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A strategy is suggested for teaching mathematically literate students, with no background in physics,
just enough quantum mechanics for them to understand and develop algorithms in quantum
computation and quantum information theory. Although the article as a whole addresses teachers of
physics well versed in quantum mechanics, the central pedagogical development is addressed
directly to computer scientists and mathematicians, with only occasional asides to their teacher.
Physicists uninterested in quantum pedagogy may be amused~or irritated! by some of the views of
standard quantum mechanics that arise naturally from this unorthodox perspective. ©2003 American

Association of Physics Teachers.
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I. COMPUTER SCIENCE AND QUANTUM
MECHANICS

These ‘‘bras’’ and ‘‘kets’’—they’re just vectors!
—Newly enlightened computer scientist1

There is a new audience for the teaching of quantum
chanics whose background and needs require a new sty
quantum pedagogy. The audience consists of computer
entists. Compared with the usual students in an introduc
quantum mechanics course, they are mathematically sop
ticated, but are often ignorant of and uninterested in phys
They want to understand the applications of quantum m
chanics during the past dozen years to information proc
ing, and their focus is exclusively on algorithms~software!,
not engineering~hardware!.

Although the obstacles to quantum computers becomin
viable technology are formidable, the profound con
quences of quantum mechanics for the theory of computa
discovered during the past decade ought to be part of
intellectual equipment of every computer scientist, if on
because it provides dramatic proof that the abstract ana
of computation cannot be divorced from the physical me
available for its execution. Future computer scientists ou
to learn quantum mechanics.

But how much quantum mechanics? In December 200
was at a conference on quantum computation and infor
tion at the Institute for Theoretical Physics in Santa Barba
At lunch one day I remarked to the Director of the ITP tha
spent the first four or five lectures of my course2 on quantum
computation teaching the necessary quantum mechanic
the computer scientists in the class. His response was
any application of quantum mechanics that could be tau
after only a four hour introduction to the subject could n
have serious intellectual content. After all, he remarked
takes any physicist years to develop a feeling for quan
mechanics.

It’s a good point. Nevertheless, it is a fact that compu
scientists and mathematicians with no background in phy
have been able quickly to learn enough quantum mecha
to understand and contribute importantly to the theory
quantum computation, even though quantum computation
peatedly exploits the most notoriously paradoxical featu
of the subject. There are three main reasons for this:

First, a quantum computer—or, more accurately, the
stract quantum computer that one hopes some day to be
23 Am. J. Phys.71 ~1!, January 2003 http://ojps.aip.org
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to realize—is an extremely simple example of a physi
system. It is discrete, not continuous. It is made out o
finite number of units, each of which is the simplest possi
kind of quantum mechanical system, a 2-state system, wh
possible behavior is highly constrained and easily analyz
Much of the analytical complexity of learning quantum m
chanics is connected to mastering the description of cont
ous ~infinite-state! systems in (311)-dimensional space
time. By restricting attention to discrete transformatio
acting on collections of 2-state systems, one can avoid m
suffering~and lose much wisdom, none of it—at least at th
stage of the art—relevant to the theory of quantum com
tation.!

Second, the most difficult part of learning quantum m
chanics is to get a good feeling for how the abstract form
ism can be applied to actual phenomena in the laborat
Such applications almost invariably involve formulatin
oversimplified abstract models of the real phenomena
which the quantum formalism can effectively be applied. T
best physicists have an extraordinary intuition for what fe
tures of the actual phenomena are essential and must be
resented in the abstract model, and what features are ines
tial and can be ignored. It takes years to develop s
intuition. Some never do. The theory of quantum compu
tion, however, is only concerned with the abstract mode
the easy part of the problem.

Third, to understand how tobuild a quantum computer, o
to study what physical systems are promising candidates
realizing such a device, you must indeed have many year
experience in quantum mechanics and its applications un
your belt. But if you only want to know what such a devic
is capable of doing in principle, then there is no reason to
involved in the really difficult physics of the subject. Th
same holds for ordinary~‘‘classical’’! computers: one can b
a masterful practitioner of computer science without hav
the foggiest notion of what a transistor is, not to menti
how it works.

So although the approach to quantum mechanics for c
puter scientists sketched below is focused and limited
scope, it is neither oversimplified nor incomplete, for t
special task for which it is designed.~There is, however, an
isolated subset of quantum-computational theory called a
batic quantum computation that uses the quantum sys
more like an analogue than a digital computer, and does
quire a somewhat broader view of quantum theory.!
23/ajp/ © 2003 American Association of Physics Teachers
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II. CLASSICAL BITS

The first step in teaching quantum mechanics to comp
scientists is to reformulate the language of conventio
~classical! computation in an unorthodox manner that intr
duces much of the quantum formalism in an entirely famil
setting

To begin, we need a term for a physical system that
exist in two unambiguously distinguishable states, which
used to represent 0 and 1. Often such a system is calledbit,
but this can obscure the important distinction between
abstract bit~0 or 1! and the physical system used to repres
it. If one could establish a nomenclature for the field at t
late date, I would argue for the term Cbit for a classic
physical system used to represent a bit, in parallel with
term Qbit for its quantum generalization. Unfortunately, t
orthographically preposterous termqubit currently holds
sway for the quantum system,3 while bit is used indiscrimi-
nately for both the classical system and the abstract bit.
cause clear distinctions between bits, Cbits, and Qbits
crucial in the exposition that follows, I shall use this unfas
ionable terminology. It is inspired by Paul Dirac’s early u
of c-number and q-number to describe classical variable
and their generalizations to quantum-mechanical opera
~‘‘Cbit’’ and ‘‘Qbit’’ are preferable to ‘‘c-bit’’ and ‘‘q-bit,’’
because the terms themselves often appear in hyphen
constructions.!

It can be fruitful, even on the strictly classical level,
represent the two states of a Cbit by a pair of orthonorm
2-vectors, denoted by the symbols

u0& u1&. ~1!

This notation for vectors also goes back to Dirac.~For rea-
sons too silly to go into, he called such vectorskets, a termi-
nology that has survived to the present day.!

To do nontrivial computation requires more than one C
It is convenient~and, as we shall see in a moment, ev
natural! to represent the four states of two Cbits as four
thogonal vectors in four dimensions, formed by the ten
products of two such pairs:

u0& ^ u0& u0& ^ u1& u1& ^ u0& u1& ^ u1&. ~2!

One often omits thê , writing ~2! in the more compact, bu
equivalent form,

u0&u0& u0&u1& u1&u0& u1&u1&, ~3!

or, more readably,

u00& u01& u10& u11&, ~4!

or, most compactly of all, using the decimal representation
the 2-bit number represented by the pair of Cbits,

u0&2 u1&2 u2&2 u3&2 . ~5!

The subscript 2 is necessary in this last form, becaus
going from binary to decimal, we lose the information
how many Cbits the vector describes, making it necessar
indicate in some other way whetheru3& meansu11&5u3&2 or
u011&5u3&3 or u0011&5u3&4 , etc.

As this last remark illustrates, one represents the state
n Cbits as the 2n orthonormal vectors in 2n dimensions,

ux&n , 0<x,2n, ~6!

given by then-fold tensor products ofn mutual orthogonal
pairs of orthogonal 2-vectors. Thus, for example,
24 Am. J. Phys., Vol. 71, No. 1, January 2003
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u19&65u010011&5u0&u1&u0&u0&u1&u1&

5u0& ^ u1& ^ u0& ^ u0& ^ u1& ^ u1&. ~7!

That the tensor product is a convenient and highly app
priate way to represent multi-Cbit states becomes clear if
expands the vectors representing each Cbit as column
tors,

u0&↔S 1
0D , u1&↔S 0

1D . ~8!

The corresponding column vectors for tensor products a

S y0

y1
D S z0

z1
D↔S y0z0

y0z1

y1z0

y1z1

D , ~9!

S x0

x1
D S y0

y1
D S z0

z1
D↔S x0y0z0

x0y0z1

x0y1z0

x0y1z1

x1y0z0

x1y0z1

x1y1z0

x1y1z1

D , ~10!

etc.
Thus, for example, the 8-dimensional column vector re

resentingu5&3 is given by

u5&35u101&5u1&u0&u1&5S 0
1D S 1

0D S 0
1D5S 0

0
0
0
0
1
0
0

D 0

1

2

3

4

5

6

7

~11!

which has a 0 in every entry except for a 1 in theentry
labeled by the integer 5 that the three Cbits represent.~Label
the entries by counting down 0,1,2... from the top. The sm
numerals on the extreme right in~11! make this labeling
explicit.! This general rule for the column vector represe
ing ux&n, 1 in position x and 0 everywhere else, is th
obvious generalization ton Cbits of the form for a 1-Cbit
column vector. It is an automatic consequence of stand
tensor-product notation.

III. OPERATIONS ON CBITS

In quantum computation almost all operations on Qbits
reversible.~An example of an irreversible operation is Eras
u0&→u0&,u1&→u0&. It is irreversible because one cannot r
construct the input from the output: it has no inverse.! The
single exception is the operation or process called ‘‘meas
ment’’ described in Sec. VI. Measurement plays no role
classical computation~or, perhaps more accurately, a role
trivial that it is not recognized explicitly as a part of th
computational process!. Because Cbit states turn out to be
~tiny! subset of Qbit states, our reformulation of classical b
and what can be done with them need only consider rev
ible operations on the Cbits.
24N. David Mermin
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There are just two reversible operations on a single C
~1! Do nothing~identity operator1!:

1u0&5u0&, 1u1&5u1&. ~12!

~2! Flip it ~flip operatorX!:

Xu0&5u1&, Xu1&5u0&. ~sx! ~13!

~I have indicated in parentheses the standard physicists
tation; quantum computer scientists preferX to sx .!

Less trivial reversible operations are available on t
Cbits. One can, for example, exchange the values of the
they represent~swap operatorS!:

Suxy&5uyx&. ~14!

In manipulating such muti-Cbit operations, it is useful
have a compact notion for the action on a many-Cbit stat
operations that act on only a single one of the Cbits. O
labels the Cbits by integers 0,1,2,...~starting with zero on the
right! associated with the power of 2 that each Cbit rep
sents. Thus ifx has the binary expansionx58x314x2

12x11x0 , then

ux&45ux3x2x1x0&5ux3&ux2&ux1&ux0&

5ux3& ^ ux2& ^ ux1& ^ ux0&. ~15!

An operation that acts only on Cbit #2 is

X251^ X^ 1^ 1. ~16!

Clearly the form with a subscript indicating which of th
four Cbits is subject to the flip operationX is more transpar-
ent than the explicit form of the operator tensor product
the right. The subscript notation is unavoidable when la
numbers of Cbits are involved. From the definition of t
operator tensor product it follows that, as desired,

X2@ ux3& ^ ux2& ^ ux1& ^ ux0&] 5ux3& ^ @Xux2&] ^ ux1& ^ ux0&.
~17!

It is possible to build up meaningful multi-Cbit operation
out of single-Cbit operations that, although formally we
defined, act an on individual Cbit in a way that has no me
ingful classical interpretation. Here, for example, is a me
ingless operation on one Cbit which can be used to build
meaningful multi-Cbit operations:

Zu0&5u0&, Zu1&52u1&. ~sz! ~18!

The action ofZ on the stateu1&, multiplying it by 21,
although mathematically well defined on the 2-dimensio
1-Cbit vector space, produces a vector that has no mea
within the context of Cbits. Only the two vectorsu0& andu1&
have meaning as the two distinguishable states of the
used to represent 0 and 1. Indeed, the introduction o
2n-dimensional vector space when we are only intereste
a single set of 2n orthonormal basis vectors could be view
as extravagant conceptual overkill, except, perhaps, for
pleasing structure introduced by the column-vector repres
tation of the tensor product. The only classically meaning
reversible operations onn Cbits are the (2n)! different per-
mutations of the 2n basis vectors.

Nevertheless, a meaningless 1-Cbit operation likeZ can
acquire classical meaning when used in conjunction w
other such meaningless operations in a multi-Cbit cont
As an important example, notice that the 2-Cbit operat
1
2(11Z1Z0) acts as the identity on the 2-Cbit statesu0&u0&
and u1&u1&, while giving 0 ~another classically meaningles
25 Am. J. Phys., Vol. 71, No. 1, January 2003
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output! when acting onu0&u1& or u1&u0&. The operation1
2(1

2Z1Z0), on the other hand, acts as the identity onu0&u1&
and u1&u0&, while giving 0 onu0&u0& and u1&u1&. Evidently
both are projection operators in the full vector space span
by all the 2-Cbit basis states.~More precisely the projection
operators are their linear extensions to the full space from
basis on which they are defined. Quite generally any ope
tion whose action is defined only on the classical basis st
can be identified with its linear extension to the whole vec
space.!

Because the operationS10, which exchanges the values o
Cbits 1 and 0, acts as the identity if their state isu00& or u11&
and as the double-flip operatorX1X0 if their state isu01& or
u10&, we are led to the following operator representation
S10:

S105
1
2~11Z1Z0!1X1X0

1
2~12Z1Z0!, ~19!

or

S105
1
2~11Z1Z01X1X02Y1Y0!, ~20!

where

Y5XZ. ~2 isy! ~21!

~Note that 1-Qbit operators acting on different Qbits~like X1

and Z0) commute even though the 1-Qbit operators~X and
Z! do not commute when acting on the same Qbit.! I digress
to remark that this ‘‘classical’’ derivation of the exchang
operator is simpler and more transparent than the stan
quantum mechanical derivation, which invokes the fu
blown theory of angular momentum.

Another important example of a 2-Cbit operation is t
controlled-NOT or reversible XOR:

C10ux&uy&5~X0!xux&uy&5ux&uy% x&, ~22!

~where% denotes addition modulo 2!, which flips Cbit 0~the
target Cbit! if and only if Cbit 1 ~the control Cbit! has the
value 1. We can build this operation out of 1-Qbit proje
tions,

C105
1
2~11Z1!1X0

1
2~12Z1!5 1

2~11Z11X02X0Z1!.
~23!

In this form one sees a curious symmetry: interchanging
operationsX andZ has the effect of exchanging the roles
target and control Cbit, convertingC10 to C01.

A classically meaningless operation that can be used
perform just this interchange is theHadamard transform

H5
1

&
~X1Z!5

1

&
S 1 1

1 21D . ~24!

This transform takes the Cbit statesu0& and u1& into the two
classically meaningless linear combinations 1/& (u0&
6u1&). Because

X25Z251, XZ52ZX, ~25!

it follows that

H25 1
2~X1Z!251,

~26!
HX5~X1Z!X/A25Z~X1Z!/A25ZH,

and therefore

HXH5Z, HZH5X. ~27!
25N. David Mermin
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Consequently. we can use four classically meaningless
erationsH to achieve a classically meaningful task: inte
changing the role of target and control Cbits:

C015~H1H0!C10~H1H0!.

IV. QUANTUM BITS

We have represented the 2n states ofn Cbits as a basis o
2n orthonormal vectors in a 2n-dimensional vector spac
constructed as then-fold tensor product ofn 2-dimensional
vector spaces. Although the only classically meaningful
erations on these vector spaces consist of permutation
these classical basis vectors, we have been able to cons
such operations, or reveal relations among them, by in
ducing classically meaningless operations that multiply ba
vectors by scalars~in particular 0 or21) or ~like the Had-
amard transform~24!! take them into non-trivial linear com
binations. One such construction, the form~20! of the ex-
change operator, would achieve an even more pleasing f
were we to introduceA21, replacingY with iY. This would
also restore another symmetry, becauseX5sx , iY5sy , and
Z5sz are all hermitian.

One is reminded of arithmetic before the introduction
A21. By introducing the ‘‘meaningless’’ quantityi , we are
able to achieve great simplifications among certain relati
connecting purely ‘‘meaningful’’ real numbers. The bold ne
step is to declare the meaningless to be meaningful too,
ing full advantage of the expanded number system.

A major part of quantum mechanics consists of an ana
gous expansion of the notion of the state of a Cbit, called
this extended setting a quantum bit orQbit. We democrati-
cally expand the set of meaningful states from the 2n special
orthonormal states, known in this broader setting as theclas-
sical basis~or, in the prevailing but less informative term
nology, the computational basis! to arbitrary unit vectors
from the entire vector space consisting of all linear com
nations~called superpositions! of classical basis states wit
complex coefficients~calledamplitudes!.

Thus the general state of a single Qbit is a superpositio
the two classical-basis states

uc&5au0&1bu1&, ~28!

where the amplitudesa and b are complex numbers con
strained only by the normalization condition

uau21ubu251. ~29!

The general state ofn Qbits has the form

uC&5 (
0<x,2n

axux&n , ~30!

with complex amplitudes constrained only by the normali
tion condition

(
0<x,2n

uaxu251. ~31!

Physics offers many examples of physical system
Qbits—whose natural description is in terms of states t
are precisely these peculiar generalizations of the state
classical bits that expand the constrained set of classica
sis vectors to the entire complex vector space that they s
The most elementary physical examples are the polariza
states of a photon or the spin states of a spin-1

2 particle. For
26 Am. J. Phys., Vol. 71, No. 1, January 2003
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an understanding of quantum-computational algorithms i
no more important to know about the detailed physics
such systems than it is to know about the detailed physic
transistors for an understanding of classical algorithms.

We shall return momentarily to the consequences of a
of Qbits having such nonclassical states, but the first thing
note is that by expanding the set of states from the class
basis vectors to arbitrary unit vectors in the entire comp
vector space spanned by the classical basis, we have alr
introduced one of the most profound differences betwe
Cbits and Qbits:

The most general possible state of two Cbits has the fo

uC&5ux1&ux0&. ~32!

This can be described as a state in which Cbit #1 has
stateux1& and Cbit #0, the stateux0&: each individual Cbit
has a state of its own. On the other hand, the most gen
possible state of two Qbits has the form

uC&5a3u3&21a2u2&21a1u1&21a0u0&2

5a3u1&u1&1a2u1&u0&1a1u0&u1&1a0u0&u0&. ~33!

If each Qbit had a state of its own, this 2-Qbit state would
under the obvious generalization of the rule for multi-C
states, the tensor product of those two 1-Qbit states.
2-Qbit state would thus have the general form

uc&uf&5~au1&1bu0&)~gu1&1du0&)

5agu1&u1&1adu1&u0&1bgu0&u1&1bdu0&u0&. ~34!

But the stateuC& in Eq. ~33! cannot have this form unles
a3a05a2a1 .

So in a general multi-Qbit state each individual Qbit h
no state of its own. This is the first major way in which Qb
differ from Cbits. States ofn Qbits in which no subset o
fewer thann have states of their own are calledentangled.
Genericn-Qbit states are entangled. The amplitudes in
expansion~30! have to satisfy special constraints for the sta
to be a tensor product of states associated with fewer than
Qbits.

V. OPERATIONS ON QBITS

Quantum algorithms are constructed of operations that
linearly on the state ofn Qbits, while preserving the normal
ization condition~31!. The linear norm-preserving operato
on a complex vector space are theunitary operators. So the
basic ingredients of a quantum algorithm are unitary ope
tors on the 2n-dimensional complex space:

uC&→UuC&, U unitary. ~35!

The classical operations—permutations of the 2n classical
basis vectors~more precisely, linear extensions of the perm
tations from the basis on which they are defined to the wh
space!—are special cases of such operators.

The problem of how to implement physically such unita
transformations is a question of quantum-computational
gineering, just as the question of how to produce permu
tions of the values of a collection of Cbits is a question
classical-computational engineering. All that need conc
the designer of quantum-computational software, howeve
that unitary transformations constitute the full field of ava
able operations~except for measurement, as described bel
in Sec. VI!. For practical reasons—software designers sho
26N. David Mermin
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be willing to take into account constraints suggested by
gineering practicalities—the available set of unitary transf
mations is usually restricted to those that can be built up
of products of unitary transformations, each of which a
only on single Qbits or only on pairs of Qbits, and an imp
tant part of the ingenuity of quantum programming is d
voted to how best to build up more interesting transform
tions as products of these basic units.~In the case of Cbits
this is quite straightforward: an arbitrary permutation ofn
Cbits can be expressed as a product of 2-Cbit tra
positions—swap operators.!

So if we view the 2n states ofn classical bits as the 2n

orthonormal basis vectorsux&n in a 2n-dimensional vector
space, and the reversible operations we can perform on
Cbits as simply the permutations of these basis vectors,
the generalization ton quantum bits is extremely simple: th
states of Qbits consist of all the normalized complex lin
combinations of the classical basis vectors, and the revers
operations we can perform on the Qbits consist of all unit
transformations. The classical states and classical opera
are a very small subset of the quantum states and quan
operations.

It looks as if the extension from Cbits to Qbits opens up
enormously richer landscape of computational possibilit
Although the state of one Cbit is specified by a single bit
information, specifying the state of one Qbit requires in
nitely many bits of information: two complex numbers co
strained only by the normalization condition~29!. And
instead of being limited to shuffling a finite collection of Cb
states through permutation, one can act on Qbits with a c
tinuous collection of unitary transformations. Because it
no more complex a matter to prepare a given state for Q
than it is for Cbits and because it is no more complex
matter to implement a broad range of unitary transformati
on Qbits than it is to implement permutations on Cbits,
extension from Cbits to Qbits would appear to bring us t
new level of computational power.

But there is a catch!Qbits suffer from a major limitation
that does not afflict Cbits. Although their state contains v
amounts of information, givenn Qbits in some stateuC&,
there is nothing you can do to the Qbits that enables yo
learn whatuC& is. There is thus no way to extract anythin
like the huge amount of information contained in the amp
tudesax .

What, then, are Qbits good for? How can we exploit th
greater flexibility to do anything useful at all?

VI. MEASUREMENT: HOW TO SQUEEZE
INFORMATION OUT OF QBITS

A. The Born rule

The very limited possibilities for extracting information
the second major way in which Qbits differ from Cbits. If w
haven Cbits in the general classical stateux&n , finding out
what the state is—learning the numberx—is unproblematic.
Indeed, it is so straightforward that the act of learning
state is generally not even regarded as a formal part of
computation. One simply looks~on a display or a printout!.
Importantly, the state of the Cbits is unaltered by this acq
sition of information. Once the computer has ceased to
erate on the Cbits, their state remainsux&n whether or not
anybody takes the trouble to ascertain the particular valu
x.
27 Am. J. Phys., Vol. 71, No. 1, January 2003
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Things could not be more different for Qbits. If one hasn
Qbits in the state

uC&n5(
x

axux&n , ~36!

there is nothing one can do to them to learn the values of
amplitudesax . There is only one way to extract any info
mation from the Qbits: tomeasurethem. Measuringn Qbits
consists of subjecting them to a device that produces~at a
display or a printout! an integerx in the range 0<x,2n.
The only link between the stateuC& one may have labored to
impose on the Qbits and the value ofx revealed by the mea
surement is this: the probability of getting the outputx is just
px5uaxu2, whereax is the amplitude ofux&n in the expan-
sion ~36! of uC&n . This connection between amplitudes a
the probabilities of measurement outcomes is known as
Born rule, after the physicist Max Born. The condition th
the states be unit vectors is thus the condition that the sum
the probabilities of all the possible measurement outcom
should be 1.

You might think that by measuring repeatedly, one cou
at least get some good statistics on the distribution of
magnitudesuaxu, but this possibility of additional partial in-
formation aboutuC& is ruled out by a second fundament
proviso of the Born rule: once the valuex has been indicated
by the measurement, the state of then Qbits is no longer
uC&n , but ux&n . The postmeasurement stateux&n contains no
trace of the information present in the premeasurement s
uC& ~beyond revealing thataxÞ0) and is nothing more than
the classical state associated with the value ofx indicated by
the measuring device.

Physicists, in a nomenclature that invites misinterpre
tion, like to say that the stateuC&n collapsesor is reducedto
the stateux&n by the measurement. The conservative way
put it is simply to specify the relation between the sta
immediately before and immediately after the measurem
in a way that suggests no mechanism for the change of s
confers no objective status on it, and makes no commitm
to what~if anything! a change in state implies about what~if
anything! has happened to the Qbits themselves.

You might wonder how we can learn anything at all
computational interest under these wretched conditions.
general trick is to produce, through a cunningly construc
unitary transformation, a superposition~36! in which most of
the amplitudesax are zero or very close to zero, with usef
information being carried by any of the values ofx that have
a significant probability of being indicated by the measu
ment. It is also important to be seeking information th
once possessed, can easily be confirmed~for example, the
factors of a large number! so that one is not misled by th
occasional irrelevant low probability outcome.

Clearly the action of a measurement on the state ofn Qbits
is irreversible: any stateCn with non-zero amplitudeax is
capable of becoming the stateux&n after a measurement
There is no way to reconstruct the input from the outp
Measurement is, however, the only irreversible operation
Qbits. All other operations are unitary.

The Born rule contains, as a special case, the unprobl
atic character of extracting information from Cbits. If th
stateuC& of n Qbits happens to be one of the 2n classical-
basis statesux0&n then ax50, xÞx0 , and ax0

51. So the
27N. David Mermin
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result of measuring the Qbits isx0 with probability 1. The
second proviso of the Born rule then requires that the stat
the Qbits isux0&n after the measurement—that is, the po
measurement state continues to be what it was before
measurement. The statistical, state-altering character of
outcome of a measurement ofn Qbits in a general state
becomes the deterministic, state-preserving, unproblem
classical extraction of information when the state is one
the 2n classical states.

A technical remark for physicists: In this approach
quantum mechanics, it is useful to restrict the term ‘‘me
surement’’ to what a broader and more conventional use
the term would characterize as ‘‘measurement in the class
basis.’’ Because measurement in any other basis could
accomplished by applying an appropriate unita
transformation—one that takes the basis of interest into
classical basis—followed by measurement in the class
basis, this restriction of the scope of the term ‘‘measu
ment’’ does not preclude more general possibilities.

B. Generalization of the Born rule to partial
measurements

There is a generalization of the Born rule, not often e
plicitly noted in quantum-mechanics texts, that is need
whenever some but not all of the Qbits are measured
often happens in a quantum computation. Suppose we h
m1n Qbits, and we decide to measure onlym of them. By
representing them1n bit numberz as x,y, the concatena-
tion of them andn bit binary strings representingx andy,
we can write the state of them1n Qbits as

uC&m1n5(
x,y

ax,yux,y&m1n . ~37!

Suppose that we decide to measure only them Qbits on the
left. ~The rule for the more general choice of which Qbits
measure is the obvious generalization of the one enunci
below.! The generalized Born rule states that the meas
ment will indicatex, 0<x,2m, with probability

px5 (
0<y,2n

uax,yu2, ~38!

and that after the value ofx is indicated, the state of them
1n Qbits is changed fromuC&m1n to ux&muFx&n , where

uFx&n5px
21/2(

y
ax,yuy&n . ~39!

If one immediately follows a measurement of them Qbits
on the left, with a measurement of the remainingn Qbits on
the right, then this measurement ought to be tantamoun
28 Am. J. Phys., Vol. 71, No. 1, January 2003
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directly measuring allm1n Qbits. And indeed, if one ap
plies the generalized Born rule twice—first to the measu
ment of them Qbits on the left and then to the measureme
of the remainingn on the right—one recovers the ordina
Born rule.

Although the generalized Born rule does not follow fro
the ordinary Born rule, it is equivalent to the ordinary Bo
rule supplemented by two very reasonable further conditio

~1! Suppose that between timet and t8, no unitary trans-
formations act on them Qbits on the left, but arbitrary uni-
tary transformations may act on then Qbits on the right—
that is, the only unitary transformations acting on them1n
Qbits betweent andt8 are of the formU51m^ Vn . Then the
statistical distribution of outcomes if allm1n Qbits are mea-
sured at timet8 is unaltered if them Qbits on the left are
measured at any earlier time betweent and t8. Informally,
once the computer ceases from further action on any gr
of Qbits, you do not have to wait to the end of the fu
computation before measuring those Qbits.

~2! For a group ofn Qbits to be in the stateuF& means
nothing more~or less! than this: If the Qbits are measure
after the application of an arbitrary unitary transformationV,
then the distribution of measurement outcomes will be t
specified by the Born rule forn Qbits in the stateVuF&.

The most important principles formulated in Secs. II–
are in Table I, which summarizes the relevant features
Qbits by contrasting them to the analogous features of Cb
In the table I have introduced the term ‘‘Bit,’’ with an uppe
caseB, to mean ‘‘Qbit or Cbit’’~in contrast to ‘‘bit,’’ with a
lower-caseb, which means ‘‘0 or 1’’!.

VII. CAUTIONARY REMARKS AND QUASI-
PHILOSOPHICAL REFLECTIONS

A. An important warning

It is extremely important to avoid a temptin
misinterpretation—a gross oversimplification—of quantu
superpositions of classical states, as illustrated by the foll
ing simple example:

A Qbit in the stateuc&51/&u0&11/&u1& is not the same
as a Qbit that is either in stateu0& or stateu1& with equal
probability, even though in either case a measurement
indicate 0 or 1 with equal probability. To see that the tw
cases are inherently different, suppose a Hadamard trans
H51/&(X1Z) is applied to the Qbit just before the me
surement is made. Because

Hu0&5
1

&
~ u0&1u1&), Hu1&5

1

&
~ u0&2u1&), ~40!
tes
Table I.

CLASSICAL versus QUANTUM BITS Cbits Qbits

States ofn Bits ux&n , 0<x,2n (axux&n , (uaxu251
Subsets ofn Bits Always have states Generally have no sta

Reversible operations on states Permutations Unitary transformations
Can state be learned from Bits? Yes No

To get information from Bits Just look Measure
Information acquired x x with probability uaxu2

State after information acquired Same: stillux& Different: now ux&
28N. David Mermin
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in the second case, whether the initial state isu0& or u1&, the
measurement afterH is applied will continue to indicate 0 o
1 with equal probability. But in the first case, in which th
initial state isuc&51/&(u0&1u1&), we haveHuc&5u0& so
the measurement afterH is applied must necessarily indica
0.

A Qbit in a superposition of classical-basis states is d
tinctly different from a Qbit that is in one or the other o
those classical states with probabilities given by the squa
moduli of the corresponding amplitudes. Superpositions h
no classical interpretation. They aresui generis, an intrinsi-
cally quantum-mechanical construct, whose meaning der
only from the rules that characterize the reversible operat
~unitary! that can be performed on them and the availa
means~measurement! for extracting information from them

B. Meaning of the quantum state

People have been arguing about the meaning of the q
tum state ever since the concept first appeared, with no i
cation that we are getting any closer to a consensus. T
conceptual issues are unimportant for an understandin
quantum computation which only requires one to know h
states are built up from other states~by appropriate unitary
transformations! and how information can be extracted fro
Qbits in a given state~by measurement, according to th
Born rules!.

The initial state on which the unitary transformations o
erate is usually a classical-basis stateux&n . Such a state can
be unambiguously identified as the post-measurement
of n Qbits after a measurement that indicated the valuex.
From this point of view the computational process beg
and ends with a measurement, and the entire role of the
of the Qbits at any stage of a succession of unitary trans
mations is to encapsulate the probability of the outcom
should the final measurement be made at that stage o
process, or to enable one to calculate new outcome proba
ties, should further unitary transformations be applied bef
the measurement.

The notion that the state ofn Qbits is simply a convenien
compact mathematical device for calculating the correlati
between the outcomes of two measurements on those Q
between which an arbitrary unitary transformation may ha
been applied, is often associated with the constellation
ideas about quantum mechanics called theCopenhagen in-
terpretation. It is to be contrasted with the notion that th
state ofn Qbits is an objective physical property of tho
Qbits, in the same strong sense that we can view the sta
n Cbits—the unique valuex that they represent—as an o
jective property of those Cbits. People who regard the qu
tum state as objective in this sense tend to make a fuss a
the fact that there are two quite different ways in which Qb
can change: deterministically and continuously~if one builds
each unitary transformation out of many infinitessimal on!
via unitary transformations, and statistically and discontin
ously via measurements. This dichotomy looses its conte
one replaces ‘‘Qbits’’ by ‘‘the state of Qbits,’’ and recognize
that the state is nothing but a catalog of how different unit
transformations will result in different distributions of me
surement outcomes—classical basis states, which alone
be viewed as objective.

Another pitfall of taking their state to be an objectiv
29 Am. J. Phys., Vol. 71, No. 1, January 2003
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property of the Qbits is that one can then succumb to
temptation to believe that the application of a series of u
tary transformations to the Qbits implements a physical co
putation of all the resulting amplitudesax . The clue that the
amplitudes have not all been calculated lies in the fact, no
above, that given the Qbits there is nothing whatever you
do with them to reveal the values of those amplitudes.

There are nevertheless some who believe that all the
plitudesax have the status of objective physical quantitie
inaccessible though those quantities may be. Such pe
then wonder how that vast number of high-precision cal
lations (1030 different amplitudes if you have 100 Qbits!
could all have been physically implemented. Those who
such questions like to provide sensational but fundament
silly answers involving vast numbers of parallel univers
invoking a point of view known as themany worldsinter-
pretation of quantum mechanics. My own opinion is th
imaginative as this vision may appear, it is symptomatic
a lack of a much more subtle kind of imagination, whic
can grasp the exquisite distinction that quantum phys
has forced upon us, between quantum states and obje
properties.

C. Where’s Planck’s constant?

Where’s h-bar? Where is h-bar?!
—Disgruntled quantum optician.4

Like my disapproving colleague, some physicists may
appalled to have finished what purports to be an exposi
of quantum mechanics—indeed, of applied~well, gedanken
applied! quantum mechanics—without ever having run in
Planck’s constant. How can this be?

The answer goes back to my first reason why enou
quantum mechanics to understand quantum computation
be taught in a mere four hours. We are interested in disc
~2-state! systems and discrete~unitary! transformations. But
Planck’s constant only appears in the context of continuou
infinite systems~for example, position eigenstates! and con-
tinuous families of transformations~for example, time devel-
opment! that act on them. Its role is to relate the conve
tional units in which we measure space and time, to the u
in which it is natural quantum-mechanically to take the ge
erators of the unitary transformations that produce tran
tions in space or time.

If we are not interested in location in continuous space a
are only interested in global rather than infinitesimal unita
transformations, then\ need never enter the story. The eng
neer, who must figure out how to implement unitary tran
formations acting over time on Qbits located in different r
gions of physical space, must indeed deal with\ and with
Hamiltonians that generate the unitary transformations ou
which the computation is built. But the designer of alg
rithms for the finished machine need only deal with the
sulting unitary transformations, from which\ has disap-
peared as a result, for example, of judicious choices by
engineers of the times over which the interactions that p
duce the unitary transformations act.

Deploring the absence of\ from expositions of quantum
computer science is rather like complaining that theI -V
curve for a p-n junction never appears in expositions
classical computer science. It is to confuse computerscience
with computerengineering.
29N. David Mermin
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VIII. THAT IS ALL YOU NEED TO KNOW

Armed with the contents of Secs. II–VI, one is ready
embark on the exposition of quantum computer science
be sure, there will be times when it is convenient to expa
upon the minimal formalism developed above. But such
pansions, for example the introduction ofbras ~as linear
functionals on the kets!, the introduction of density matrices
or the useful connection betweenX, Y, andZ and the group
of 3-dimensional rotations, are all technical mathematical
finements within the basic structure of the complex vec
space of Qbit states. They require no new physical princip
for their development.

Sections II–VI provide all the quantum mechanics o
needs to develop fully the factorization algorithm of Pe
Shor, the search algorithm of Lov Grover, and their la
generalizations~see for example, Ref. 2 and references ci
therein!. Only in developing the very important subject
quantum error correction is it necessary to introduce a n
physical assumption, that the formalism developed to
scribe Qbits—quantum states, unitary transformations,
Born rules—describes not only Qbits, but anything else
the world that the Qbits might happen to interact with.

If this far from modest extension of the scope of the fo
malism proves too big a pill for computer scientists to sw
low, one can compromise with a more limited model of er
correction, in which the computer contains large numbers
extraneous Qbits. Ideally, these irrelevant Qbits are
coupled to the Qbits of interest, in the sense that all unit
transformations act only on the Qbits of interest or only~un-
importantly and uninterestingly! on the extraneous Qbits
But unfortunately, there is a small amount of unintended c
pling between the two sets of Qbits—unitary transformatio
whose action is not restricted to either the relevant or ir
evant Qbits—whose disruptive action on the relevant Qbit
is the task of error correction to undo. One can then rem
as an aside, that parts of the world outside the computer~or
computationally irrelevant internal degrees of freedom of
computer! that cannot be be perfectly isolated from the pa
that do the computation can always be well modeled as
such collections of extraneous Qbits.
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A detailed view of how to erect the edifice of quantu
computation on this foundation can be found in Chapt
2–5 of my lecture notes.2 Chapter 6 describes a few furthe
topics in the broader area of quantum information that can
built on this same foundation. I do not delve into these m
ters here because the subject of this essay has been ho
teach computer scientists quantum mechanics—not quan
computation. I have therefore tried to restrict references
the computational applications of quantum mechanics
those that motivate the quantum-mechanical formalism,
those that address in broad general terms broad general q
tions that the formalism gives rise to~such as ‘‘How can this
possibly lead to anything useful?’’!
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