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Classical variational simulation of the Quantum Approximate
Optimization Algorithm
Matija Medvidović 1,2 and Giuseppe Carleo3✉

A key open question in quantum computing is whether quantum algorithms can potentially offer a significant advantage over
classical algorithms for tasks of practical interest. Understanding the limits of classical computing in simulating quantum systems is
an important component of addressing this question. We introduce a method to simulate layered quantum circuits consisting of
parametrized gates, an architecture behind many variational quantum algorithms suitable for near-term quantum computers. A
neural-network parametrization of the many-qubit wavefunction is used, focusing on states relevant for the Quantum Approximate
Optimization Algorithm (QAOA). For the largest circuits simulated, we reach 54 qubits at 4 QAOA layers, approximately
implementing 324 RZZ gates and 216 RX gates without requiring large-scale computational resources. For larger systems, our
approach can be used to provide accurate QAOA simulations at previously unexplored parameter values and to benchmark the
next generation of experiments in the Noisy Intermediate-Scale Quantum (NISQ) era.
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INTRODUCTION
The past decade has seen a fast development of quantum
technologies and the achievement of an unprecedented level of
control in quantum hardware1, clearing the way for demonstra-
tions of quantum computing applications for practical uses.
However, near-term applications face some of the limitations
intrinsic to the current generation of quantum computers, often
referred to as Noisy Intermediate-Scale Quantum (NISQ) hard-
ware2. In this regime, a limited qubit count and absence of
quantum error correction constrain the kind of applications that
can be successfully realized. Despite these limitations, hybrid
classical-quantum algorithms3–6 have been identified as the ideal
candidates to assess the first possible advantage of quantum
computing in practical applications7–10.
The Quantum Approximate Optimization Algorithm (QAOA)5 is

a notable example of variational quantum algorithm with
prospects of quantum speedup on near-term devices. Devised
to take advantage of quantum effects to solve combinatorial
optimization problems, it has been extensively theoretically
characterized11–16, and also experimentally realized on state-of-
the-art NISQ hardware17. While the general presence of quantum
advantage in quantum optimization algorithms remains an open
question18–21, QAOA has gained popularity as a quantum
hardware benchmark22–25. As its desired output is essentially a
classical state, the question arises whether a specialized classical
algorithm can efficiently simulate it26, at least near the variational
optimum. In this paper, we use a variational parametrization of the
many-qubit state based on Neural Network Quantum States
(NQS)27 and extend the method of ref. 28 to simulate QAOA. This
approach trades the need for exact brute force exponentially
scaling classical simulation with an approximate, yet accurate,
classical variational description of the quantum circuit. In turn, we
obtain an heuristic classical method that can significantly expand
the possibilities to simulate NISQ-era quantum optimization
algorithms. We successfully simulate the Max-Cut QAOA cir-
cuit5,11,17 for 54 qubits at depth p= 4 and use the method to

perform a variational parameter sweep on a 1D cut of the
parameter space. The method is contrasted with state-of-the-art
classical simulations based on low-rank Clifford group decom-
positions26, whose complexity is exponential in the number of
non-Clifford gates as well as tensor-based approaches29. Instead,
limitations of the approach are discussed in terms of the QAOA
parameter space and its relation to different initializations of the
stochastic optimization method used in this work.

RESULTS
The Quantum Approximate Optimization Algorithm
The Quantum Approximate Optimization Algorithm (QAOA) is a
variational quantum algorithm for approximately solving discrete
combinatorial optimization problems. Since its inception in the
seminal work of Farhi, Goldstone, and Gutmann5,12, QAOA has
been applied to Maximum Cut (Max-Cut) problems. With
competing classical algorithms30 offering exact performance
bounds for all graphs, an open question remains—can QAOA
perform better by increasing the number of free parameters?
In this work, we study a quadratic cost function31,32 associated

with a Max-Cut problem. If we consider a graph G= (V, E) with
edges E and vertices V, the Max-Cut of the graph G is defined by
the following operator:

C ¼
X

i;j2E
wijZiZj; (1)

where wij are the edge weights and Zi are Pauli operators. The
classical bitstring B that minimizes Bh jC Bj i is the graph partition
with the maximum cut. QAOA approximates such a quantum state
through a quantum circuit of predefined depth p:

γ; βj i ¼ UBðβpÞUCðγpÞ $ $ $UBðβ1ÞUCðγ1Þ þj i; (2)

where þj i is a symmetric superposition of all computational basis
states: þj i ¼ H&N 0j i&N for N qubits. The set of 2p real numbers γi
and βi for i= 1…p define the variational parameters to be
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optimized over by an external classical optimizer. The unitary
gates defining the parametrized quantum circuit read UBðβÞ ¼Q

i2Ve
'iβXi and UCðγÞ ¼ e'iγC .

Optimal variational parameters γ and β are then found through
an outer-loop classical optimizer of the following quantum
expectation value:

Cðγ; βÞ ¼ γ; βh jC γ; βj i (3)

It is known that, for QAOA cost operators of the general form
C ¼

P
kCkðZ1; ¼ ; ZNÞ, the optimal value asymptotically con-

verges to the minimum value:

lim
p!1

Cp ¼ min
B

Bh jC Bj i (4)

where Cp is the optimal cost value at QAOA depth p and B are
classical bit strings. With modern simulations and implementa-
tions still being restricted to lower p-values, it is unclear how large
p has to get in practice before QAOA becomes comparable with its
classical competition.
In this work we consider 3-regular graphs with all weights wij set

to unity at QAOA depths of p= 1, 2, 4.

Classical variational simulation
Consider a quantum system consisting of N qubits. The Hilbert
space is spanned by the computational basis f Bj i : B 2 f0; 1gNg
of classical bit strings B ¼ ðB1; ¼ ; BNÞ. A general state can be
expanded in this basis as ψj i ¼

P
BψðBÞ Bj i. The convention

Zi Bj i ¼ ð'1ÞBi Bj i is adopted. In order to perform approximate
classical simulations of the QAOA quantum circuit, we use a
neural-network representation of the many-body wavefunction
ψðBÞ associated with this system, and specifically adopt a
shallow network of the Restricted Boltzmann Machine (RBM)
type33–35:

ψðBÞ ( ψθðBÞ ) exp
PN

j¼1
ajBj

 !

$
QNh

k¼1
1þ exp bk þ

PN

j¼1
WjkBj

 !" #

: (5)

The RBM provides a classical variational representation of the
quantum state27,36. It is parametrized by a set of complex
parameters θ= {a, b, W}—visible biases a= (a1, …, aN), hidden
biases b ¼ ðb1; ¼ ; bNh Þ and weights W= (Wj,k: j= 1…N, k= 1…
Nh). The complex-valued ansatz given in Eq. (5) is, in general, not
normalized.
We note that the N-qubit þj i state required for initializing

QAOA can always be exactly implemented by setting all
variational parameters to 0. That choice ensures that the
wavefunction ansatz given in Eq. (5) is constant across all
computational basis states, as required. The advantage of using
the ansatz given in Eq. (5) as an N-qubit state is that a subset of
one- and two-qubit gates can be exactly implemented as
mappings between different sets of variational parameters
θ7!θ0. In general, such mapping corresponding to an abstract
gate G is found as the solution of the following nonlinear
equation:

hBjψθ0 i ¼ C Bh jG ψθj i; (6)

for all bit strings B and any constant C, if a solution exists. For
example, consider the Pauli Z gate acting on qubit i. In that case,
Eq. (6) reads ea

0
i Bi ¼ Cð'1ÞBi eaiBi after trivial simplification. The

solution is a0i ¼ ai þ iπ for C= 1, with all other parameters
remaining unchanged. In addition, one can exactly implement a
subset of two-qubit gates by introducing an additional hidden
unit coupled only to the two qubits in question. Labeling the new
unit by c, we can implement the RZZ gate relevant for QAOA. The
gate is given as RZZðϕÞ ¼ e'iϕZiZj / diag ð1; eiϕ; eiϕ; 1Þ up to a

global phase. The replacement rules read:

Wic ¼ '2AðϕÞ; Wjc ¼ 2AðϕÞ
ai ! ai þAðϕÞ; aj ! aj 'AðϕÞ;

(7)

where AðϕÞ= Arccosh eiϕ
! "

and C= 2. Derivations of replace-
ment rules for these and other common one and two-qubit gates
can be found in Sec. Methods.
Not all gates can be applied through solving Eq. (6). Most

notably, gates that form superpositions belong in this category,
including UBðβÞ ¼

Q
ie
'iβXi required for running QAOA. This

happens simply because a linear combination of two or more
RBMs cannot be exactly represented by a single new RBM through
a simple variational parameter change. To simulate those gates,
we employ a variational stochastic optimization scheme.
We take Dðϕ;ψÞ ¼ 1' Fðϕ;ψÞ as a measure of distance

between two arbitrary quantum states ϕj i and ψj i, where F(ϕ, ψ)
is the usual quantum fidelity:

Fðϕ;ψÞ ¼ jhϕjψij2

hϕjϕihψjψi
: (8)

In order to find variational parameters θ, which approximate a
target state ϕj i well ( ψθj i ( ϕj i, up to a normalization constant),
we minimize Dðψθ;ϕÞ using a gradient-based optimizer. In this
work we use the Stochastic Reconfiguration (SR)37–39 algorithm to
achieve that goal.
For larger p, extra hidden units introduced when applying UC(γ)

at each layer can result in a large number of associated
parameters to optimize over that are not strictly required for
accurate output state approximations. So to keep the parameter
count in check, we insert a model compression step, which halves
the number of hidden units immediately after applying UC
doubles it. Specifically we create an RBM with fewer hidden units
and fit it to the output distribution of the larger RBM (output of
UC). Exact circuit placement of compression steps are shown on
Fig. 1 and details are provided in Methods. As a result of the
compression step, we are able to keep the number of hidden units
in our RBM ansatz constant, explicitly controlling the variational
parameter count.

Simulation results for 20 qubits
In this section we present our simulation results for Max-Cut
QAOA on random regular graphs of order N40–42. In addition, we
discuss model limitations and its relation to current state-of-the-
art simulations.
QAOA angles γ, β are required as an input of our RBM-based

simulator. At p= 1, we base our parameter choices on the position
of global optimum that can be computed exactly (see Supple-
mentary Note 1). For p > 1, we resort to direct numerical
evaluation of the cost function as given in Eq. (1) from either
the complete state vector of the system (number of qubits
permitting) or from importance-sampling the output state as
represented by a RBM. For all p, we find the optimal angles using
Adam43 with either exact gradients or their finite-difference
approximations.
We begin by studying the performance of our approach on a

20-qubit system corresponding to the Max-Cut problem on a 3-
regular graph of order N= 20. In that case, access to exact
numerical wavefunctions is not yet severely restricted by the
number of qubits. That makes it a suitable test-case. The results
can be found in Fig. 2.
In Fig. 2, we present the cost function for several values of

QAOA angles, as computed by the RBM-based simulator. Each
panel shows cost functions from one typical random 3-regular
graph instance. We observe that cost landscapes, optimal angles
and algorithm performance do not change appreciably between
different random graph instances. We can see that our approach
reproduces variations in the cost landscape associated with
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different choices of QAOA angles at both p= 1 and p= 2. At p= 1,
an exact formula (see Supplementary Note 1) is available for
comparison of cost function values. We report that, at optimal
angles, the overall final fidelity (overlap squared) is consistently
above 94% for all random graph instances we simulate.
In addition to cost function values, we also benchmark our RBM-

based approach by computing fidelities between our variational
states and exact simulations. In Fig. 3 we show the dependence of
fidelity on the number of qubits and circuit depth p. While, in
general, it is hard to analytically predict the behavior of these
fidelities, we nonetheless remark that with relatively small NQS we
can already achieve fidelities in excess of 92% for all system sizes
considered for exact benchmarks.

Simulation results for 54 qubits
Our approach can be readily extended to system sizes that are not
easily amenable to exact classical simulation. To show this, in Fig. 4
we show the case of N= 54 qubits. This number of qubits
corresponds, for example, to what implemented by Google’s
Sycamore processor, while our approach shares no other

(a) (b) (c)

Fig. 2 Benchmarking the cost function for 20 qubits. a The exact variational QAOA landscape at p= 1 of a random 20-qubit instance of a 3-
regular graph is presented, calculated using the analytical cost formula (see Supplementary Note 1). The optimum is found using a gradient-
based optimizer43 and marked. The restricted cut along the constant-β line and at optimal γ is more closely studied in panel b. b RBM-based
output wavefunctions are contrasted with exact results. c A similar variational landscape cut is presented at p= 2. Optimal p= 2 QAOA
parameters are calculated using numerical derivatives and a gradient-based optimizer. Parameters γ1, β1, and β2 are fixed at their optimal
values while the cost function γ2-dependence is investigated. We note that our approach is able to accurately reproduce the increased
proximity to the combinatorial optimum associated with increasing QAOA depth p. (The dashed line represents the minumum from p= 1
curve in panel b.).

Fig. 1 The QAOA quantum circuit. A schematic representation of the QAOA circuit and our approach to simulating it. The input state is
trivially initialized to þj i. Next, at each p, the exchange of exactly (UC) and approximately (RX(β)= e−iβX) applicable gates is labeled (see Sec.
Methods). As noted in the main text, each (exact) application of the UC gate leads to an increase in the number of hidden units by ∣E∣ (the
number of edges in the graph). In order to keep that number constant, we "compress" the model (see Sec. Methods), indicated by red dashed
lines after each UC gate. The compression is repeated at each layer after the first, halving the number of hidden units each time, immediately
after doubling it with UC gates. After the final layer, the RBM is parametrized by θopt, approximating the final QAOA target state γ;βj i.

Fig. 3 Benchmarking with exact fidelities. Fidelities between
approximate RBM variational states and quantum states obtained
with exact simulation, for different values of p= 1, 2, 4 and number
of qubits. QAOA angles γ, β we use are set to optimal values at p= 4
for each random graph instance. Ten randomly generated graphs
are used for each system size. Error bars represent the standard
deviation.
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implementation details with that specific platform. For the system
of N= 54 qubits, we closely reproduce the exact error curve (see
Supplementary Note 1) at p= 1, implementing 81 RZZ (e−iγZ⊗Z)
gates exactly and 54 RX (e−iβX) gates approximately, using the
described optimization method. We also perform simulations at
p= 2 and p= 4 and obtain corresponding approximate QAOA
cost function values.
At p= 4, we exactly implement 324 RZZ gates and approxi-

mately implement 216 RX gates. This circuit size and depth is such
that there is no available experimental or numerically exact result
to compare against. The accuracy of our approach can none-
theless be quantified using intermediate variational fidelity
estimates. These fidelities are exactly the cost functions (see Sec.
Methods) we optimize, separately for each qubit. In Fig. 4 (panel b)
we show the optimal variational fidelities (see Eq. (8)) found when
approximating the action of RX gates with the RBM wavefunction.
At optimal γ4 (minimum of p= 4 curve at Fig. 4, panel a), the
lowest variational fidelity reached was above 98%, for a typical
random graph instance shown at Fig. 4. As noted earlier, exact
final states of 54-qubit systems are intractable so we are unable to
report or estimate the full many-qubit fidelity benchmark results.
We remark that the stochastic optimization performance is

sensitive to choices of QAOA angles away from optimum (see Fig.
4 right). In general, we report that the fidelity between the RBM
state (Eq. (5)) and the exact N-qubit state (Eq. (2)) decreases as one
departs from optimal by changing γ and β.
For larger values of QAOA angles, the associated optimization

procedure is more difficult to perform, resulting in a lower fidelity
(see the dark patch in Fig. 4, panel b). We find that optimal angles
were always small enough not to be in the low-performance
region. Therefore, this model is less accurate when studying QAOA
states away from the variational optimum. However, even in
regions with lowest fidelities, RBM-based QAOA states are able to
approximate cost well, as can be seen in Figs. 2 and 4.
As an additional hint to the high quality of the variational

approximation, we capture the QAOA approximation of the actual
combinatorial optimum. A tight upper bound on that optimum
was calculated to be Copt=−69 for 54 qubits by directly
optimizing an RBM to represent the ground state of the cost
operator defined in Eq. (3).

Comparison with other methods
In modern sum-over-Cliffords/Metropolis simulators, computa-
tional complexity grows exponentially with the number of non-
Clifford gates. With the RZZ gate being a non-Clifford operation,
even our 20-qubit toy example, exactly implementing 60 RZZ
gates at p= 2, is approaching the limit of what those simulators
can do26. In addition, that limit is greatly exceeded by the larger,
54-qubit system we study next, implementing 162 RZZ gates.
State-of-the-art tensor-based approaches29 have been used to
simulate larger circuits but are ineffective in the case of nonplanar
graphs.
Another very important tensor-based method is the Matrix

Product State (MPS) variational representation of the many-qubit
state. This is is a low-entanglement representation of quantum
states, whose accuracy is controlled by the so-called bond
dimension. Routinely adopted to simulate ground states of one-
dimensional systems with high accuracy44–46, extensions of this
approach to simulate challenging circuits have also been recently
put forward47. In Fig. 5, our approach is compared with an MPS
ansatz. We establish that for small systems, MPS provides reliable
results with relatively small bond dimensions. For larger systems,
however, our approach significantly outperforms MPS-based
circuit simulation methods both in terms of memory requirements
(fewer parameters) and overall runtime. This is to be expected in
terms of entanglement capacity of MPS wavefunctions, that are
not specifically optimized to handle non-one-dimensional inter-
action graphs, as in this specific case at hand.
For a more direct comparison, we estimate the MPS bond

dimension required for reaching RBM performance at p= 2 and
54 qubits to be ~104 (see Fig. 5), amounting to ~1010 complex
parameters (≈160 GB of storage) while our RBM approach uses
≈4500 parameters (≈70 kB of storage). In addition, we expect the
MPS number of parameters to grow with depth p because of
additional entanglement, while RBM sizes heuristically scale
weakly (constant in our simulations) with p and can be controlled
mid-simulation using our compression step. It should be noted
that the output MPS bond dimension depends on the specific
implementation of the MPS simulator, namely, qubit ordering and
the number of “swap” gates applied to correct for the nonplanar
nature of the underlying graph, and that a more efficient

(a) (b)

Fig. 4 Simulating 54 qubits. a Randomly generated 3-regular graphs with 54 nodes are considered at p= 1, 2, 4. At each p, all angles were set
to optimal values (except for the final γp) for a smaller graph of 20 nodes for which optimal angles can be found at a much smaller
computational cost. Cost dependence along this 1D slice of the variational landscape (a higher-dimensional analogue of panel a of Fig. 2) is
investigated. The dashed line represents the exact cost at p= 1. Error bars were too small to be visible on the plot. At p= 2, this 54-qubit
simulation approximately implements 162 RZZ gates and 108 RX gates while at p= 4 there are 324 RZZs and 216 RXs. b An array of final
stochastic estimations of single-qubit fidelities (see Sec. Approximate gate application for formula) in the course of optimizer progress. The
system presented consists of 54 qubits at p= 2 where exact state vectors are intractable for direct comparison. In these simulations, β1, β2, and
γ1 are kept at their optimal values. Optimal γ2 value (for given β1, β2, γ1) is shown with a dashed line. We note that the fidelity estimates begin
to drop approximately as γ2 increases beyond the optimal value. A similar qubit-by-qubit trend can be noticed across all system sizes and
depths p we studied.
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implementations might be found. However, determining the
optimal implementation is itself a difficult problem and, given the
entanglement of a generic circuit we simulate, it would likely
produce a model with orders of magnitude more parameters than
a RBM-based approach.

DISCUSSION
In this work, we introduce a classical variational method for
simulating QAOA, a hybrid quantum-classical approach for solving
combinatorial optimizations with prospects of quantum speedup
on near-term devices. We employ a self-contained approximate
simulator based on NQS methods borrowed from many-body
quantum physics, departing from the traditional exact simulations
of this class of quantum circuits.
We successfully explore previously unreachable regions in the

QAOA parameter space, owing to good performance of our
method near optimal QAOA angles. Model limitations are
discussed in terms of lower fidelities in quantum state reproduc-
tion away from said optimum. Because of such different area of
applicability and relative low computational cost, the method is
introduced as complementary to established numerical methods
of classical simulation of quantum circuits.
Classical variational simulations of quantum algorithms provide

a natural way to both benchmark and understand the limitations
of near-future quantum hardware. On the algorithmic side, our
approach can help answer a fundamentally open question in the
field, namely whether QAOA can outperform classical optimization
algorithms or quantum-inspired classical algorithms based on
artificial neural networks48–50.

METHODS
Exact application of one-qubit Pauli gates
As mentioned in the main text, some one-qubit gates gates can be applied
exactly to the RBM ansatz given in Eq. (5). Here we discuss the specific case
of Pauli gates. Parameter replacement rules we use to directly apply one-
qubit gates can be obtained by solving Eq. (6) given in the main text.
Consider for example the Pauli Xi or NOTi gate acting on qubit i. It can be
applied by satisfying the following system of equations:

lnC þ a0i Bi ¼ ð1' BiÞai
b0k þ BiW 0

ik ¼ bk þ ð1' BiÞWik :
(9)

for Bi= 0, 1. The solution is:

lnC ¼ ai ; a0i ¼ 'ai ;

b0k ¼ bk þWik ; W 0
ik ¼ 'Wik ;

(10)

with all other parameters remaining unchanged.
A similar solution can be found for the Pauli Y gate:

lnC ¼ ai þ iπ
2 ; a0i ¼ 'ai þ iπ;

b0k ¼ bk þWik ; W 0
ik ¼ 'Wik ;

(11)

with all other parameters remaining unchanged as well.
For the Pauli Z gate, as described in the main text, one needs to solve

ea
0
i Bi ¼ ð'1ÞBi eaiBi . The solution is simply

a0i ¼ ai þ iπ: (12)

More generally, it is possible to apply exactly an arbitrary Z rotation gate,
as given in matrix form as:

RZðφÞ ¼ e'iφ2Z /
1 0

0 eiφ

# $
(13)

where the proportionality is up to a global phase factor. Similar to the Pauli
Zi gate, this gate can be implemented on qubit i by solving ea

0
i Bi ¼ eiφBi eaiBi .

The solution is simply:

a0i ¼ ai þ iφ; (14)

with all other parameters besides ai remaining unchanged. This expression
reduces to the Pauli Z gate replacement rules for φ= π as required.

Exact application of two-qubit gates
We apply two-qubit gates between qubits k andlby adding an additional
hidden unit (labeled by c) to the RBM before solving Eq. (6) from the main
text. The extra hidden unit couples only to qubits in question, leaving all
previously existing parameters unchanged. In that special case, the
equation reduces to

eΔakBkþΔalBl 1þ eWkcBkþWlcBl
! "

ψθðBÞ ¼ C Bh jG ψθj i: (15)

An important two-qubit gate we can apply exactly are ZZ rotations. The
gate RZZ is key for being able to implement the first step in the QAOA
algorithm. The definition is:

RZZðφÞ ¼ e'iφ2Z&Z /

1 0 0 0

0 eiφ 0 0

0 0 eiφ 0

0 0 0 1

0

BBB@

1

CCCA ; (16)

where the proportionality factor is again a global phase. The related matrix
element for a RZZkl gate between qubits k and l is B0kB

0
l

% &&RZZklðφÞ BkBlj i ¼
eiφBk*Bl where⊕ stands for the classical exclusive or (XOR) operation. Then,
one solution to Eq. (15) reads:

Wic ¼ '2AðφÞ; Wjc ¼ 2AðφÞ
a0i ¼ ai þAðφÞ; a0j ¼ aj 'AðφÞ; (17)

where AðφÞ= Arccosh eiφð Þ and C= 2.

Approximate gate application
Here we provide model details and show how to approximately apply
quantum gates that cannot be implemented through methods described
in sec. Exact application of one-qubit Pauli gates. In this work we use the
Stochastic Reconfiguration (SR)37 algorithm to approximately apply
quantum gates to the RBM ansatz. To that end, we write the “infidelity”
between our RBM ansatz and the target state ϕ, Dðψθ;ϕÞ ¼ 1' Fðψθ;ϕÞ,
as an expectation value of an effective hamiltonian operator Hϕ

eff :

Dðψθ;ϕÞ ¼
ψθh jHϕ

eff ψθj i
hψθjψθi

! Hϕ
eff ¼ 1' ϕj i ϕh j

hϕjϕi
(18)

We call the hermitian operator given in Eq. (18) a “hamiltonian” only
because the target quantum state ψj i is encoded into it as the eigenstate
corresponding to the smallest eigenvalue. Our optimization scheme
focuses on finding small parameter updates Δk that locally approximate
the action of the imaginary time evolution operator associated with Hϕ

eff ,
thus filtering out the target state:

ψθþΔ

&& '
¼ C e'ηH ψθj i; (19)

Fig. 5 Comparison with Matrix Product States. A range of MPS-
based QAOA simulations are compared to our RBM ansatz
performance on both 20-qubit and 54-qubit graphs at p= 2. In
the 20-qubit case, we see quick convergence to the QAOA cost
optimum with increasing bond dimension. Approximation ratio with
of the RBM output is shown on the y-axis. However, on a 54-qubit
graph, MPS accuracy increases approximately logarithmically with
bond dimension. An approximation of the MPS bond dimension
required for reaching RBM performance is extrapolated to be ≈1.5 ×
104 which amounts to ~1010 free parameters.
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where C is an arbitrary constant included because our variational states
(Eq. (5), main text) are not normalized. Choosing both η and Δ to be small,
one can expand both sides to linear order in those variables and solve the
resulting linear system for all components of Δ, after eliminating C first.
After some simplification, one arrives at the following parameter at each
loop iteration (indexed with t):

θðtþ1Þ
k ¼ θðtÞk ' η

X

l

S'1
kl

∂D
∂θ+l

; (20)

where stochastic estimations of gradients of the cost functionDðψθ;ϕÞ can
be obtained through samples from ∣ψθ∣2 at each loop iteration through:

∂D
∂θ+k

¼ Oy
kH

ϕ
eff

D E

ψθ

' Oy
k

D E

ψθ

Hϕ
eff

D E

ψθ

: (21)

Here, Ok is defined as a diagonal operator in the computational basis
such that Bh j0Ok Bj i ¼ ∂lnψθ

∂θk
δB0B . Averages over ψ are commonly defined

as h$iψ ) ψh j $ ψj i=hψjψi. Furthermore, the S-matrix appearing in Eq. (20)
reads:

Skl ¼ Oy
kOl

D E

ψθ

' Oy
k

D E

ψθ

hOliψθ
; (22)

and corresponds to the Quantum Geometric Tensor or Quantum Fisher
Information (also see ref. 51 for a detailed description and connection with
the natural gradient method in classical machine learning52).
Exact computations of averages over N-qubit states ψθ and ϕ at each

optimization step range from impractical to intractable, even for moderate
N. Therefore, we evaluate those averages by importance-sampling the
probability distributions associated with the variational ansatz ∣ψθ∣2 and
the target state ∣ϕ∣2 at each optimization step t. All of the above
expectation values are evaluated using Markov Chain Monte Carlo
(MCMC)38,39 sampling with basic single-spin flip local updates. An overview
of the sampling method can be found in ref. 53. In order to use those
techniques, we rewrite Eq. (21) as:

∂D
∂θ+l

¼ ϕ
ψθ

( )

ψθ

ψθ

ϕ

( )

ϕ
O+

k

% '
ψθ

'
ϕ
ψθ
O+

k

D E

ψθ

ϕ
ψθ

D E

ψθ

2

64

3

75: (23)

In our experiments with less than 20 qubits, we take 8000 MCMC
samples from four independent chains (totaling 32,000 samples) for
gradient evaluation. Between each two recorded samples, we take N
MCMC steps (for N qubits). For the 54-qubit experiment, we take 2000
MCMC samples four independent chains because of increased computa-
tional difficulty of sampling. The entire Eq. (23) is manifestly invariant to
rescaling of ψθ and ϕ, removing the need to ever compute normalization
constants. We remark that the prefactor in Eq. (23) is identically equal to
the fidelity given in Eq. (8) in the main text.

Fðψ;ϕÞ ¼ jhϕjψij2

hϕjϕihψjψi ¼
ϕ
ψ

( )

ψ

ψ

ϕ

( )

ϕ
; (24)

allowing us to keep track of cost function values during optimization with
no additional computational cost.
The second step consists of multiplying the variational derivative with the

inverse of the S-matrix (Eq. (22)) corresponding to a stochastic estimation of a
metric tensor on the hermitian parameter manifold. Thereby, the usual
gradient is transformed into the natural gradient on that manifold. However,
the S-matrix is stochastically estimated and it can happen that it is singular. To
regularize it, we replace S with S+ ϵ1, ensuring that the resulting linear
system has a unique solution. We choose ϵ= 10−3 throughout. The
optimization procedure is summarized in Supplementary Note 2.
In order to keep the number of hidden units reasonable, we employ a

compression step at each QAOA layer (after the first). Immediately after
applying the UC(γk) gate in layer k to the RBM ψθ (and thereby introducing
unwanted parameters), we go through the following steps:

(1) Construct a new RBM eψθ .
(2) Initialize eψθ to exactly represent the state UC

1
k

P
j,kγj

* +
þj i. Doing

this introduces half the number hidden units that are already
present in ψθ.

(3) Stochastically optimize eψθ to approximate ψθ (using algorithm in
Supplementary Note 2) with ϕ→ ψθ and ψ ! eψθ .

In essence, we use the optimization algorithm with the “larger” ψθ as the
target state ϕ. The optimization results in a new RBM state with fewer
hidden units that closely approximates the old RBM with fidelity > 0.98 in
all our tests. We then proceed to simulate the rest of the QAOA circuit and

apply the same compression procedure again when the number of
parameters increases again. The exact schedule of applying this procedure
in the context of different QAOA layers can be seen on Fig. 1.
We choose the initial state for the optimization as an exactly

reproducible RBM state that has non-zero overlap with the target (larger)
RBM. In principle, any other such state would work, but we heuristically
find this one to be a reliable choice across all p-values studied.
Alternatively, one can just initialize fψθ to UC γ0ð Þ þj i with
γ0 ¼ argmaxγ F ψθ;UCðγÞ þj ið Þ, using an efficient 1D optimizer to solve
for γ0 before starting to optimize the full RBM.

DATA AVAILABILITY
The authors declare that the data supporting the findings of this study are available
within the paper.

CODE AVAILABILITY
Our Python code is available on GitHub to reproduce the results presented in this
paper through the following URL: github.com/Matematija/QubitRBM.

Received: 27 November 2020; Accepted: 13 May 2021;

REFERENCES
1. Arute, F. et al. Quantum supremacy using a programmable superconducting

processor. Nature 574, 505–510 (2019).
2. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
3. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum pro-

cessor. Nat. Commun. 5, 1–7 (2014).
4. Farhi, E. & Neven, H. Classification with quantum neural networks on near term

processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).
5. Farhi, E., Goldstone, J. & Gutmann, S. A Quantum Approximate Optimization

Algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).
6. Grant, E. et al. Hierarchical quantum classifiers. npj Quantum Inf. 4, 1–8 (2018).
7. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Chemistry: simulated

quantum computation of molecular energies. Science 309, 1704–1707 (2005).
8. O’Malley, P. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev.

X 6, 031007 (2016).
9. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
10. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
11. Wang, Z., Hadfield, S., Jiang, Z. & Rieffel, E. G. Quantum approximate optimization

algorithm for MaxCut: a fermionic view. Phys. Rev. A 97, 022304 (2018).
12. Farhi, E., Goldstone, J. & Gutmann, S. A Quantum Approximate Optimization

Algorithm applied to a bounded occurrence constraint problem. Preprint at
https://arxiv.org/abs/1412.6062 (2014).

13. Lloyd, S. Quantum approximate optimization is computationally universal. Pre-
print at https://arxiv.org/abs/1812.11075 (2018).

14. Jiang, Z., Rieffel, E. G. & Wang, Z. Near-optimal quantum circuit for Grover’s
unstructured search using a transverse field. Phys. Rev. A 95, 062317 (2017).

15. Hadfield, S. et al. From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz. Algorithms 12, 34 (2019).

16. Zhou, L., Wang, S. T., Choi, S., Pichler, H. & Lukin, M. D. Quantum Approximate
Optimization Algorithm: performance, mechanism, and implementation on near-
term devices. Phys. Rev. X 10, 21067 (2020).

17. Harrigan, M. P. et al. Quantum approximate optimization of non-planar graph
problems on a planar superconducting processor. Nat. Phys. 17, 332–336 (2021).

18. Santoro, G. E., Martoňák, R., Tosatti, E. & Car, R. Theory of quantum annealing of
an Ising spin glass. Science 295, 2427–2430 (2002).

19. Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345,
420–424 (2014).

20. Guerreschi, G. G. & Matsuura, A. Y. QAOA for Max-Cut requires hundreds of qubits
for quantum speed-up. Sci. Rep. 9, 1–7 (2019).

21. Bravyi, S., Kliesch, A., Koenig, R. & Tang, E. Obstacles to variational quantum
optimization from symmetry protection. Phys. Rev. Lett. 125, 260505 (2020).

22. Pagano, G. et al. Quantum approximate optimization of the long-range Ising
model with a trapped-ion quantum simulator. Proc. Natl Acad. Sci. USA 117,
25396–25401 (2020).

23. Bengtsson, A. et al. Improved success probability with greater circuit depth for
the Quantum Approximate Optimization Algorithm. Phys. Rev. Appl. 14, 034010
(2020).

M. Medvidović and G. Carleo

6

npj Quantum Information (2021) ��101� Published in partnership with The University of New South Wales



24. Willsch, M., Willsch, D., Jin, F., De Raedt, H. & Michielsen, K. Benchmarking the
quantum approximate optimization algorithm. Quantum Inf. Process. 19, 1–24
(2020).

25. Otterbach, J. S. et al. Unsupervised machine learning on a hybrid quantum
computer. Preprint at https://arxiv.org/abs/1712.05771 (2017).

26. Bravyi, S. et al. Simulation of quantum circuits by low-rank stabilizer decom-
positions. Quantum 3, 181 (2019).

27. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial
neural networks. Science 355, 602–606 (2017).

28. Jónsson, B., Bauer, B. & Carleo, G. Neural-network states for the classical simu-
lation of quantum computing. Preprint at https://arxiv.org/abs/1808.05232
(2018).

29. Villalonga, B. et al. Establishing the quantum supremacy frontier with a 281 Pflop/
s simulation. Quantum Sci. Technol. 5, 034003 (2020).

30. Goemans, M. X. & Williamson, D. P. Improved approximation algorithms for
maximum cut and satisflability problems using semidefinite programming. J.
ACM 42, 1115–1145 (1995).

31. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 1–14 (2014).
32. Barahona, F. On the computational complexity of ising spin glass models. J. Phys.

A Math. Gen. 15, 3241–3253 (1982).
33. Hinton, G. E. Training products of experts by minimizing contrastive divergence.

Neural Comput. 14, 1771–1800 (2002).
34. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with

neural networks. Science 313, 504–507 (2006).
35. Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
36. Melko, R. G., Carleo, G., Carrasquilla, J. & Cirac, J. I. Restricted Boltzmann machines

in quantum physics. Nat. Phys. 15, 887–892 (2019).
37. Sorella, S. Green function monte carlo with stochastic reconfiguration. Phys. Rev.

Lett. 80, 4558–4561 (1998).
38. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.

Equation of state calculations by fast computing machines. J. Chem. Phys. 21,
1087–1092 (1953).

39. Hastings, W. K. Monte carlo sampling methods using Markov chains and their
applications. Biometrika 57, 97–109 (1970).

40. Steger, A. & Wormald, N. C. Generating random regular graphs quickly. Comb.
Probab. Comput. 8, 377–396 (1999).

41. Kim, J. H. & Vu, V. H. Generating random regular graphs. in Proc. of the 35th
annual ACM symposium on Theory of computing 213–222 (Association for Com-
puting Machinery, 2003).

42. Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics,
and function using NetworkX. in 7th Python Sci. Conf. (SciPy 2008), 11–15 (Pasa-
dena, CA USA, 2008) https://networkx.org/documentation/stable/citing.html.

43. Kingma, D. P. & Ba, J. L. Adam: a method for stochastic optimization. in 3rd Int.
Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. (San Diego, CA, USA, 2015)
https://dblp.org/db/conf/iclr/iclr2015.html.

44. White, S. R. Density matrix formulation for quantum renormalization groups. Phys.
Rev. Lett. 69, 2863–2866 (1992).

45. Vidal, G. Efficient classical simulation of slightly entangled quantum computa-
tions. Phys. Rev. Lett. 91, 147902 (2003).

46. Vidal, G. Efficient simulation of one-dimensional quantum many-body systems.
Phys. Rev. Lett. 93, 040502 (2004).

47. Zhou, Y., Stoudenmire, E. M. & Waintal, X. What Limits the Simulation of Quantum
Computers? Phys. Rev. X 10, 041038 (2020).

48. Gomes, J., Eastman, P., McKiernan, K. A. & Pande, V. S. Classical quantum opti-
mization with neural network quantum states. Preprint at https://arxiv.org/abs/
1910.10675 (2019).

49. Zhao, T., Carleo, G., Stokes, J. & Veerapaneni, S. Natural evolution strategies and
variational Monte Carlo. Mach. Learn. Sci. Technol. 2, 2–3 (2020).

50. Hibat-Allah, M., Inack, E. M., Wiersema, R., Melko, R. G. & Carrasquilla, J. Variational
Neural Annealing. Preprint at https://arxiv.org/abs/2101.10154 (2021).

51. Stokes, J., Izaac, J., Killoran, N. & Carleo, G. Quantum natural gradient. Quantum 4,
269 (2020).

52. Amari, S. I. Natural gradient works efficiently in learning. Neural Comput. 10,
251–276 (1998).

53. Newman, M. E. J. & Barkema, G. T.Monte Carlo Methods in Statistical Physics
(Oxford University Press, 1999).

54. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).
55. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in

Python. Nat. Methods 17, 261–272 (2020).
56. Gidney, C., Bacon, D. & The Cirq Developers. quantumlib/Cirq: A python framework

for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits.
https://github.com/quantumlib/Cirq (2018).

57. Torlai, G. & Fishman, M. PastaQ.jl: Package for Simulation, Tomography and Ana-
lysis of Quantum Computers. https://github.com/GTorlai/PastaQ.jl (2020).

58. Fishman, M., White, S. R. & Stoudenmire, E. M. The ITensor software library for
tensor network calculations. Preprint at https://arxiv.org/abs/2007.14822 (2020).

59. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 99–104
(2007).

ACKNOWLEDGEMENTS
We thank S. Bravyi for enlightening discussions and M. Fishman for insights into MPS
simulations. Numerical simulations were performed using NumPy54, SciPy55, Google
Cirq56, and PastaQ57,58 for MPS simulations. Random graph generation was done with
NetworkX40,42. Plots were generated using Matplotlib59. M.M. acknowledges support
from the CCQ graduate fellowship in computational quantum physics. The Flatiron
Institute is a division of the Simons Foundation.

AUTHOR CONTRIBUTIONS
G.C. conceived the main idea and co-wrote the manuscript. M.M. developed the idea
further, wrote the computer code, executed the numerical simulations. and co-wrote
the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-021-00440-z.

Correspondence and requests for materials should be addressed to G.C.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

M. Medvidović and G. Carleo

7

Published in partnership with The University of New South Wales npj Quantum Information (2021) ��101�


