned by the likely eigen-
states. Then Trp 1 ) 1 —e/2. By Lemma 2 there is a
transposition scheme with fidelity F & 1 —e.

For part (ii), we simply note that our classical discus-
sion tells us that, for large enough X, no 2 ' 'L' ' eigen-
state sequences for M have eigenvalues which have a
sum as large as e. Therefore, for every projection I onto
a subspace of dimension 2 ' 'P' '=dinuVc, we have
Trp I & e. Then by Lemma 1, every transposition
scheme has fidelity F & e. Both parts of the theorem are
now proved.

S(p)= —g P„log~P„. (22) VII. ENTANGLED SYSTEMS

An eigenstate of p corresponds to a sequence
ni, . . . , n& of N integers, and the eigenvalue of this
eigenstate is just the probability of this sequence if it had
been generated by 1V independent trials using the proba-
bility distribution P„.

As long as we are only interested in eigenvalues and
eigenstates of the density operators, we can pretend that
each quantum signal source is a classical message source
that uses the integers 1 —D as its "alphabet" and has a
message probability distribution P„with Shannon entro-
py $(p). The extended signal source is the extended mes-
sage source of sequences of these integers. From our dis-
cussion above, we know that for large enough N the se-
quences can be divided into two sets: (i) a set of about
2 ~~' likely sequences, and (ii) a set of sequences with
small total probability —i.e., whose corresponding eigen-
values have a small sum. These two sets specify two or-
thogonal subspaces of the Hilbert space & A. One of

%'e have considered the situation in which various
quantum states (the signal states of M) were generated
probabilistically, so a density operator p is necessary for
the description of the mixed state of the ensemble. Den-
sity operators also arise when the system M is only part
of a larger system M+Z that is in a pure but entangled
quantum state ~g~+z ). Such a state can always be writ-
ten in a polar decomposition (sometimes called the
"Schmidt decomposition" [11])

ly ..)=yv'p. l. ...), (23)

p= +P„~n~)(n~~, (24)

where
~ n~ ) and

~ nz ) are the orthogonal sets of states for
M and Z, respectively. To write a state of M alone, we
must do a partial trace over Z, yielding the density opera-
tor
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In our transposition scheme, we perfectly transpose via
the channel C those eigenstates of p that are in a likely
subspace A of &M with dimA=dim&c=d. We can
number our eigenstates n~ as before so that the first d of
them lie in A. Now we can write our overall state as

IAs+z & ~I~M+z &+PIPM+z & ~

where IAM+z & and IpM+z) are orthogonal normalized
states,

d

I~M+z&= X c I"M "z&
n=1

D

lpM+z & 2 c,'lnM "z &

n =d+1

and IA, I
+ p =1. We can represent this state by the

projection ~=
I 4M+z & & 0M+z I

~

In our scheme, the state IA,M+z ) is transposed perfect-
ly and the state IpM+z ) is transposed into some mixed
state, yielding a mixed state m of the system M'+Z. This
mixed state is

w = I~I I4s'+z &&~M'+zl

+ Ip I'
D

fc„'I'IoM„nz) &oM, ,n, f

n =d+1

From this it follows that the fidelity F =Trow ) IA. I, as
before. If

I
A,

l
) 1 —g, then F ) 1 —2g, which is the same

result we obtained in Lemma 2.
Once we have this result, we can repeat the argument

of our coding theorem for 1V copies of the entangled sys-
tem M +Z, concluding that the entanglement between M
and Z can be faithfully transposed from M to M' using
channel C with S(p) qubits —or, more exactly, that we
can faithfully transpose the entanglement of many such
systems if we have at least S(p) qubits per system. We
can therefore interpret S(p) as a measure of the physical
resources necessary to faithfully move the quantum en-
tanglement between M and the rest of the world (the sys-
tem Z) from one system to another.

that is, a density operator with eigenstates
I nM ) and ei-

genvalues P„. The von Neumann entropy S(p) of this
density operator is sometimes cited as an information-
theoretic measure of the degree of entanglement between
the quantum systems M and Z I 12,6].

Suppose we now perform an approximate transposition
from M to M'. Does this transposition faithfully
transpose the overall quantum state of M +Z into a state
of M'+Z? In other words, does our scheme also faithful-
ly transfer the quantum entanglement of the system with
the rest of the world from M to M'?

The answer is yes. The state If~+z), which can be
represented by the projection n =

I gM+ z ) & fM+ z I, is
transposed into some final state w of M'+Z. The fidelity
Fof this process is

F=Tr~m .

VIII. REMARKS

The von Neumann entropy S(p) of a signal ensemble
of pure states can be interpreted as the number of qubits
per signal necessary to transpose it with near-perfect
fidelity. If more than S(p) qubits are available per signal,
we can in the long run make the fidelity F as close to uni-
ty as we like; but if fewer than S(p) are available per sig-
nal, the fidelity F will eventually approach zero. Further-
more, S(p) is also (in the same sense) the number of
qubits needed to transpose a part of a entangled system
while maintaining the fidelity of the overall state near to
unity. Thus the quantum entropy 5 is a measure of the
physical resources necessary to represent the information
content of a system in a mixed state, whether the mixed
state arises from a stochastic process or by the tracing
out of quantum entanglement with the external world.
Quantum entropy is measured in qubits.

In the proof of this theorem, a great deal of the
mathematical machinery developed for the classical
theorem could be inherited with only minor changes. In-
stead of probability distributions, we considered sets of
eigenvalues of density operators. The two fidelity lemmas
that we proved allowed us to connect statements about
these eigenvalues to statements about the fidelity of an
approximate transposition scheme over a limited channel.

A simpler approach to the process of approximate
transposition and the fidelity lemmas has been suggested
by Jozsa

I
13]. This avoids the explicit use of the auxiliary

systems E and E' by invoking a (nonunitary) measure-
ment process

I
14].

We should note that the argument for the coding
theorem given here is somewhat akin to the work of Gra-
ham in his paper on the many-worlds interpretation of
quantum mechanics

I IS]. Graham investigated how the
probabilities of measurement results might arise in the
many-worlds interpretation, given that the final entan-
gled state of the system and measuring apparatus always
contains all possible outcomes in the superposition. By
considering the final state of a large collection of system-
apparatus pairs, Graham showed that the Hilbert space
can be decomposed into two subspaces: (1) a "typical"
subspace, in which the statistical frequencies of the mea-
surement results closely match the probabilities given by
the quantum rules, and (2) an "atypical" subspace, which
contributes very little to the final superposition, even
though its dimension might be very large.

Some unresolved questions arise from our work. We
have considered here only pure signal states ~, from our
quantum signal source M. Suppose instead that the sig-
nals are mixed states p„with p=g, p(a)p, . Then it is
not clear how to proceed, for the natural generalization
of the fidelity,

F= g p (a)Trp, w,

may not be close to unity even if m, =p, for all signals.
Furthermore, we have proved a "noiseless" coding

theorem. Shannon's more powerful results deal with the
information capacity of channels with noise

I
I]. It would

be very desirable to develop coding theorems for noisy
quantum channels.
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Nevertheless, the fidelity and coding results presented
here may be a starting point for an alternative approach
to quantum information theory, one with possible appli-
cations to quantum cryptography [16] and the theory of
quantum computers [17]. They also provide an
information-theoretic interpretation of the von Neumann
entropy, with potential implications for the conceptual
foundations of quantum-statistical mechanics.
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