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Quantum mechanics predicts a number of at first sight counterintuitive phenomena. It is there-
fore a question whether our intuition is the best way to find new experiments. Here we report
the development of the computer algorithm MELVIN which is able to find new experimental im-
plementations for the creation and manipulation of complex quantum states. And indeed, the
discovered experiments extensively use unfamiliar and asymmetric techniques which are challenging
to understand intuitively. The results range from the first implementation of a high-dimensional
Greenberger-Horne-Zeilinger (GHZ) state, to a vast variety of experiments for asymmetrically en-
tangled quantum states – a feature that can only exist when both the number of involved parties
and dimensions is larger than 2. Additionally, new types of high-dimensional transformations are
found that perform cyclic operations. MELVIN autonomously learns from solutions for simpler sys-
tems, which significantly speeds up the discovery rate of more complex experiments. The ability to
automate the design of a quantum experiment can be applied to many quantum systems and allows
the physical realization of quantum states previously thought of only on paper.

PACS numbers: 03.65.Ud, 07.05.Fb, 42.50.Tx

Quantum mechanics encompasses a wide range of
counterintuitive phenomena such as teleportation [1, 2],
quantum interference [3], quantum erasure [4], and entan-
glement [5–10]. Despite our struggle to reconcile them
with our picture of reality, these phenomena serve as
building blocks for many exciting and useful quantum
technologies such as quantum cryptography [11, 12], com-
putation [13, 14], and metrology [15, 16]. A significant
challenge arises, however, when we try to combine such
phenomena in order to perform a complex quantum task.
Understanding the outcome of even a simple combination
of these quantum building blocks can be daunting for the
human intuition. Therefore it is natural to ask: Given a
certain desired property of a quantum system, what com-
bination of quantum building blocks will be successful in
achieving it?

In order to answer this question, we develop a classical
computer algorithm called MELVIN, to which we teach
how these quantum phenomena work, and subsequently
assign it a specific problem. The machine then takes
on the task of finding and optimizing arrangements of
quantum building blocks that result in a solution. This
allows us to uncover experimental methods to create an
array of new types of entangled states previously thought
to exist only in theory. In addition, it also allows us to
address the question of how to manipulate such high-
dimensional quantum states, which is key for their use in
quantum information systems.

While searching for these experiments, MELVIN en-
larges its own toolbox by identifying useful groups of ele-

ments, leading to a significant speed-up in subsequent
discoveries. The experiments found by our algorithm
show a departure from conventional experiments in quan-
tum mechanics in that they rely on highly unfamiliar, but
perfectly conceivable experimental techniques. This pro-
vides some insight into the kind of out-of-the-box think-
ing that is required for creating such complex quantum
states.

Our method aims to create and manipulate general
complex quantum states for which arbitrary transforma-
tions are not known. The algorithm creates experiments
using experimental accessible optical components that
can readily be implemented in the laboratory [17, 18].
In addition, our algorithm considers multiple degrees of
freedom of single quantum systems, and can be extended
to include nonlinear components and states more com-
plex than single photons. This would allow us to investi-
gate many other interesting quantum phenomena such as
NOON states [19], induced coherence [20, 21], quantum
teleportation of more complex systems [2] or quantum
metrology [15, 16]. A complementary field is computer-
assisted or automated quantum circuit synthesis (QCS)
[22–26], where optimal implementations for quantum al-
gorithms are designed from universal sets of known quan-
tum gates. While very powerful in its own right, the tech-
nique of QCS is used for linear qubit networks and usu-
ally requires fault-tolerant quantum computers for the
implementation of its results.

The algorithm - The main goal is to develop an al-
gorithm which finds experimental implementations for
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Figure 1: Working principle of the algorithm. First, an exper-
iment is created using elements from a basic toolbox. Then,
the quantum state is calculated, and subsequently its prop-
erties are analyzed. Those properties are compared with a
number of criteria. If these criteria are not satisfied, the algo-
rithm starts over again. However, if the criteria are satisfied,
the experiment is simplified and reported, together with all
relevant information for the user. Useful solutions can be
stored and used in future experiments, which significantly in-
creases the discovery rate of more complex experiments. The
orange boxes (toolbox and criteria) are adapted when a differ-
ent type of quantum property is investigated, while the rest
of the algorithm stays the same.

quantum states or quantum transformations with in-
teresting properties, see fig.(1). Specific possible input
states and a toolbox of experimentally known transfor-
mations utilizable by MELVIN are defined initially. Using
the elements from the toolbox, the algorithm assembles
new experiments by arranging elements randomly. Then,
from the initial state the resulting quantum state and
transformation is calculated and its properties are ana-
lyzed. Well-defined criteria that are provided by the user
decide whether the calculated quantum state has the de-
sired properties. If the quantum states properties satisfy
the criteria, the experimental configuration is simplified
and reported to the user. MELVIN can store the config-
uration in order to use it as a basic building element in
subsequent trials. By extending the initial toolbox, it
is learning from experience, which leads to a significant
speed-up in discoveries of more complex solutions.

All quantum states are calculated using symbolic alge-
bra. Every experimental element is a symbolic modifica-
tion of the input state. As an example, a 50/50 symmet-
ric non-polarizing beam splitter for photons is described
by

BS[ψ, a,b] = ψ ⇐

{
a[`]→ 1√

2
(b[`] + i · a[−`])

b[`]→ 1√
2

(a[`] + i · b[−`]) (1)

where ⇐ stands for a symbolic replacement followed by
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Figure 2: Experimental implementations of high-dimensional
multipartite entangled quantum states. a) The experimental
implementation for a 3-dimensional 3-partite GHZ-State. If
Detector T (Trigger) observes a photon in the state |T 〉 =
(|0〉+ |1〉), then the rest of the quantum state is in a GHZ-
state, which looks like |ψ〉 = |0, 0, 0〉 + |1, 1, 1〉 + |2, 2, 2〉 (up
to local transformations). The parity sorter, as described in
[29], can sort even and odd OAM modes. The 3-dimensional
GHZ-state has a Schmidt-Rank-Vector of (3,3,3) (all compo-
nents are symmetrically entangled with the rest of the state).
b) A more complex experiment is required for higher-order
Schmidt-Rank-Vectors. The (10,6,5)-state is one example of
asymmetrically entangled quantum states. The experiments
are just two examples of 51 implementations found for creat-
ing a variety of different entangled states.

a list of substitution rules. ` stands for the orbital angu-
lar momentum (OAM) quantum number of the photon,
and a and b denote the input paths of the beam split-
ter. For simplicity, all other degrees of freedom (such as
polarization or frequency) are considered to be the same
for all photons. For example, for the two-photon state
ψ = a[3]·b[−3] (a and b represent the path of one photon,
+3 and -3 stand for the OAM of the photon) the beam
splitter in path a and b will lead to photon bunching,
BS[ψ, a,b] →

(
a[−3]2 + b[3]2

)
, which is the well-known

Hong-Ou-Mandel effect [3]. By realizing the calculations
with symbolic algebra, adding new elements or even new
degrees of freedom is very easy [27]. Furthermore, it al-
lows easy human-readable intermediate forms, important
for the examination of solutions and the novel techniques
found by the algorithm.

Next we demonstrate the working principles using two
concrete examples. The demonstrations work in the
regime of photonic quantum experiments, but the algo-
rithm can readily be adapted to (a combination of) other
systems such as cold atoms [28].

Example 1: High-dimensional multipartite entangle-
ment - The Greenberger-Horne-Zeilinger (GHZ) state is
the most prominent example for non-classical correla-
tions between more than two involved parties, and has
led to new understanding of the fundamental properties
of quantum physics [8]. It has been shown recently that
its generalization to higher dimensions not only has curi-
ous properties [10], but that it is a limiting case of a much



3

richer class of non-classical correlations [9, 30, 31]. Those
new structures of multipartite high-dimensional entan-
glement are characterized by the Schmidt-Rank Vector
and give rise to new phenomena that only exist if both
the number of particles and the number of dimensions are
larger than two. An example of a state with Schmidt-
Rank Vector (4,2,2) is the asymmetrically entangled
state |ψ4,2,2〉 = 1

2 (|0, 0, 0〉+ |1, 0, 1〉+ |2, 1, 0〉+ |3, 1, 1〉).
There, the first particle is 4-dimensionally entangled
with the other two parties, whereas particle 2 and 3
are both only two-dimensionally entangled with the rest.
This Master-Slave-Slave configuration is one of the yet
unexplored features that only exist in genuine high-
dimensional multipartite entanglement, and will be in-
teresting to study in more detail in future. In order to
make future experimental investigations possible, we aim
to find high-dimensional multipartite entangled states in
photonic systems.

Here, the initial state is created by a double spon-
taneous parametric down-conversion process (SPDC).
SPDC is a widespread source for experimental genera-
tion of photon pairs. Multiple SPDC processes can pro-
duce multipartite entanglement, as it is well-known for
the case of two-dimensional polarization entanglement
[32, 33]. However, instead of polarization, we use the
orbital angular momentum (OAM) of photons [34–37],
which is a discrete high-dimensional degree of freedom
based on the spatial structure of the photonic wave func-
tion.

The experiments are generated using a set of basic el-
ements consisting of beam splitters, mirrors, dove prism,
holograms and OAM-parity sorters [27, 29]. The holo-
grams and the dove prisms have discrete parameters cor-
responding to the OAM and phase added to the beam,
respectively. These elements are randomly placed in one
out of six different paths (four of the paths are inputs
of the two photon pairs and two are empty to increase
variability). One arm is used to trigger the tri-partite
state in the other three arms, which leads to roughly
1015 possible configurations. At the end, a post-selection
procedure consisting of the coincidence detection of four
photons in the first four arms yields the final state.

We calculate the Schmidt-Rank-Vector of the final
state and select non-trivial ones (i.e. where there are
no separable parties). Furthermore, for higher usefulness
in experiments, we demand that the final state is maxi-
mally entangled in its orbital-angular-momentum. If the
criteria hold, the experiment is reported.

MELVIN runs for roughly 150 hours (on an Intel Core
i7 notebook with 2,4 GHz and 24 GB RAM), and finds
51 experiments for states that are entangled in genuinely
different ways. Among them, we find the first experimen-
tally realizable scheme of a high-dimensional GHZ-state
[10], a generalization of the well-studied two-dimensional
GHZ-state (fig. 2A). Furthermore, we find many ex-
periments for different asymmetrically entangled states

(such as the |ψ4,2,2〉 explained above). In addition, sev-
eral experiments only differ by continuously tunable com-
ponents (e.g. different holograms or triggers), making it
possible to explore continuous transitions between states
of different classes of entanglement.

The resulting experiments contain interesting novel ex-
perimental techniques previously unknown to the au-
thors. For example, in 50 out of 51 experiments, one
of the four paths that comes directly from the crystals
has not been mixed with any other arm (arm D in fig.
2A, and arm T in 2B). The reason is that for double
SPDC events it is possible that the two photon pairs
come from the same crystal. Leaving one path unmixed
leads to erasure of such double-pair emission events in
four-fold coincidence detection. Interestingly, this im-
mediately introduces asymmetry in the final experimen-
tal configuration. A different novelty is introduced when
more than 6-dimensional entanglement is created begin-
ning from two three-dimensional entangled pairs. This
is only possible when the OAM spectra in two crystals
are shifted with a hologram and combined in a nontrivial
way (a preliminary stage of the technique can be seen in
fig. 2B, where the spectrum in arm C is shifted in order
to reach a 10-dimensional output). In other experiments,
the normalization of the state has to be adjusted in order
to get a maximally entangled output. As neutral-density
filters were not part of the toolbox, MELVIN instead used
beam-splitters as a 50%-filter (for example, fig. 2B).

Now we briefly explain the 3-dimensional GHZ-state
experiment (fig. 2A, details in [27]): Two indepen-
dent SPDC events in two crystals (which produce 3-
dimensional entangled pairs) allow for nine different
states in the four arms. The parity-sorter effectively re-
moves all combinations with opposite OAM-parity from
two crystals (such as |0, 0,−1,+1〉), which reduces the
state to five terms. Detection photon A in the trig-
ger state |T 〉 = |0〉 + |1〉) leads to a multipartite
entangled state where photons C and D reside in a
three-dimensional space and photon B lives in a two-
dimensional space [17]. The dimensionality of photon
B is then increased from 2 to 3 in an intricate combina-
tion of photons A and C. Photon A is shifted by -2 OAM
quanta and combined with photon C at a beam splitter.
These photons are then detected in the same mode in one
BS output, which effectively erases the ”which-crystal”
information and entangles the remaining three photons
into a 3-dimensional GHZ state.

Example 2: High-dimensional cyclic operations and
learning - In the second example, we are interested in
high-dimensional cyclic rotations, which are special cases
of high-dimensional unitary transformations. A set of
states is transformed in such a way that the last element
of the set transforms to the first element (for example,
|1〉 → |2〉 → |3〉 → |1〉 is a 3-cycle). Such transformations
are required in novel kinds of high-dimensional quantum
information protocols [38, 39] as well as in the creation
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Figure 3: Realization of an 8-cyclic rotation using polariza-
tion and OAM (|−1, H〉 → |−1, V 〉 → |0, V 〉 → ... |2, H〉 →
|−1, V 〉). In the experiment, a 4-cyclic rotation for pure OAM
values is used. Within the 4-cyclic rotation, the parity sorter
[29] mentioned in the main text is used twice.

of high-dimensional Bell-states. Here, our input is a set
of high-dimensional states encoded in different degrees of
freedom (path, polarization, and OAM). While the cre-
ation and verification of high-dimensional entanglement
in OAM is well known [36, 37], the knowledge of how
to perform arbitrary transformations in this degree-of-
freedom is still lacking. Thus, finding such transforma-
tions in OAM is very important, as it would enable prac-
tical experiments with high-dimensional quantum states
and find application in high-dimensional quantum infor-
mation protocols.

The experiments are generated using a set of basic
elements that consists of polarizing and non-polarizing
beam splitters, dove prisms, mirrors, holograms and half-
wave plates. These elements are placed in one of three
different paths (one path is used as an input, and two
empty paths are added to increase variability). This leads
to roughly 1022 different possible experimental configu-
rations.

The criterion is based on the largest cycle of the trans-
formation: A number of input states (with different po-
larization (horizontal and vertical), OAM (`=-10 to +10)
and paths) is calculated. Then we search subsets of
modes that are transformed in a closed cycle, as de-
scribed above, and select the largest closed cycle. MELVIN

was able to find the first experimentally realizable OAM-
only 4-cyclic transformation, OAM and polarization 3-,
6-, and 8-cyclic rotations and up to 14-cyclic rotations
using OAM, polarization and path (fig. 3 & [27]).

Complex problems can be solved more efficiently by
reusing solutions to simpler problems [40, 41]: Whenever
MELVIN finds a solution for a simpler system, it mem-
orizes the experimental configuration as new part of its
initial toolbox [27]. The novel elements in the toolbox can
be used to construct the next experimental configuration.
To compare the effectiveness of learning, we analyze the
algorithm with and without the ability to increase its own
set of basic elements. We ran the algorithm for 250 hours,
and only 3 and 4 instances of 4-cyclic and 6-cyclic rota-
tions were found, respectively. Not a single instance of
a 3-cyclic and an 8-cyclic rotation was found within 250
hours. However, using the ability to learn new elements
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4-cyclic 
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3-cyclic 
OAM/Pol 

6-cyclic 
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Figure 4: Comparison of performance with and without the
ability to learn (log-scale). Green shows the average time
required in the case where the algorithm can learn useful
transformations (the algorithm was executed 10 times with
the same initial conditions). Black shows the time it requires
without the ability to learn. The experiments for 3-cyclic and
8-cyclic transformations were not found (within 250 hours)
without learning, while experiments for 4-cyclic and 6-cyclic
rotation were found three and four times in 250 hours, re-
spectively. The errors stand for one standard deviation, cal-
culated from the times it took to find the solution. Thus,
autonomously extending the set of useful transformations im-
proves MELVIN s performance, which is crucial for scaling to
more complex experiments.

we ran the algorithm 10 times (starting with the initial
toolbox, i.e. without keeping the learned elements), and
discovered that the 3- and 6-cyclic rotations were found
on average within 90 minutes (they were always found
within 3 hours), and the 4- and 8- cyclic rotations were
found on average within 3,5 hours (in each of the 10 tri-
als, they were found within 8 hours). Thus the ability
to learn new elements improves the search by more than
one order of magnitude, suggesting a mechanism for ex-
periments with a higher complexity (fig. 4).

Conclusion and Outlook - We have shown how a com-
puter can find new quantum experiments. The large
number of discoveries reveals a way to investigate new
families of complex entangled quantum systems in the
laboratory. Several of these experiments are being built
at the moment in our labs [17, 18]. In contrast to human
designers of experiments, MELVIN does not follow intu-
itive reasoning about the physical system, and therefore
leads to the utilization of many unfamiliar and uncon-
ventional techniques that are challenging to understand.
The algorithm can learn from experience (i.e. previous
successful solutions), which leads to a significant speed-
up in discoveries of more complex experiments.

MELVIN can be applied to many other questions about
the creation and manipulation of quantum systems, such
as the search for more general high-dimensional trans-
formations with different degrees-of-freedom and for dif-
ferent physical systems such as ultra-cold atoms [28],
or for efficient generation of other types of important
quantum systems such as NOON-states [19]. In order
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to improve the efficiency of finding solutions, powerful
techniques from artificial intelligence research can be ap-
plied, such as evolutionary algorithms [42] (where the
experiment and the resulting quantum state play the
role of genotype and phenotype, respectively), reinforce-
ment learning techniques [41, 43, 44] (by implement-
ing a reward-function depending on the closeness of the
quantum states properties to the desired properties) or
entropy-based [45] and big-data methods [46] (in order
to find more unexpected solutions).
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[16] G. Tóth and I. Apellaniz, Journal of Physics A: Mathe-
matical and Theoretical 47, 424006 (2014).

[17] M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler,
and A. Zeilinger, arXiv preprint arXiv:1509.02561 (2015).

[18] F. Schlederer, M. Krenn, R. Fickler, M. Malik, and

A. Zeilinger, arXiv preprint arXiv:1512.02696 (2015).
[19] I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879

(2010).
[20] X. Zou, L. Wang, and L. Mandel, Physical review letters

67, 318 (1991).
[21] G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lap-

kiewicz, and A. Zeilinger, Nature 512, 409 (2014).
[22] V. V. Shende, S. S. Bullock, and I. L. Markov, Computer-

Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 25, 1000 (2006).

[23] D. Maslov, G. W. Dueck, D. M. Miller, and C. Ne-
grevergne, Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 27, 436 (2008).

[24] M. Saeedi and I. L. Markov, ACM Computing Surveys
(CSUR) 45, 21 (2013).

[25] A. Bocharov, M. Roetteler, and K. M. Svore, Physical
Review A 91, 052317 (2015).

[26] A. Bocharov, M. Roetteler, and K. M. Svore, Physical
review letters 114, 080502 (2015).

[27] (see Supplementary Informations).
[28] P. Wigley, P. Everitt, A. Hengel, J. Bastian, M. Sooriya-

bandara, G. McDonald, K. Hardman, C. Quinli-
van, M. Perumbil, C. Kuhn, et al., arXiv preprint
arXiv:1507.04964 (2015).

[29] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-
Arnold, and J. Courtial, Physical review letters 88,
257901 (2002).

[30] M. Huber, M. Perarnau-Llobet, and J. I. de Vicente,
Physical Review A 88, 042328 (2013).

[31] J. Cadney, M. Huber, N. Linden, and A. Winter, Linear
Algebra and its Applications 452, 153 (2014).

[32] D. Bouwmeester, J.-W. Pan, M. Daniell, H. Weinfurter,
and A. Zeilinger, Physical Review Letters 82, 1345
(1999).

[33] X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H.
Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, and J.-W. Pan,
Nature Photonics 6, 225 (2012).

[34] L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Wo-
erdman, Physical Review A 45, 8185 (1992).

[35] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and
E. Andersson, Nature Physics 7, 677 (2011).

[36] J. Romero, D. Giovannini, S. Franke-Arnold, S. Barnett,
and M. Padgett, Physical Review A 86, 012334 (2012).

[37] M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz,
S. Ramelow, and A. Zeilinger, Proceedings of the Na-
tional Academy of Sciences 111, 6243 (2014).
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Supplementary Informations

S1) High-dimensional GHZ-entanglement

A straight-forward generalization of a 3-partite GHZ-state to 3 dimensions looks like

|ψ〉 =
1√
3

(|0, 0, 0〉+ |1, 1, 1〉+ |2, 2, 2〉) . (2)

Local transformations do not change the properties of entanglement, thus a 3-dimensional 3-partite GHZ-state can
be written as

|ψ〉 =
1√
3

(
|a, b, c〉+ |ā, b̄, c̄〉+ |¯̄a, ¯̄b, ¯̄c〉

)
, (3)

where x ⊥ x̄ ⊥ ¯̄x with x = {a, b, c}.

S2) Spontaneous parametric down-conversion (SPDC)

The input state of example 1 is a double-emission from SPDC, in the form of

|ψSPDC〉 = N

(
DC∑

`=−DC

|+`A,−`B〉+ |+`C ,−`C〉

)2

(4)

with DC being the highest order of SPDC considered, and A, B, C and D are the path of the photons, and N is a
normalization constant. We post-select on fourfold coincidences. Such a state can be written with DC=1 gives

|ψSPDC,AB+CD〉 = N (|0A, 0B〉+ |−1A, 1B〉+ |1A,−1B〉+ |0C , 0D〉+ |−1C , 1D〉+ |1C ,−1D〉)2 (5)

In the examples, we consider DC=1 up to DC=3 (see chapter S4) to generate the state, and we make sure that up to
DC=25 higher-order terms dont modify the post-selected output.

S3) Basis elements from the toolbox

Here we list the symbolic transformations of all elements used in the toolbox. Here, a or b stand for the path of
the photon, ` and P stand for the photon’s OAM and polarization.

Reflection

Reflection[ψ, a] = ψ ⇐
{

a[`,H]→ −i · a[−`,H]
a[`, V ]→ i · a[−`, V ]

(6)

Non-polarizing symmetric 50/50 beam splitter

BS[ψ, a,b] = ψ ⇐

{
a[`, P ]→ 1√

2
(b[`] + Reflection[a[`, P ]])

b[`, P ]→ 1√
2

(a[`] + Reflection[b[`, P ]])
(7)
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Polarizing beam splitter

PBS[ψ, a,b] = ψ ⇐


a[`,H]→ b[`,H]
a[`, V ]→ i · a[−`, V ]
b[`,H]→ a[`,H]
b[`, V ]→ i · b[−`, V ]

(8)

Half-Wave Plate

HWP[ψ, a] = ψ ⇐
{

a[`,H]→ a[`, V ]
a[`, V ]→ −a[`,H]

(9)

OAM hologram

OAMHolo[ψ, a,n] = ψ ⇐ {a[`, P ]→ a[`+ n, P ] (10)

OAM hologram-superposition

OAMHoloSP[ψ, a,n] = ψ ⇐
{

a[`, P ]→ 1√
2

(a[`, P ] + a[`+ n, P ]) (11)

Dove prism

DP[ψ, a,n] = ψ ⇐
{

a[`, P ]→ ei
π
n `Reflection[a[`, P ]] (12)

OAM Parity Sorter

LI[ψ, a,b] = BS[Reflection[Reflection[DP[Reflection[BS[ψ, a,b], a], a, 1],b],b], a,b] (13)

S4) Experimental Implementations for High-dimensional 3-partite Entanglement

High-dimensional multipartite entanglement can be characterized by the Schmidt-Rank Vector, introduced in [9].
In example 1, we search for such states, and find many examples, as shown in fig.(5) below. All Schmidt-Rank-vectors
(SRV), their experiments, the required trigger and the resulting quantum state are listed here:
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Figure 5: Found experimental implementations for high-dimensional three-partite entangled states. The list shows experimental
setups with states of different Schmidt-Rank Vectors. Black cells are not possible [31]. Cells with green, violet and blue filling
indicate states that can be generated with 1st, 2nd or 3rd order in the OAM spectrum (see chapter S2). For white cells, no
experimental realization has been found yet.

SRV Experimental Setup Trigger in A resulting quantum state

DC=1

(2,2,2) "OAMHolo[ψ,c,-1]", "LI[XXX,a,c]" |1〉+ |2〉 -FF2[-1]*FF3[-1]*FF4[0] - FF2[0]*FF3[0]*FF4[1]

(3,2,2) "BS[ψ,b,c]", "LI[XXX,c,f]" |1〉 -FF2[0] FF3[-1] FF4[0] - FF2[-1] FF3[-1] FF4[1] +
+ FF2[1] FF3[1] FF4[1]

(3,3,2) "LI[ψ,b,c]" |−1〉+ |0〉 -FF2[1]*FF3[1]*FF4[-1] - FF2[0]*FF3[0]*FF4[0] -
- FF2[1]*FF3[-1]*FF4[1]

(3,3,3)
"LI[ψ,b,c]", "Reflection[XXX,a]",
"OAMHolo[XXX,a,-2]", "BS[XXX,a,c]"

|1〉+ |0〉 -I FF2[-1] FF3[-3] FF4[-1] - I FF2[0] FF3[-2] FF4[0] +
+ I FF2[1] FF3[1] FF4[1]

(4,2,2)
"OAMHolo[ψ,b,-1]", "BS[XXX,a,d]",
"BS[XXX,b,d]", "LI[XXX,d,f]"

|0〉 FF2[-1] FF3[-1] FF4[-1] + FF2[2] FF3[0] FF4[-1] -
- FF2[1] FF3[-1] FF4[1] + FF2[0] FF3[0] FF4[1]

(4,3,2) "OAMHoloSP2[ψ,c,-3]", "LI[XXX,a,c]" |1〉+ |2〉 -FF2[0]*FF3[0]*FF4[-1] - FF2[-1]*FF3[1]*FF4[-1] -
- FF2[-1]*FF3[-3]*FF4[0] - FF2[-1]*FF3[-1]*FF4[1]

(4,3,3)
"BS[ψ,c,f]", "OAMHolo[XXX,c,1]",
"OAMHolo[XXX,a,2]", "BS[XXX,c,f]",
"BS[XXX,a,d]", "LI[XXX,c,d]"

|1〉+ |0〉 +
|−1〉

FF2[1]*FF3[-1]*FF4[-1] + FF2[1]*FF3[0]*FF4[0] +
+ FF2[0]*FF3[-2]*FF4[2] - FF2[-1]*FF3[1]*FF4[3]

(5,3,2)
"OAMHolo[ψ,b,-4]", "BS[XXX,b,c]",
"LI[XXX,d,f]", "BS[XXX,a,c]"

|−1〉
FF2[3]*FF3[-1]*FF4[-1] + FF2[4]*FF3[0]*FF4[-1] +
+ FF2[1]*FF3[5]*FF4[-1] - FF2[5]*FF3[-1]*FF4[1] +
+ FF2[-1]*FF3[5]*FF4[1]

(5,3,3) "OAMHoloSP2[ψ,a,5]", "LI[XXX,a,c]" |0〉+ |−1〉
-FF2[1]*FF3[1]*FF4[-1] - FF2[-1]*FF3[-6]*FF4[0] -
- FF2[1]*FF3[-4]*FF4[0] - FF2[0]*FF3[0]*FF4[0] -
- FF2[1]*FF3[-1]*FF4[1]

(5,4,2)
"OAMHolo[ψ,d,1]", "OAMHolo[XXX,c,-3]",
"LI[XXX,a,d]", "BS[XXX,b,c]",
"LI[XXX,a,c]"

|0〉+ |1〉
FF2[0]*FF3[-1]*FF4[0] + FF2[-2]*FF3[0]*FF4[0] +
+ FF2[-4]*FF3[2]*FF4[0] + FF2[-3]*FF3[-1]*FF4[1] -
- FF2[1]*FF3[3]*FF4[1]

(5,4,3)
"OAMHolo[ψ,a,3]", "BS[XXX,a,b]",
"LI[XXX,a,d]"

|0〉+ |1〉
-(FF2[2]*FF3[1]*FF4[-1]) - FF2[3]*FF3[0]*FF4[0] -
- FF2[2]*FF3[-1]*FF4[1] + FF2[-1]*FF3[0]*FF4[2] +
+ FF2[1]*FF3[0]*FF4[4]

(5,5,2)
"OAMHolo[ψ,c,-4]", "BS[XXX,c,d]",
"LI[XXX,a,d]"

|0〉+ |1〉
-(FF2[-1]*FF3[1]*FF4[-5]) - FF2[-1]*FF3[-1]*FF4[-3] +
+ FF2[-1]*FF3[5]*FF4[-1] + FF2[0]*FF3[4]*FF4[0] +
+ FF2[-1]*FF3[3]*FF4[1]

(6,3,3)
"OAMHolo[ψ,a,4]", "Reflection[XXX,b]",
"BS[XXX,a,d]", "LI[XXX,a,e]",
"BS[XXX,a,b]"

|−1〉
FF2[-3]*FF3[-1]*FF4[-1] + FF2[-3]*FF3[0]*FF4[0] +
+ FF2[-3]*FF3[1]*FF4[1] - FF2[-1]*FF3[1]*FF4[3] +
+ FF2[0]*FF3[-1]*FF4[4] + FF2[-1]*FF3[-1]*FF4[5]

(6,4,3)
"OAMHolo[ψ,a,-4]", "BS[XXX,a,d]",
"LI[XXX,a,c]"

|0〉+ |3〉
-(FF2[1]*FF3[0]*FF4[-5]) - FF2[0]*FF3[0]*FF4[-4] -
- FF2[-1]*FF3[0]*FF4[-3] + FF2[-1]*FF3[-1]*FF4[-1] +
+ FF2[0]*FF3[-4]*FF4[0] + FF2[-1]*FF3[1]*FF4[1]
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(6,4,4)
"OAMHoloSP2[ψ,d,5]", "BS[XXX,c,d]",
"LI[XXX,b,d]"

|0〉+ |1〉
FF2[-1]*FF3[0]*FF4[-5] - FF2[-1]*FF3[6]*FF4[-1] +
+ FF2[4]*FF3[-1]*FF4[0] + FF2[6]*FF3[1]*FF4[0] -
- FF2[0]*FF3[5]*FF4[0] - FF2[-1]*FF3[4]*FF4[1]

(6,5,2)
"OAMHoloSP2[ψ,d,6]", "BS[XXX,c,d]",
"BS[XXX,a,c]", "LI[XXX,b,f]"

|−1〉
-FF2[-1]*FF3[-1]*FF4[-7]) - FF2[-1]*FF3[0]*FF4[-6] +
+ FF2[1]*FF3[-1]*FF4[-5] + FF2[-1]*FF3[-7]*FF4[-1] +
+ FF2[-1]*FF3[-6]*FF4[0] + FF2[-1]*FF3[-5]*FF4[1]

(6,5,3)
"OAMHolo[ψ,c,6]", "BS[XXX,c,d]",
"LI[XXX,b,c]"

|−1〉+ |0〉
FF2[1]*FF3[-5]*FF4[-1] + FF2[6]*FF3[0]*FF4[0] +
+ FF2[1]*FF3[-7]*FF4[1] - FF2[1]*FF3[1]*FF4[5] -
- FF2[0]*FF3[0]*FF4[6] - FF2[1]*FF3[-1]*FF4[7]

(6,6,2)
"LI[ψ,a,d]", "OAMHolo[XXX,c,3]",
"BS[XXX,c,d]"

|−1〉+ |0〉
FF2[1]*FF3[-2]*FF4[-1] + FF2[0]*FF3[-3]*FF4[0] +
+ FF2[1]*FF3[-4]*FF4[1] - FF2[1]*FF3[1]*FF4[2] -
- FF2[0]*FF3[0]*FF4[3] - FF2[1]*FF3[-1]*FF4[4]

(7,5,3)
"OAMHoloSP2[ψ,c,4]", "OAMHoloSP2[XXX,a,7]",
"BS[XXX,c,d]", "LI[XXX,a,c]"

|1〉+ |4〉
FF2[-1]*FF3[-3]*FF4[-1] + FF2[-1]*FF3[-8]*FF4[0] +
+ FF2[1]*FF3[-6]*FF4[0] + FF2[0]*FF3[0]*FF4[0] +
+ FF2[-1]*FF3[-5]*FF4[1] - FF2[-1]*FF3[1]*FF4[3] -
- FF2[-1]*FF3[-1]*FF4[5]

(7,5,4)
"OAMHolo[ψ,d,6]", "OAMHolo[XXX,b,3]",
"BS[XXX,a,b]", "BS[XXX,c,d]",
"LI[XXX,a,d]"

|1〉+ |0〉
-FF2[-4]*FF3[1]*FF4[-7] - FF2[-4]*FF3[-1]*FF4[-5] -
- FF2[-1]*FF3[6]*FF4[-4] - FF2[1]*FF3[6]*FF4[-2] +
+ FF2[-4]*FF3[7]*FF4[-1] + FF2[-3]*FF3[6]*FF4[0] +
+ FF2[-4]*FF3[5]*FF4[1]

(7,6,2)
"OAMHoloSP2[ψ,c,-8]", "BS[XXX,c,d]",
"OAMHoloSP2[XXX,c,-5]", "LI[XXX,a,c]"

|1〉+ |−4〉
-FF2[0]*FF3[0]*FF4[-9] - FF2[1]*FF3[1]*FF4[-9] -
- FF2[1]*FF3[-5]*FF4[-8] - FF2[1]*FF3[-1]*FF4[-7] +
+ FF2[1]*FF3[9]*FF4[-1] + FF2[1]*FF3[3]*FF4[0] +
+ FF2[1]*FF3[7]*FF4[1]

(7,6,3)
"OAMHolo[ψ,c,5]", "OAMHolo[XXX,a,-2]",
"BS[XXX,c,d]", "BS[XXX,a,d]"

|1〉
-FF2[-1]*FF3[-1]*FF4[-6] - FF2[-1]*FF3[0]*FF4[-5] -
- FF2[-1]*FF3[1]*FF4[-4] - FF2[1]*FF3[-6]*FF4[-3] -
- FF2[0]*FF3[-6]*FF4[-2] + FF2[-1]*FF3[-5]*FF4[0] +
+ FF2[-1]*FF3[-4]*FF4[1]

(8,6,3)
"OAMHoloSP2[ψ,a,6]", "BS[XXX,a,b]",
"OAMHoloSP2[XXX,a,-3]", "LI[XXX,a,d]"

|0〉+ |−5〉
FF2[-1]*FF3[1]*FF4[-1] - FF2[6]*FF3[0]*FF4[0] +
+ FF2[-1]*FF3[-1]*FF4[1] - FF2[5]*FF3[0]*FF4[2] -
- FF2[7]*FF3[0]*FF4[4] + FF2[0]*FF3[0]*FF4[6] +
+ FF2[-1]*FF3[0]*FF4[8] + FF2[1]*FF3[0]*FF4[10]

DC=2

(5,5,3)
"Reflection[ψ,a]", "LI[XXX,b,c]",
"OAMHolo[XXX,a,2]", "BS[XXX,a,c]"

|−1〉+ |2〉
(-I)*FF2[-2]*FF3[0]*FF4[-2] + I*FF2[-1]*FF3[-1]*FF4[-1] -
- I*FF2[0]*FF3[0]*FF4[0] - I*FF2[1]*FF3[3]*FF4[1] -
- I*FF2[2]*FF3[0]*FF4[2]

(6,4,2)
"OAMHolo[ψ,a,3]", "BS[XXX,a,d]",
"OAMHolo[XXX,a,4]", "BS[XXX,a,c]",
"LI[XXX,c,f]"

|1〉
-FF2[-2]*FF3[1]*FF4[-1] + FF2[0]*FF3[1]*FF4[1] -
- FF2[1]*FF3[3]*FF4[2] - FF2[0]*FF3[3]*FF4[3] -
- FF2[-1]*FF3[3]*FF4[4] -
- FF2[-2]*FF3[3]*FF4[5]

(6,5,4)
"OAMHolo[ψ,b,4]", "OAMHolo[XXX,d,3]",
"LI[XXX,b,d]", "OAMHolo[XXX,a,6]",
"BS[XXX,a,b]"

|−4〉+ |5〉
FF2[2]*FF3[1]*FF4[-6] - FF2[6]*FF3[-1]*FF4[-4] -
- FF2[8]*FF3[-1]*FF4[-2] - FF2[5]*FF3[2]*FF4[1] -
- FF2[5]*FF3[0]*FF4[3] - FF2[5]*FF3[-2]*FF4[5]

(7,5,2)
"OAMHolo[ψ,d,5]", "BS[XXX,a,d]",
"BS[XXX,a,c]", "LI[XXX,b,f]"

|1〉
-FF2[-1]*FF3[2]*FF4[-7] - FF2[-1]*FF3[1]*FF4[-6] -
- FF2[-1]*FF3[0]*FF4[-5] + FF2[1]*FF3[1]*FF4[-4] -
- FF2[-1]*FF3[-2]*FF4[-3] - FF2[1]*FF3[4]*FF4[-1] -
- FF2[-1]*FF3[4]*FF4[1]

(8,5,3)
"OAMHolo[ψ,b,-5]", "BS[XXX,b,d]",
"OAMHolo[XXX,a,-1]", "BS[XXX,a,d]",
"LI[XXX,d,e]"

|1〉
FF2[3]*FF3[1]*FF4[-3] - FF2[5]*FF3[-1]*FF4[1] +
+ FF2[7]*FF3[1]*FF4[1] + FF2[2]*FF3[-2]*FF4[5] +
+ FF2[1]*FF3[-1]*FF4[5] + FF2[0]*FF3[0]*FF4[5] +
+ FF2[-1]*FF3[1]*FF4[5] + FF2[-2]*FF3[2]*FF4[5]

(8,5,4) "OAMHoloSP2[ψ,d,5]", "LI[XXX,a,d]" |−2〉+ |1〉
-FF2[-2]*FF3[-2]*FF4[-2] - FF2[-1]*FF3[1]*FF4[-1] -
- FF2[0]*FF3[-2]*FF4[0] - FF2[-1]*FF3[-1]*FF4[1] -
- FF2[2]*FF3[-2]*FF4[2] - FF2[-1]*FF3[2]*FF4[3] -
- FF2[-1]*FF3[0]*FF4[5] - FF2[-1]*FF3[-2]*FF4[7]

(8,5,5)
"OAMHolo[ψ,a,-6]", "OAMHolo[XXX,a,2]",
"BS[XXX,a,c]"

|2〉
FF2[2]*FF3[-6]*FF4[-2] + FF2[1]*FF3[-5]*FF4[-2] +
+ FF2[0]*FF3[-4]*FF4[-2] + FF2[-1]*FF3[-3]*FF4[-2] -
- FF2[-2]*FF3[-1]*FF4[-1] - FF2[-2]*FF3[0]*FF4[0] -
- FF2[-2]*FF3[1]*FF4[1] - FF2[-2]*FF3[2]*FF4[2]

(8,6,4)
"OAMHolo[ψ,c,-5]", "BS[XXX,c,d]",
"LI[XXX,a,c]"

|−2〉+ |1〉
-FF2[-2]*FF3[-2]*FF4[-7] - FF2[0]*FF3[0]*FF4[-7] -
- FF2[2]*FF3[2]*FF4[-7] - FF2[-1]*FF3[1]*FF4[-6] -
- FF2[-1]*FF3[-1]*FF4[-4] + FF2[-1]*FF3[7]*FF4[-2] +
+ FF2[-1]*FF3[5]*FF4[0] + FF2[-1]*FF3[3]*FF4[2]

(8,6,5)

"LI[ψ,d,e]", "OAMHolo[XXX,b,7]",
"BS[XXX,b,f]", "LI[XXX,d,f]",
"BS[XXX,b,e]", "OAMHolo[XXX,a,2]",
"BS[XXX,a,d]"

|−1〉
FF2[8]*FF3[-1]*FF4[-1] - FF2[9]*FF3[1]*FF4[0] -
- FF2[7]*FF3[1]*FF4[2] - FF2[6]*FF3[1]*FF4[3] -
- FF2[5]*FF3[1]*FF4[4] + FF2[-2]*FF3[-2]*FF4[8] +
+ FF2[0]*FF3[0]*FF4[8] + FF2[2]*FF3[2]*FF4[8]

(8,7,2)
"Reflection[ψ,a]", "OAMHoloSP2[XXX,c,9]",
"LI[XXX,d,e]", "LI[XXX,a,c]",
"OAMHoloSP2[XXX,b,-3]", "LI[XXX,b,e]"

|−8〉+ |1〉
(-I)*FF2[1]*FF3[1]*FF4[-1] - I*FF2[-1]*FF3[-2]*FF4[1] -
- I*FF2[1]*FF3[-1]*FF4[1] - I*FF2[-3]*FF3[0]*FF4[1] -
- I*FF2[-5]*FF3[2]*FF4[1] + FF2[2]*FF3[7]*FF4[1] +
+ FF2[0]*FF3[9]*FF4[1] + FF2[-2]*FF3[11]*FF4[1]

(8,7,3)
"OAMHoloSP2[ψ,a,6]", "BS[XXX,a,b]",
"LI[XXX,a,c]"

|−5〉+ |2〉
FF2[-1]*FF3[1]*FF4[-1] + FF2[-1]*FF3[-1]*FF4[1] -
- FF2[4]*FF3[-2]*FF4[2] - FF2[6]*FF3[0]*FF4[2] -
- FF2[8]*FF3[2]*FF4[2] + FF2[-2]*FF3[4]*FF4[2] +
+ FF2[0]*FF3[6]*FF4[2] + FF2[2]*FF3[8]*FF4[2]

(8,8,2)
"Reflection[ψ,d]", "OAMHolo[XXX,a,4]",
"OAMHolo[XXX,c,6]", "LI[XXX,b,c]",
"BS[XXX,b,d]"

|2〉+ |3〉
(-I)*FF2[2]*FF3[-2]*FF4[-8] - I*FF2[0]*FF3[-2]*FF4[-6] -
- I*FF2[-2]*FF3[-2]*FF4[-4] + I*FF2[8]*FF3[-2]*FF4[-2] +
+ I*FF2[-1]*FF3[7]*FF4[-1] + I*FF2[6]*FF3[-2]*FF4[0] -
- I*FF2[1]*FF3[7]*FF4[1] + I*FF2[4]*FF3[-2]*FF4[2]

(9,5,5)
"OAMHoloSP2[ψ,c,4]", "BS[XXX,c,d]",
"OAMHoloSP2[XXX,a,5]", "LI[XXX,a,c]"

|4〉+ |7〉

FF2[-2]*FF3[-3]*FF4[-1] + FF2[-1]*FF3[-6]*FF4[0] +
+ FF2[1]*FF3[-4]*FF4[0] + FF2[-2]*FF3[-2]*FF4[0] +
+ FF2[0]*FF3[0]*FF4[0] + FF2[2]*FF3[2]*FF4[0] +
+ FF2[-2]*FF3[-5]*FF4[1] - FF2[-2]*FF3[1]*FF4[3] -
- FF2[-2]*FF3[-1]*FF4[5]

(9,7,3)
"OAMHolo[ψ,a,5]", "BS[XXX,a,f]",
"OAMHolo[XXX,b,1]", "BS[XXX,b,f]",
"BS[XXX,a,c]", "LI[XXX,c,f]"

|0〉+ |3〉

-FF2[-3]*FF3[-1]*FF4[-1] + FF2[1]*FF3[-7]*FF4[0] +
+ FF2[-1]*FF3[-5]*FF4[0] + FF2[-3]*FF3[-3]*FF4[0] -
- I*FF2[4]*FF3[-2]*FF4[0] - I*FF2[6]*FF3[0]*FF4[0] +
+ I*FF2[-2]*FF3[4]*FF4[0] + I*FF2[0]*FF3[6]*FF4[0] -
- FF2[-3]*FF3[1]*FF4[1]

(9,7,4)
"OAMHolo[ψ,d,3]", "Reflection[XXX,d]",
"OAMHolo[XXX,b,-6]", "BS[XXX,a,b]",
"LI[XXX,a,d]"

|−5〉+ |4〉

(-I)*FF2[-1]*FF3[-2]*FF4[-5] - I*FF2[-1]*FF3[0]*FF4[-3] +
+ I*FF2[4]*FF3[-1]*FF4[-2] - I*FF2[-1]*FF3[2]*FF4[-1] +
+ I*FF2[6]*FF3[-1]*FF4[0] + I*FF2[8]*FF3[-1]*FF4[2] -
- I*FF2[-2]*FF3[-1]*FF4[4] - I*FF2[0]*FF3[-1]*FF4[6] -
- I*FF2[2]*FF3[-1]*FF4[8]
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(10,5,5)
"OAMHolo[ψ,b,6]", "BS[XXX,b,c]",
"LI[XXX,c,e]", "BS[XXX,a,c]"

|1〉

FF2[2]*FF3[-7]*FF4[-2] + FF2[1]*FF3[-7]*FF4[-1] -
- FF2[-7]*FF3[1]*FF4[-1] + FF2[0]*FF3[-7]*FF4[0] +
+ FF2[-1]*FF3[-7]*FF4[1] + FF2[-8]*FF3[-2]*FF4[1] +
+ FF2[-6]*FF3[0]*FF4[1] + FF2[-5]*FF3[1]*FF4[1] +
+ FF2[-4]*FF3[2]*FF4[1] + FF2[-2]*FF3[-7]*FF4[2]

(10,6,5)
"OAMHolo[ψ,c,-5]", "BS[XXX,c,d]",
"BS[XXX,b,e]", "BS[XXX,b,f]",
"BS[XXX,d,e]", "LI[XXX,b,d]"

|1〉

FF2[-4]*FF3[-1]*FF4[-1] + FF2[-6]*FF3[1]*FF4[-1] -
- FF2[2]*FF3[3]*FF4[-1] - FF2[-1]*FF3[4]*FF4[-1] -
- FF2[0]*FF3[5]*FF4[-1] - FF2[-2]*FF3[7]*FF4[-1] -
- FF2[-1]*FF3[6]*FF4[1] + FF2[-1]*FF3[-2]*FF4[3] +
+ FF2[-1]*FF3[0]*FF4[5] + FF2[-1]*FF3[2]*FF4[7]

(10,6,6)
"OAMHolo[ψ,d,-5]", "BS[XXX,c,d]",
"LI[XXX,b,d]"

|−2〉+ |1〉

-FF2[-2]*FF3[-7]*FF4[-2] - FF2[0]*FF3[-5]*FF4[-2] -
- FF2[2]*FF3[-3]*FF4[-2] + FF2[-6]*FF3[-1]*FF4[-2] +
+ FF2[-4]*FF3[1]*FF4[-2] - FF2[-1]*FF3[-4]*FF4[-1] -
- FF2[-1]*FF3[-6]*FF4[1] + FF2[-1]*FF3[2]*FF4[3] +
+ FF2[-1]*FF3[0]*FF4[5] + FF2[-1]*FF3[-2]*FF4[7]

(10,7,5)
"OAMHoloSP2[ψ,d,6]", "BS[XXX,c,d]",
"LI[XXX,b,d]"

|−2〉+ |1〉

FF2[-1]*FF3[1]*FF4[-7] + FF2[-1]*FF3[-1]*FF4[-5] +
+ FF2[4]*FF3[-2]*FF4[-2] + FF2[6]*FF3[0]*FF4[-2] +
+ FF2[8]*FF3[2]*FF4[-2] - FF2[-2]*FF3[4]*FF4[-2] -
- FF2[0]*FF3[6]*FF4[-2] - FF2[2]*FF3[8]*FF4[-2] -
- FF2[-1]*FF3[7]*FF4[-1] - FF2[-1]*FF3[5]*FF4[1]

(10,9,2)
"OAMHolo[ψ,d,6]", "BS[XXX,c,d]",
"BS[XXX,a,c]", "LI[XXX,b,f]"

|−1〉

-FF2[-1]*FF3[-2]*FF4[-8] - FF2[-1]*FF3[-1]*FF4[-7] -
- FF2[-1]*FF3[0]*FF4[-6] + FF2[1]*FF3[-1]*FF4[-5] -
- FF2[-1]*FF3[2]*FF4[-4] + FF2[-1]*FF3[-8]*FF4[-2] +
+ FF2[-1]*FF3[-7]*FF4[-1] + FF2[-1]*FF3[-6]*FF4[0] +
+ FF2[-1]*FF3[-5]*FF4[1] + FF2[-1]*FF3[-4]*FF4[2]

(10,10,2)
"OAMHolo[ψ,d,-9]", "LI[XXX,a,f]",
"BS[XXX,c,d]", "OAMHolo[XXX,a,2]",
"BS[XXX,a,d]"

|−1〉

-FF2[1]*FF3[-2]*FF4[-11] - FF2[1]*FF3[-1]*FF4[-10] -
- FF2[1]*FF3[0]*FF4[-9] - FF2[1]*FF3[1]*FF4[-8] -
- FF2[1]*FF3[2]*FF4[-7] + FF2[1]*FF3[-11]*FF4[-2] +
+ FF2[1]*FF3[-10]*FF4[-1] + FF2[1]*FF3[-9]*FF4[0] +
+ FF2[1]*FF3[-7]*FF4[2] - FF2[-1]*FF3[-8]*FF4[3]

(11,7,5)
"OAMHolo[ψ,b,6]", "OAMHoloSP2[XXX,d,-5]",
"BS[XXX,a,b]", "LI[XXX,a,d]"

|−1〉+ |0〉

-FF2[-2]*FF3[0]*FF4[-8] + FF2[-5]*FF3[2]*FF4[-7] -
- FF2[0]*FF3[0]*FF4[-6] + FF2[-5]*FF3[0]*FF4[-5] -
- FF2[2]*FF3[0]*FF4[-4] + FF2[-5]*FF3[-2]*FF4[-3] +
+ FF2[-8]*FF3[0]*FF4[-2] + FF2[-5]*FF3[1]*FF4[-1] +
+ FF2[-6]*FF3[0]*FF4[0] + FF2[-5]*FF3[-1]*FF4[1] +
+ FF2[-4]*FF3[0]*FF4[2]

DC=3

(7,4,4)
"BS[ψ,b,e]", "LI[XXX,b,d]",
"BS[XXX,d,e]"

|3〉
FF2[3]*FF3[-3]*FF4[-3] - I*FF2[-2]*FF3[-2]*FF4[-3] -
- I*FF2[0]*FF3[0]*FF4[-3] - I*FF2[2]*FF3[2]*FF4[-3] +
+ FF2[3]*FF3[-1]*FF4[-1] + FF2[3]*FF3[1]*FF4[1] +
+ FF2[3]*FF3[3]*FF4[3]

(10,7,4)
"OAMHolo[ψ,d,6]", "BS[XXX,a,d]",
"LI[XXX,c,d]"

|1〉+ |8〉

FF2[1]*FF3[-3]*FF4[-9] + FF2[1]*FF3[-1]*FF4[-7] +
+ FF2[1]*FF3[1]*FF4[-5] + FF2[1]*FF3[3]*FF4[-3] +
+ FF2[1]*FF3[4]*FF4[-2] + FF2[1]*FF3[6]*FF4[0] -
- FF2[-2]*FF3[-2]*FF4[2] - FF2[0]*FF3[0]*FF4[2] -
- FF2[2]*FF3[2]*FF4[2] + FF2[1]*FF3[8]*FF4[2]

(11,9,4)

"LI[ψ,a,d]", "LI[XXX,d,f]",
"BS[XXX,e,f]", "OAMHolo[XXX,c,5]",
"BS[XXX,c,d]", "OAMHolo[XXX,c,-4]",
"BS[XXX,c,e]"

|−3〉+ |0〉

-I*FF2[3]*FF3[6]*FF4[-3] - I*FF2[3]*FF3[8]*FF4[-1] -
- I*FF2[3]*FF3[10]*FF4[1] + I*FF2[3]*FF3[1]*FF4[2] -
- I*FF2[3]*FF3[12]*FF4[3] + I*FF2[3]*FF3[3]*FF4[4] +
+ I*FF2[2]*FF3[-2]*FF4[5] + I*FF2[0]*FF3[0]*FF4[5] +
+ I*FF2[-2]*FF3[2]*FF4[5] + I*FF2[3]*FF3[5]*FF4[6] +
+ I*FF2[3]*FF3[7]*FF4[8]

(12,7,7) "OAMHolo[ψ,a,-6]", "BS[XXX,a,d]" |3〉

FF2[3]*FF3[-3]*FF4[-9] + FF2[2]*FF3[-3]*FF4[-8] +
+ FF2[1]*FF3[-3]*FF4[-7] + FF2[0]*FF3[-3]*FF4[-6] +
+ FF2[-1]*FF3[-3]*FF4[-5] + FF2[-2]*FF3[-3]*FF4[-4] -
- FF2[-3]*FF3[-2]*FF4[-2] - FF2[-3]*FF3[-1]*FF4[-1] -
- FF2[-3]*FF3[0]*FF4[0] - FF2[-3]*FF3[1]*FF4[1] -
- FF2[-3]*FF3[2]*FF4[2] - FF2[-3]*FF3[3]*FF4[3]

List 1: Experimental configuration for all found high-dimensional 3-partite entangled states. First column shows the
Schmidt-Rank Vector. The second column shows the experimental configuration. There, the first element in the list is
the first in the experiment (for example, the (2,2,2)-states experiment can be calculated as LI[OAMHolo[ψ,c,-1],a,c]).
The third line is the trigger in path A for the three-photon state in path B, C and D. The last gives the quantum
state, where FF1, FF2 and FF3 stand for the photon in path B, C and D respectively.

S5) Example: 3-dimensional GHZ-state (SRV=(3,3,3))

The setup for the 3-dimensional GHZ-state in fig.(2A) consists of an OAM-Parity sorter, a mirror, a +2 Hologram
and a beam-splitter. (Note that for simplicity, we do not write normalization-constants)

After down-conversion (neglecting the double-emissions from one crystal as they will be filtered in the four-fold
coincidence detection in the end), we can write
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|ψ〉 = (|0, 0〉+ |1,−1〉+ |−1, 1〉)2 =

= |0, 0, 0, 0〉+ |0, 0, 1,−1〉+ |0, 0,−1, 1〉+

+ |1,−1, 0, 0〉+ |1,−1, 1,−1〉+ |1,−1,−1, 1〉+

+ |−1, 1, 0, 0〉+ |−1, 1, 1,−1〉+ |−1, 1,−1, 1〉 (14)

After the OAM-Parity sorter (again, neglecting double-photons in one detector-arm, because they will be filtered by
four-fold coincidence detection). From here on, only events from the two crystals with the same parity survive:

|ψ〉 = |0, 0, 0, 0〉+ |1,−1, 1,−1〉+ |1,−1,−1, 1〉+ |−1, 1, 1,−1〉+ |−1, 1,−1, 1〉 (15)

For a Trigger in A with (|0〉+ |1〉), the state has a SRV of (3,3,2), as one can see in the list above. Photon C and
D reside in 3 dimensions while photon B lives in a 2-dimensional space. That is because photon B is perfectly anti-
correlated with photon A, which is the 2-dimensional trigger. We want to increase the dimension of photon B to 3. The
general idea is remove the perfect anti-correlation by mixing the trigger with photon C. At this stage, a BS between
A and C would lead to Hong-Ou-Mandel interference between the 1st, 3rd and 4th term, which effectively removes
those terms from the state and does not lead to a 3-dimensional GHZ state. In order to prevent this from happening,
the photon in A is shifted by -2. This prevents HOM interference between those three terms, and removes the 2nd
term instead. One additional subtle but significant trick is the usage of the mirror in order to be not vulnerable to
higher-order terms (without the mirror, the state would become a 2-dimensional GHZ if higher-order modes in SPDC
are considered). The mirror in arm A leads to:

|ψ〉 = |0, 0, 0, 0〉+ |−1,−1, 1,−1〉+ |−1,−1,−1, 1〉+ |1, 1, 1,−1〉+ |1, 1,−1, 1〉 (16)

And the hologram of -2 in A transforms the state to

|ψ〉 = |−2, 0, 0, 0〉+ |−3,−1, 1,−1〉+ |−3,−1,−1, 1〉+ |−1, 1, 1,−1〉+ |−1, 1,−1, 1〉 (17)

In the next step, a beam-splitter will be placed between arm A and C.

|ψ〉 = |0, 0,−2, 0〉 − |2, 0, 0, 0〉+ |1,−1,−3,−1〉 − |3,−1,−1,−1〉+ |−1,−1,−3, 1〉 − |3,−1, 1, 1〉+

+ |1, 1,−1,−1〉 − |1, 1,−1,−1〉+ |−1, 1,−1, 1〉 − |1, 1, 1, 1〉 (18)

The red terms cancel because of destructive interference. This is due to the Hong-Ou-Mandel effect, which occurs if
the OAM of two incoming photons from two different arms in a beam splitter are opposite, which leaves us with the
state

|ψ〉 = |0, 0,−2, 0〉 − |2, 0, 0, 0〉+ |1,−1,−3,−1〉 − |3,−1,−1,−1〉+ |−1,−1,−3, 1〉 − |3,−1, 1, 1〉+

+ |−1, 1,−1, 1〉 − |1, 1, 1, 1〉 (19)

If we now use the photon A as Trigger for (|0〉+ |1〉), the photons in B, C and D will be in the state:

|ψ〉 = |0,−2, 0〉+ |−1,−3,−1〉 − |1, 1, 1〉 (20)

This state fulfills the criterion for a high-dimensional GHZ-state as stated above, and with local unitaries can be
transformed into |ψ〉 = |0, 0, 0〉+ |1, 1, 1〉+ |2, 2, 2〉.

6) Cyclic rotations in a high-dimensional space

Here we list cyclic rotation found by the algorithm, either with OAM only, or with OAM and polarization, or with
OAM and polarization and path. In all examples, ψ stands for the initial state and XXX stand for the state after
the previous element.
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4-cyclic OAM rotation

Experimental configuration:

BS[ψ, a,b] → DP[XXX,b, 1]→ Reflection[XXX,b]→ BS[XXX, a,b]

→ Reflection[XXX, a]→ BS[XXX, a,b]→ DP[XXX,b, 1]

→ Reflection[XXX,b]→ BS[XXX, a,b]→ OAMHolo[XXX, a, 1]

(21)

Operation:

|−1〉 → |0〉 → |1〉 → |2〉 → |−1〉 (22)

The number in the ket stands for the OAM. This experiment has been performed in our laboratories[18].

3-cyclic OAM+Polarisation rotation

Experimental configuration:

HWP[ψ, a] → Reflection[XXX, a]→ PBS[XXX, a, c]→ OAMHolo[XXX, a, 2]

→ Reflection[XXX, a]→ PBS[XXX, a, c]→ BS[XXX, a,b]

→ DP[XXX,b, 2]→ Reflection[XXX,b]→ BS[XXX, a,b]

→ HWP[XXX,b]→ BS[XXX, a,b]→ DP[XXX,b, 2]

→ Reflection[XXX,b]→ BS[XXX, a,b] (23)

Operation:

|−2, V 〉 → |−2, H〉 → |0, V 〉 → |−2, V 〉 (24)

The number in the ket stands for the OAM, H and V stand for horizontal and vertical polarisation.

6-cyclic OAM+Polarisation rotation

Experimental configuration:

HWP[ψ, a] → Reflection[XXX, a]→ PBS[XXX, a, c]→ OAMHolo[XXX, a, 2]

→ Reflection[XXX, a]→ PBS[XXX, a, c]→ BS[XXX, a,b]

→ DP[XXX,b, 2]→ Reflection[XXX,b]→ BS[XXX, a,b]

→ HWP[XXX,b]→ BS[XXX, a,b]→ DP[XXX,b, 2]

→ Reflection[XXX,b]→ BS[XXX, a,b] (25)

Operation:

|−4, H〉 → |−2, H〉 → |0, V 〉 → |2, H〉 → |4, V 〉 → |−4, H〉 (26)

The number in the ket stands for the OAM, H and V stand for horizontal and vertical polarisation.

8-cyclic OAM+Polarisation rotation

Experimental configuration:

PBS[ψ, a,b] → BS[XXX,b, c]→ DP[XXX, c, 1]→ Reflection[XXX, c]

→ BS[XXX,b, c]→ Reflection[XXX,b]→ BS[XXX,b, c]

→ DP[XXX, c, 1]→ Reflection[XXX, c]→ BS[XXX,b, c]

→ OAMHolo[XXX,b, 1]→ PBS[XXX, a,b]→ HWP[XXX, a] (27)
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Operation:

|−1, V 〉 → |−1, H〉 → |0, V 〉 → ...→ |2, H〉 → |−1, V 〉 (28)

The number in the ket stands for the OAM, H and V stand for horizontal and vertical polarisation.

14-cyclic OAM+Polarisation+Path rotation

Experimental configuration:

Reflection[ψ, a] → OAMHolo[XXX, a, 2]→ Reflection[XXX, a]→ OAMHolo[XXX, a,−2]

→ PBS[XXX, a,b]→ HWP[XXX, a]→ PBS[XXX, a,b]

→ Reflection[XXX,b]→ OAMHolo[XXX, a, 2]→ Reflection[XXX, a]

→ BS[XXX, a,b]→ DP[XXX,b, 2]→ Reflection[XXX,b]

→ BS[XXX, a,b] (29)

Operation:

|0, H, a〉 → |−2, H, b〉 → |−4, H, b〉 → |−8, H, b〉 → |10, V, b〉
→ |−6, H, a〉 → |8, H, a〉 → |6, H, b〉 → |4, H, a〉
→ |0, H, b〉 → |2, V, b〉 → |2, V, a〉 → |2, H, a〉
→ |0, H, a〉 (30)

The number in the ket stands for the OAM, H and V stand for horizontal and vertical polarization, and a and b stand
for the two different possible paths.

S7) Learning algorithm

In the second example involving cyclic operations, the algorithm extends its own set of basic elements autonomously,
based on the properties of the longest cycle. It saves elements that have large cycles and experiments with non-trivial
coupling between different degrees-of-freedom. Additionally, elements already learned can be forgotten to improve
variability and prevent dead-ends, as some of them might even have negative effects on the probability of finding new
experiments. The decision of which elements are forgotten at which times is purposefully random. Even though it
would be possible to weight the elements for past usefulness, it would introduce a bias on similar solutions that we
wanted to prevent.

S8) Simplification of experiments

After an experiment is found, it is simplified. For that, three different methods are used. The first one removes
elements from the experiment and calculates whether the resulting state or transformation is still performed the
same way. Such simplifications could remove elements in paths that are not accessed. An example, in which it is
necessary to remove multi elements at the same time, is the following: Four beam splitters after each other form two
Mach-Zehnder interferometers. Those have no effect if the phases are set correctly, but can only be removed together.

In the second method, it is tried to replace more complicated elements (such as LI, PBS or DP) by mirrors. This
works in cases where the only specific modes access the element (for instance, if only vertically polarized photons
access a PBS).

A third method tries to simplify the path structure of the experiment by rearranging the paths. For example, if
two PBSs are used after each other, one output of the second PBS will never be used, thus the second PBS can be
removed and one path can be removed completely.

Those three methods are applied iteratively, until no simplification is possible anymore.
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