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Abstract

This is an exposition of some of the aspects of quantum computation and quantum infor-
mation that have connections with operator theory. After a brief introduction, we discuss quan-
tum algorithms. We outline basic properties of quantum channels, or equivalently, completely
positive trace preserving maps. The main theorems for quantum error detection and correction
are presented and we conclude with a description of a particular passive method of quantum
error correction.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The study of the underlying mathematics for quantum computation and quantum
information is quickly becoming an interesting area of research [61]. While these
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fields promise far reaching applications [12,24,41,60], there are still many theoretical
and experimental issues that must be overcome, and many involve deep mathematical
problems. The main goal of this paper is to provide a primer on some of the basic
aspects of quantum computing for researchers with interests in operator theory or
operator algebras. However, we note that the only prerequisite for reading this article
is a strong background in linear algebra.

This work should not be regarded as an extensive introduction to the subject.
Indeed, the reader with knowledge of quantum computing will surely have com-
plaints about the selection of material presented. Moreover, we do not consider here
the increasingly diverse fields of mathematics for which there are connections with
quantum computing (algebraic geometry, Fourier analysis, group theory, number the-
ory, operator algebras, etc.). Rather, our intention is to give a brief introduction and
prove some specific results with the hope that this paper will help stimulate interest
within the operator community.

The paper is organized as follows. The next section (Section 2) contains a discussion
of the basic notions, notation and nomenclature used in quantum computing. In Section
3 we give a brief introduction to quantum algorithms by describing some elementary
examples and presenting a simple algorithm (Deutsch’s algorithm [19,20]) that dem-
onstrates the power of quantum computation. In Section 4 we outline the mathematical
formalism for the evolution of information inside quantum systems. This is provided
by quantum channels, which are represented by completely positive trace preserving
maps [15,27,51,52,62,63]. The penultimate section (Section 5) includes a discussion
of quantum error correction methods. We present the fundamental theorems for
quantum error detection and correction in the ‘standard model’ [28,47,64]. In the final
section (Section 6) we describe a specific method of quantum error prevention [23,26,
32,47,48,57,82] called the ‘noiseless subsystem vianoise commutant’ method. Finally,
we have included a large collection of references as an attempt to give the interested
reader an entrance point into the quantum information literature.

2. Quantum computing basics

Let ## be a (complex) Hilbert space. We shall use the Dirac notation for vectors
and vector duals in #: A typical vector in # will be written as a ‘ket’ |¢/), and the
linear functional on # determined by this vector is written as the ‘bra’ (y|. Notice
that the products of a bra and a ket yield the inner product, ({1]|¥»), and a rank one
operator, |[2) (1. In particular, given |) € ), the rank one projection of # onto
the subspace {A|yr) : A € C} is written |v)(y|. Further let Z(#°) be the collection
of operators which act on . We will use the physics convention U for the adjoint
of an operator U.

The study of operators on Hilbert space is central to the theory of quantum mechan-
ics. For instance, consider the following formulation of the postulates of quantum
mechanics [16,61,77]:
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(1) To every closed quantum system there is an associated Hilbert space . The
state of the system at any given time is described by a unit vector |¢) in J#, or
equivalently by a rank one projection [)(¥|. When the state of the system is not
completely known, it is represented by a density operator p on A, which is a positive
operator with trace equal to one. (This is the quantum analogue of a probability
distribution.)

(i1) The notion of evolution in a closed quantum system is described by unitary
transformations. That is, there is a unitary operator U on the system Hilbert space
such that the corresponding evolution is described by the conjugation map p +—
UpU".

(iii) A measurement of a quantum system on # is described by a set of operators
My, 1 < k < r,such that

r
> MM =1
k=1

The measurement is projective if each of the My is a projection, and thus the M
have mutually orthogonal ranges. (A ‘classical measurement’ arises when all the
projections are rank one.) The index k refers to the possible measurement outcomes
in an experiment. If the state of the system is |i{r) before the experiment, then the
probability that event k occurs is given by p(k) = (Y |M ,j My |yr). Notice that { p(k)}
determines a probability distribution.

(iv) Given Hilbert spaces 'y, . .., # ,, associated with m quantum systems, there
is a composite quantum system on the Hilbert space #'| ® - - - ® H# . In particular,
if the states of the individual systems are |1; ), then the state of the composite system
is given by [¢1) ® - - - ® [m).

The Hilbert spaces of interest in quantum information theory are of dimension
N = d" for some positive integers n > 1 and d > 2. (It is generally thought that
extensions to infinite dimensional space will be necessary in the future, but the cur-
rent focus is mainly on finite dimensional aspects.) For brevity we shall focus on
the d = 2 cases. Thus we let # y be the Hilbert space of dimension 2" given by
the n-fold tensor product # 'y = C’Q---®C? = (C*)®". We will drop reference
to N when convenient. Let {|0), |1)} be a fixed orthonormal basis for 2-dimensional
Hilbert space #> = C2. These vectors will correspond to the classical base states
in a given two level quantum system; such as the ground and excited states of an
electron in an atom, ‘spin-up’ and ‘spin-down’ of an electron, two polarizations of
a photon of light, etc. We shall make use of the abbreviated form from quantum
mechanics for the associated standard orthonormal basis for # = (C*)®" ~ c?.
For instance, the basis for /4 is given by {|ij) : i, j € Z»}, where [ij) is the vector
tensor product |ij) = |i)]j) = |i) ® | j)-

A quantum bit of information, or a ‘qubit’, is given by a unit vector |) = a|0) +
b|1) in 5. The cases a = 0 or b = 0 correspond to the classical states, and oth-
erwise |Y) is said to be in a superposition of the states |0) and [1). A ‘qudit’ is a
unit vector in C%. A vector state |) in # y is said to be entangled if it cannot be
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written as a tensor product of states from its component systems, so that |) does
not decompose as |) = |¢1)|¢p2) for some vectors |@;), i = 1,2. As an example,

consider |[{) = 100)+HID 5 A 4, this is a vector from the so-called ‘EPR pairs’ or

‘Bell states’. Roughly speaking, the notion of decoherence in a quantum system
corresponds to the vanishing of off-diagonal entries in matrices associated with the
system as it evolves.

A number of specific unitary matrices arise in the discussions below. The Pauli
matrices are given by

(00 (7))

Let 1, be the 2 x 2 identity matrix. We regard these as matrix representations for
operators acting on the given basis for . In the n-qubit case (so N =2") we
may consider all ‘single qubit unitary gates’ determined by the Pauli matrices. This
is the set of all unitaries {Xg, Y%, Zx : 1 <k <n}where X1 =X ® ]1;9(”7]), X, =
LHX Hgb(n—2) , etc. Further let Ucy be the ‘controlled-NOT gate’ on 4. This
is the unitary which acts on 54 by Ucy : [i)|j) + |i)|(i + j) mod2). The CNOT
gate has natural extensions {Uék,(,l) : 1 < k # [ < n} to unitary gates on # , where
the kth and /th tensor slots act, respectively, as the control and target qubits. For

instance, with this notation Ucy = Uéllg,z). Note that Uéklg,l) only acts on the kth and

Ith qubits in 'y = (C2)®”. The set { Xy, Y, Zy, Uékl;,l) 1 <k#1<n}formsa

set of universal quantum gates for 2y, meaning that this set generates the set of
N x N unitary matrices % (N) as a group (up to complex phases). We shall also
make use of the Hadamard gate

=500

and the spin-% Pauli matrices o, = 1/2K fork =x, y, z.

3. Quantum algorithms

Simply put, a quantum algorithm consists of an ensemble of initial states p which
evolves under a unitary matrix U to a final density matrix UpU". The famous fac-
toring algorithm of Shor [67,70] and search algorithm of Grover [31] have received
tremendous attention over the last decade. As a proper treatment of these algorithms
is beyond the scope of this article, in this note we shall present the Deutsch algo-
rithm [19] (and its generalization, the Deutsch—Josza algorithm [20]) since it is easily
accessible and gives a good illustration of the power of quantum computation. In
doing so, we shall give a description of two fundamental classes of quantum algo-
rithms: the simulation of a classical function on a quantum computer and the algo-
rithm for quantum parallel computation.



D.W. Kribs / Linear Algebra and its Applications 400 (2005) 147167 151

Before continuing, let us illustrate a simple example of how an operation such
as addition may be performed with a quantum algorithm. This will also allow us to
establish some notation for the discussion which follows. We shall identify the stan-
dard basis vectors |ij - - - i) for 'y with the integers {0, 1, ..., 2" — 1} via binary
expansions. Then we may define a unitary U on #'y @ Ay by U |x)|y) = |x)|x &
y) where the addition x @ y is modulo N. The corresponding quantum algorithm
implements addition modulo N. (Note that the CNOT gate is obtained in the case
N=2)

Towards the Deutsch algorithm, let H,, = H®" be the n-fold tensor product of the
Hadamard gate acting on # . Observe that H,,|0)®" is the uniform superposition

21

H,|0)® \/_Z|

Fix positive integers k,m > 1. Let f: 7} — Zk be a function. Consider the
space Ay = Hom @ H k. Then Hp i has basis |x)|y) |x) ® |y) where x €
7% and y € Zg. Define a unitary map Uy : H 'y x — H i bY

£ 1Y) = Xy @ f().
For a given x € 77, notice that the action of Uy is to permute the basis vectors
(l0)ly) v € Z3).

Note 3.1. Observe that Uy|x)|0) = [x)|f(x)) for all x. Thus Uy simulates f on a
quantum computer, and in this sense any classical function can be performed on a
quantum computer.

Next we compute

Us((Hnl0)®™) ® [0 =U/ ) ® 10)

7 Z
Z Us(1x) ® [0))

|-
=— Z x) ® | f (x)).
" x=0

Hence an application of H, ® I« followed by Uy yields a simultaneous parallel
computation of f on all possible values of x. The corresponding ‘circuit-gate’ dia-
gram for quantum parallelism for f is given below. In such a diagram, the ‘circuits’
correspond to states from the component systems (in this case |0)®” and |0)®* from
the systems #"om and J# ,« respectively). The ‘gates’, drawn as boxes, indicate uni-
tary operators applied as the system evolves with a left-to-right convention in the
diagram (so here H,, ® I« is applied first, then U is applied).
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0)@™ H, I

Uy AT ) @ If(2)
0)%* R

Let f : Zo — Z; be a function. Then call f constant if f(0) = f(1) and bal-
anced if f(0) # f(1). The problem addressed by Deutsch’s algorithm is the fol-
lowing: Given f : Z, — 73, determine if it is constant or balanced. Classically an
answer to this problem requires two evaluations of f. On the other hand, Deutsch’s
algorithm shows how to do this with one quantum operation. The circuit-gate dia-
gram for the algorithm is given below.

|0) H H
Uy

|1) H

The initial state is given by |01) = |0) ® |1). The first stage of the algorithm
evolves this state to

(H® H)(10)®[1)) = (H]0)) ® (H[1)) = |4) ® | ),

where |+) = % and |—) = IO)JEIU' Observe that the action of Uy as defined

above yields
Ur(Ix) @ |-) = (=D Px) ® |-) forx € Z».

Thus, after the second stage of the algorithm the system has evolved to

1
Up(h) ® 1= =—=Us (10 +11) @ =)
_ (D10 + DD
(ot o)

B {:l:|+) ®|—) if f is constant,

+|-)®|—) if f is balanced.

Finally, we apply a Hadamard gate H to the first qubit; that is, we apply H ® 1, to
the full system. Thus the system evolves to

(H® I)(£]+)®|-)) = £|0) ® [-) if f is constant,
(H® L) (E|-)®|-)) =+[1)®|—=) if fis balanced.

In particular, if we measure the first qubit we get

+]0) if f is constant,
+|1) if f is balanced.
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Note that there is no uncertainty in the result: If we measure the first qubit and obtain
£0) (respectively *|1)), then we know f is constant (respectively balanced) with
probability 1.

Remark 3.2. The Deutsch—Josza generalization [20] yields a more dramatic result.
Let f : Z5 — Z3 be a function. Define f to be constant if f(x) = f(y) forx, y €
7%, and balanced if |f~1(0)] = 2"~ = | f~!(1)|. Suppose we know f is either
constant or balanced and that we wish to determine which one f is. Classically, this
requires 2! + 1 evaluations to know with certainty what type f is. The Deutsch—
Josza algorithm shows how this may be accomplished with a single operation on a
quantum computer. The algorithm acts on #m ® # > with initial state [0)®" ® |[1).
The circuit-gate diagram may be obtained by adjusting the Deutsch diagram with
|0Y®™ ® |1) in place of |0) ® |1), m circuits at the top instead of one, H,, in place of
H in the top circuits prior to Uy, and H,, in place of the final H. Thus,

0)5™ @ (1) = (Hp ® T2)Up(Hy ® H)(10)®" @ |1)).

Note 3.3. As a starting point for more recent work on quantum algorithms we men-
tion [11,59,78]. Also see [7] for an extensive mathematical introduction to the study
of quantum algorithms.

4. Quantum channels

While evolution in a closed quantum system is unitary (see postulate (ii)), exper-
imentally evolution occurs in an ‘open quantum system’. In such a system evolution
is described mathematically by completely positive trace preserving maps [61]. The
physical motivation for this is discussed below.

A (linear) map & : B(H) — AB(AH) where # is a Hilbert space is completely
positive if for all k£ > 1 the ‘ampliation map’

EC M BAY)) — M (BA))

given by & ((pij)) = (&(pij)) is a positive map. (We could also write P =1, ®
&.) This is a rather strong condition; for instance, the transpose map is the standard
example of a positive map which is not completely positive. The study of completely
positive maps has been an active area of research in both the quantum physics and
operator theory communities for at least thirty years. (In fact, it seems that many
general results on completely positive maps have been obtained in the two fields
without knowledge of the other.) See the texts of Kraus [51] and Paulsen [62,63] for
good treatments of the subject from the two perspectives and [37,38] for other early
work.

Thus, in the general setting quantum information evolves through an open quan-
tum system via completely positive trace preserving maps.



154 D.W. Kribs / Linear Algebra and its Applications 400 (2005) 147167

Definition 4.1. A quantum channel & : B(H’) — HB(H’) is a map which is com-
pletely positive and trace preserving.

Trace preservation for a channel is equivalent to requiring the preservation of
probabilities as states evolve through a quantum system. A channel is positive since
density operators must evolve to density operators, and it is completely positive be-
cause this property must be preserved when the initial system is tensored with other
systems (as part of a composite system). Physically, an open system can be regarded
as lying inside a larger closed quantum system where all evolution occurs in a unitary
manner. Thus, evolution in the open system can be regarded as a ‘compression’ of
the unitary evolution on the larger closed system. The mathematical formalism for
this physical description is provided by Stinespring’s dilation theorem [72].

The following fundamental result for completely positive maps was proved inde-
pendently by Choi [15] and Kraus [52]. We present Choi’s short operator proof.

Theorem 4.2. Let & : B(H'N) — B(H n) be a completely positive map. Then
there are operators Ex € B(H'n), | <k < N2, such that
N2
6(p) =Y ExpE[ forall p € BHY). (1)
k=1
Proof. Let ¢;; = [i)(j| be the matrix units associated with the standard basis for
Hy.Let R = &N )((eij)). This matrix is positive by the N-positivity of &. (In fact,
Choi proved that the positivity of R characterizes complete positivity of &.) Consider
a decomposition R = Z;{\Zl lag)(ax|, where |ay) € cN ? are (appropriately normal-
ized) eigenvectors for R. Let {P; : 1 < i < N} be the family of rank N projections
on CV : which have mutually orthogonal ranges and satisfy P; RP; = &(e;;). Then
lag) = ZZNZI P;|ax). Define operators Ey : C¥ — CN by Ei|i) = Pi|ai), so that

R=)"%" PlaalP;=) P (ZEku)mE,j) P;.
k i i %

Hence,
N2
(eij) = 6(i)j]) = PiRP; = Y Eli)(j|Ej.
k=1

and Eq. (1) holds by the linearity of &. [

The decomposition (1) is referred to as the operator-sum representation of &
in quantum information theory. The operators Ej are called the noise operators or
errors of the channel. Note that trace preservation of a channel is equivalent to its
noise operators Ej satisfying

Y E[E =1
k
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Remark 4.3. Choi’s proof of this theorem provided the impetus for a recent applica-
tion of Leung [56] to ‘quantum process tomography’. This is a procedure by which
an unknown quantum channel can be fully recovered from experimental data. To
accomplish this for a given channel, (1) shows that it is enough to recover the noise
operators E;. As Leung observes, Choi’s proof shows the only experimental data
required to fully reconstruct the E; are the output states &(|i)|j)). This fact is the
core of the tomography procedure outlined in [56].

The following result, which we state without proof, shows precisely how different
sets of noise operators for the same channel are related.

Proposition 4.4. Let {E|,..., E,} and {E},..., E.} be the noise operators for
channels & and &' respectively. Then & = &' if and only if there is an r x r scalar
unitary matrix U = (u;;) such that E = UE' where E' = [E; --- E,] and (E')" =
[E| -+ E}]. In other words,

-
E; = ZuijE;- for1 <i<r.
j=1

Let .« = Alg{E;, Ej} be the algebra generated by the E; and E:f This is the
set of polynomials in the E; and Ej . An application of the Cayley—Hamilton the-
orem on minimal polynomials from linear algebra shows that all such polynomials
may be written as polynomials with degree below some global bound. In quantum
computing, .o is called the interaction algebra for the channel. It is T-closed by
definition, hence it is a finite dimensional C*-algebra [3,17,73]. Observe that, as a
direct consequence of the previous result, .o/ can be seen to be a relic of the channel;
in other words, it is independent of the choice of noise operators which satisfy (1) for
the channel. This is most succinctly seen in the case of unital channels, see Section
6 for details.

Note 4.5. We mention that an interesting and highly active area of current research
in quantum information theory revolves around the study of quantum channel capac-
ities. Specifically, there are a number of deep mathematical problems which are con-
cerned with computing the capacity of a quantum channel to carry classical or quan-
tum information. The following references give a starting point into the literature
[8,21,34-36,39,40,44,53,58,65,66,79].

Note that the quantum measurement process (postulate (iii)) naturally determines
a quantum channel. Let us consider more specific examples. (The final section in-
cludes further examples.)

Example 4.6. (i) Let 0 < p < 1 and define operators on .#’; by
Ei=(/1-pl, E,=((/pX,
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with respect to {|0), |1)}. The bit flip channel & (p) = E; ,oElT + Esz;r flips the state
|0) to |1) and vice versa with probability p. For instance, observe that the projection
|0)(0| evolves to the superposition &(]0)(0]) = (1 — p)|0)(0] + p|1)(1].

(i) Let E| = % and define a channel by &(p) = E1pE1 + oxpoyx + oypoy +
o;po;. Observe that &(p) = % for every density operator p € .#». This property,
distinct density matrices evolving in a channel to the same density matrix, has re-
cently been exploited as part of a scheme for quantum cryptography [5].

(iii) Let 0 < r < 1 and define operators on > by

1 0 0 Jr
a0 =) B0 %)

These noise operators define an amplitude damping channel &(p) = E1pE If + Esp

Eg Such channels characterize energy dissipation within a quantum system.

(iv) Let Uy, ..., Uy be unitaries which act on a common Hilbert space and let
ri, ..., rq be positive scalars such that ) ; r; = 1. Then we may define a channel by
E(p) = Z;jzl riU; pUl.T. These are the prototypical examples of ‘unital’ (&(1) = 1)
channels (see Section 6). In fact, every unital channel on .#»> may be written as a con-
vex sum of unitaries in this way. This is not the case in higher dimensions however.

(v) The class of entanglement breaking channels was introduced in [35] and stud-
ied in [39]. These are quantum channels which can be written in the form

E() =Y 1) (Wil (gxlplgn).,
k

for some vectors | ) and |¢x ). With this representation, trace preservation is equiv-
alent to ), [¢x) (¢k| = 1, as Tr(p|¢r) (dx|) = (dr|pl¢x). Such channels derive their
name from the fact that for 4 > 1, a density operator & @(I) is never entangled,
even if I" was initially entangled.

5. Quantum error correction

In this section we present the central aspects of the ‘standard model’ for quantum
error detection and correction. For an extensive introduction to the subject we point
the reader to the articles [28,47,64]. The general error correction problem in quantum
computing is much more delicate when compared to error correction in classical
computing. The possible errors that can occur include all possible unitary matrices,
whereas in classical computing the only errors are bit flips. Nonetheless, methods
have been (and are being) developed for quantum error correction.

5.1. Error detection
Let & be the Hilbert space for a given quantum system. Then a quantum code

% on A is a subspace of . Let Py be the projection of # onto 4. Then Py and
Pé‘ describe a measurement of the system which can be used to determine if a given
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state |) € A belongs to the code. The basic idea of an error-detection scheme in
this setting is to first prepare an initial state in &, for brevity let us restrict ourselves
to unit vectors |1) in €. The state | )(y| is then transmitted through the quantum
channel & of interest, evolving to &(|v)(¥|). Finally, the measurement Py, P,} is
performed on this final state. This motivates the following definition.

Definition 5.1. Let % be a quantum code on # and let E be an error (noise) operator
associated with a given quantum channel on #. Then € detects the error E if the
states which are accepted after E acts are unchanged, up to a scaling factor. In other
words, there is a scalar Ag such that

P4E|Y) = Ag|y) forall [y) € 6.

Observe that the set of error operators E which are detectable for a fixed quantum
code % form a subspace of operators, or a so-called operator space [62]. There are a
number of equivalent conditions for detectable errors.

Theorem 5.2. Let € be a quantum code and let E be an error operator associated
with a given quantum channel. Then the following conditions are equivalent:

(1) E is detectable by €, with scaling factor L.
(il) PoE Py = L Py.
(i) (Y1l EY2) = e (Yully2) forall [Yi) € 6,0 =1, 2.

(iv) For every pair of vectors |yr1) and |Yr2) in € which are orthogonal, the vectors
E|Yr1) and |yYr2) are orthogonal.

Proof. We shall prove the implication (iv) = (iii). The other directions are either
trivial or easy to see. We may clearly assume that dim % > 2. Let {|y1), [¥2), ...}
be an orthonormal basis for . We first claim that (iv) implies

(Wil ElYi) = (Y| El;) forall i, j. 2
Indeed, to see this, fix i, j and define

I+) = 1vi) + 1)) and |=) = |¥i) — |¥)).
Then by (iv) we have

0= (+E[=) = (Wil ElYi) — (V| ElY)).

Thus define A = (| E|v¥;), and note that this is independent of i. Now let [{/) =
ai|Y1) +az|yn) + ... and |@) = Bi[¥1) + Balv2) + - - - be vectors in €. Then by
(iv) and (2) we have
WIEID) = > i (WilElWs) = Y aiBi{wi Eli) = e (Y1),
) i
and this completes the proof. [
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Let us describe a matrix perspective for detectable errors. This can be seen through
a simple example.

Example 5.3. Let % be the quantum code given by
% = span{|000), |111)} € As.

The (unnormalized) error operators for the n-qubit depolarizing channel [61,44] are
€ = {lyn, Z1, ..., Z,}. In the 3-qubit case consider the error operator E = Z;. Ob-
serve that £]000) = |000) whereas E[111) = —|111). Thus if E was detectable by
% we would have,

Ag = (000|E|000) = 1 and Ag = (111|E[111) = —1.

From this contradiction it follows that none of the depolarizing errors Zj are detect-
able by the code %. In fact, from Theorem 5.2 the detectable errors for ¢ may be

My %

realized in matrix form as the operator space reC } , with respect to

an ordered orthonormal basis for g of the form {|000), |[111), ...}, and where the
* entries indicate that any choice is admissible.

More generally, the conditions of Theorem 5.2 show that the detectable errors for
a given quantum code % form the subspace of operators

[ 2)2ec],

where the matrix form is given with respect to the spatial decomposition # =
Py @ PLA.

5.2. Error correction

Let € = {E;} be a set of errors that act as noise operators for a given quantum
channel. If ¥ is a quantum code, then the basic error-correction problem for % is to
determine when there is a decoding procedure for % such that all the errors in € are
corrected. The simplest possible case occurs when every error E; is the multiple of a
unitary operator and the subspaces E; % are mutually orthogonal. The obvious decod-
ing procedure in this situation is to first make a projective measurement to determine
which of the subspaces E;% a given state |Y/) € & has evolved to, then apply the
inverse of the error operator E;. This particular case motivates the following general
definition in the standard model for quantum error correction.

Definition 5.4. Let & be a quantum channel and let % be a quantum code with
projection Py. Then € is correctable for & if there is a quantum channel # such that

Rob(p)=p
for all p supported on %; that is, all p with p = Py p Py.
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There are a number of useful characterizations of correctable codes. Note that
in the proof of (iii) = (i) below, the error correction operation # is explicitly con-
structed and hence this gives a constructive approach for decoding within this error
correction model.

Theorem 5.5. Let & be a quantum channel with errors € = {E;} and let € be a
quantum code with projection Py. Then the following conditions are equivalent:

(1) € is correctable for &.
(ii) The operators in the set ¢'E = {EIEQ . E; € €} are detectable by €.
(iii) There are scalars A = (X;;) such that

P%,E;ij Py = Xjj Pg foralli, j. 3)

(iv) There is a linear transformation E; +— El/ on € such that the new error oper-
;. . .
ators E; satisfy the following properties:
(a) The subspaces E!% are mutually orthogonal.
. , . . .y
(b) The restriction of every E; to € is proportional to a restriction to € of a
unitary operator.

Proof. Observe that any matrix 4 which satisfies (3) must be positive since this
equation may be written as a matrix product ATA = (AijPg) where A = [E| Py
E> Py - - -] is a row matrix. Conditions (ii) and (iii) are equivalent by definition. We
shall prove (i) is necessary and sufficient for (iii) and leave the connection with (iv)
for the interested reader.

For (i) = (iii), let % be a quantum code with code projection Py. Suppose & is
a quantum channel with errors {E;} and that € is correctable for & via the error-
correction operation # with noise operators {R;}. Define a compressed channel by
&4 (p) = 6(PypPg). Then by hypothesis Z(&¢(p)) = #(E(PgpPg)) = PypPy.
In particular,

Z R;E; Praf,OPfaE,TR; = PypPy forall p.
i,J

Thus by Proposition 4.4 there are scalars oy; such that
RLE; Py = ay; Py foralli, k.

Hence,
P4E R RyE; Py=ayay; Py foralli, j, k. )

But Z preserves traces, so that Zk RZ R;. = 1, and thus when we sum (4) over k we
find

PyE EjPy = 1Py foralli, j,
where A;; = Zk Ui Q-
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Conversely, let us assume that & is a channel with errors { E;} and % is a code with
projection Py such that (3) holds for a positive scalar matrix A = {A;;}. Let U be a
unitary operator such that D = U AU = (dy) is diagonal (so that D = diag(dkk)).
Note that ), dix = 1 by trace preservation of &. By Proposition 4.4 the operators
Fr =), uixE; also implement &. A simple computation shows that

P(gFgF[P(g delp(g for all k,l

The polar decomposition of Fy Py gives

Fi Py = Uy Po F, Fx Py = \/di Uy Py

for some unitary Uy. Define projections P = Uy P4 U, kT . Then
Ui Py F, Fy PyU;

Vdndik
and hence the ranges of the Pj are mutually orthogonal.

Without loss of generality assume that ) , Px = 1 (otherwise just add the pro-
jection onto the orthogonal complement and define Uy = 1). The candidate error-
correction operation is defined by

A(p) =Y Ul PupPiUp.
k
Observe that for all p with p = Pyp Py,

U, Uy PeF Fi Py /P

ik
=8 dkk Pgp = S/ dik -

PP =P P = =0 fork#1,

Ul PcFi/p=U P Fp=

Thus we have
R(E(p)) = Z U]ijFlPF[TPkUk = Z5k1dkkp =p
k.l k.l
for all p = Py p Py, and we have proved that (iii)) = (i). 0

Let us discuss a pair of illustrative applications of Theorem 5.5.

Example 5.6. (i) With 4 = span{|000), [111)} inside #’g as in Example 5.3, it is
easy to see that % satisfies (3) for the errors & = {1, X1, X», X3}. Let Py be the pro-
jection onto %, let P; be the projection onto the subspace X% = span{|100), [011)}
and similarly define projections P, and P3. Then the correction operation given by
the proof above is # = { Py, X1 P1, X2 P>, X3P3}.

(i1) Shor’s 9-qubit code [69] is defined by two orthonormal vectors in # 5 given
by

_ (J000) + [111))(|000) + [111))(|000) + [111))

0 s
[0L) Wi
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_(]000) —|111))(]000) — |111))(|000) — |111))
B 22

Let ¥ = span{|0.), |11)}. Given 1 < k < 9, the code ¥ is correctable for the errors
{Xk, Yi, Z} as (3) is satisfied for this triple. Let Py ; be the projection onto the
subspace X;% and similarly define projections Py and P, . Then the correction
operation given by the theorem is # = {Xy Py x, Yi Py k., Zi P; 1}

Since the Pauli matrices, together with the identity operator 15, form a linear basis
for ./ that is closed under multiplication up to scalar multiples, it follows that % is
correctable for any set of errors € which act on one of the nine possible qubits. (In
fact the Shor code also corrects for errors on multiple qubits [61].)

L)

Note 5.7. The quantum error correction conditions of Theorems 5.2 and 5.5 were
established independently by Bennett et al. [9] and Knill and Laflamme [50]. As a
collection of entry point references for particular methods of quantum error correc-
tion we mention [14,29,30,45,46,49,54,68,71,83].

6. Noiseless subsystems via the noise commutant

In this section we describe a specific method of passive quantum error correction,
by which we mean no active intervention is required after information is encoded.
The basic idea in a ‘noiseless subsystem method’ of error correction, classical or
quantum, is to encode information on subsystems of the system of interest in such
a way that it remains immune to the effects of the channel that the information is
evolving through. Let & : Z(#') — () be a quantum channel with noise opera-
tors { £;} and interaction algebra .o/ = Alg{E;, Ej }. Recall that & is unital if £(1) =

> Ei El' = 1. The noise commutant for & is the f-algebra

A '={p e BAH): pA=Apfor A € o}
—{peBAH) :[p, El=0=I[p, E]lfori =1,...,n).

The procedure in the noiseless subsystem via noise commutant method of quantum
error correction [23,26,32,47,48,57,81,82] is to use the structure of .7’ to produce
noiseless subsystems (which are also called ‘decoherence-free subspaces’ in special
cases, see Remark 6.3).

The illustrations of this method that appear in the literature all involve unital
channels. The following discussion shows why this is the case. Let Fix(&) = {p €
B(AH) : £(p) = p}. Observe that Fix(&) is a f-closed subspace of #(#’). Now
consider a unital channel &. Let p belong to .«7’. Then pE; = E;p for all i and
hence

&(p) = ZEipEj = p&(1) = p.

1
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Thus p belongs to Fix(&). The converse inclusion was proved independently in
[13] and [55] (see also [32] for another proof and [2] for the infinite dimensional
extension): The set Fix(&") coincides with the noise commutant in the case of a unital
channel. In fact, it is not hard to show that the identity Fix(&§) = .o/’ characterizes
unital channels. Thus, by building on the proofs from [13,32,55] we may state the
following.

Theorem 6.1. Let & be a quantum channel. Then Fix(&) = .o/ if and only if & is
unital. Moreover, in this case </ is equal to the algebra </ generated by the E;. In
other words, the operators E; belong to /.

Note 6.2. Notice how the algebra .o/ = (.«/)” = Fix(&)' is a relic of the channel in
the unital case (see the discussion after Proposition 4.4).

Remark 6.3. In the case of unital channels, Theorem 6.1 shows that the noiseless
subsystem via noise commutant method can be presented as follows: Let & be a
unital quantum channel. Then the interaction algebra .7 is generated by the E; and
o/ = Fix(&) is a finite dimensional C*-algebra. As such, ./’ is unitarily equivalent
to a unique direct sum of ampliated full matrix algebras, o/'= @k (1, ® M p,).
Hence, a density operator p that encodes the initial states of a quantum system will
be immune to the noise of the channel as it evolves through, &(p) = p, provided
that p is initially prepared on one of the ampliated matrix blocks 1I,,, ® .#, inside
the noise commutant ./’ = Fix(&). The decoherence-free subspace method may be
regarded as the special case of this method that occurs when matrix blocks 1, ®
My, with my =1 are utilized.

In the case of a general quantum channel, however, the full structure of .7’ cannot
be used for error correction. This can be seen most dramatically in the following
simple case.

Proposition 6.4. Let & be a completely positive map such that Ag = &(1) is not
invertible. Let Pg be the projection onto the subspace H# s = Ran(Ag). Suppose
that E; = PsE; Pg for all i. Then %”i‘ is non-zero and every operator p € %(%ﬂj:)
belongs to /' and satisfies &(p) = 0.

Proof. The non-invertibility of A, implies %(% is non-zero. Let p > 0 belong
to ﬂ(%é‘), by which we mean p acts on # with p = P@%ij. Then p trivially
belongs to .o/’ since pE; = 0 = E; p for all i. Further, &(p) = é"(P;-p) =0. O

Remark 6.5. It would be interesting to know if the noise commutant can be used
to produce noiseless subsystems for classes of non-unital channels. For instance,
a natural generalization of unital channels is the class of channels for which the
identity evolves to a multiple of a projection. Notice that if &(1l,,) = m P for some
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projection P, then m divides the dimension of S by trace preservation of &. A
simple example of this phenomena is given by the channel & with noise operators
A; = 10)(i| for 1 <i < dim# = d. Trace preservation of & may be readily verified,
and in this case

d d
£ =3 AT = 3010) D7) 0] = dIoy(0l.
i=1

i=1

Note 6.6. There are a number of other quantum error correction schemes that have
been investigated and some of these will be of interest to operator researchers (see
[1,23,25,43,54,57,80-82]).

We finish by considering noiseless subsystems for some special cases of unital
channels.

Example 6.7. (i) Let 0 < p < 1 and let Ey, E; be operators on 5, defined on
the standard basis by E1 = (/1 — p)1l; and E> = (\/p)Z. Then E; and E; are
the noise operators for a unital channel & on .#> which is a variant on the bit flip
channel discussed earlier. The quantum operation corresponding to this channel is
equivalent to the phase flip or phase damping operation on single qubits [61]. It is so
named because, for instance, &(|4)(+|) = (1 — p)|+){(+| + p|—)(—]| and hence &
flips the phase of |+)(+]| and |—)(—| with probability p. It is easy to see in this case
that

Fix(®) = /' =(E1, E2)’

a 0Y ~
_{<O b).a,be@}_ﬁl@Cl,

and hence this channel has no non-trivial noiseless subsystems.

(i) Let 0 < p < 1 and let Ey, E> be operators on 4 defined on the standard
basisby E1 = /1 — p(lb ® 1) and E; = ,/p(Z ® Z). These noise operators deter-
mine a unital channel & on .# 4 which can be regarded as an ampliation of the phase
flip channel. Compute

Fix(®) = /' ={E\, E3}’
an 0 0 au
. 0 an a3z 0 |
N 0 ap az 0 | %€ t
agr 0 0 ag

Thus ./’ is unitarily equivalent to the direct sum .«7’"=.#, @ ./ and there is a pair
of 2-dimensional noiseless subsystems.

(iii) More generally, let E1 = Uy, ..., E; = Uy be unitaries on a Hilbert space
A . If we are given scalars A; such that ) ; |A; |> = 1, then the operators A; E; are the
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noise operators for a unital channel & with Fix(&) = .o/’ = {Uy, ..., Uy}. In this
case the automatic self-adjointness of .« can be seen directly through an application
of the Cayley—Hamilton theorem. (The algebra generated by any unitary U can be
seen to include U via minimal polynomial considerations.)

(iv) An important special case of such channels is the class of ‘collective rota-
tion channels’ [6,10,25,26,32,43,48,74,75,76,80,81]. The n-qubit example has noise
operators given by weighted exponentiations of the operators Jy = Y _, Jk(m) for

k =x,y,z, where Jk(l) =0 ® (112)®(”’]), etc. There is an abundance of noiseless
subsystems for these channels and they can be computed directly [33] or through
combinatorial techniques discussed below.

(v) A generalization of the collective rotation class is presented in [42] and noise-
less subsystems for this class of ‘universal collective rotation (ucr) channels’ are
computed using Young tableaux combinatorics. For each pair of positive integers
d,n > 2 there is a family of such channels with the case d = 2 yielding the class
from (iv). It is proved in [42] that every ucr-channel possesses an abundance of noise-
less subsystems. In fact, it is shown that the noise commutant for every channel in this
class (for fixed d and n) contains the algebra .o/, = Alg{n (o) : 0 € S,} where S, is
the symmetric group on n letters and 7 : S, — %(d") is the unitary representation
of S, on 4 given by

7)1 ® - Qhy) =ho) ® -+ @ o).

forall Ay, ..., h, € #4and o € S,. In particular, the Young tableaux machine can
be used to explicitly compute the structure of .o/, and identify noiseless subsystems
for the corresponding ucr-channel. Further, a recent paper of Bacon et al. [4], has
shown that the change of basis transformation from the standard basis to the Young
tableaux basis can be implemented efficiently with a quantum algorithm.
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